
HAL Id: hal-02953265
https://hal.science/hal-02953265

Submitted on 5 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Higher-rank discrete symmetries in the IBM. II
Octahedral shapes: Dynamical symmetries

A. Bouldjedri, S. Zerguine, P. van Isacker

To cite this version:
A. Bouldjedri, S. Zerguine, P. van Isacker. Higher-rank discrete symmetries in the
IBM. II Octahedral shapes: Dynamical symmetries. Nucl.Phys.A, 2020, 1003, pp.122028.
�10.1016/j.nuclphysa.2020.122028�. �hal-02953265�

https://hal.science/hal-02953265
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr
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Abstract

The symmetries of the sdg-IBM, the interacting boson model with s, d and g bosons,
are studied as regards the occurrence of shapes with octahedral symmetry. It is
shown that no sdg-IBM Hamiltonian with a dynamical symmetry displays in its
classical limit an isolated minimum with octahedral shape. However, a degenerate
minimum that includes a shape with octahedral symmetry can be obtained from a
Hamiltonian that is transitional between two limits, Ug(9)⊗Ud(5) and SOsg(10)⊗
Ud(5), and the conditions for its existence are derived. An isolated minimum with
octahedral shape, either an octahedron or a cube, may arise through a modification
of two-body interactions between the g bosons. Comments on the observational
consequences of this construction are made.

Key words: discrete octahedral symmetry, interacting boson model, g bosons
PACS: 21.60.Ev, 21.60.Fw

1 Introduction

This paper is the second in the series initiated with Ref. [1], henceforth referred
to as I. The overall purpose of this series is the study of nuclear shapes with a
higher-rank discrete symmetry, in particular of the tetrahedral or octahedral
type, in the framework of a variety of interacting boson models. For the general
context of this study we refer the reader to the introduction in I, of which only
the essential points and references are mentioned here.

The paper by Li and Dudek [2] pointed out the possibility of intrinsic nuclear
shapes with a higher-rank discrete symmetry. Subsequent publications by the
Strasbourg group and their collaborators [3–6] showed the possible occurrence
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of tetrahedral, octahedral and icosahedral symmetries through combinations
of deformations of specific multipolarity. In parallel with these theoretical
developments, a search was initiated for experimental manifestations of such
symmetries in nuclei [7–9]. In addition to these experimental searches cited in
I, a more recent study of this type appeared in 2018 [10], formulating criteria
for the identification of tetrahedral and/or octahedral symmetries in nuclei.

From the theory side most work related to higher-rank discrete symmetries
has been carried out in the context of mean-field models. The aim of this
series of papers is to address the question of the possible occurrence of higher-
rank discrete symmetries from a different theoretical perspective. Our study
is carried out in the context of algebraic collective models inspired by the
interacting boson model (IBM) of Arima and Iachello [11–13], which proposes
a description of quadrupole collective nuclear states in terms of s and d bosons
with angular momentum ` = 0 and ` = 2. The application of this idea to
collective states of different nature, notably of octupole and hexadecapole
character, requires the introduction of other bosons [14], in particular f and g
bosons with angular momentum ` = 3 and ` = 4. Since shapes with tetrahedral
symmetry arise in lowest order through a particular octupole deformation and
those with octahedral symmetry emanate from a combination of hexadecapole
deformations, the study of such shapes in an algebraic context requires the
introduction of f and g bosons, respectively.

We initiated this program in I with the study of octahedral shapes in the
sdg-IBM. We considered the most general rotationally invariant Hamiltonian
with up to two-body interactions between the bosons and derived the condi-
tions for this Hamiltonian to have in its classical limit a minimum with an
intrinsic shape with octahedral symmetry. Owing to the general nature of the
analysis in I, only qualitative conclusions could be drawn with regard to the
(non-)existence of such minima in the sdg-IBM. In the present paper we arrive
at more concrete conclusions by considering a subset of all possible Hamilto-
nians of the sdg-IBM, namely those that have a dynamical symmetry and are
analytically solvable. Although none of the symmetry Hamiltonians leads to
a stable shape with octahedral symmetry, a subset can be used to propose
a generalization with additional interactions between the g bosons that drive
the system toward such a shape.

The paper is structured as follows. To avoid repeatedly referring to equations
in I, we list in Section 2 formulas from I that are needed in this paper. In
Section 3 we focus on two dynamical symmetries of the sdg-IBM of particular
relevance in our quest for octahedral shapes and in Section 4 the classical
limit is derived for the Hamiltonian that is transitional between these two
limits. The central results of this paper are presented in Section 5, with a
catastrophe analysis of the energy surface associated with the transitional
symmetry Hamiltonian, and suitable generalizations thereof, to uncover the
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existence of minima at stable shapes with octahedral symmetry. Finally, in
Section 6 the conclusions of the second paper in this series are summarized.

2 The sdg-IBM and its classical limit

A boson-number-conserving, rotationally invariant Hamiltonian of the sdg-IBM
with up to two-body interactions is of the form

Ĥ = εsn̂s + εdn̂d + εgn̂g

+
∑

`1≤`2,`′1≤`
′
2,L

(−)LvL`1`2`′1`′2√
(1 + δ`1`2)(1 + δ`′1`′2)

[b†`1 × b
†
`2

](L) · [b̃`′2 × b̃`′1 ]
(L), (1)

where n̂` is the number operator for the ` boson, ε` is the energy of the ` boson
and vL`1`2`′1`′2

is a boson–boson interaction matrix element.

A geometric understanding of this quantum-mechanical Hamiltonian is ob-
tained by considering its expectation value in a coherent state. As discussed
in I, a study of shapes with octahedral symmetry in sdg-IBM requires a co-
herent state of the form

|N ; β2, β4, γ2, γ4, δ4〉 =

√
1

N !(1 + β2
2 + β2

4)N
Γ(β2, β4, γ2, γ4, δ4)

N |o〉, (2)

with

Γ(β2, β4, γ2, γ4, δ4) = s† + β2
[
cos γ2d

†
0 +

√
1
2

sin γ2(d
†
−2 + d†+2)

]
(3)

+β4
[(√

7
12

cos δ4 +
√

5
12

sin δ4 cos γ4
)
g†0

−
√

1
2

sin δ4 sin γ4(g
†
−2 + g†+2)

+
(√

5
24

cos δ4 −
√

7
24

sin δ4 cos γ4
)
(g†−4 + g†+4)

]
,

in terms of the deformation parameters β2, β4, γ2, γ4 and δ4, following the
convention of Rohoziński and Sobiczewski [15]. A shape with octahedral sym-
metry is obtained for β2 = 0, β4 6= 0 and δ4 = 0 (octahedron) or δ4 = π
(cube) with arbitrary γ4. Another solution with octahedral symmetry exists
for γ4 = 0 and δ4 = arccos(1/6), corresponding to a rotated octahedron, i.e.
with the same intrinsic shape as for δ4 = 0. The parameterization introduced
in Ref. [15] therefore does not define a unique intrinsic state.

The expectation value of the Hamiltonian (1) in the coherent state (2) (or the
classical limit of Ĥ) leads to the energy surface
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〈Ĥ〉≡E(β2, β4, γ2, γ4, δ4)

=
N(N − 1)

(1 + β2
2 + β2

4)2
∑
kl

βk2β
l
4

c′kl +
∑
ij

cijkl cos(iγ2 + jγ4)φ
ij
kl(δ4)

 , (4)

where φijkl(δ4) are trigonometric functions defined in I. The coefficients c′kl are
known in terms of the scaled single-boson energies ε′` ≡ ε`/(N − 1) and the
interaction matrix elements vL`1`2`′1`′2

,

c′00 = 1
2
v0ssss + ε′s,

c′20 =
√

1
5
v0ssdd + v2sdsd + ε′s + ε′d,

c′02 = 1
3
v0ssgg + v4sgsg + ε′s + ε′g,

c′40 = 1
10
v0dddd + 1

7
v2dddd + 9

35
v4dddd + ε′d,

c′22 = 1√
45
v0ddgg + 7√

715
v4ddgg + 1

6
v2dgdg + 4

11
v4dgdg + 1

6
v5dgdg + 10

33
v6dgdg + ε′d + ε′g,

c′04 = 1
18
v0gggg + 38

693
v2gggg + 89

1001
v4gggg + 62

495
v6gggg + 1129

6435
v8gggg + ε′g. (5)

Only a single coefficient cijkl is needed in the subsequent analysis, viz.

c0004 = − 2
693
v2gggg + 4

3003
v4gggg + 2

495
v6gggg − 16

6435
v8gggg, (6)

introducing a δ4 dependence in the energy surface (4) since

φ00
04(δ4) = 2 cos 2δ4 + 17 cos 4δ4. (7)

It is assumed in the following that the boson Hamiltonian is Hermitian and
therefore that vL`1`2`′1`′2

= vL`′1`′2`1`2
. With this assumption the expressions for

the coefficients ckl and cijkl, given in Eqs. (20) and (21) of I, are valid with
vL`1`2·`′1`′2

= vL`1`2`′1`′2
. Note that for a general Hamiltonian one has vL`1`2·`′1`′2

=

(vL`1`2`′1`′2
+ vL`′1`′2`1`2

)/2, which corrects by a factor 2 the expression given in I.

3 The Ug(9) and SOsg(10) limits

Since the Hamiltonian of the sdg-IBM conserves the total number of bosons,
it can be written in terms of the (1+5+9)2 = 225 operators b†`mb`′m′ . The 225
operators generate the Lie algebra U(15) with a substructure that determines
the dynamical symmetries of the sdg-IBM.

A comprehensive list of the dynamical symmetries of the sdg-IBM is given by
De Meyer et al. [16], and their group-theoretical properties are extensively dis-
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cussed by Kota et al. [17]. It is found that the model has seven major dynami-
cal symmetries, four of strong coupling, SU(3), SU(6), SU(5) and SO(15), and
three of weak coupling, Us(1)⊗Udg(14), Usd(6)⊗Ug(9) and Usg(10)⊗Ud(5).
The question treated in this paper is whether any of the dynamical symme-
tries of the sdg-IBM corresponds to a shape with octahedral symmetry. In this
section a choice of the limits that possibly have such property is made on the
basis of intuitive arguments. Subsequently, in Sections 4 and 5, the conditions
for the existence of a shape with octahedral symmetry are derived rigorously
on the basis of the results obtained in I.

A minimum with octahedral shape requires mixing of s and g bosons, so as
to induce hexadecapole deformation, and no or weak mixing of these with
the d boson to ensure zero quadrupole deformation. These conditions rule out
all limits where s, d and g bosons are strongly mixed on an equal footing,
that is, they discard the SU(3), SU(6), SU(5) and SO(15) limits [18]. A strict
decoupling of the s and g from the d bosons is obtained by the reduction

U(15) ⊃ Ud(5) ⊗ Usg(10)

↓ ↓ ↓

[N ] nd nsg

, (8)

and, furthermore, zero quadrupole deformation follows from a U(5) classifica-
tion for the d bosons,

Ud(5) ⊃ SOd(5) ⊃ SOd(3)

↓ ↓ ↓

nd υd νd Ld

, (9)

where underneath each algebra the associated quantum number is given.
Specifically, N is the total number of bosons while n` is the number of `
bosons and n``′ is the number of ` plus `′ bosons. The seniority label asso-
ciated with an ` boson is denoted as υ` and corresponds to the number of `
bosons not in pairs coupled to angular momentum zero. Additional (or miss-
ing) labels, not associated with any algebra, are indicated with ν`. Finally, the
angular momentum generated by the ` bosons is denoted as L`.

The Usg(10) algebra in Eq. (8) allows two classifications of interest. The first
is obtained by eliminating from the generators of Usg(10) those that involve
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the s boson, leading to

(I)

Usg(10) ⊃ Ug(9) ⊃ SOg(9) ⊃ SOg(3)

↓ ↓ ↓ ↓

nsg ng υg νg Lg

. (10)

In this limit, which for brevity shall be referred to as Ug(9) or limit I, the
separate boson numbers ns and ng are conserved. The resulting spectrum is
vibrational-like with a spherical ground state and excited states that corre-
spond to oscillations in the hexadecapole degree of freedom.

The second classification of Usg(10) is specified by the following chain of nested
algebras:

(II)

Usg(10) ⊃ SOsg(10) ⊃ SOg(9) ⊃ SOg(3)

↓ ↓ ↓ ↓

nsg υsg υg νg Lg

, (11)

which for brevity shall be referred to as SOsg(10) or limit II. The defining
feature of the reduction (11) is the appearance of the algebra SOsg(10) and
its label υsg, associated with the pairing of s and g bosons. As is shown in
Section 5, the ground state in this limit acquires a permanent hexadecapole
deformation and the limit is therefore of interest in our quest for octahedral
shapes. On its own, however, limit II implies degenerate energies of the s and
g boson, and as such it is not realistic. It is therefore necessary to study a
combination of the two limits I and II.

In Sections 4 and 5 we investigate to what extent non-degenerate energies can
be taken for the s and g boson that still lead to a hexadecapole-deformed
minimum and whether that minimum can have octahedral symmetry. In the
remainder of this section we list some of the properties of limits I and II that
are necessary to carry out this analysis.

The classification of limits I and II can be summarized with the algebraic
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lattice

U(15) ⊃ Ud(5) ⊗ Usg(10)

| ↙ ↘

↓ Ug(9) SOsg(10)

SOd(5) ↘ ↙

| SOg(9)

↓ ↓

SOd(3) SOg(3)

↘ ↙

SO(3)

, (12)

where SO(3) is associated with the total angular momentum L, which results
from the coupling of Ld and Lg. The generators of the different algebras in
the lattice (12) are as follows:

Ud(5) : {[d† × d̃](λ)µ , λ = 0, . . . , 4},
SOd(5) : {[d† × d̃](λ)µ , λ = 1, 3},
SOd(3) : {L̂d,µ ≡

√
10[d† × d̃](1)µ },

Usg(10) : {[s† × s̃](0)0 , [s† × g̃](4)µ , [g† × s̃](4)µ , [g† × g̃](λ)µ , λ = 0, . . . , 8},
Ug(9) : {[g† × g̃](λ)µ , λ = 0, . . . , 8},

SOsg(10) : {[s† × g̃ + g† × s̃](4)µ , [g† × g̃](λ)µ , λ = 1, 3, 5, 7},
SOg(9) : {[g† × g̃](λ)µ , λ = 1, 3, 5, 7},
SOg(3) : {L̂g,µ ≡

√
60[g† × g̃](1)µ },

SO(3) : {L̂µ ≡ L̂d,µ + L̂g,µ}. (13)

The linear and quadratic Casimir operators of the algebras appearing in the
lattice (12) can be expressed as follows in terms of the generators (13):

Ĉ1[U(15)] = N̂ = n̂s + n̂d + n̂g,

Ĉ2[U(15)] = N̂(N̂ + 14),

Ĉ1[Ud(5)] = n̂d,

Ĉ2[Ud(5)] = n̂d(n̂d + 4),

Ĉ2[SOd(5)] = 2
∑
λ odd

[d† × d̃](λ) · [d† × d̃](λ),
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Ĉ2[SOd(3)] = L̂d · L̂d,
Ĉ1[Usg(10)] = n̂s + n̂g,

Ĉ2[Usg(10)] = (n̂s + n̂g)(n̂s + n̂g + 9),

Ĉ1[Ug(9)] = n̂g,

Ĉ2[Ug(9)] = n̂g(n̂g + 8),

Ĉ2[SOsg(10)] = [s† × g̃ + g† × s̃](4) · [s† × g̃ + g† × s̃](4) + Ĉ2[SOg(9)],

Ĉ2[SOg(9)] = 2
∑
λ odd

[g† × g̃](λ) · [g† × g̃](λ),

Ĉ2[SOg(3)] = L̂g · L̂g,
Ĉ2[SO(3)] = L̂ · L̂. (14)

The expressions for the quadratic Casimir operators of unitary algebras are not
general but are valid in a symmetric irreducible representation. A rotationally
invariant Hamiltonian with up to two-body interactions can be written in
terms of the Casimir operators (14):

Ĥsym = εd n̂d + ad Ĉ2[Ud(5)] + bd Ĉ2[SOd(5)] + cd Ĉ2[SOd(3)]

+εs n̂s + εg n̂g + asg Ĉ2[Usg(10)] + ag Ĉ2[Ug(9)] + bsg P̂
†
sgP̂sg

+bg Ĉ2[SOg(9)] + cg Ĉ2[SOg(3)] + c Ĉ2[SO(3)], (15)

where ε`, a`, a``′ , b`, b``′ and c` are parameters. The quadratic Casimir operator
of U(15) is omitted for simplicity since it gives a constant contribution for a
fixed boson number N = ns +nd +ng. Furthermore, it is convenient to define,

instead of the quadratic Casimir operator Ĉ2[SOsg(10)], the combination

P̂ †sgP̂sg = Ĉ2[Usg(10)]− Ĉ1[Usg(10)]− Ĉ2[SOsg(10)], (16)

where P̂ †sg ≡ s†s†− g† · g† is the pairing operator for s and g bosons. The sym-
metry Hamiltonian (15) is less general than Eq. (1) but it is the most general
one that can be written in terms of invariant operators of the lattice (12) and
as such it is intermediate between the limits I and II.

The Ug(9) limit occurs for bsg = 0, leading to the eigenvalues

EI = εd nd + ad nd(nd + 4) + bd υd(υd + 3) + cd Ld(Ld + 1)

+εs ns + εg ng + asg nsg(nsg + 9) + ag ng(ng + 8) +

+bg υg(υg + 7) + cg Lg(Lg + 1) + c L(L+ 1). (17)

The SOsg(10) limit is attained for εs = εg ≡ εsg and ag = 0, in which case the
Hamiltonian’s eigenstates have the eigenvalues
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Fig. 1. Energy spectra in the Ug(9) and SOsg(10) limits of the sdg-IBM for N = 5
bosons. For the Ug(9) spectrum the non-zero parameters in the Hamiltonian (15)
are εd − εs = 800, εg − εs = 1000, bd = 40, cd = 10, bg = 25 and cg = c = 5 keV.
For the SOsg(10) spectrum the non-zero parameters are εd − εs = 800, εg − εs = 0,
bd = 40, cd = 10, bsg = 60, bg = 50 and cg = c = 5 keV.

EII = εd nd + ad nd(nd + 4) + bd υd(υd + 3) + cd Ld(Ld + 1)

+εsg nsg + asg nsg(nsg + 9) + bsg[nsg(nsg + 8)− υsg(υsg + 8)]

+bg υg(υg + 7) + cg Lg(Lg + 1) + c L(L+ 1). (18)

The eigenspectra are then determined with the help of the necessary branching
rules. The reduction U(15) ⊃ Ud(5)⊗Usg(10) implies the relation N = nd+nsg
or the branching rule

[N ] 7→ (nd, nsg) = (0, N), (1, N − 1), . . . , (N, 0). (19)

The branching rules for the classification (9) are known from the U(5) limit
of the sd-IBM [11] and those for the classifications (10) and (11) can be found
in Ref. [17].

Typical energy spectra in the Ug(9) and SOsg(10) limits are shown in Fig. 1.
The Ug(9) spectrum displays quadrupole- and hexadecapole-phonon multi-
plets characterized by a fixed number of d and g bosons. The multiplets are
further structured by a seniority quantum number: for example, the nd = 2
multiplet has υd = 2 except for the 0+ level, which has υd = 0, and similarly
for the ng = 2 multiplet and the υg seniority. Also combined quadrupole–
hexadecapole multiplets occur in the spectrum. The SOsg(10) spectrum con-
tains sets of levels with υsg = N,N − 2, . . . (for nd = 0) with υsg = N −
1, N − 3, . . . (for nd = 1) etc., and υsg = N levels are lowest in energy due
the repulsive sg-pairing. Multiplets characterized by the seniority quantum
number υg = 0, 1, . . . occur within each SOsg(10) multiplet. Note that in this
limit, unless bsg is small, the first-excited state has Jπ = 4+. This is a conse-
quence of the unrealistic condition that the energies of the s and g bosons are
degenerate, εs = εg.
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4 Classical limit of the symmetry Hamiltonian

The classical limit of the symmetry Hamiltonian (15) can be obtained with
the general procedure outlined in I. First, a conversion to the standard rep-
resentation (1) is carried out. A quadratic Casimir operator Ĉ2(G) is given
generically as an expansion over the generators,

Ĉ2(G) =
∑
λr

aλr

∑
`1`2

αλr`1`2

(
b†`1 × b̃`2

)(λ) ·
∑
`′1`
′
2

αλr`′1`′2

(
b†`′1
× b̃`′2

)(λ) , (20)

with coefficients αλr`1`2 and aλr that are specific to each algebra G, as given in
Eq. (14). The overall sum in Eq. (20) is over the multipolarity λ of the gener-
ators and over an additional index r to distinguish different generators with
the same λ. With use of the expansion (20) one finds the following expression
for the matrix element of Ĉ2(G) between two-boson states [19]:

〈`1`2;L|Ĉ2(G)|`′1`′2;L〉

= [f`1(G) + f`2(G)] δ`1`3δ`2`4 +
2(−)`2+`3√

(1 + δ`1`2)(1 + δ`3`4)

∑
λr

aλr(2λ+ 1)

×
[
αλr`1`4α

λr
`2`3

{
`1 `4 λ

`3 `2 L

}
+ (−)Lαλr`1`3α

λr
`2`4

{
`1 `3 λ

`4 `2 L

}]
, (21)

where the symbol between curly brackets is a Racah coefficient [20]. The quan-
tity f`(G) is the expectation value of the operator Ĉ2(G) between single-boson
states,

f`(G) ≡ 〈`|Ĉ2(G)|`〉 =
∑
λr

2λ+ 1

2`+ 1
aλr

∑
`′

(−)`+`
′
αλr``′α

λr
`′`. (22)

The Hamiltonian (15) can, with use of Eqs. (21) and (22), be converted into
its standard representation on which the classical-limit expression (4) can be
applied. The procedure results in the energy surface

E(β2, β4) =
N(N − 1)

(1 + β2
2 + β2

4)2
∑
kl

c′klβ
k
2β

l
4, (23)

where the non-zero coefficients c′kl are

c′00 = asg + bsg + Γs, c′20 = Γs + Γd, c′02 = 2asg − 2bsg + Γs + Γg,

c′40 = ad + Γd, c′22 = Γd + Γg, c′04 = asg + bsg + ag + Γg, (24)
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in terms of the combinations

Γs≡
1

N − 1
(εs + 10asg),

Γd≡
1

N − 1
(εd + 5ad + 4bd + 6cd + 6c),

Γg≡
1

N − 1
(εg + 10asg + 9ag + 8bg + 20cg + 20c). (25)

All coefficients cijkl of Eq. (4) vanish identically in the classical limit of the
symmetry Hamiltonian (15).

5 Octahedral shapes

From the outset it should be clear that energy surface (23) cannot have an
isolated minimum with octahedral shape since it is independent of γ2, γ4 and
δ4. What can still happen, however, is the occurrence of a minimum with zero
quadrupole and non-zero hexadecapole deformation (β∗2 = 0 and β∗4 6= 0),
which, given the instability in γ4 and δ4, includes a shape with octahedral
symmetry. Therefore, the goal of this section is to establish the conditions on
the parameters in the symmetry Hamiltonian (15) such that its classical limit
displays a minimum with β∗2 = 0 and β∗4 6= 0, and, subsequently, to identify
the interactions in the general Hamiltonian (1) that generate a dependence
on δ4, enabling the formation of an isolated minimum with octahedral shape.
This problem can be investigated with the procedure outlined in I.

According to the analysis of the previous section, the classical energy (23) is a
two-variable function E(β2, β4). The conditions for this energy surface to have
an extremum are

∂E

∂β2

∣∣∣∣∣
p∗

=
∂E

∂β4

∣∣∣∣∣
p∗

= 0, (26)

where p∗ ≡ (β∗2 , β
∗
4) is a short-hand notation for an arbitrary critical point.

Furthermore, a critical point at an extremum with β∗2 = 0 and β∗4 6= 0 shall
be denoted as h∗. The condition (26) in β2 is identically satisfied for p∗ = h∗

and does not lead to any constraints on the coefficients c′kl. The condition in
β4 leads to a cubic equation with the solutions

β∗4 = 0, β∗4 = ±
√

2c′00 − c′02
2c′04 − c′02

. (27)
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Only the last solution corresponds to an extremum h∗ and implies the following
condition on the ratio of coefficients:

2c′00 − c′02
2c′04 − c′02

> 0. (28)

While the condition (28) is necessary and sufficient to have an extremum at
β∗2 = 0 and β∗4 6= 0, a minimum at these values implies further constraints.
They are obtained by requiring that the eigenvalues of the stability matrix [i.e.,
the partial derivatives of E(β2, β4) of second order] are all positive. Since the
off-diagonal element of the stability matrix vanishes for the energy surface (23),
the existence of a minimum follows from the uncoupled conditions

∂2E

∂β2
2

∣∣∣∣∣
h∗
> 0,

∂2E

∂β2
4

∣∣∣∣∣
h∗
> 0, (29)

or, in terms of the coefficients c′kl in Eq. (23),

(2c′04 − c′02)[2c′00(c′22 − 2c′04) + c′02(c
′
02 − c′20 − c′22) + 2c′04c

′
20]

(c′00 − c′02 + c′04)
2

> 0,

(2c′00 − c′02)(2c′04 − c′02)3

(c′00 − c′02 + c′04)
3

> 0. (30)

If we write Eq. (28) as A/B > 0, the second inequality in Eq. (30) becomes
AB3/(A + B)3 > 0 and therefore both A and B should be positive, A ≡
2c′00 − c′02 > 0 and B ≡ 2c′04 − c′02 > 0, leading to the constraint

−4bsg − 2ag < Γg − Γs < 4bsg. (31)

The first inequality in Eq. (30) can be reduced to

2bsg(2Γd − Γs − Γg − 4asg − ag) + ag(Γd − Γs − 2asg) > 0. (32)

The conditions (31) and (32) are necessary and sufficient for the energy sur-
face E(β2, β4) to have a minimum at zero quadrupole and non-zero hexade-
capole deformation. To obtain an intuitive understanding of them, we note
that Γg − Γs, for a reasonable choice of parameters, is positive. The upper
part of the inequality (31) therefore expresses the need for bsg to be positive
and sufficiently large, corresponding to a repulsive sg-pairing interaction that
puts the configuration with maximal sg seniority υsg = nsg at lowest energy.
For bsg > 0 and ag > 0, the lower part of the inequality (31) is automatically
satisfied. The condition (32) is easier to appreciate if it is assumed that the
coefficients in front of the quadratic Casimir operators of the unitary algebras
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Ud(5), Ug(9) and Usg(10) vanish, ad = asg = ag = 0. This assumption is justi-
fied if anharmonicities are neglected in the various limits. Given that bsg > 0,
it then follows that

2Γd − Γs − Γg > 0. (33)

In terms of the original parameters in the symmetry Hamiltonian (15) (as-
suming ad = asg = ag = 0) the conditions to have a minimum at β∗2 = 0 and
β∗4 6= 0 can be summarized as

−4(N − 1)bsg < εg − εs + 8bg + 20(cg + c)< 4(N − 1)bsg,

2εd − εs − εg + 8(bd − bg) + 4(3cd − 5cg − 2c)> 0. (34)

We now ask the question whether two-body interactions can be added to the
symmetry Hamiltonian (15), which lift the (γ4, δ4) instability and create a
minimum at δ4 = 0, δ4 = arccos(1/6) or δ4 = π. To achieve this goal, we recall
the result from I that for a general Hamiltonian of the sdg-IBM an extremum
with β∗2 = 0 and β∗4 6= 0 occurs for

β∗4 = ±
√

2c′00 − c′02
2c′04 − c′02 + 38c0004

. (35)

The term in c0004 introduces a dependence in δ4 that may lead to an isolated min-
imum with octahedral symmetry. Given the expression (6) for c0004, this argu-
ment suggests adding g-boson interactions vLgggg to the Hamiltonian (15). The
classical energy (23) then becomes a three-variable function E(β2, β4, δ4), for
which the above catastrophe analysis can be repeated. With these additional
two-body interactions the extremum and stability conditions (26) and (29)
become

2c′00 − c′02 > 0, 2c′04 − c′02 + 38c0004 > 0, c0004 < 0, (36)

2c′00(c
′
22 − 2c′04) + c′02(c

′
02 − c′20 − c′22) + 2c′04c

′
20 − 38c0004(2c

′
00 − c′20) > 0.

For ad = asg = ag = 0, these conditions imply the inequalities

−2bsg − ṽ < Γg − Γs < 4bsg,

v̄ ≡ 65v2gggg − 30v4gggg − 91v6gggg + 56v8gggg > 0,

4bsg(2Γd − Γs − Γg) + (Γd − Γs − 2bsg)(ṽ − 2bsg) > 0, (37)

where ṽ is the following linear combination of g-boson interaction matrix ele-
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Fig. 2. Energy spectrum of a Ug(9)–SOsg(10) transitional Hamiltonian of the
sdg-IBM for N = 5 bosons. The non-zero parameters of the Hamiltonian (15)
are εd − εs = 1200, εg − εs = 1500, bd = 40, cd = 10, bsg = 150, bg = 25 and
cg = c = 5 keV.

ments:

ṽ = 1
9
v0gggg + 98

429
v4gggg + 40

99
v6gggg + 10

39
v8gggg. (38)

For the Hamiltonian (15) the linear combination v̄ vanishes identically and the
second inequality in Eq. (37) is not fulfilled. This expresses the δ4 independence
of the symmetry Hamiltonian and the fact that its classical limit does not
acquire an isolated minimum with octahedral shape. Furthermore, for the
symmetry Hamiltonian one has ṽ = 2bsg and the conditions (37) reduce to
Eq. (34).

There are clearly many ways to find matrix elements vLgggg that satisfy all
conditions (37) but one way is particularly simple. Note that the quadrupole
matrix element v2gggg does not appear in the combination ṽ. By making this
matrix element more repulsive, the second inequality in Eq. (37) is satisfied
while the other two conditions are not modified with respect those in Eq. (34)
valid for the symmetry Hamiltonian (15). A possible procedure to construct
an sdg-IBM Hamiltonian whose classical energy displays a minimum with
octahedral shape is therefore to add to a hexadecapole-deformed symmetry
Hamiltonian (15) a repulsive v2gggg interaction.

Let us illustrate this procedure with an example. The starting point is a Ug(9)–
SOsg(10) transitional Hamiltonian associated with the lattice (12), giving rise
to the spectrum shown in Fig. 2. Note that the choice of the single-boson
energies ε` for this figure is realistic in the sense that the g-boson energy
is higher than that of the d boson. The sg-pairing strength bsg, of which
little is known either empirically or microscopically, is chosen such that a
hexadecapole-deformed minimum occurs in the classical limit. Other parame-
ters in the Hamiltonian (15) are of lesser importance and are chosen as to lift
degeneracies in the spectrum. Note that with this choice of parameters the
resulting spectrum, as shown in Fig. 2, is rather closer to the Ug(9) and than
to the SOsg(10) limit.

14



��� ��� ���
β�

���

���

���

���

β�

Fig. 3. The energy surface E(β2, β4) obtained in the classical limit of a
Ug(9)–SOsg(10) transitional Hamiltonian of the sdg-IBM. Parameters of the Hamil-
tonian (15) are given in the caption of Fig. 2. Black corresponds to low energies and
the lines indicate changes by 10 keV.
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Fig. 4. Energy surfaces E(β4, δ4) obtained in the classical limit of two different
Hamiltonians of the sdg-IBM for N = 5 bosons. The dependence on β4 > 0 and
0 ≤ δ4 ≤ π is shown for β∗2 = 0. Black corresponds to low energies and the lines
indicate changes by 10 keV. (a) The Ug(9)–SOsg(10) transitional Hamiltonian is
taken with the parameters given in the caption of Fig. 2. (b) The Hamiltonian of
(a) is modified by taking a repulsive interaction v2gggg = 500 keV.

The parameters quoted in the caption of Fig. 2 satisfy both conditions (34).
As a result, the energy surface in the classical limit of the corresponding
Hamiltonian has a minimum for β∗2 = 0 and β∗4 ≈ 0.34, as shown in Fig. 3.
According to the preceding discussion, the surface is independent of δ4, which
is indeed confirmed by Fig. 4(a). If the v2gggg matrix element is modified, a
dependence in δ4 is introduced, as illustrated in Fig. 4(b) for the value v2gggg =
500 keV. It is seen that the energy surface displays three isolated minima that
are exactly degenerate. The three minima all have an octahedral symmetry,
corresponding to either an octahedron [δ∗4 = 0 and δ∗4 = arccos(1/6) ≈ 84.4o]
or a cube (δ∗4 = π).

Although this analysis shows that isolated minima with octahedral symmetry
can be obtained in the classical limit of an sdg-IBM Hamiltonian with rea-
sonable parameters, it can be expected that such minima are rather shallow.

15



��� -���
�+

�+

�+
�+

�+
�+

�+

�+
�+ �+

�+

�+ �+ �+ �+ �+

�

�

�

�

�
��
��
�
(�
��

)
Fig. 5. Energy spectrum of a general Hamiltonian of the sdg-IBM for N = 5 bosons.
The same Hamiltonian is taken as in Fig. 2 but one g-boson two-body matrix
element is modified to v2gggg = 500 keV. On the left- and right-hand sides are shown
the shapes at the minima in the energy surface obtained in the classical limit of
this Hamiltonian. They have octahedral symmetry and correspond to either an
octahedron or a cube.

Even for the fairly large value of the interaction matrix element in the above
example, v2gggg = 500 keV, the three minima are separated by a barrier of
∼ 20 keV, inducing only very weak observable effects. This point is illustrated
with Fig. 5, which shows the spectrum of the Ug(9)–SOsg(10) transitional
Hamiltonian with the modified v2gggg matrix element. Except for some minute
changes the spectrum is essentially the same as that shown in Fig. 2.

One subtle point made clear by the current study is that it is not sufficient
to carry out a catastrophe analysis of the generic surface (4) obtained in the
classical limit of the most general sdg-IBM Hamiltonian (1) with up to two-
body interactions between the bosons. The coefficients c′kl and cijkl cannot be
treated as free parameters but their expressions in terms of the single-bosons
energies and boson–boson interactions are an essential part of the analysis.
To illustrate this point consider the energy surface shown in Fig. 4(b). The
minima at δ∗4 = 0 and δ∗4 ≈ 84.4o correspond to the same intrinsic shape (an
octahedron, shown on the left-hand side of Fig. 5) and, as a consequence, the
minima must be exactly degenerate. This behavior is generally valid. There-
fore, whatever single-boson energies and boson–boson interactions one adopts
in the Hamiltonian (1), the energy surface in its classical limit must satisfy the
constraint that points on the surface with same intrinsic shape (e.g., δ∗4 = 0
and δ∗4 ≈ 84.4o) are at the same energy.

6 Conclusions

The main conclusion of this paper is that no sdg-IBM Hamiltonian with a
dynamical symmetry that includes Casimir operators of up to second order
displays in its classical limit an isolated minimum with octahedral shape.
Nevertheless, a degenerate minimum that includes a shape with octahedral
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symmetry can be obtained from a Hamiltonian transitional between two lim-
its. In the limits in question the d boson is decoupled from s and g bosons.
Furthermore, limit I, Ug(9), has hexadecapole vibrational characteristics while
in limit II, SOsg(10), s- and g-boson states are mixed through an sg-pairing
interaction. A catastrophe analysis of the energy surface obtained in the classi-
cal limit of this transitional symmetry Hamiltonian indicates that a minimum
with zero quadrupole and non-zero hexadecapole deformation can be obtained
with reasonable parameters. However, this minimum is always δ4 independent,
meaning that it ranges from an octahedron to a cube and includes interme-
diate shapes without octahedral symmetry. Isolated minima with octahedral
symmetry can be obtained by adding two-body interactions between the g
bosons to the transitional symmetry Hamiltonian. The resulting energy sur-
face displays in this case minima with octahedral symmetry, with the shape
of either an octahedron or a cube, separated by a barrier with low energy
even for fairly strong interactions between the g bosons. The conclusion of
this analysis in the context of the sdg-IBM is therefore that it will be difficult
to find experimental manifestations of octahedral symmetry in nuclei.
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[15] S.G. Rohoziński, A. Sobiczewski, Acta Phys. Pol. B 12 (1981) 1001.

[16] H. De Meyer, J. Van der Jeugt, G. Vanden Berghe, V.K.B. Kota, J. Phys. A
19 (1986) L565.

[17] V.K.B. Kota, J. Van der Jeugt, H. De Meyer, G. Vanden Berghe, J. Math. Phys.
28 (1987) 1644.

[18] A. Bouldjedri, P. Van Isacker, S. Zerguine, J. Phys. G 31 (2005) 1329.

[19] Note the correction with respect to Eq. (2) of Ref. [18].

[20] I. Talmi, Simple Models of Complex Nuclei. The Shell Model and the Interacting
Boson Model (Harwood, Chur, 1993).

18




