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Abstract. The objective of this work is to develop a methodology for the automatic generation of optimised
and innovative machining process planning that enable aeronautical subcontractors to face current produc-
tivity and competitiveness issues. A four-step methodology is proposed, allowing the user to obtain optimised
machining ranges that respect his know-how and experience and introduce innovation. This methodology is
based on a representation of the decisional behaviour of the user in a given situation as well as in the face
of the risk of industrialisation and broadens the formalisation of the performance of a process by taking into
account other performance criteria other than machining time or overall cost. A genetic algorithm is used to
generate optimized process planning. An AHP method is used to represent the decision-making process. The
methodology presents the best processes generated and the use of social choice theory enables it to target the
most efficient ranges to be implemented, by integrating a risk criterion to the industrialization.

Keywords: Process planning / multicriteria optimization / GA algorithm / AHP / CAPP

1 Introduction

This paper addresses the problem of decision-making and
optimization of machining process planning for die-forged
aerospace parts made of titanium. The design of the
machining process planning of an aeronautical structural
part is particularly long because of the complexity of the
shape of the part and the need for a high expected perfor-
mance. The number of parameters to be defined as well
as the complexity of their influence on the performances
of the manufacturing process planning make that the pro-
cess of optimization remains difficult to apprehend in its
entirety by the human spirit. The user often proceeds by
adapting the existing know-how, by iteration and simula-
tion, in order to minimize the level of risk. Indeed, the user
must make a compromise between the safety of machin-
ing and the search for performance. On the one hand,
the more secure the machining is, the longer the machin-
ing time and the cost. On the other hand, the search for
performance can lead to the use of tools in critical con-
ditions, which cause failures. Thus, the work is long and
expensive, without it being possible to ensure the respect
of all the constraints. The user can not renew often the
development of the process planning.

* e-mail: Emmanuel.Duc@sigma-clermont.fr

To obtain rapid productivity gains, it is relevant to
propose a new way of optimizing the machining process
planning. Optimization must lead to faster and more eco-
nomical processes, while respecting quality requirements.

A machining process planning is the ordered sequence of
a set of machining operations to be applied to the part to
achieve the geometric form according to the specifications.

The development of a process planning consists of:
– define all the machining operations, for each machined

feature;
– for each operation, determine the tool and optimize the

cutting conditions and the machining strategy;
– sequencing all operations.

This paper presents a decision support method to deter-
mine the machining process planning of a new part and
to estimate the various performance indicators by quan-
tifying the associated technical risks. After modeling the
problem, a genetic algorithm calculates a large population
of candidate manufacturing process planning. A ranking
method offers the best solutions to the decision maker.
Thus, the method offers innovative machining processes
whose overall performance is better from a multi-criteria
point of view, while generating a level of acceptable risk by
the workshop. The trade-off between innovation and risk
is the key to success. The remainder of the paper is orga-
nized as problem statement (Sect. 2); presentation of the
general method of resolution (Sect. 3); and an application
case study (Sect. 4).
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2 Problem statement

Optimizing a process planning involves defining per-
formance criteria. The usual criteria are the overall
machining time, the cost of manufacture as well as the
quality obtained after machining [1]. The optimal process
planning can thus be considered as the best compromise
obtained between these three criteria. The question is,
then, to propose as quickly as possible an optimal process
planning.

The automatic generation of manufacturing process
planning developed from the 1980s to the 1990s from an
idea of Niebel [2]. 55 different systems existed in 1986 [3].
A Computer Aided Process Planning (CAPP) system is
broken down according to the following tasks [4–6]:
– Selection of manufacturing processes and tools;
– Selection of machine tools and technical ressources;
– Sequencing of operations;
– Grouping of operations (phases, sub-phases);
– Selection of clamping systems, bearing faces;
– Selection of control instruments and processes;
– Determination of production tolerances;
– Determination of cutting conditions;
– Calculation of machining and non-machining times,

calculation of associated costs;
– Generation of the technical documentation.

Several approaches to the creation of Computer Aided
Process Planning (CAPP) systems are presented in the
literature [7]. The first is based on comparison to existing
(process by variant), while the second concerns methods
that engineer a process ex-nihilo (generative process).
– Process by variant [7–11];
– Generative or semi-generative process [7–9,12] compris-

ing:
• Process by algorithmic systems [7,9,13–16];
• Process by expert systems [17–19].
Since 1984, several publications have studied the vari-

ous CAPP systems developed by the scientific community
[5,9,20–22]. In 2007, Denkena proposes a state of the art
based on knowledge management for the generation of
production lines [4]. Xu presents a state of the art about
the generation of process between 2000 and 2009 [23].
Their conclusions show that Variant systems (by variant)
are still used, especially for the mass production indus-
try, where the geometry of parts evolves in a discrete
but constant manner. Finally, in 2014, Yusof completes
the state of the art by adding functional block technol-
ogy, used for the generation of process since the late
2000s [24].

Today, ten different technologies are used:
– Technology based on geometric machining entities [25,

26];
– Process-based knowledge technology [27,28];
– Technology based on neural networks [29,30];
– Technologies based on genetic algorithms [31,32];
– Theory on fuzzy logic [33,34];
– Petri nets [35];
– Multi agent technology [36,37];
– Internet-based technology (evolution of knowledge-

based technologies) [38];

– Technology based on STEP format (ISO 10303) to
facilitate dialogue between design and manufacture
[39,40];

– Functional block technology [41,42].
The literature review shows that much work has been

done on this issue. We consider that the technical obstacles
related to the recognition of entities and their application
to pre-defined processes have been overcome. Nevertheless,
we note that little software is used in companies, especially
in SMEs with small production runs. Indeed, this software
does not correspond to their needs and requires significant
support resources. For a SME, the evaluation of the per-
formance of a CAPP system is based on the quality of
the computed process planning. In particular, two crite-
ria are important. The first concerns the precision of the
process planning in the estimation of the performance.
The second concerns the reliability of the generated pro-
cess planning for an actual implementation. The generated
process planning must be implemented easily and safely
in an industrial workshop, or with a controlled level of
risk.

Note that the generation of the manufacturing pro-
cess planning of small series of high added value parts
remains particularly difficult. The process still yet weakly
automatized, because it is not easy to take into account
automatically the variations and uncertainties on the per-
formance related to humans as well as technology. The
size of the series does not permit to reach a high level
repeatable process. The development of a complete pro-
cess in a CAD/CAM software can take several months.
Also, the user tends to secure the work by repeating reliable
processes, which does not bring any performance gains.
On the other hand, he is usually able to optimize the

process according to a single criterion. Then, the user
does not have the time to develop several processes in
a CAD/CAM software because it becomes too expensive.
In addition, special attention must be paid to the inter-
action between the operator and the process. Indeed, it
is an important factor of performance loss, if the oper-
ator is suspicious of the generated process. Confidence
between the operator and the process is a very important
key element to achieve high performance. Little researches
have studied this point, at least in the field of manufac-
turing [43]. Thus, an optimization method must propose
a machining process whose overall performance is better
from a multi-criteria point of view, while generating a
risk level acceptable by the workshop. We consider that
the problem is now in the choice and the search for the
performance of a process.

The main issue of this research is the proposal for a
multi-criteria decision support tool for the automatic gen-
eration of machining process planning. The purpose is to
quickly propose alternative processes to the user. It must
be quick and easy to implement, that is why a simple
geometric model of the features is used. This choice can
make the calculations less accurate. We propose an origi-
nal approach based both on the formalization of know-how
acquired by the user while introducing innovation (new
tool, new machining strategy, etc.). This method offers
several machining process relevant to the {Piece, Material,
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Fig. 1. Settings of the toolpath for the operation n of the planning m.

Machine} triptych and provides performance indicators,
incorporating technical risk-taking aspects, and new com-
parison criteria, in addition to the traditional cost-related
indicators by operation and the overall manufacturing
time. The user makes the choice of the final process.
Then, this method allows him to evaluate a large num-
ber of alternative solutions before an actual development,
according to a set of criteria. The method therefore gen-
erates counter-intuitive processes, the credibility of which
is verified. Even if the solution is not retained, his skills
are enriched. Indeed, the proposed solutions allow the user
to identify unusual processes or processes that he would
not have thought of. But these alternatives must be com-
patible with the company’s industrial constraints. It is a
question of finding the right balance between innovation
and safety, or between performance and credibility. In the
aeronautics industry, investments are very important and
it is difficult to question an industrial establishment to
optimize a process. The methodology does not allow to
assist in the design of parts because the geometrical mod-
els of the features are too simple. However, this method
has subsequently been adapted to also take into account
design-related performance indicators.
The method is simple to implement. Interfacing with

a CAD software to identify the features seems feasible,
according to the literature, but we have not done any
research on this point. Using the Vba language avail-
able in Microsoft Excelr, it can be easily interfaced with
CAD/CAM software that allow application development.
But the performance of the method is based on the use of
a reliable, accurate and up-to-date database of tools. It is
a key point.

Thus, the method is based on the 3 fundamental
concepts:
– the use of a genetic algorithm to evolve a population of

initial process by crossover and mutation;
– the implementation of the methodological tools of Deci-

sion Theory [44,45] to model user preferences and the
decision-making process;

– taking into account the risks associated with the
implementation of a process of machining.
The proposed approach takes place in 5 steps:

– # 1 machining process planning modeling;
– # 2 expression of manufacturing constraints, basic

performance indicators and a process risk indicator;

– # 3 development of a genetic algorithm to calculate a
population of solutions ranges;

– # 4 expression of a process classification macro-
criterion using the AHP method;

– # 5 selection of the best range by the user in view of the
macro-indicator, the elementary performance indicators
and the risk indicator.

3 General method of resolution

3.1 Modelization of the process planning

An individual used by the Genetic Algorithm is formed
by a machining process planning: the ordered sequence of
machining operations.

A set of indices is used to identify the elements of the
planning process.
– m is the index of a process G in the process population

computed by GA;
– n is the index for an operation Op in a process;
– i is the index of a Feature identified on the part;
– k is the index of a tool in the database of usable tools.

The decision variables define the parameters to optimize
for each operation. Thus, a machining process, denoted
Gm, is an ordered list of operations, denoted Opm,n.
A machining operation is defined by the 12-upplet (see
Fig. 1):

Opm,n =
{
Featureopm,n

; Axisopm,n
; Topm,n; Toolm,n;

CyOp,n,m;V cm,n;Apm,n;Aem,n;

Fzm,n;Lunitm,n; lam,n;Hm,n

}
,

where:
– Featureopm,n

is the geometrical feature to be machined
by the operation Opm,n;

– Axisopm,n
is tool axis orientation for the operation

Opm,n;
– Topm,n is the type of the operation Opm,n;
– Toolm,n is the tool used by the operation Opm,n;
– CyOp,n,m is the machining strategy used by the opera-

tion Opm,n;
– V cm,n; is the cutting speed of the operation Opm,n;
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– Apm,n is the axial depth of cut of the operation Opm,n;
– Aem,n is the radial depth of cut of the operation Opm,n;
– Fzm,n is the feed per tooth by the operation Opm,n;
– Lunitm,n is the length of the elementary path of the ele-

mentary operation n of the process m. It is considered
here that a machining operation consists of an elemen-
tary trajectory repeated several times, according to the
machining strategy and cutting conditions;

– lam,n is the width to be machined for the operation
Opm,n. lam,n corresponds to the thickness of material
removed during this operation in the radial direction of
the cutting tool;

– Hm,n is the height to be machined for the operation
Opm,n. Hm,n corresponds to the material thickness
removed during this operation in the axial direction
of the cutting tool.
The part is defined by NbFeature Feature to be

machined.
Each feature is defined by:

– XFeaturei : The X length of the bounding box;
– YFeaturei : The Y length of the bounding box;
– ZFeaturei : The Z length of the bounding box.
– AxisFeaturei,1: The first admissible orientation of the

tool axis;
– AxisFeaturei,2: The second admissible orientation of the

tool axis;
– HFeaturei,1: The average height of the feature Featurei

according the tool axis AxisFeaturei,1;
– HFeaturei,2 The average height of the feature Featurei

according the tool axis AxisFeaturei,2;
– laFeaturei,1: The average width of the feature Featurei

according the tool axis AxisFeaturei,1;
– laFeaturei,2: The average width of the feature Featurei

according the tool axis AxisFeaturei,2;
– longFeaturei,1: The average length of the feature
Featurei according the tool axis AxisFeaturei,1;

– longFeaturei,2: The average length of the feature
Featurei according the tool axis AxisFeaturei,2;

– Rconvmin(Featurei.): The minimal concav radius of
the Feature, that contrains the maximal radius of the
finishing tool;

– Rtoolmax(Featurei): The maximal admissible radius of
the tool;

– Ltoolmin(Featurei): The minimal length of the tool for
the machining of the Feature, without collision;

– Step (Featurei): The maximal admissible step between
successive lateral paths, according to the specifications
of the part.

– Defect (Featurei): The maximal admissible form
defect, according to the specifications of the part.

– ReTechFeaturei : The set of other features, that can be
machined similarly to the Featurei,

– AntFeaturei : The set of other features, that must neces-
sary be machined before the Featurei.
Each tool Toolk, k ∈ {1, . . . , NbTool}, is defined by:

– An associated machining strategy, noted Cyoutk . Cyoutk
can take the following values:
Reaming, Chamfering, Contouring, Copying,

Threading-Tapping, Drilling, Grooving, Surfacing,
Face-dressing, Tapping, Placing, Cutting.

– The diameter Dtoolk ,
– The lenght Ltoolk ,
– The corner radius Rctoolk ,
– The number of teeth Ztoolk ,
– The number of inserts Nbinstoolk

.
– The set Toptoolk of different types of machining for

which the tool can be used. The possible types of
machining are as follows: Roughing, Re-roughing, Semi-
finishing, finishing, Superfinishing, organized according
to the following hierarchy:

Roughing > Re− roughing > Semi− finishing >

finishing > Superfinishing

– The cost Ccttoolk by cutting edge,
– The maximum chip section Astoolk admissible by the

tool. This section is defined by the experience of the
user, relatively to the cutting conditions acceptable by
the tool, but also by discussion with the supplier of the
tool that can help refine this value, especially in the
case of new cutting tools.
Cyp,n,m and V cm,n are deduced from the tool database

knowing that Apm,n , Aem,n et Fzm,n are calculated
according to the usual methods.

3.2 Genetic algorithm

Genetic algorithms are part of evolutionary algorithms
inspired by the theory of evolution [46–48].

The genetic algorithm is composed of five steps:
– creation of the initial population;
– evaluation of the performance of individuals;
– election of individuals to form a new population;
– creation of new individuals through crossover or muta-

tion operators;
– the results of the genetic algorithm are obtained once

the stopping criterion is achieved.
The choice of the initial population of individuals

determines the convergence velocity of the algorithm [49].
Each individual is defined as an process planning

according to the precedent modelization.
To create a diversified population, the user declares sev-

eral possible and operable sequences of operations per
feature to be machined. Thus, the user ensures that
the process is achievable and the algorithm can use this
diversity to perform crossovers and mutations.

The percentage of individuals thus generated P seq
init and

the size of the initial population Nbpopinit are parameters of
the algorithm.

For each computed individual, a fitness function or
macro-indicator is calculated for the output variables
[50]. The macro-indicator, MCPm is calculated from a
weighted sum of standardized Indi performance indica-
tors, described in Section 3.4.

MCPm =
∑

pi∗Indi. (1)

A new N + 1 population is created from the Nbbests
individuals, from a percentage Ptournament of individuals
retained after tournament selection and from a portion
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obtained by crossover and then mutation from an inter-
mediate population. Tournament selection increases the
chances of low quality individuals participating in the
improvement of the population and avoiding to stay in
local optimum. The tournament compares the relative
quality of individuals, 2 by 2, drawn at random.

New individuals are created from their respective par-
ents by crossover and mutation. The crossover is computed
from two parents and corresponds to a combination by the
reproduction of the features of the selected individuals.
For each pair of randomly selected individuals, a crossover
probability is calculated according to a Bernouilli law.
Mutations are obtained from a single parent, with a
probability Pm. Pm relates to the probability Pms, to
change the sequencing, the probability PmGE to the prob-
ability of replacing, for a feature, a machining operation
by another operation from another process also called fea-
ture mutation and the probability Pmo to change the
cutting tool.

Pm = Pms+PmGE+Pmo (2)

3.3 Manufacturing constraints

Two types of constraints are taken into account dur-
ing optimization. The first concerns the tool which must
respect the maximum diameter, the minimum length and
the minimum concave radius allowed in the feature to be
machined.

The second concerns the respect of priority between
machining operations of different features and priority
between operations in the same feature.

3.4 Basic performance indicators

The basic performance indicators permits to qualify the
performance of a machining process according to different
criteria. An analysis of the literature shows that the cri-
teria conventionally used to define the performance of a
machining process are based on the triptych Productivity
/ Delay – Cost – Quality [51–56]. Productivity is related
to the machining time. The machining cost is obtained
from a cost model that takes into account all the expenses
involved during machining. The geometric quality of the
product is a minimum compliance criterion to be satisfied.
We consider that it is not an indicator of performance but
a constraint to be respected.

Several indicators are used to estimate productivity:
value-added time, non value-added time, cutting tool usage
time. That permits to estimate the costs of use of machine
tools and the costs related to tool wear.
Value Added Time (VA) is the time during which the

machine is considered to be generating added value to the
part in production, i.e. remove matter.

According to Liu, there are currently four types of
methods for estimating machining times [25]:
– based on chip flow, easy and fast but approximate

[26,57];
– geometric based on the generated machining program

[58];

– kinematic based on the machining program taking into
account the dynamic characteristics of the machine
[59–62];

– by artificial intelligence.
The bibliographic study has shown that an accurate

estimation of the machining time requires a complete and
accurate model of the machine tool and long computa-
tions, that cannot be done before the complete definition
of a process planning, in most cases [63].

In these works, the machining time of the elementary
operation n of the process m, denoted Tc′m,n, is calculated
from Lunit m,n the estimated length of the elementary
path of the elementary operation n, V fm,n the feedrate
of the tool, Npaxm,n the number of axial toolpath and
Npradm,n the number of radial toolpath. The machining
time of the process Tcm is the sum of the machining time
of operations.

Tcm=

N∑
n=1

Tc
′

m,n =

N∑
n=1

Lunitm,n ×Npaxm,n×Npradm,n
V fm,n

.

(3)
Non-Value Added times (NVA) are times the tool does

not remove matter. These are times of handling, reorien-
tation or change of cutting tools, or change of accessories.
The cutting tool orientation change time depends on
a unit change time Tochunit ∝ and the configuration
Vectα,n of the tool orientation before and after the change
of the tool. Indeed the orientation time is depending of the
initial and final orientation.

Tochtotm=

N∑
n=2

Vectαn
×TTtchunit∝. (4)

The computation is the same for accessories. The time
Tachtot m of change of accessories of the process m, can
therefore be determined as a function of Tachunit: uni-
tary change time of accessories and the indicator Xaccn,α
accessory changes for operation n. The indicator Xaccn,α
is equal to 1 if the change is necessary, and equal to 0 if
not.

Tachtotm =

N∑
n=2

Xaccn,α × Tachunit. (5)

The tool change time Ttchtot m of the process m is
calculated, as a function of Ttchunit, the unit change
time of the tool and the indicator Xaccn,m requesting a
tool change between the elementary operation n and the
elementary operation n-1 of the process m.

Ttchtotm =

N∑
n=1

Xaccn,m × Ttchunit (6)

The insert change time Tichm for the process m is cal-
culated from the insert change times Tichm,n of each
operation. Tichm,n concerns the time necessary for the
changing of a complete tool cutter. It is computed from
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the unmasked time Tichunit change of the tool inserts set,
from the number Nbitn,m of inserts, from the tool life
TLtn,m,p of the Tooln,m, and from the effective cutting
time Tcm,n of the tool.

Tichm =

N∑
n=1

Tichm,n =

N∑
n=1

⌊
Tcm,n

TLtn,m,p

⌋
×Nbitn,m × Tichunit. (7)

The cost Cctm of tools is calculated according to the
unit cost Ccton,m of an insert of theTooln,m, and the
number of insert Ncim,n changed during an elementary
operation, calculated, according to the tool life.

Cctm =

N∑
n=1

Ncim,n . Ccto

=

N∑
n=1

⌊
Tc

′
m,n

TLtn,m,p

⌋
×Nbitn,m . Ccto. (8)

3.5 Technical milling risks

Increasing the performance of a machining operation can
also raise the risk level of the operation and thus cancel the
productivity gains. Loss of confidence plays a critical role
in optimizing a process and gains in performance because
it can wipe out the expected gains. Indeed the operator
can reduce the cutting speed or the feedrate to obtain a
more safe process.

Machining hazard analysis shows that tool wear and
tool bending predominate in the formalization of risk cri-
teria, as they directly impact the risk of non-compliance
of the part, related to poor surface conditions or related
to marks or steps too important.

The risk is estimated from the computation of the
bending of the tool Ropn,m compared to a maximum
step Rthresholdn,m permissible specified by the require-
ments. The tool is considered as a full bending beam
under the action of cutting forces. The application of
the usual bending models makes it possible to calculate
the indicator Ropn,m according to the geometrical char-
acteristics of the machining operation and the associated
risk index IRopn,m. An operation is considered as safe if
IRopn,m < 1

IRopn,m =
Ropn,m

Rthresholdn,m

=
Fzn,m × Zoutiln,m

×Apn,m ×Aen,m ×
Loutiln,m

3

Doutiln,m
5

Rthresholdn,m
.

(9)

To minimize the risk index of the process, it is neces-
sary to aggregate the different risk indices of the different
operations into a single indicator. The risk attitude (pes-
simistic, compromised or optimistic) permits to calculate
the aggregation factors of the different risk indicators
[64,65]. The risk index of the process can thus be expressed
according to three different behaviors:

– risk aversion (pessimistic attitude):

min
m

(
IRgpessimist

m

)
= min

m

(
max
n

(IRopm,n)
)
,

– compromise attitude:

min
m

(
IRgcompromise

m

)
= min

m

(
N∑
n=1

IRopm,n/N

)
,

– preference for risk (optimistic attitude):

min
m

(
IRgoptimist

m

)
= min

m

(
min
n

(IRopm,n)
)
.

3.6 Optimal process selection using AHP method

The last step of the method corresponds to the choice
of the optimal solution based on elementary performance
indicators and elementary risk indices. It is necessary to
solve a multicriteria decision-making problem. Multicrite-
ria decision support helps to formalize the decision-making
process and to model the decision-maker’s reasoning [66].
Edwards and Raiffa propose to formalize the prefer-
ences of the decision-makers through a numerical function,
called “utility function”, which allows to assign scores to
the different choices that are presented to decision-makers
[67,68]. In this way, a ranking of actions can be set from
the least preferred to the most preferred [69]. But, the
literature offers little application study in the field of man-
ufacturing. The majority of optimization methods used in
manufacturing generally seek the maximization or min-
imization of a single criterion, such as the total cost of
manufacture [56,70,71]. Mardani does not identify sys-
tems using a multicriteria decision support method for
optimizing part machining [72].

When the problem is approached from a multi-objective
point of view, a weighted sum of the criteria is then
introduced. The determination of weights is critical. Ong
proposes to use AHP method that allows designers to cal-
culate and to weight indices of the manufacturability of
different features in a part in the context of Design For
Manufacturing (DFM) methodology [73]. Similarly, Yur-
dakul uses the AHP method, to help in the choice of
machining machines [74].

The Analytic Hierarchy Process (AHP Method) is a
method proposed by Saati in 1980, to calculate weights
reliably. The is composed of five principles [75]:
– decomposition of the complex decision problem into a

multi-level hierarchical structure [76];
– binary comparisons;
– calculating relative priority values;
– verification of the consistency of judgments;
– synthesis of the score of each solution to the problem.

The ability to structure a complex, multi-criteria hier-
archical and systematic problem as well as the unlimited
number of potential criteria to be taken into account,
constitute the major advantages of the AHP method.

At first, the satisfaction of each criterion is computed
for a population of individuals. Then, the AHP method
is used to estimate the relative importance or the relative
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Table 1. GA settings.

Parameters Tested values Chosen value
Number of iterationsNbit 50, 150, 300 300
Size of the populationNbpopinit 20, 50, 100 100
Percentage of sequencing change P seq

init 25%, 50% 25%
Percentage of best preserved individuals Pbests 10%, 30% 10%
Percentage of individuals kept Ptournament 10%, 25% 10%
Probability of crossoverPc 0.2, 0.4, 0.6 0.6
Probability of sequencing mutation Pms 0.1, 0.2, 0.3 0.1
Probability of feature mutationPmGE 0.1, 0.2, 0.3 0.1
Probability of mutation of cutting toolsPmo 0.2, 0.4, 0.6 0.6

weight of each criterion, in order to compute a global
satisfaction criterion, used to classify the individuals of
the population.

In this paper, an AHP method is used to aggregate
these indicators and facilitate decision-making. The per-
formance of the process is calculated from 3 level 1
indicators: process time, cost of used tool and effi-
ciency. The process time criterion is calculated from 5
level 2 indicators: machining time, orientation change
time, accessory change time, tool change time and insert
change time. Efficiency is calculated as the ratio of value
added time to total manufacturing time.

The user compares these criteria two by two to calculate
the weights, by answering a set of questions such as:
– Question: Equal time value, to which do you give the

most importance?
Response: Between 3 minutes of machining time and

3 minutes of tool change time, it is best to optimize the
machining time. It therefore has more importance.
– Question: Which criterion do you give the most impor-

tance to?
Response: Between an effective process with a longer

machining time than another process with less efficiency,
it is preferable to choose the process with the short-
est machining time. Machining time is therefore more
important than efficiency.

3.7 Conclusion

The proposed method propose to generate a large num-
ber of different process by introducing a lot of variability
and innovation and by guaranteeing their viability. The
genetic algorithm leads to the identification of some pro-
cess that are particularly effective, according to their
macro-indicator value. The macro-indicator is computed
as a weighted sum of elementary indicators. AHP method
is used to estimate weights by comparison 2 by 2. Finally,
the user can then choose the optimal process according
to his experience, by analyzing the macro-indicator, the
elementary indicators and a risk indicator.

4 Application to an industrial case

4.1 Setting the genetic algorithm

In order to determine the optimal settings of the genetic
algorithm, a complete plan of experiments is realized.

Table 1 shows the different parameters of the algorithm,
the values tested and the final choice.

Figure 2 shows the evolution of the MCP value during
the iterations for the 300 iteration tests, that obtained the
best MCP values.

Percentage values of individuals kept Ptournament have
no significant impact on the velocity of convergence of
the tests. The same conclusion is reached by analyzing
the results obtained for the percentages Pbests of the best
preserved individuals. In order to encourage innovation
and exploration of the field of possible solutions by the
algorithm, these values are set to 10%.

To define the settings to be applied to the crossover
and mutation probability values, an additional analy-
sis is implemented. Figure 3 shows the minimum values
obtained as a function of the value of the probability Pc.
It is observed that only the value Pc = 0.6 produces
the best value of the MCP independently of the other
parameters.

In our study, the part is defined by simple geometri-
cal features. These features offer few different machining
solutions. Thus, feature and sequencing mutations do not
represent significant source of gain or innovation. Con-
versely, a large number of different cutting tool references,
known or unknown, can be exploited. They represents
an important level for improving the performance of the
machining. Thus, the tool mutation probability Pm is set
to 0.6 and consequently PmGE = 0.1 and Pms = 0.1.

4.2 Application

The method is applied to a large aeronautical struc-
tural part, machined from a titanium alloy. The raw is
obtained by stamping. 12 independent machining features
are extracted, by the user. This part is machined on a
3 axes NC machine-tool with the possibility of adding a
angle head. A list of 36 tools is defined as the database.

For each entity, the user declares at most 5 possible
machining solutions for a given feature. A machining solu-
tion can be formed by a sequence of 5 elementary machin-
ing operations. The user declares the machining opera-
tion (Chamfering, Contouring, Copying, Thread-Tapping,
Drilling, Grooving, Surfacing, Surfacing-Dressing, Tap-
ping, Trimming, Cutting), the type of machining oper-
ation (Roughing, Re-roughing, Semi-finishing, finishing,
Superfinishing), the tool selected in a database and the
maximum permissible cutting conditions. The variety of
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Fig. 2. MCP Convergence after 300 iteration tests.

Fig. 3. Minimum MCP value computed for each test based on Pc value.

the declared solutions is a factor of richness for the genetic
algorithm. The user verify that each elementary operation
is suitable.

Tables 2 and 3 present the weights of the various perfor-
mance indicators, calculated by the AHP method, from a
questionnaire. The calculation of a consistency index per-
mits to validate the choice of the decision maker. In this
example, the decision maker has a consistent behavior
that favors productivity at costs.

During the computation, the GA algorithm calculates
50 different usable machining process planning, while the
usual method produce only one process planning.

Table 4 groups the values of each performance indicator
for the 5 best process planning.

The MCP values are close, but the values of the ele-
mentary indicators can show deviations of more than 50%,
which shows that the process strategies are clearly differ-
ent. The main difference lies in the choice of particular
tools.

The process planning optimized by this method is com-
pared to the initial process planning and to a process
planning optimized by a usual engineering method.

It should be noted that the new optimized process plan-
ning has a lower MCP of more than 50% compared to
other process planning. This difference is explained by the
strong difference between the times composing the NVA
time, which creates an increase in the efficiency of the pro-
cess planning optimized by this method compared to the
other process planning. The initial process planning and
the usual optimized process planning seem close, with a
similar sequencing of machining operations. The new opti-
mized process planning offers a very different sequencing,
while also respecting the imposed conditions of priority.
It makes it possible to confront the user with original
solutions.

In addition, the system also offers solutions known
by the user, but not implemented for technological rea-
sons. Thus the method is coherent and reassuring with
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Table 2. Preference matrix and decision-making vector for level 2 criteria.

User 1
Process Time Orientation

change time
Accessory
change time

Cutting tool
change time

Insertchange
time

Machining
time

priority
vector

Inconsistency

Orientation
change time

1,00 0,33 0,17 0,17 0,17 4,24% 8,20%

Accessory change
time

3,00 1,00 0,33 0,20 0,25 8,37%

Cutting tool
change time

6,00 3,00 1,00 0,33 0,20 15,75%

Insertchange time 6,00 5,00 3,00 1,00 0,50 29,40%
Machining time 6,00 4,00 5,00 2,00 1,00 42,24%

Table 3. Preference matrix and decision-making vector for level 1 criteria.

User 1 Process time Tools cost Efficiency Priority vector Inconsistency
Process Time 1,00 2,00 1,00 41,11% 4,63%
Tools Cost 0,50 1,00 1,00 26,11%
Efficiency 1,00 1,00 1,00 32,78%

Table 4. Performance values of 5 best computed process planning.

Process N◦ 1 2 3 4 5
Macro Indicator Value (MCP) 0,12155 0,12191 0,12312 0,12338 0,12476
VA time 1805,8 1792,7 1887,7 1874,5 1892,9
NVA time 208,2 214,2 217,2 223,2 231,2
Efficiency 0,8966 0,8933 0,8968 0,8936 0,8912
Accessory change time 50 50 50 50 50
Tool change time 80 72 80 72 64
Orientation change time 1,2 1,2 1,2 1,2 1,2
Inserts change time 77 91 86 100 116
Tool cost 2568 2228 2792 2452 2942
Optimistic rik 0,0964 0,0964 0,0964 0,0964 0,0964
Compromise risk 2,0284 1,9198 3,165 3,0564 2,9483
Pessimistic risk 6,6217 6,6217 23,1148 23,1148 23,1148

Table 5. Comparison of performance levels between initial process planning, usual optimized and new optimized
provide by the method.

Process planning N◦ Initialprocess planning Usual optimized process planning New optimized process planning
Macro Indicator Value (MCP) 0,27514 0,25767 0,12155
VA time 2650,1 1600,9 1805,8
NVA time 833,8 726,4 208,2
Efficiency 0,7607 0,6879 0,8966
Accessory change time 50 30 50
Tool change time 176 104 80
Orientation change time 2,8 2,4 1,2
Inserts change time 605 590 77
Tool cost 7460,8 3169,8 2568
Optimistic rik 0,3952 0,0964 0,0964
Compromise risk 2,6661 2,4478 2,0284
Pessimist risk 13,4034 7,9461 6,6217

respect to the know-how of the company while promoting
innovation.

This remark also concerns the choice of tools and cut-
ting conditions. The tools used by the new optimized
process planning are close to those chosen by the usual
optimized process planning in engineering, also validat-
ing the respect of the method vis-à-vis the know-how

and knowledge of the company (see Tab. 5). The usual
optimized process planning offers a lower VA time and
a lower macro performance than the new optimized pro-
cess planning proposed by the method, because the usual
optimized method minimizes only VA time. The per-
formance is therefore lower on the other indicators. So
the new method would not necessarily been retain this
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Table 6. Preference matrix and Decision-Making vector for level 1 criteriaapplied to 3 different users.

User 2 Process Time Tools Cost Efficiency Priority vector Inconsistency
Process Time 1,00 3,00 5,00 60,70% 11,88%
Tools Cost 0,33 1,00 5,00 30,33%
Efficiency 0,20 0,20 1,00 8,97%
User 3 Process planning Time Tools Cost Efficiency Priority vector Inconsistency
Process Time 1,00 5,00 2,00 58,13% 0,32%
Tools Cost 0,20 1,00 0,33 10,96%
Efficiency 0,50 3,00 1,00 30,92%
User 4 Process Time Tools Cost Efficiency Priority vector Inconsistency
Process Time 1,00 3,00 4,00 61,96% 9,42%
Tools Cost 0,33 1,00 0,50 15,60%
Efficiency 0,25 2,00 1,00 22,43%

Table 7. Values of performance indicators of the best process planning generated for each decision maker.

User 1 2 3 4
Macro Indicator Value (MCP) 0,122 0,1 0,142 0,122
VA time 1805,84 1458,612 1811,048 1792,706
NVA time 208,2 212,4 222,2 214,2
Efficiency 0,897 0,873 0,891 0,893
Accessory change time 50 60 50 50
Tool change time 80 96 64 72
Orientation change time 1,2 4,4 1,2 1,2
Inserts change time 77 52 107 91
Tool cost 2568 1939,8 2718 2228
Optimistic rik 0,192 0,192 0,192 0,192
Compromise risk 4,056 3,066 3,624 3,84
Pessimist risk 13,244 15,684 9,644 13,244

solution. This underlines again that the expression of the
priority vector plays an important role in the behavior
of the optimization. It is therefore necessary that the
user defines precisely its priorities. However, in a manual
method such as classical engineering, it is difficult to com-
prehensively understand all the criteria and to optimize
the compromise.

4.3 Impact of AHP on results

In order to illustrate the impact of the decision-making
behavior on the algorithm, three other users were invited
to respond to the questionnaire of the AHP (Tab. 6).

The consistency indicator is an indicator of quality of
judgment. Users 2 and 4 have very similar values. Nev-
ertheless, the user 4 has a consistency of judgment more
satisfactory than the user 2 and would therefore be better
able to obtain process of machining that meet required
expectations. Finally, the user 3 has a very strong con-
sistency of judgment. He did not nuance the judgment
significantly between the criteria. His preferences have
been reflected in a coherent way, lowering the level of
inconsistency but not bringing out a real position on the
relative importance of the criteria.

The understanding of the questionnaire regarding the
experience of each user, as well as the level of insights of
the concepts of the AHP can induce a significant fluctu-
ation of the coherence of the judgment, which underlines
the importance of the formulation of the questions. These

fluctuations of coherence as well as these differences of
judgment also have a certain impact on the behavior of
the optimization. The algorithm was used on the case
study by replacing the behavior of user 1 with the other
three behaviors. Table 7 groups the values of the perfor-
mance and risk indicators for the best process generated
by the algorithm for each decision maker.

For user 1, 3 and 4 the sequencing of the process plan-
ning is the same, only one or two cutting tools change,
which is consistent with their performance, also close on
each indicator.

The process planning of user 2 is fundamentally dif-
ferent for the process planning sequencing as well as in
some cutting tool choices. This process planning is less
effective. The process planning incorporates cutting tools
that are more productive during machining operations
but penalize during non-value-added phases. In addition,
the process planning allows more change of accessories
and orientation to use more productive cutting tools.
Thus, despite similar behaviors, the computed process
planning for user 2 and 4 are very different in term of
performance.

The sensitivity of optimization to user decision-making
behavior is therefore important. The decision-making
behavior guides the algorithm in the optimization, and
the generated solutions are only an image of this behav-
ior. It is important to note the method compute the most
optimum process planning, but compute the optimum pro-
cess planning, according to specific requirements of each
decision maker.
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5 Conclusion

This work proposes an innovative approach in the design
and optimization of machining process planning. The key
problem is to propose innovative and operable process
planning and whose associated risks are mastered. The
objective is to test a number of varied process planning
in a limited time, and to classify them in terms of their
perceived multicriterian performance, in order to obtain
the most efficient process planning. To overcome these
two difficulties, the approach relies on a genetic algo-
rithm for the testing and generation of a large number of
different process planning, which are classified using the
Analytic Hierarchy Process method to weight the different
elementary performances indicators.

The particularity of this work lies in the modelling of
the necessary data, which must be fast and sufficiently
precise, in order to quickly calculate alternative pro-
cesses. Another particularity lies in the expression of the
manufacturing constraints, which allow to guarantee the
feasibility of the proposed processes. Indeed, the counter-
intuitive process proposal must not lead to unfeasible
processes.

Finally, a last key point concerns the modelling of the
risk linked to the development of a new alternative range.
Even if a process is particularly efficient, the risk involved
may make it unusable. A technological risk indicator is
proposed, by modelling the bending of tools, which can
induce vibrations and defects on the part. To make his
decision, the user has access to the value of the macro-
indicator, the value of the various elementary indicators
and the value of the risk.

Thus, this method enables company know-how to
be taken into account, while introducing innovation to
develop new tool and machining strategies. An applica-
tion to an industrial case shows that the new solutions
are consistent with the industrial innovation potential,
and that the best process will be superior to the optimized
industrial process.

In perspective, future work is based on this method to
develop a Design For Manufacturing methodology, which
allows to optimize the geometry of an aeronautical part by
respecting performance indicators from design, die-forging
and machining.

References

[1] F. Taylor, On the art of cutting metals, 1907
[2] B. Niebel, Mechanized process selection for planning new

designs, ASME Paper, vol. 737, 1965
[3] F. Giusti, M. Santochi, G. Dini, COATS: an Expert Module

for Optimal Tool Selection, CIRP Ann. Manuf. Technol. 35,
337–340 (1986)

[4] B. Denkena, M. Shpitalni, P. Kowalski, G. Molcho, Y.
Zipori, Knowledge management in process planning, CIRP
Ann.- Manuf. Technol. 56, 175–180 (2007)

[5] I. Ham, S.C.Y. Lu, Computer-Aided Process Planning: The
present and the future, CIRP Ann. Manuf. Technol. 37,
591–601 (1988)

[6] H. Eskicioglu, B.J. Davies, An interactive process planning
system for prismatic parts (ICAPP), Int. J. Mach. Tool
Des. Res. 21, 193–206 (1981)

[7] F. Villeneuve, Génération automatique des processus
de fabrication, in Fabrication assistée par ordinateur,
Lavoisier, 2002, pp. 295–350

[8] W. Eversheim, J. Schneewind, Computer-aided process
planning—State of the art and future development, Robot.
Comput. Integr. Manuf. 10, 65–70 (1993)

[9] L. Alting, H. Zhang, Computer Aided Process Planning:
the state of the art survey, Int. J. Prod. Res. 27, 553–585
(1989)

[10] D.S. Llanes-Coronel et al., New promising Euphorbiaceae
extracts with activity in human lymphocytes from primary
cell cultures, Immunopharmacol. Immunotoxicol. 33, 279–
290 (2011)
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