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Abstract. Cryptographic implementations deployed in real world devices often aim at
(provable) security against the powerful class of side-channel attacks while keeping reason-
able performances. Last year at Asiacrypt, a new formal verification tool named tightPROVE
was put forward to exactly determine whether a masked implementation is secure in the
well-deployed probing security model for any given security order t. Also recently, a com-
piler named Usuba was proposed to automatically generate bitsliced implementations of
cryptographic primitives.
This paper goes one step further in the security and performances achievements with a
new automatic tool named Tornado. In a nutshell, from the high-level description of a
cryptographic primitive, Tornado produces a functionally equivalent bitsliced masked im-
plementation at any desired order proven secure in the probing model, but additionally in
the so-called register probing model which much better fits the reality of software implemen-
tations. This framework is obtained by the integration of Usuba with tightPROVE+, which
extends tightPROVE with the ability to verify the security of implementations in the register
probing model and to fix them with inserting refresh gadgets at carefully chosen locations
accordingly.
We demonstrate Tornado on the lightweight cryptographic primitives selected to the second
round of the NIST competition and which somehow claimed to be masking friendly. It
advantageously displays performances of the resulting masked implementations for several
masking orders and proves their security in the register probing model.

Keywords: Compiler, Masking, Automated verification, Bitslice

1 Introduction

Cryptographic implementations susceptible to power and electromagnetic side-channel attacks are
usually protected by masking. The general principle of masking is to apply some secret sharing
scheme to the sensitive variables processed by the implementation in order to make the side-channel
information either negligible or hard to exploit in practice. Many masked implementations rely on
Boolean masking in which a variable x is represented as n random shares x1, . . . , xn satisfying
the completeness relation x1 ⊕ · · · ⊕ xn = x (where ⊕ denotes the bitwise addition).

The probing model is widely used to analyze the security of masked (software) implementa-
tions vs. side-channel attacks. This model was introduced by Ishai, Sahai and Wagner in [26] to
construct circuits resistant to hardware probing attacks. It was latter shown that this model and
the underlying construction were instrumental to the design of efficient practically-secure masked
cryptographic implementations [32, 15, 18, 19]. A masking scheme secure against a t-probing ad-
versary, i.e. who can probe t arbitrary variables in the computation, is indeed secure by design
against the class of side-channel attacks of order t [17].

Most masking schemes consider the implementation to be protected as a Boolean or arithmetic
circuit composed of gates of different natures. These gates are then replaced by gadgets processing
masked variables. One of the important contributions of [26] was to propose a multiplication gadget
secure against t-probing attacks for any t, based on a Boolean masking of order n = 2t+1. This was



reduced to the tight order n = t+1 in [32] by constraining the two input sharings to be independent,
which could be ensured by the application of a mask-refreshing gadget when necessary. The design
of secure refresh gadgets and, more generally, the secure composition of gadgets were subsequently
subject to many works [18, 16, 5, 6]. Of particular interest, the notions of Non-Interference (NI)
and Strong Non-Interference (SNI) introduced in [5] provide a practical framework for the secure
composition of gadgets which yields tight probing-secure masked implementations. In a nutshell,
such implementations are composed of ISW multiplication and refresh gadgets (from the names of
their inventors Ishai, Sahai, and Wagner [26]) achieving the SNI property, and of sharewise addition
gadgets. The main technical challenge in such a context is to identify the number of required refresh
gadgets and their (optimal) placing in the implementation to obtain a provable t-probing security.
Last year at Asiacrypt, a formal verification tool called tightPROVE was put forward by Beläıd,
Goudarzi, and Rivain [8] which is able to clearly state whether a tight masked implementation is
t-probing secure or not. Given a masked implementation composed of standard gadgets (sharewise
addition, ISW multiplication and refresh), tightPROVE either produces a probing-security proof
(valid at any order) or exhibits a security flaw that directly implies a probing attack at a given
order. Although nicely answering a relevant open issue, tightPROVE still suffers two important
limitations. First it only applies to Boolean circuits and does not straightforwardly generalize to
software implementation processing `-bit registers (for ` > 1). Secondly, it does not provide a
method to place the refresh whenever a probing attack is detected.

In parallel to these developments, many works have focused on the efficient implementation of
masking schemes with possibly high orders. For software implementations, it was recently demon-
strated in several works that the use of bitslicing makes it possible to achieve (very) aggressive
performances. In the bitsliced higher-order masking paradigm, the ISW scheme is applied to se-
cure bitwise and instructions which are significantly more efficient than their field-multiplication
counterparts involved in the so-called polynomial schemes [25, 27]. Moreover, the bitslice strategy
allows to compute several instances of a cryptographic primitive in parallel, or alternatively all
the s-boxes in parallel within an instance of the primitive. The former setting is simply called
(full) bitslice in the present paper while the latter setting is referred to as n-slice. In both settings,
the high degree of parallelization inherited from the bitslice approach results in important effi-
ciency gains. Verifying the probing security of full bitslice masked implementation is possible with
tightPROVE since the different bit slots (corresponding to different instances of the cryptographic
primitive) are mutually independent. Therefore, probing an `-bit register in the bitslice imple-
mentation is equivalent to probing the corresponding variable in ` independent Boolean circuits,
and hence tightPROVE straightforwardly applies. For n-slice implementations on the other hand,
the different bit slots are mixed together at some point in the implementation which makes the
verification beyond the scope of tightPROVE. In practice, for masked software implementations,
the register probing model makes much more sense than the bit probing model because a software
implementation works on `-bit registers containing several bits that leak all together.

Another limitation of tightPROVE is that it simply verifies an implementation under the form
of an abstract circuit but it does not output a secure implementation, nor provide a sound placing
of refresh gadgets to make the implementation secure. In practice one could hope for an integrated
tool that takes an input circuit in a simple syntax, determine where to place the refresh gadgets
and compile the augmented circuit into a masked implementation, for a given masking order
on a given computing platform. Usuba, introduced by Mercadier and Dagand in [29], is a high-
level programming language for specifying symmetric block ciphers. It provides an optimizing
compiler that produces efficient bitsliced implementations. On high-end Intel platforms, Usuba
has demonstrated performance on par with several, publicly available cipher implementations. As
part of its compilation pipeline, Usuba features an intermediate representation, Usuba0, that shares
many commonalities with the input language of tightPROVE.

It is therefore natural to consider integrating both tools in a single programming environment.
We aim at enabling cryptographers to prototype their algorithms in Usuba, letting tightPROVE
verify or repair its security and letting the Usuba back-end perform masked code generation.

Our Contributions. The contributions of our work are threefold:
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Extended probing-security verification tool. We tackle the limitations of tightPROVE and propose
an extended verification tool, that we shall call tightPROVE+. This tool can verify the security
of any masked bitslice implementation in the register probing model (which makes more sense
than the bit probing model w.r.t. masked software implementations). Given a masked bitslice/n-
slice implementation composed of standard gadgets for bitwise operations, tightPROVE+ either
produces a probing-security proof or exhibits a probing attack.

New integrated compiler for masked bitslice implementations. We present (and report on the devel-
opment of) a new compiler Tornado3 which integrates Usuba and tightPROVE+ in a global compiler
producing masked bitsliced implementations proven secure in the bit/register probing model. This
compiler takes as input a high-level, functional specification of a cryptographic primitive. If some
probing attacks are detected by tightPROVE+, the Tornado compiler introduces refresh gadgets,
following a sound heuristic, in order to thwart these attacks. Once a circuit has been identified
as secure, Tornado produces bitsliced C code achieving register probing security at a given input
order. To account for the limited resources available on embedded systems, Tornado exploits a
generalization of bitslicing – implemented by Usuba – to reduce register pressure and implements
several optimizations specifically tailored for Boolean masking code. The source code of Tornado
is available at:

https://github.com/CryptoExperts/Tornado

Benchmarks of NIST lightweight cryptography candidates. We evaluate Tornado on 11 crypto-
graphic primitives from the second round of the ongoing NIST lightweight cryptography stan-
dardization process.4 The choice of cryptographic primitives has been made on the basis that they
were self-identified as being amenable to masking. These implementation results give a bench-
mark of these different candidates with respect to masked software implementation for a number
of shares ranging between 1 and 128. The obtained performances are pretty satisfying. For in-
stance, the n-slice implementations of the tested primitives masked with 128 shares takes from 1
to a few dozen megacycles on an Cortex-M4 processor.

2 Technical Background

2.1 Usuba

Usuba is a domain-specific language for describing bitsliced algorithms. It has been designed around
the observation that a bitsliced algorithm is essentially a combinational circuit implemented in
software. As a consequence, Usuba’s design is inspired by high-level synthesis languages, following a
dataflow specification style. For instance, the language offers the possibility to manipulate bit-level
quantities as well as to apply bitwise transformations to compound quantities. A domain-specific
compiler then synthesizes an efficient software implementation manipulating machine words.

Figure 1 shows the Usuba implementation of the Ascon cipher. To structure programs, we use
node’s (Figure 1b, 1c & 1d) , of which table’s (Figure 1a) are a special case of, specified through
their truth table. A node specifies a set of input values, output values as well as a system of
equations relating these variables. To streamline the definition of repeating systems (e.g. , the 12
rounds of Ascon), Usuba offers bounded loops, which simply desugar into standalone equations.
A static analysis ensures that the system of equations admits a solution. The semantics of an
Usuba program is thus straightforward: it is the (unique) solution to the system of equations.

Aside from custom syntax, Usuba features a type system that documents and enforces par-
allelization strategies. Traditionally, bitslicing [12] consists in treating an m-word quantity as m
variables, such that a combinational circuit can be straightforwardly implemented by applying the
corresponding bitwise logical operations over the variables. On a 32-bit architecture, this means
that 32 circuits are evaluated “in parallel”: for example, a 32-bit and instruction is seen as 32

3 Tornado ambitions to be the workhorse of those cryptographers that selflessly protect their ciphers
through provably secure mask ing and precise bitslicing.

4 https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
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table Sbox(x:v5) returns (y:v5) {
0x4, 0xb, 0x1f, 0x14, 0x1a, 0x15,
0x9, 0x2, 0x1b, 0x5, 0x8, 0x12,
0x1d, 0x3, 0x6, 0x1c, 0x1e, 0x13,
0x7, 0xe, 0x0, 0xd, 0x11, 0x18,
0x10, 0xc, 0x1, 0x19, 0x16, 0xa,
0xf, 0x17

}

(a) S-box specified by its truth table.

node AddConstant(state:u64x5,c:u64)
returns (stateR:u64x5)

let
stateR = (state[0,1], state[2] ^ c,

state[3,4]);
tel

(b) Node manipulating a 5-uple

node LinearLayer(state:u64x5)
returns (stateR:u64x5)

let
stateR[0] = state[0]

^ (state[0] >>> 19)
^ (state[0] >>> 28);

stateR[1] = state[1]
^ (state[1] >>> 61)
^ (state[1] >>> 39);

stateR[2] = state[2]
^ (state[2] >>> 1)
^ (state[2] >>> 6);

stateR[3] = state[3]
^ (state[3] >>> 10)
^ (state[3] >>> 17);

stateR[4] = state[4]
^ (state[4] >>> 7)
^ (state[4] >>> 41);

tel

(c) Node involving rotations and xors

node ascon12(input:u64x5)
returns (output:u64x5)

vars
consts:u64[12],
state:u64x5[13]

let
consts = (0xf0, 0xe1, 0xd2, 0xc3,

0xb4, 0xa5, 0x96, 0x87,
0x78, 0x69, 0x5a, 0x4b);

state[0] = input;
forall i in [0, 11] {

state[i+1] = LinearLayer
(Sbox
(AddConstant
(state[i],consts[i])))

}
output = state[12]

tel

(d) Main node composing the 12 rounds

Fig. 1: Ascon cipher in Usuba

Boolean and gates. To ensure that an algorithm admits an efficient bitsliced implementation,
Usuba only allows bitwise operations and forbids stateful computations [30].

However, bitslicing can be generalized to n-slicing [29] (with n > 1). Whereas bitslicing splits
an m-word quantity into m individual bits, we can also treat it at a coarser granularity5, splitting
it into k variables of n bits each (preserving the invariant that m = k × n). The register pressure
is thus lowered, since we introduce k variables rather than m, and, provided some support from
the underlying hardware or compiler, we may use arithmetic operations in addition to the usual
Boolean operations. Conversely, certain operations become prohibitively expensive in this setting,
such as permuting individual bits. The role of Usuba’s type system is to document the paralleliza-
tion strategy decided by the programmer (e.g. , u64x5 means that we chose to treat a 320-bit block
at the granularity of 64-bit atoms) and ensure that the programmer only used operations that can
be efficiently implemented on a given architecture.

The overall architecture of the Usuba compiler is presented in Figure 2. It involves two essen-
tial steps. Firstly, normalization expands the high-level constructs of the language to a minimal
core language called Usuba0. Usuba0 is the software equivalent of a netlist: it represents the sliced
implementation in a flattened form, erasing tuples altogether. Secondly, optimizations are applied
at this level, taking Usuba0 circuits to (functionally equivalent) Usuba0 circuits. In particular,
scheduling is responsible for ordering the system of equations in such a way as to enable sequen-
tial execution as well as maximize instruction-level parallelism. To obtain a C program from a
scheduled Usuba0 circuit, we merely have to replace the Boolean and arithmetic operations of the
circuit with the corresponding C operations. The resulting C program is in static single assignment
(SSA) form, involving only operations on integer types: we thus solely rely on the C compiler to
perform register allocation and produce executable code.

5 The literature [29, Fig.2] distinguishes vertical from horizontal n-slicing: lacking the powerful SIMD in-
structions required by horizontal n-slicing, we focus here solely on vertical n-slicing, which we abbreviate
unambiguously to “n-slicing”.
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Usuba Usuba0 C assembly
Normalization

bitslicing/n-slicing

Optimizations
scheduling, inlining, etc.

Vectorization
Transpilation Register

allocation

Fig. 2: High-level view of the Usuba compiler

At compile-time, a specific node is designated as the cryptographic primitive of interest (here,
ascon12): the Usuba compiler is then tasked to produce a C file exposing a function corresponding
to the desired primitive. In this case, the bitsliced primitive would have type

void Ascon12 (uint32_t plain[320], uint32_t cipher[320])

whereas the 64-sliced primitive would have type

void Ascon12 (uint64_t plain[5], uint64_t cipher[5])

Usuba targets C so as to maximize portability: it has been successfully used to deploy crypto-
graphic primitives on Intel, PowerPC, Arm and Sparc architectures. However, a significant amount
of optimization is carried by the Usuba compiler: because this programming model is subject to
stringent invariants, the compiler is able to perform far-reaching, whole program optimizations
that a C compiler would shy away from. For example, it features a custom instruction scheduling
algorithm, aimed at minimizing the register pressure of bitsliced code. On high-end Intel archi-
tectures featuring Single Instruction Multiple Data (SIMD) extensions, Usuba has demonstrated
performance on par with hand-optimized reference implementations [29].

Usuba offers an ideal setting in which to automate Boolean masking. Indeed, ciphers specified
in Usuba are presented at a suitable level of abstraction: they consist in combinational circuits,
by construction. As a result, the Usuba compiler can perform a systematic source-to-source trans-
formation, automating away the tedious introduction of masking gadgets and refreshes. Besides,
the high-level nature of the language allows us to extract a model of an algorithm, analyzable by
static analysis tools such as SAT solvers – to check program equivalence, which is used internally
to validate the correctness of optimizations – or tightPROVE – to verify probing security.

2.2 tightPROVE

tightPROVE is a verification tool which aims to verify the probing security of a shared Boolean
circuit. It takes as input a list of instructions that describes a shared circuit made of specific
multiplication, addition and refresh gadgets and outputs either a probing security proof or a
probing attack. To that end, a security reduction is made through a sequence of four equivalent
games. In each of them, an adversary A chooses a set of probes P (indices pointing to wires in the
shared circuit) in the target circuit C, and a simulator S wins the game if it successfully simulates
the distribution of the tuple of variables carried by the corresponding wires without knowledge of
the secret inputs.

Game 0 corresponds to the t-probing security definition: the adversary can choose t probes
in a t + 1-shared circuit, on whichever wires she wishes. In Game 1, the adversary is restricted
to only probe gadget inputs: one probe on an addition or refresh gadget becomes one probe on
one input share, one probe on a multiplication gadget becomes one probe on each of the input
sharings. In Game 2, the circuit C is replaced by another circuit C ′ that has a multiplicative
depth of one, through a transformation called Flatten, illustrated in the original paper [8]. In a
nutshell, each output of a multiplication or refresh gadget in the original circuit gives rise to a new
input with a fresh sharing in C ′. Finally, in Game 3, the adversary is only allowed to probe pairs
of inputs of multiplication gadgets. The transition between these games is mainly made possible
by an important property of the selected refresh and multiplication gadgets: in addition to being
t-probing secure, they are t-strong non interfering (t-SNI for short) [5]. Satisfying the latter means
that t probed variables in their circuit description can be simulated with less than t1 shares of
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each input, where t1 ≤ t denotes the number of internal probes i.e. which are not placed on output
shares.

Game 3 can be interpreted as a linear algebra problem. In the flattened circuit, the inputs
of multiplication gadgets are linear combinations of the circuit inputs. These can be modelled
as Boolean vectors that we call operand vectors, with ones at indexes of involved inputs. From
the definition of Game 3, the 2t probes made by the adversary all target these operand vectors
for chosen shares. These probes can be distributed into t + 1 matrices M0, . . . ,Mt, where t + 1
corresponds to the (tight) number of shares, such that for each probe targeting the share i of
an operand vector v, with i in {0, . . . , t}, v is added as a row to matrix Mi. Deciding whether
a circuit is t-probing secure can then be reduced to verifying whether 〈MT

0 〉 ∩ · · · ∩ 〈MT
t 〉 = ∅

(where 〈·〉 denotes the column space of a matrix). The latter can be solved algorithmically with
the following high-level algorithm for a circuit with m multiplications:

For each operand vector w,

1. Create a set G1 with all the multiplications for which w is one of the operand vectors.
2. Create a set O1 with the co-operand vectors of w in the multiplications in G1.
3. Stop if w ∈ 〈O1〉 (O1’s linear span), that is if w can be written as a linear combination of

Boolean vectors from O1.
4. For i from 2 to m, create new sets Gi and Oi by adding to Gi−1 multiplications that involve

an operand w′ verifying w′ ∈ (w⊕ 〈Oi−1〉), and adding to Oi−1 the other operand vectors of
these multiplications. Stop whenever i = m or Gi = Gi−1 or w ∈ 〈Oi〉.

If this algorithm stops when w ∈ 〈Oi〉 for some i, then there is a probing attack on w, i.e.,
for a certain t, the attacker can recover information on x ·w (where x denote the vector of plain
inputs), with only t probes on the (t+ 1)-shared circuit. In the other two scenarios, the circuit is
proven to be t-probing secure for any value of t.

3 Extending tightPROVE to the Register-Probing Model

3.1 Model of Computation

Notations. In this paper, we denote by K = F2 the field with two elements and by V = Ks the
vector space of dimension s over K, for some given integer s (which will be used to denote the
register size). Vectors, in any vector space, are written in bold. Ji, jK denotes the integer interval
Z ∩ [i, j] for any two integers i and j. For a finite set X , we denote by |X | the cardinality of X
and by x← X the action of picking x from X independently and uniformly at random. For some
(probabilistic) algorithm A, we further denote x ← A(in) the action of running algorithm A on
some inputs in (with fresh uniform random tape) and setting x to the value returned by A.

Basic Notions. We call register-based circuit any directed acyclic graph, whose vertices either
correspond to an input gate, a constant gate outputting an element of V or a gate processing one
of the following functions:

– XOR and AND, the coordinate-wise Boolean addition and multiplication over Ks, respectively.
For the sake of intelligibility, we write a + b and a ·b instead of XOR(a,b) and AND(a,b) re-
spectively when it is clear from the context that we are performing bitwise operations between
elements of V.

– (ROTLr)r∈J1,s−1K, the family of vector Boolean rotations. For all r ∈ J1, s− 1K,

ROTLr : V → V
(v1, . . . , vs) 7→ (vr+1, . . . , vs, v1, . . . , vr)

– (SHIFTLr)r∈J1,s−1K and (SHIFTRr)r∈J1,s−1K, the families of vector Boolean left and right shifts.
For all r ∈ J1, s− 1K,

SHIFTLr : V → V
(v1, . . . , vs) 7→ (vr+1, . . . , vs, 0, . . . , 0)

SHIFTRr : V → V
(v1, . . . , vs) 7→ (0, . . . , 0, v1, . . . , vs−r)
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A randomized circuit is a register-based circuit augmented with gates of fan-in 0 that output
elements of V chosen uniformly at random.

Translation to the Masking World. A d-sharing of x ∈ V refers to any random tuple [x]d =
(x0,x1 . . . ,xd−1) ∈ Vd that satisfies x = x0 + x1 + · · ·+ xd−1. A d-sharing [x]d is uniform if it is
uniformly distributed over the subspace of tuples satisfying this condition, meaning that for any
k < d, any k-tuple of the shares of x is uniformly distributed over Vk. In the following, we omit
the sharing order d when it is clear from the context, so a d-sharing of x is denoted by [x]. We
further denote by Enc a probabilistic encoding algorithm that maps x ∈ V to a fresh uniform
sharing [x].

In this paper, we call a d-shared register-based circuit a randomized register-based circuit
working on d-shared variables as elements of V that takes as inputs some d-sharings [x1], . . . , [xn]
and performs operations on their shares with the functions described above. Assuming that we
associate an index to each edge in the circuit, a probe refers to a specific edge index. For such a
circuit C, we denote by C([x1], . . . , [xn])P the distribution of the tuple of values carried by the
wires of C of indexes in P when the circuit is evaluated on [x1], . . . , [xn].

We consider circuits composed of subcircuits called gadgets. Gadgets are d-shared circuits
performing a specific operation. They can be seen as building blocks of a more complex circuit. We
furthermore say that a gadget is sharewise if each output share of this gadget can be expressed as
a deterministic function of its input shares of the same sharing index. In this paper, we specifically
consider the following gadgets:

– The ISW-multiplication gadget [⊗] takes two d-sharings [a] and [b] as inputs and outputs a
d-sharing [c] such that c = a · b as follows:
1. for every 0 ≤ i < j ≤ d− 1, ri,j ← V;
2. for every 0 ≤ i < j ≤ d− 1, compute rj,i ← (ri,j + ai · bj) + aj · bi;
3. for every 0 ≤ i ≤ d− 1, compute ci ← ai · bi +

∑
j 6=i ri,j .

– The ISW-refresh gadget [R] is the ISW-multiplication gadget in which the second operand [b]
is set to the constant sharing (1,0, . . . ,0), where 0 ∈ V and 1 ∈ V denote the all 0 and all 1
vector respectively.

– The sharewise addition gadget [⊕] computes a d-sharing [c] from sharings [a] and [b] such that
c = a + b by letting ci = ai + bi for i ∈ J0, d− 1K.

– The sharewise left shift, right shift and rotation gadgets ([�n], [�n] and [≪n] respectively)
take a sharing [a] as input and output a sharing [c] such that c = f(a) by letting ci = f(ai)
for i ∈ J0, d− 1K, f being the corresponding function described in the section above.

– The sharewise multiplication by a constant [⊗k] takes a sharing [a] and a constant k ∈ V as
inputs and outputs a sharing [c] such that c = k · a by letting ci = k · ai for i ∈ J0, d− 1K.

– The sharewise addition with a constant [⊕k] takes a sharing [a] and a constant k ∈ V as
input and outputs a sharing [c] such that c = a + k by letting ci = ai for i ∈ J0, d − 1K and
c0 = a0 + k. The coordinate-wise logical complement NOT is captured by this definition with
k = (1, . . . , 1).

3.2 Security Notions

In this section, we recall the t-probing security originally introduced in [26] as formalized through
a concrete security game in [8]. It is based on two experiments described in Figure 3 from [8]
in which an adversary A, modelled as a probabilistic algorithm, outputs of set of t probes P
and n inputs x1, . . . , xn in a set K. In the first experiment, ExpReal, the inputs are encoded and
given as inputs to the shared circuit C. The experiment then outputs a random evaluation of the
chosen probes (v1, . . . , vt). In the second experiment, ExpSim, the simulator outputs a simulation
of the evaluation C([x1], . . . , [xn])P without the input sharings. It wins the game if and only if the
distributions of both experiments are identical.

Definition 1 ([8]). A shared circuit C is t-probing secure if and only if for every adversary A,
there exists a simulator S that wins the t-probing security game defined in Figure 3, i.e. the random
experiments ExpReal(A, C) and ExpSim(A,S, C) output identical distributions.
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ExpReal(A, C):

1. (P, x1, . . . , xn)← A()
2. [x1]← Enc(x1), . . . , [xn]← Enc(xn)
3. (v1, . . . , vt)← C([x1], . . . , [xn])P
4. Return (v1, . . . , vt)

ExpSim(A,S, C):

1. (P, x1, . . . , xn)← A()
2. (v1, . . . , vt)← S(P)
3. Return (v1, . . . , vt)

Fig. 3: t-probing security game from [8].

In [8], the notion of t-probing security was defined for a Boolean circuit, with K = F2, that
is with x1, . . . , xn ∈ F2 and v1, . . . , vt ∈ F2. We further refer to this specialized notion as t-bit
probing security.

While the notion of t-bit probing security is relevant in a hardware scenario, in the reality of
masked software embedded devices, variables are manipulated in registers which contain several
bits that leak all together. To capture this model, in this paper, we extend the verification to what
we call the t-register probing model in which the targeted circuit manipulates variables on registers
of size s for some s ∈ N+ and the adversary is able to choose t probes as registers containing values
in V = Fs2. Notice that the t-bit probing model can be seen as a specialization of the t-register
probing model with s = 1.

Cautionary note. In software implementations, we may also face transition leakages, modeled as
functions of two `-bit variables when they are successively stored in the same register. In that
scenario, the masking order t might be halved [2, 31]. While specific techniques can be settled to
detect and handle such leakages, we leave it for future work and focus on simple register probing
model in this paper, in which one observation reveals the content of a single register.

3.3 Security Reductions in the Register Probing Model

Just like for the bit-probing version of tightPROVE, the security notions are formalized through
games. Similar notions are used which only differ in the fact that the probes in the new model now
point to wires of register-based circuits, which carry vectors of V. In this section, we present the
differences between the security games in the bit-probing model and the register-probing model.
The games are still equivalent to one another, and we give a sketch of proof for each transition
(as well as a full proof in the appendix). We then give a description of the linear algebra problem
induced by the last game.

Sequence of Games. Similarly to the bit-probing case, Game 0 corresponds to the probing
security definition for a register-based circuit, and still features an adversary A that chooses a
set of probes P in a circuit C, and a simulator S that wins the game if it successfully simulates
C([x1], . . . , [xn])P , for inputs x1, . . . , xn ∈ V.

Game 1. In Game 1, the adversary returns a set of probes P ′ = P ′r ∪ P ′m ∪ P ′sw, where |P ′| = t
and the sets P ′r, P ′m and P ′sw contain probes pointing to refresh gadgets’ inputs, pairs of probes
pointing to multiplication gadgets’ inputs and probes pointing to sharewise gadgets’ inputs or
outputs respectively. C([x1], . . . , [xn])P′ is then a q-tuple for q = 2|P ′m|+ |P ′r ∪ P ′sw|. Besides the
definition set of variables, the only difference with the bit-probing case stands in the fact that the
sharewise gadgets are not restricted to addition gadgets.

Game 2. In Game 2, the circuit C is replaced by an equivalent circuit C ′ of multiplicative depth 1,
just like in the bit-probing case. The Flatten operation can be trivially adapted to register-based
circuits, as the outputs of refresh and multiplication gadgets can still be considered as uniform
sharings.

8



Game 3. In this last game, the adversary is restricted to only position its t probes on multiplication
gadgets, i.e. A returns a set of probes P ′′ = P ′r∪P ′m∪P ′sw such that P ′sw = P ′r = ∅ and P ′′ = P ′m.
C([x1], . . . , [xn])P′′ thus returns a q-tuple for q = 2t since all the elements in P ′′ are pairs of inputs
of multiplication gadgets.

Theorem 1. Let C be a shared circuit. We have the following equivalences:

∀A0,∃S0,S0 wins Game 0. ⇐⇒ ∀A1,∃S1,S1 wins Game 1.

⇐⇒ ∀A2,∃S2,S2 wins Game 2.

⇐⇒ ∀A3,∃S3,S3 wins Game 3.

For the sake of clarity, we define one lemma per game transition. The corresponding proofs are
available in Appendix A, but an informal reasoning that supports these ideas is given in the
following, as well as the differences with the proofs established in [8].

Lemma 1. ∀A0,∃S0,S0 wins Game 0. ⇐⇒ ∀A1,∃S1,S1 wins Game 1.

Proof (sketch). The proof for the first game transition is based on the fact that multiplication and
refresh gadgets are t-SNI gadgets, and that each probe on such gadgets can be replaced by at most
one probe on each input sharing. The reason why this still works in the new model is that the
ISW multiplication and refresh gadgets are still SNI for register-based circuits performing bitwise
operations on V. This transition can thus be reduced to the original transition.

Lemma 2. ∀A1,∃S1,S1 wins Game 1. ⇐⇒ ∀A2,∃S2,S2 wins Game 2.

Proof (sketch). The proof for the second game transition relies on the fact that just as the output
of a Boolean multiplication gadget is a random uniform Boolean sharing, independent of its input
sharings, the outputs of the multiplication gadgets we consider can be treated as new, fresh input
encodings. Thus, a circuit C is t-probing secure if and only if the circuit C ′ = Flatten(C) is
t-probing secure.

Lemma 3. ∀A2,∃S2,S2 wins Game 2. ⇐⇒ ∀A3,∃S3,S3 wins Game 3.

Proof (sketch). A cross product of shares ai ·bj carries informations on both shares ai and bj, as
each of the s slots in the cross product carries information about each share. Thus, placing probes
on multiplication gadgets only is optimal from the attacker point of view. The complete proof for
Lemma 3 makes use of formal notions which are introduced in the next paragraph.

Translation to Linear Algebra. From now on, the column space of a matrix M is denoted by
〈M〉 and the column space of the concatenation of all the matrices in a set E is denoted by 〈E〉.

From Lemma 1 and Lemma 2, checking the t-probing security of a shared circuit C has been
reduced to verifying the t-probing security of a shared circuit C ′ = Flatten(C), for which the
attacker is restricted to use probes on its multiplication and refresh gadgets’ inputs. We can
translate this problem into a linear algebra problem that we can solve algorithmically. In the
following, let us denote by xi,j ∈ V the jth share of the ith input sharing [xi], so that

∀i ∈ J1, NK, [xi] = (xi,0,xi,1, . . . ,xi,t) ∈ Vt+1

We also denote by x||j the concatenation of the jth shares of the input sharings:

∀j ∈ J0, tK,x||j = x1,j ||x2,j || . . . ||xN,j ∈ KsN

The probed variables in the flattened circuit C ′ form a q-tuple (v1, . . . ,vq) = C ′([x1], . . . , [xN ])P′ .
It can be checked that all these variables are linear combinations of inputs shares’ coordinates since
(1) the circuit C ′ has a multiplicative depth of one, (2) the adversary can only place probes on
inputs for multiplication and refresh gadgets, and (3) other types of gadgets are linear. Since the
gadgets other than multiplication and refresh are sharewise, we can assert that for every k ∈ J1, qK,
there exists a single share index j for which vk only depends on the jth share of the input sharings
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and thus only depends on x||j . Therefore there exists a Boolean matrix Ak ∈ KsN×s, that we refer
to as a block from now on, such that

vk = x||j ·Ak ∈ V.

Let us denote by v||j the concatenation of all nj probed variables vi with i ∈ J1, qK such that vi
only depends on share j. Similarly, we denote by Mj ∈ KsN×snj the matrix obtained from the
concatenation of all the corresponding blocks Ai (in the same order). We can now write

v||0 = x||0 ·M0 , v||1 = x||1 ·M1 , . . . , v||t = x||t ·Mt

which leads us to the following proposition.

Proposition 1. For any (x1, . . . ,xN ) ∈ VN , the q-tuple of probed variables (v1, . . . ,vq) = C([x1],
[x2],. . . , [xN ])P′ can be perfectly simulated if and only if the Mj matrices satisfy

〈M0〉 ∩ 〈M1〉 ∩ · · · ∩ 〈Mt〉 = ∅ .

Proof. Let us denote by x = (x1‖x2‖ . . . ‖xN ) the concatenation of all the inputs. We split the
proof into two parts to handle both implications.

From left to right. Let us assume that there exist a non-null vector w ∈ KsN and vectors u0 ∈
Ksn0 , . . . ,ut ∈ Ksnt that verify w = M0 · u0 = · · · = Mt · ut. This implies the following sequence
of equalities:

t∑
j=0

v||j · uj =

t∑
j=0

x||j ·Mj · uj =

t∑
j=0

x||j ·w = x ·w

which implies that the distribution of (v1, . . . ,vq) depends on x, and thus cannot be perfectly
simulated.

From right to left. Since the sharings [x1], . . . , [xN ] are uniform and independent, the vectors
x||1, . . . ,x||t are independent uniform random vectors in KsN , and can thus be perfectly simulated
without the knowledge of any secret value. As a direct consequence, the distribution of (v||1, . . . ,v||t)
can be simulated. From the definition v||0 = x||0 ·M0, each coordinate of v||0 is the result of a
product x||0 · c where c is a column of M0. By assumption, there exists j ∈ {1, . . . , t} such that
c /∈ 〈Mj〉. Since x||1, . . . ,x||t are mutually independent, x||j ·c is a random uniform bit independent
of x||1 ·M1, . . . ,x||j−1 ·Mj−1,x||j+1 ·Mj+1, . . . ,x||t ·Mt, and since c /∈ 〈Mj〉, it is also independent
of x||j ·Mj. This means that x||j · c is a random uniform bit independent of v||1, . . . ,v||t, and
so is x||0 · c, as x||0 · c = x||j · c + (x||1 · c + · · · + x||j−1 · c + x||j+1 · c + · · · + x||t · c + x · c).
Since v||0 = x||0 ·M0, we can then perfectly simulate v||0. As a result, (v1, . . . ,vq) can be perfectly
simulated. ut

3.4 Verification in the Register Probing Model

In this section, we present a method based on Proposition 1 that checks whether a (t+ 1)-shared
circuit C achieves t-register probing security for every t ∈ N∗. We start by introducing some
notations and formalizing the problem, then we give a description of the aforementioned method,
along with a pseudocode of the algorithm. The method is finally illustrated with some examples.

Formal Definitions. Now that the equivalence between the t-register probing security game
was proven to be equivalent to Game 3, in which the adversary can only probe variables that are
inputs of multiplication gadgets in a flattened circuit C ′, we formally express the verification of
the t-register probing security as a linear algebra problem. For a given multiplication gadget of
index g, let us denote by [ag] and [bg] its input sharings, i.e.

[ag] = (x||0 ·Ag , . . . , x||t ·Ag) and [bg] = (x||0 ·Bg , . . . , x||t ·Bg)
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for some constant blocks Ag and Bg that we now call operand blocks. The adversary outputs a
set of t pairs of probes P = {(p11, p12), (p21, p

2
2), . . . , (pt1, p

t
2)}, where for i in {1, . . . , t}, pi1 and pi2

are wire indices corresponding to one element of each input sharings of the same multiplication.
For all j ∈ J0, tK, we define the matrix Mj as the concatenation of all the blocks corresponding to
probed shares of share index j.

By Proposition 1, there is a register probing attack on C if and only if
⋂t
i=0〈Mj〉 6= ∅. For an

attack to exist, the matrices must be non-empty, and since these matrices contain 2t blocks, at
least one of them is made of a single block D that belongs to the set of operand blocks {Ag, Bg}g.
We can now say that there exists a register probing attack on C if and only if there exists a
non-empty subspace S of KsN such that S =

⋂t
i=0〈Mj〉 ⊆ 〈D〉. In that case, there is an attack on

the subset S that we now refer to as the attack span.

tightPROVE+. When s = 1 (i.e., in the t-bit probing model case), the dimension of S =
⋂t
i=0〈Mj〉

is at most 1, so checking whether an operand block W leads to an attack or not reduces to verifying
whether there exists a set of probes for which S = 〈W 〉. However, for s > 1, there can be many
possible subspaces of 〈W 〉 for an operand block W , so that any non-null subspace of 〈W 〉∩S leads
to an attack. That is why the new method not only has to determine whether there is an attack,
but also which subsets of 〈W 〉 could possibly intersect with the attack span S.

Our method loops over all the operand blocks W ∈ {Ag, Bg}g of multiplication gadgets and
checks whether there is a probing attack on a subset of 〈W 〉. For each W ∈ {Ag, Bg}g, we create a
layered directed acyclic graph GW for which each node is associated with a permissible attack span
that represents the subspace of 〈W 〉 in which an attack could possibly be found. The permissible
attack span in a node is a subset of the permissible attack span in its parent node. Each node is
indexed by a layer number i and a unique index b. Besides, the permissible attack span denoted
Si,b, the node contains some information in the form of three additional sets Gi,b, Oi,b and Qi,b.
Gi,b is a list of multiplication gadgets which could be used to find an attack. Qi,b contains the
operand blocks of the multiplications in Gi,b that can be combined with other operands to obtain
elements of 〈W 〉. And then Oi,b, called the set of free operand blocks, contains the other operand
blocks of Gi,b. If there is a way to combine free operands to obtain an element of 〈W 〉, then a
probing attack is found.

We start with the first node root. We assign to S1,root the span 〈W 〉, to G1,root the set of
multiplications for which W is an operand and to Q1,root the operand W . O1,root can then be
deduced from G1,root and Q1,root:

S1,root = 〈W 〉
G1,root = {g |Ag = W} ∪ {g |Bg = W}
O1,root = {Bg |Ag = W} ∪ {Ag |Bg = W}
Q1,root = {W}

At each step i (from i = 1) of the algorithm, for each node b in the ith layer, if Si,b∩〈Oi,b〉 6= ∅,
the method stops and returns False: the circuit is not tight t-register probing secure for any t. If not,
for each node b in the ith layer, for each operand block A ∈ {Ag, Bg}g\Qi,b, if Si,b∩(〈A〉+〈Oi,b〉) 6=
∅ (where 〈A〉+ 〈Oi,b〉 denotes the Minkowski sum of 〈A〉 and 〈Oi,b〉), then we connect b to a new
node b′ in the next layer i+ 1, containing the following information:

Si+1,b′ = Si,b ∩ (〈A〉+ 〈Oi,b〉)
Gi+1,b′ = Gi,b ∪ {g |A is an operand block of the multiplication gadget g}
Oi+1,b′ = Oi,b ∪ {B |A is a co-operand block of B in a multiplication gadget}
Qi+1,b′ = Qi,b ∪ {A}

If no new node is created at step i, then the algorithm stops and returns True: the circuit is
tight t-register probing secure for any t. The method eventually stops, as the number of nodes
we can create for each graph is finite. Indeed, at each step i, each node b can only produce
|{Ag, Bg}g| − |Qi,b| new nodes, and for each of them the set Q grows by one. In total, each graph
can contain up to (|{Ag, Bg}g| − 1)! nodes.

The pseudocode of Algorithm 1 gives a high-level description of our method. In this algorithm,
each edge on the graph corresponds to adding an operand in Q. Multiple operands can be added
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at once if the corresponding permissible attack span is the same for all of those operands. For the
sake of simplicity, we decide to omit this optimization in the algorithm.

Algorithm 1: tightPROVE+

input : A description of a circuit C
output: True or False, along with a proof (and possibly a list of attacks)

foreach operand W do
/* create root for the new graph GW */
S1,root = 〈W 〉
G1,root = {g |Ag = W} ∪ {g |Bg = W}
O1,root = {Bg |Ag = W} ∪ {Ag |Bg = W}
Q1,root = {W}
foreach step i do

foreach branch b in layer i do
if Si,b ∩ 〈Oi,b〉 6= ∅ then return False;

end
foreach branch b in layer i do

foreach operand A /∈ Qi,b do
if Si,b ∩ (〈A〉+ 〈Oi,b〉) 6= ∅ then

/* add new branch b′ */
Si+1,b′ = Si,b ∩ (〈A〉+ 〈Oi,b〉)
Gi+1,b′ = Gi,b ∪ {g |A is an operand of the mult. gadget g}
Oi+1,b′ = Oi,b ∪ {B |A is an operand of a mult. gadget}
Qi+1,b′ = Qi,b ∪ {A}

end

end

end

end

end
return True

Proposition 2. Algorithm 1 is correct.

Proof (sketch). The proof is organized in two parts. First, we show that there are no false negatives:
if the algorithm returns False, then there is a probing attack on the input circuit C. This is done
with a constructive proof. Assuming that the algorithm returns False, we construct from the graph
a set of matrices (as defined in section 3.3) such that the intersection of their images is non-empty.
Then we prove that there are no false positives by showing that if there is a probing attack on a
circuit C, then the algorithm cannot stop as long as no attack is found. Since the algorithm has
been proven to terminate, it must return False. ut

The complete proof is provided in Appendix B.

Complete Characterization. The verification algorithm can be slightly modified to output all
the existing t-register probing attack paths on the input circuit. This extension mostly amounts
to continuing to add new nodes to the graph even when an attack has been detected until no new
node can be added, and slightly changing the condition to add a node. The new condition can be
written Si,b ∩ (〈A〉∗ + 〈Oi,b〉) 6= ∅, where 〈A〉∗ denotes the set of non-null vectors of the column
space of A. And with this, it is possible to determine the least attack order, which is the least
amount of probes tmin that can be used to recover a secret value in a (tmin + 1)-shared circuit.

Toy example. We illustrate tightPROVE+ on a toy example. The flattened circuit is displayed
on Figure 4 (the extended inputs are omitted for clarity as they do not have any impact on the
circuit). It uses 3-bit registers and it is made of a bitwise operation layer (BOL) that takes 4 inputs
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x1, x2, x3, x4 and produces 7 vectors a, b, e, w, f, c, d ∈ V, plus a single layer of multiplications. In
the figure, the aforementioned variables are denoted by I1, I2, I3, I4 and A,B,E,W,F,C,D, their
corresponding blocks. The values we chose for those blocks are:

A =



1 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1


B =



0 0 1
0 0 0
0 0 1
1 0 1
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


C =



0 0 0
1 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1


D =



1 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
1 0 1
0 0 0
0 0 0
0 0 0


E =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


F =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0


W =



1 0 0
1 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1



I1 I2 I3 I4

BOL

A B E W F C D

[⊗] [⊗] [⊗] [⊗]

Fig. 4: Graph representation of the example circuit C.

Two graphs are displayed in Figure 5 to illustrate our algorithm working on operands W and F .

S1,root

S2,A S2,C S2,D

S3,AC S3,CA

S1,root

S2,A S2,B S2,C S2,D

S3,AC S3,BC S3,BD S3,CA S3,DA S3,DB

Fig. 5: Examples of graphs GF (left) and GW (right) created during the algorithm.

Operand F. The algorithm starts by creating the node root. Without any constraint yet, the
permissible attack span S1,root is initialized to 〈F 〉. G1,root contains the only multiplication for
which F is a block operand: (F,W ). The set of used operands Q1,root contains F , and thus the
set of free operands O1,root only contains one operand block, W . All in one, the root node is built
as follows: 

S1,root = 〈F 〉
G1,root = {(F,W )}
O1,root = {W}
Q1,root = {F}
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Since 〈F 〉 ∩ 〈W 〉 = ∅, and the current permissible attack span is not empty, new nodes are
investigated to be added to the graph. Denoting by a1,a2,a3 the 3 column vectors of A, b1,b2,b3

the 3 column vectors of B and so on, we have

〈F 〉 ∩ (〈A〉+ 〈W 〉) = 〈f3〉 6= ∅

because f3 = a2 and it is clear that we cannot obtain f1 or f2 from column vectors of W and A.
We also have

〈F 〉 ∩ (〈C〉+ 〈W 〉) = 〈f3〉 6= ∅ (f3 = c2)

and 〈F 〉 ∩ (〈D〉+ 〈W 〉) = 〈f1〉 6= ∅ (f1 = d1 + w1 + w2).

The other intersections being empty, 3 new nodes are connected to the root one:
S2,A = 〈f3〉
G2,A = {(F,W ), (A,B)}
O2,A = {W,B}
Q2,A = {F,A}


S2,C = 〈f3〉
G2,C = {(F,W ), (C,D)}
O2,C = {W,D}
Q2,C = {F,C}


S2,D = 〈f1〉
G2,D = {(F,W ), (D,C)}
O2,D = {W,C}
Q2,D = {F,D}

None of the permissible attack spans in this new layer intersects with their set of free block
operands, and none are empty, so the algorithm tries to find new nodes to add to each of them.
No new node can be found for the last one, as f1 cannot be obtained with column vectors of blocks
of O2,D and other block operands that are not in Q2,D. For the first two nodes, however, we have

S2,A ∩ (〈C〉+ 〈O2,A〉) = 〈f3〉 6= ∅ and S2,C ∩ (〈A〉+ 〈O2,C〉) = 〈f3〉 6= ∅,

so new nodes are created:
S3,AC = 〈f3〉
G3,AC = {(F,W ), (A,B), (C,D)}
O3,AC = {W,B,D}
Q3,AC = {F,A,C}


S3,CA = 〈f3〉
G3,CA = {(F,W ), (C,D), (A,B)}
O3,CA = {W,D,B}
Q3,CA = {F,C,A}

None of the permissible attack spans in this last layer intersects with their corresponding set of
free block operands, and none leads to the creation of new nodes, which is why the algorithm ends
the creation of this graph and goes on to the next one.

Operand W. Since the first steps are similar to the previous example, only the steps that lead to an
attack are detailed hereafter. The full graph can be found in Figure 5 in which red circles denote
nodes where an attack is found. We detail the construction of the nodes on the path displayed
with a double arrow.

The algorithm starts by creating the root node:
S1,root = 〈W 〉
G1,root = {(W,E), (W,F )}
O1,root = {E,F}
Q1,root = {W}

As 〈W 〉 ∩ 〈{E,F}〉 = ∅, the algorithm searches for new nodes to add. Since

〈W 〉 ∩ (〈B〉+ 〈{E,F}〉) = 〈w1 + w2〉 6= ∅ (w1 + w2 = b1 + b3 + e1),

the following node is created: 
S2,B = 〈w1 + w2〉
G2,B = {(W,E), (W,F ), (B,A)}
O2,B = {E,F,A}
Q2,B = {W,B}
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There is still no attack at this point, as 〈w1 + w2〉 /∈ 〈{E,F,A}〉. However,

〈w1 + w2〉 ∩ (〈D〉+ 〈{E,F,A}〉) = 〈w1 + w2〉 6= ∅ (w1 + w2 = d1 + f1),

so the following node is created:
S3,BD = 〈w1 + w2〉
G3,BD = {(W,E), (W,F ), (B,A), (D,C)}
O3,BD = {E,F,A,C}
Q3,BD = {W,B,D}

This time, we have 〈w1 + w2〉 ∈ 〈{E,F,A,C}〉, as w1 + w2 = a1 + c1. Thus there exists a
register probing attack, and the algorithm returns False.

Let us now go one step further by showing that this circuit is not tight t-register probing
secure for any t ≥ 4. We assume that the circuit is d-shared with d ≥ 5, and denote by wi,j the ith

coordinate of the jth share of [w], by ai,j the ith coordinate of the jth share of [a] and so on. By
probing the multiplications (A,B), (C,D), (W,E) and (W,F ), an attacker can get the values of

– a1,0, b1,1, b3,1 with a probe on (A,B) targeting shares 0 for A and 1 for B,
– c1,0, d1,2 with a probe on (C,D) targeting shares 0 for C and 2 for D,
– w1,3, w2,3, e1,1 with a probe on (W,E) targeting shares 3 for W and 1 for E,
– w1,4, w2,4, f1,2 with a probe on (W,F ) targeting shares 4 for W and 2 for F .

With those values, one can compute:

w1,0 + w2,0 = a1,0 + c1,0
w1,1 + w2,1 = b1,1 + b3,1 + e1,1
w1,2 + w2,2 = d1,2 + f1,2
w1,3 + w2,3

w1,4 + w2,4

With 4 probes, an attacker can thus get the sum of the first two coordinates of 5 shares of w, i.e.,
the circuit is not tight t-register probing secure for t ≥ 4.

Concrete Example. We now present an example that shows how tightPROVE+ applies to real-
life implementations of cryptographic primitives. We take as example an Usuba implementation of
the Gimli [10] cipher, a 384-bit permutation, with 32-bit registers. When applying tightPROVE+

on this circuit, register probing attacks are identified. Let us describe one of them and display the
subgraph of the circuit it is based on in Figure 6.

The subcircuit uses 5 input blocks I1, I2, I3, I4, I5. We denote by [x] the sharing obtained after
the rotation of I2 and [y] the one after the rotation of I1. By probing the multiplication g1, one
can get the values x32,0 and y32,1 (the first index denotes the bit slot in the register and the second
one denotes the share). Due to the left shifts, one can get the values x32,2 and x32,1 + y32,1 by
probing g2. The following values can thus be obtained: x32,0, x32,1 = (x32,1 + y32,1) + y32,1, and
x32,2. This implies that x32, the last slot of the secret value x, can be retrieved with t probes when
the circuit is (t+ 1)-shared for any t ≥ 2.

4 Tornado: Automating Slicing & Masking

Given a high-level description of a cryptographic primitive, Tornado synthesizes a masked imple-
mentation using the ISW-based multiplication and refresh gadgets. The gadgets are provided as
C functions, presented in Figure 7 and where the macro MASKING_ORDER is instantiated at compile
time to the desired masking order. The key role of Usuba is to automate the generation of a sliced
implementation, upon which tightPROVE+ is then able to verify either the bit probing or register
probing security, or identify the necessary refreshes. By integrating both tools, we derive a masked
implementation from the sliced one. This is done by mapping linear operations over all shares, by
using isw_mult for bitwise and operations and by calling isw_refresh where necessary.
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I1 I2 I3 I4 I5

[≪9] [≪24] [�1] [�1] [�2]

[⊗] g1 [⊕]

[⊕] [⊕]

[≪9] [⊕]

[⊗] g2

Fig. 6: Graph representation of a sub-circuit of Gimli.

static void isw_mult(uint32_t *res,
const uint32_t *op1,
const uint32_t *op2) {

for (int i=0; i<=MASKING_ORDER; i++)
res[i] = 0;

for (int i=0; i<=MASKING_ORDER; i++) {
res[i] ^= op1[i] & op2[i];

for (int j=i+1; j<=MASKING_ORDER; j++) {
uint32_t rnd = get_random();
res[i] ^= rnd;
res[j] ^= (rnd ^ (op1[i] & op2[j]))

^ (op1[j] & op2[i]);
}

}
}

static void isw_refresh(uint32_t *res,
const uint32_t *in) {

for (int i=0; i<=MASKING_ORDER; i++)
res[i] = in[i];

for (int i=0; i<=MASKING_ORDER; i++) {
for (int j=i+1; j<=MASKING_ORDER; j++) {

uint32_t rnd = get_random();
res[i] ^= rnd;
res[j] ^= rnd;

}
}

}

Fig. 7: ISW gadgets.

The overall architecture of the Tornado compiler is shown in Figure 8. It consists essentially in
the integration of Usuba and tightPROVE+ within a single, unified framework. This integration is
reasonably simple since the Usuba0 intermediate representation amounts essentially to a register-
based circuit extended with a notion of function node (for code reuse), whereas the input language
of tightPROVE+ consists in unrolled inlined register-based circuits. We therefore easily obtain an
input suitable for tightPROVE+ by inlining all the nodes within the Usuba0 generated by Usuba.
We also need to specify the probing model to use when carrying the analysis in tightPROVE+:
this corresponds exactly to the typing information specified in Usuba, whether we are consider-
ing a bitsliced implementation (in which case we select the bit probing model), or an n-sliced
implementation (in which case we select the register probing model, registers whose size is m).

Usuba Usuba0 Usuba0 Usuba0 C assembly

tightPROVE+

Normalization
bitslicing/n-slicing

Verification Refresh points

cache hit Masking

Optimizations
loop fusion, mult. by constant,

scheduling, inlining, etc.

Transpilation Register
allocation

Fig. 8: High-level view of the Tornado compiler.
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Having sent a register-based circuit to the extended tool tightPROVE+, it may either be ac-
cepted as-is or tightPROVE+ may have identified necessary refresh points to achieve bit or register
probing security. In the latter case, Tornado maps these refresh points back into the initial, non-
inlined Usuba0 code: each refresh point is turned into a custom refresh operator that is treated
specifically by the Tornado backend (in particular, it cannot be optimized out). Upon emitting C
code, this operator turns into a call to the isw_refresh gadget of Figure 7.

4.1 Addition of Refresh Gadgets

In order to make the generation of secure masked implementations fully automatic, we use heuristic
methods to determine a set of operands to be refreshed in order to make the resulting circuit secure
in the considered probing model.

When a circuit is built from the combination of several instances of the same subcircuit,
the description of the subcircuit is analyzed first, assuming that it has random, uniform and
independent inputs. If probing attacks are found, an exhaustive search of the placement of refresh
gadgets can be done if the size of the subcircuit is not too big. The same placement of refresh is
then applied every time this subcircuit appears. Doing so is relevant, as any attack that can be
done on a subfunction alone also exists when that subfunction is part of a wider circuit.

Then, tightPROVE+ verifies that the resulting circuit is secure. If probing attacks are still
found, then tightPROVE+ is called in full characterization mode which yields the complete list
of multiplications involved in each attack. We then select an operand of the multiplication that
appears the most in that list, and apply a refresh to this operand. This step is repeated until no
more attacks can be found. This method is bound to stop and yield a secure circuit since, as proven
in the original paper describing tightPROVE, refreshing one input per multiplication guarantees
that the resulting circuit is secure.

We stress that this method is not optimal in the sense that it does not always find the minimal
number of refresh gadgets needed to make a circuit secure, but it provides a sound heuristic.
Finding an optimal and efficient method to place refresh gadgets is left open for future research.

4.2 Optimizations

Whereas this compilation scheme is functionally sufficient to guarantee security, further optimiza-
tions are beneficial to make it scale to large masking orders on a typical embedded platform.
Tornado therefore integrates a modicum of optimizations to optimize stack usage (especially for
bitsliced implementations), to reduce the overhead of repeatedly iterating over shares and to min-
imize the number of masked multiplications. Note that the objective of the present work is not
to demonstrate best-in-class performance results: we are instead interested in 1. the asymptotic
performance of a given primitive across a sizable choice of masking orders; and 2. the comparative
performance of sizable number primitives at a given masking order.

To this end, Tornado has proved to be a valuable tool. We enable the first point by minimizing
the impact that the C compiler can have on the quality (or lack thereof) of the resulting code.
For example and as the masking order grows, the compiler tends to shy away from certain loop-
related optimizations that are beneficial. We therefore systematically carry these optimizations
in Tornado. We enable the second point by subjecting all the primitives to the same, predictable
(even if imperfect) compilation process tailored to the platform of interest.

We have therefore identified two optimizations that are necessary to scale to large masking
orders: aggressive constant propagation for multiplications and loop fusion. Masked multiplication
being expensive, we strive to spot the case where the operand of a multiplication is in fact a
constant value. We do so through a constant propagation analysis in Usuba0 followed by a specific
compilation rule in this case: we directly multiply all the shares with the constant.

To mask a sequence of instructions, Tornado replaces each of them with a masked gadget.
Gadgets for linear operations consist in a loop applying iteratively a basic operation over each
share, such as

for (int i=0; i<=MASKING_ORDER; i++) A(i);

for (int i=0; i<=MASKING_ORDER; i++) B(i);

for (int i=0; i<=MASKING_ORDER; i++) C(i);
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where A, B and C are linear operations storing their results in a number of variables linear with
MASKING_ORDER. As a result, stack usage increases linearly with the masking order, which means
that, when considering implementations as register-hungry as bitslicing ones, even small mask-
ing orders can be too heavy. Besides, operating each loop (increment, comparison, branching)
impedes an overhead that the C compiler is something heuristically willing to optimize out at
small orders, leading to confusing threshold effects when benchmarking. To address both issues,
we systematically perform loop fusion, thus obtaining

for (int i=0; i<=MASKING_ORDER; i++) {

A(i); B(i); C(i);

}

on the above example, followed by instruction scheduling, which will strive to reduce the live
range [29] (and thus the number of temporaries) of, for example, the variables set in A and used
in B.

This optimization allows us to reduce stack usage of our bitsliced implementations by 11kB on
average whereas this saves us, on average, 3kB of stack for our n-sliced implementations (recall
that our platform offers a measly 96kB of SRAM). It also positively impacts performance, with a
16% average speedup for bitslicing and a 21% average speedup for n-slicing.

5 Evaluation

We evaluated Tornado on 11 cryptographic primitives from the second round of the NIST lightweight
cryptography competition6. The choice of cryptographic primitives was made on the basis that
they were self-identified as being amenable to masking. We stress that we do not focus on the
full authenticated encryption, message authentication, or hash protocols but on the underlying
primitives, mostly block ciphers and permutations.

Table 1 provides an overview of these primitives. Whenever possible, we generate both a bit-
sliced and an n-sliced implementation for each primitive, which allows us to exercise the bit-probing
and the register-probing models of tightPROVE+. However, 4 primitives do not admit a straight-
forward n-sliced implementation. The Subterranean permutation involves a significant amount of
bit-twiddling across its 257-bit state, which makes it a resolutely bitsliced primitive (as confirmed
by its reference implementation). Photon, Skinny, Spongent rely on lookup tables that would
be too expansive to emulate in n-sliced mode. In bitslicing, these tables are simply implemented
by their Boolean circuit, either provided by the authors (Photon, Skinny) or generated through
SAT [34] with the objective of minimizing multiplicative complexity (Spongent, with 4 ANDs
and 28 XORs). Spook and Elephant respectively rely on the Clyde and Spongent primitives,
which we therefore include in our evaluation.

Note that the n-sliced implementations, when they exist, are either 32-sliced or 64-sliced.
This means in particular that, unlike bitslicing that processes multiple blocks in parallel, these
implementations process a single block at once on our 32-bit Cortex M4.

In Subsection 5.1, we present the results of tightPROVE+ on the considered primitives using
the refresh placement strategy explained in Subsection 4.1. Finally, we benchmark our unmasked
implementations against reference implementations in Subsection 5.2, and compare their masked
versions in Subsection 5.3.

5.1 tightPROVE+

Table 2 contains the results of tightPROVE+ for the aforementioned primitives. We display the
output of our algorithm for each circuit, along with the size of the registers used and the time it
takes for tightPROVE+ to output the results. Table 3 provides additional information about the
implementations that are not secure in the register probing model. This includes the size of the
registers, the time it takes to find the first attack, the time it takes to find all the operands that

6 See https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates for the list
of candidates together with specifications and reference implementations.
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Table 1: Overview of the selected cryptographic primitives.

primitive
state size multiplications mult./bits

n-sliceable
slice

(bits) n-slice bitslice n-slice bitslice size

Ace [1] 320 384 12288 1.2 38 3 32
Ascon [23] 320 60 3840 0.19 12 3 64
Clyde [9] 128 48 1536 0.37 12 3 32
Gift [3] 128 160 5120 1.25 40 3 32

Gimli [11] 384 288 9216 0.75 24 3 32
Photon [4] 256 - 3072 - 12 7 -

Pyjamask [24] 128 56 1792 0.44 14 3 32
Skinny [7] 128 - 6144 - 48 7 -

Spongent [13, 14] 160 - 12800 - 80 7 -
Subterranean [22] 257 - 2056 - 8 7 -
Xoodoo [21, 20] 384 144 4608 0.37 12 3 32

can be retrieved, then the least attack order, the optimal number of refresh gadgets needed to
make the implementation secure in the register probing model, and finally the time tightPROVE+

takes to verify that the refreshed implementation is indeed secure. All calculations were made on
an iMac with an intel Core i7 processor (4 GHz) and 16 GB of DDR3 RAM (1600 MHz), with
parallel computing on its 8 CPUs.

Following the method described in Section 4.1, tightPROVE+ places refresh gadgets for the
considered implementations of Ace, Clyde and Gimli. For the two first primitives, there is exactly
one subcircuit which is responsible for the identified register probing attacks, which can be fixed
by adding only one refresh gadget. This gives us a lower bound for the optimal number of refresh
gadgets, and since tightPROVE+ does not find any further attack after the addition of refresh
gadgets, it is also an upper bound. Gimli, however, is made of 6 subsequent identical subcircuits
that are subject to register probing attacks, but the method uses 20 refresh gadgets per subcircuits
to make the implementation secure. We can thus only conclude that we have an upper bound of
120 for the optimal number of gadgets, and that it is a multiple of 6, but in the current method,
we cannot ascertain that it is optimal without setting up an exhaustive search.

5.2 Baseline Performance Evaluation

In the following, we benchmark our implementations – in Usuba and compiled with Tornado –
of the NIST submissions against the reference implementation provided by the contestants. This
allows us to establish a performance baseline (without masking), thus providing a common frame of
reference for the performance of these primitives based on their implementation synthesized from
Usuba. In doing so, we have to bear in mind that the reference implementations provided by the
NIST contestants are of varying quality: some appear to have been finely tuned for performance
while others focus on simplicity, acting as an executable specification.

In an effort to level the playing field, we ran our benchmark on an Intel i5-6500 @ 3.20GHz,
running Linux 4.15.0-54. The implementations were compiled with Clang 7.0.0 with flags -O3

-fno-slp-vectorize -fno-vectorize. These flags prevent Clang from trying to produce vec-
torized code, which would artificially advantage some implementations at the expense of others
because of brittle, hard-to-predict vectorization heuristics. Besides, vectorized instructions remain
an exception in the setting of embedded devices (e.g. , Cortex M). At the exception of Sub-
terranean (which is bitsliced), the reference implementations follow a n-sliced implementation
pattern, representing the state of the primitive through a matrix of 32-bit values, or 64-bit in the
case of Ascon. To evaluate bitsliced implementations, we simulate a 32-bit architecture, meaning
that the throughput we report corresponds to the parallel encryption of 32 independent blocks.

The results are shown in Table 4. We notice that Usuba often delivers performance that is on
par or better than the reference implementations. Note that this does not come at the expense of
intelligibility: our Usuba implementations are written in a high-level language, which is amenable
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Table 2: Results of tightPROVE+ on all the implementations.

submissions primitive
time

(bitslice)

bit
probing
security

register
size

time
(n-slice)

register
probing
security

block ciphers
Gift-COFB,
HYENA,
SUNDAE-
Gift

Gift-128 55 H 40 min 3 32 2 H 15 min 3

Pyjamask Pyjamask-128 30 min 3 32 6 min 3

Skinny,
Romulus

Skinny-128-256 10 H 3 - - -

Spook Clyde-128 10 min 3 32 32 s 7

permutations
Ace Ace 54 H 30 min 3 32 10 min 7

Ascon p12 1 H 45 min 3 64 1 H 13 min 3

Elephant
Spongent-
π[160](1
round)

6 s 3 - - -

Elephant
Spongent-
π[160](10
rounds)

20 min 40 s 3 - - -

Gimli Gimli-36 22 H 45 min 3 32 1 H 10 min 7

ORANGE,
Photon-
BEETLE

Photon-256 2 H 3 - - -

Xoodyak Xoodoo[12] 2 H 50 min 3 32 4 H 5 min 3

others
Subterranean blank(8) 17 min 3 - - -

to formal reasoning thanks to its straightforward semantic model (unlike any implementation in
C). The reference implementations of Skinny and Photon use lookup tables, which do not admit
a straightforward implementation in terms of constant-time, combinational operations. As a result,
we are unable to implement a constant-time n-sliced version in Usuba and to, in Section 5.3, mask
such an implementation.

We now turn our attention specifically to a few implementations that exhibit interesting per-
formance with the following observations:

– The reference implementation of Subterranean is an order of magnitude slower than in Usuba
because its implementation is bit-oriented (each bit is stored in a distinct 8-bit variable) but
only a single block is encrypted at a time. Switching to 32-bit variables and encrypting 32
blocks in parallel, as Usuba does, significantly improves performance.

– The reference implementation of Spongent is slowed down by a prohibitively expensive bit-
permutation over 160 bits, which is spread across 20 8-bit variables. Thanks to bitslicing,

Table 3: Complementary information on flawed implementations.

primitive
register

first attack all operands
least attack refresh refreshed

size order gadgets needed circuit

Ace 32 10 min 25 min 1 384 70 H
Clyde-128 32 32 s 2 min 10 s 2 6 3 min 10 s
Gimli-36 32 1 H 10 min 66 H 20 min 2 ≤ 120 8 H 50 min
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Usuba turns this permutation into a purely static renaming of variable, which occurs purely
at compile-time.

– On Ascon, our n-sliced implementation is twice slower than the reference implementation.
Unlike the reference implementation, we have refrained from performing aggressive function
inlining and loop unrolling to keep code size in check, since we target embedded systems.
However, if we instruct the Usuba compiler to perform these optimizations, the performance
of our n-sliced implementation is on par with the reference one.

– Ace reference implementation suffers from significant performance issues, relying on an ex-
cessive number of temporary variables to store intermediate results.

– Finally, Gimli offers two reference implementations, one being a high-performance SSE imple-
mentation with the other serving as an executable specification on general-purpose registers.
We chose the general-purpose one here (which had not been subjected to the same level of
optimizations) because our target architecture (Cortex M) does not provide a vectorized in-
struction set.

Table 4: Comparison of Usuba vs reference implementations.

primitive
Performances (cycles/bytes)

(lower is better)
Usuba n-slice Usuba bitslice reference

Ace 34.25 55.89 276.53
Ascon 9.84 4.94 5.18
Clyde 33.72 21.99 37.69
Gimli 15.77 5.80 44.35
Gift 565.30 45.51 517.27

Photon - 44.88 214.47
Pyjamask 246.72 131.33 267.35
Skinny - 46.87 207.82

Spongent - 146.93 4824.97
Subterranean - 17.64 355.38

Xoodoo 14.93 6.47 10.14

5.3 Masking Benchmarks

We now turn to the evaluation of the masked implementations produced by Tornado using the
Usuba implementations presented in the previous section. Our benchmarks are run on a Nucleo
STM32F401RE offering an Arm Cortex-M4 with 512 Kbytes of Flash memory and 96 Kbytes of
SRAM. We used the GNU C compiler arm-none-eabi-gcc version 9.2.0 at optimization level -O3.

We considered two modes regarding the Random Number Generator (RNG):

– Pooling mode: The RNG generates random numbers at a rate of 32 bits every 64 clock cycles.
Fetching a random number can thus take up to 65 clock cycles.

– Fast mode: The RNG only takes a few clock cycles to generate a 32-bit random word. The
RNG routine thus can simply read a register containing this 32-bit random word without
checking for its availability.

Those two modes were chosen because they are the ones used in the submission of Pyjamask,
which is the only submission detailing the question of how to get random numbers for a masked
implementation.

Of these 11 NIST submissions, only Pyjamask provides a masked implementation. Our imple-
mentation is consistently (at every order, and with both the pooling and fast RNGs) 1.8 times
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slower than their masked implementation. The reason is twofold. First, their reference implementa-
tion has been heavily optimized to take advantage of the barrel shifter on the Cortex M4, which we
do not exploit. Second, our implementation uses the generic ISW multiplication (Figure 7) whereas
the reference implementation employs a specialized, hand-tuned implementation in assembly.

n-sliced implementations. Table 5a gives the performances of the n-sliced implementations pro-
duced by Tornado in terms of cycles per byte. Note that these implementations are provably secure,
with refreshing gadgets being inserted if necessary.

Table 5: Performances of Tornado generated n-sliced masked implementations.

(a) cycles per byte

primitive mult./bytes TRNG
Performances (cycles/bytes)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31 d = 63 d = 127

Ascon 1.375
pooling 49 1.34k 4.57k 20.54k 79.24k 324k 1.30m

fast 49 1.05k 3.08k 11.61k 42.48k 163k 640k

Xoodoo 1.5
pooling 63 1.71k 6.96k 29.07k 113k 448k 1.73m

fast 63 889 3.26k 10.84k 39.43k 143k 555k

Clyde 3
pooling 92 1.88k 7.58k 31.43k 121k 483k 1.87m

fast 92 961 3.53k 11.84k 41.88k 161k 653k

Pyjamask 3
pooling 994 5.93k 17.16k 59.66k 194k 646k 2.27m

fast 994 4.97k 12.84k 38.40k 108k 297k 950k

Gimli 6
pooling 56 3.97k 17.35k 73.42k 293k 1.17m 4.56m

fast 56 1.77k 7.14k 24.71k 95.20k 356k 1.40m

Gift 10
pooling 1.12k 15.27k 44.68k 138k 532k 1.82m 6.40m

fast 1.13k 12.53k 32.27k 77.61k 285k 819k 2.64m

Ace 19.2
pooling 92 7.55k 32.94k 114k 495k 1.96m 7.77m

fast 92 3.88k 13.29k 40.06k 190k 746k 2.84m

(b) cycles per bloc

primitive mult. TRNG
Performances (cycles)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31 d = 63 d = 127

Clyde 48
pooling 1.47k 30.08k 121.28k 502.88k 1.94m 7.73m 29.92m

fast 1.47k 15.38k 56.48k 189.44k 670.08k 2.58m 10.45m

Pyjamask 56
pooling 15.90k 94.88k 274.56k 954.56k 3.10m 10.34m 36.32m

fast 15.90k 79.52k 205.44k 614.40k 1.73m 4.75m 15.20m

Ascon 60
pooling 1.96k 53.60k 182.80k 821.60k 3.17m 12.96m 52.00m

fast 1.96k 42.00k 123.20k 464.40k 1.70m 6.52m 25.60m

Xoodoo 144
pooling 3.02k 82.08k 334.08k 1.40m 5.42m 21.50m 83.04m

fast 3.02k 42.67k 156.48k 520.32k 1.89m 6.86m 26.64m

Gift 160
pooling 17.92k 244.32k 714.88k 2.21m 8.51m 29.12m 102.40m

fast 18.08k 200.48k 516.32k 1.24m 4.56m 13.10m 42.24m

Gimli 288
pooling 2.69k 190.56k 832.80k 3.52m 14.06m 56.16m 218.88m

fast 2.69k 84.96k 342.72k 1.19m 4.57m 17.09m 67.20m

Ace 384
pooling 3.68k 302.00k 1.32m 4.56m 19.80m 78.40m 310.80m

fast 3.68k 155.20k 531.60k 1.60m 7.60m 29.84m 113.60m

Since masking a multiplication has a quadratic cost in the number of shares, we expect per-
formance at high orders to be mostly proportional with the number of multiplications used by
the primitives. We thus report the number of multiplications involved in our implementation nor-
malized to the block size (in bytes) of the primitive. This is confirmed by our results with 128
shares (on the Cortex M4). This effect is less pronounced at small orders since the execution time
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remains dominated by linear operations. Using the pooling RNG increases the cost of multiplica-
tions compared to the fast RNG, which results in performances being proportional to the number
of multiplications at smaller order than with the fast RNG.

Pyjamask illustrates the influence of the number of multiplications on scaling. Because of its
use of dense binary matrix multiplications, it involves a significant number of linear operations
for only a few multiplications. As a result, it is slower than Gimli and Ace at order 3, despite the
fact that they use respectively 2× and 6× more multiplications. With the fast RNG, the inflection
point is reached at order 7 for Ace and order 31 for Gimli, only to improve afterward. Similarly
when compared to Clyde, Pyjamask goes from 5× slower at order 3 to 50% slower at order 127
with the fast RNG and 20% slower at order 127 with the pooling RNG. The same analysis applies
to Gift and Ace, where the linear overhead of Gift is only dominated at order 63 with the
pooling RNG and at order 127 with the fast RNG.

One notable exception is Ascon with the fast RNG, compared in particular to Xoodoo and
Clyde. Whereas Ascon uses a smaller number of multiplications, it involves a 64-sliced imple-
mentation (Table 1), unlike its counterparts that are 32-sliced. Running on our 32-bit Cortex-M4
requires GCC to generate 64-bit emulation code, which induces a significant operational over-
head and prevents further optimization by the compiler. When using the pooling RNG however,
Ascon is faster than both Xoodoo and Clyde at every order, thanks to its smaller number of
multiplications.

For scenarios in which one is not interested in encrypting a lot of data but rather a single
block, possibly short, then it makes more sense to look at the performances of a single run of
a cipher, rather than its amortized performances over the amount of bytes it encrypts. This is
shown in Table 5b. The ciphers that use the least amount of multiplications have the upper hand
when masking order increases: Clyde is clearly the fastest primitive at order 127, closely followed
by Pyjamask. Ascon, which is the fastest one when looking at the cycles/bytes actually owns its
performances to his low number of multiplications compared to its 320-bit block size. Therefore,
when looking at a single run, it is actually 1.7× slower than Clyde at order 127. Similarly, Xoodoo
performs well on the cycles/bytes metric, but has a block size of 384 bits, making it 2.5× slower.

Bitsliced implementations. The key limiting factor to execute bitslice code on an embedded device
is the amount of memory available. Bitsliced programs tend to be large and to consume a signifi-
cant amount of stack. Masking such implementations at high orders becomes quickly impractical
because of the quadratic growth of the stack usage.

To reduce stack usage and allow us to explore high masking orders, our bitsliced programs
manipulate 8-bit variables, meaning that 8 independent blocks can be processed in parallel. This
trades memory usage for performance, as we could have used 32-bit variables and improved our
throughput by a factor 4. However, doing so would have put an unbearable amount of pressure
on the stack, which would have prevented us from considering masking orders beyond 7. Besides,
it is not clear whether there is a use-case for such a massively parallel (32 independent blocks)
encryption primitive in a lightweight setting. As a result of our compilation strategy, we have been
able to mask all primitives with up to 16 shares and, additionally, reach 32 shares for Photon,
Skinny, Spongent and Subterranean.

As for the n-sliced implementations, we observe a close match between the asymptotic perfor-
mance of the primitive and their number of multiplications per bits (Table 6), which becomes even
more prevalent as order increases and the overhead of linear operations becomes comparatively
smaller. Pyjamask remains a good example to illustrate this phenomenon, the inflection point
being reached at order 15 with respect to Ace (which uses 3× more multiplications).

The performance of Ascon with the fast RNG, which was slowed down by its suboptimal use
of 64-bit registers in n-slicing, is streamlined in bitslicing: here, it exhibits the same number of
multiplication per bits as Xoodoo and, indeed, their performance match remarkably well.

Finally, we observe that with the pooling RNG, already at order 15, the performances of our
implementations is in accord with their relative number of multiplications per bits. In bitslicing
(more evidently than in n-slicing), the number of multiplications is performance critical, even at
relatively low masking order.
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Table 6: Performances of Tornado generated bitslice masked implementations.

primitive mult./bits TRNG
Performances (cycles/bytes)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31

Subterranean 8
pooling 94 4.46k 19.13k 79.63k 312k

fast 94 2.15k 7.18k 27.03k 95.19k

Ascon 12
pooling 101 7.33k 30.33k 125k -

fast 101 3.07k 11.45k 42.39k -

Xoodoo 12
pooling 112 6.69k 28.79k 120k -

fast 112 3.12k 10.49k 39.35k -

Clyde 12
pooling 177 7.88k 31.04k 127k -

fast 161 3.44k 13.57k 45.34k -

Photon 12
pooling 193 10.47k 31.77k 126k 476k

fast 193 7.66k 14.28k 44.99k 154k

Pyjamask 14
pooling 1.59k 20.33k 52.81k 193k -

fast 1.59k 16.52k 31.74k 97.88k -

Gimli 24
pooling 127 12.14k 53.64k 236k -

fast 127 5.51k 19.15k 76.91k -

Ace 38
pooling 336 19.94k 89.12k 395k -

fast 336 8.22k 35.29k 123k -

Gift 40
pooling 358 21.38k 93.92k 405k -

fast 358 11.08k 36.79k 136k -

Skinny 48
pooling 441 34.28k 131k 525k 1.97m

fast 441 18.19k 61.75k 200k 664k

Spongent 80
pooling 624 44.04k 188k 816k 3.15m

fast 624 19.45k 64.78k 259k 948k

6 Conclusion

In this paper, we have introduced tightPROVE+, an extension of tightPROVE that operates on
the register-probing model. Stepping beyond the bit-probing model allows us to establish provable
security in a purely software context. By combining tightPROVE+ with the Usuba programming
language, we have obtained an integrated development environment, called Tornado, that stream-
lines the definition of symmetric ciphers and automates their compilation into provably-secure
masked implementations. Thanks to this framework, we have been able to systematically eval-
uate 11 NIST lightweight cryptography round-2 submissions that are amenable to masking. We
have identified 3 ciphers (Ace, Clyde, Gimli) that are not safe in the register probing model and
proposed some refresh points to repair them. We have also carried out an extensive performance
evaluation, studying the asymptotic behavior of these ciphers across a large range of masking
orders.

As part of future work, we intend to further enrich our compiler backend with optimizations
specific to embedded architectures (Cortex M and/or Risc-V), systematizing various primitive-
specific optimizations documented in the literature [35, 28, 33]. Previous results on Intel archi-
tecture [29] has demonstrated that Usuba can produce code whose performance is on par with
hand-optimized, assembly implementations.
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Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017,
Part I, volume 10210 of Lecture Notes in Computer Science, pages 567–597. Springer, Heidelberg,
April / May 2017.

26. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing
attacks. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, Heidelberg, August 2003.

27. Anthony Journault and François-Xavier Standaert. Very high order masking: Efficient implementation
and security evaluation. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware
and Embedded Systems – CHES 2017, volume 10529 of Lecture Notes in Computer Science, pages
623–643. Springer, Heidelberg, September 2017.

28. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4: Testing and
benchmarking NIST PQC on ARM cortex-m4. IACR Cryptology ePrint Archive, 2019:844, 2019.
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A Proofs of section 3.3

Let us recall the formal games.

– In Game 0, the adversary A0 outputs values x1, . . . ,xn ∈ V and a set of probes P = Pr ∪
Pm ∪ Psw with no restriction on the placement of probes.

– In Game 1, the adversary A1 outputs values x1, . . . ,xn ∈ V and a set of probes P ′ = P ′r ∪
P ′m ∪P ′sw. The probes in P ′sw can be any index in sharewise gadgets, those in P ′m are pairs of
index in multiplication gadgets, and those in P ′r can only be an index of the input of refresh
gadgets.

– In Game 2, the adversary A2 outputs values x1, . . . ,xN ∈ V and a set of probes P ′ = P ′r ∪
P ′m ∪ P ′sw as in Game 1, except that the circuit is flattened, by considering the outputs of
multiplications as new inputs.

– In Game 3, the adversary A3 outputs values x1, . . . ,xN ∈ V and a set of probes P ′′ =
P ′′r ∪ P ′′m ∪ P ′′sw where P ′′r = P ′′sw = ∅.

In each game, a simulator S aims at simulating the distribution of the probed variables, and
wins the game if it manages to do so.

A.1 Game 0 - Game 1 transition

Let us prove the following equivalence:

∀A0,∃S0,S0 wins Game 0 ⇐⇒ ∀A1,∃S1,S1 wins Game 1

considering separately both implications.

In a first attempt, we assume that ∀A1,∃S1,S1 wins Game 1. Let A0 be the adversary that
outputs values x1, . . . ,xn ∈ V and a set of probes P = Pr ∪ Pm ∪ Psw. In the bit probing model,
the multiplication and refresh gadgets are t-SNI, which implies that the distribution of a variable
probed inside the gadget can be simulated from at most one share of each input. In the register
probing model, the multiplication (resp. refresh) gadgets can be seen as a concatenation of bitwise
multiplication (resp. refresh) gadgets. As a result, they are t-SNI, and for each probe in Pr ∪ Pm,
the distribution of the variable it points to can be simulated by (at most) one share of each input.
This means that the t shares pointed by P = Pr ∪ Pm ∪ Psw can be perfectly simulated from a
set of t probes P ′ = P ′r ∪ P ′m ∪ Psw pointing to shares in a sharewise gadget or inputs shares of
refresh gadgets or pairs of inputs shares of multiplication gadgets. We define A1 as the adversary
that outputs the same values x1, . . . ,xn and the set of probes P ′. By assumption, there exists a
simulator S1 that wins Game 1, meaning that it outputs a perfect simulation of C([x1], . . . , [xn])P′ ,
with which we can in turn simulate C([x1], . . . , [xn])P . This means that there exists a simulator
S0 that wins Game 0.

In a second attempt, we assume that ∃A1,∀S1,S1 fails Game 1 and we show the contrapositive
statement:

∃A1,∀S1,S1 fails Game 1 =⇒ ∃A0,∀S0,S0 fails Game 0.

By assumption, there exists an adversary A1 that ouputs values x1, . . . ,xn ∈ V and a set of
probes P ′ = P ′r ∪ P ′m ∪ P ′sw such that no simulator S1 can simulate the tuple (v1, . . . ,vq) =
C([x1], . . . , [xn])P′ . Let A0 be the adversary that outputs the same input values x1, . . . ,xn and
a set of probes P = Pr ∪ Pm ∪ Psw such that Pr = P ′r and Psw = P ′sw. We now show how to
construct the set Pm so that no simulator S0 can simulate C([x1], . . . , [xn])P :

– If P ′m = ∅: no simulator can simulate C([x1], . . . , [xn])P = C([x1], . . . , [xn])P′ .
– If P ′m = {(i, j)}: we can assume that i and j are indices pointing to the variables v1 and v2. We

can also assume that there exists a simulator S0 that simulates (v3, . . . ,vq), since otherwise
we could just define A0 as the adversary that returns the probes P ′r ∪ P ′sw. We can now say
that no simulator can perfectly simulate (v1,v2) given (v3, . . . ,vq). Let us denote by vij the
jth coordinate of vi. Since the coordinates of shares of inputs of multiplication gadgets are
linear combinations of the coordinates of the input shares, we can write for every i ∈ {1, 2}
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and j ∈ J1, sK vij = fij(x1, . . . ,xn) + gij(v3, . . . ,vq) + rij , where fij and gij are deterministic
functions and rij , called random part of vij , is either a random element of K or 0.
Let us start by creating a new pair of registers that is easier to work with, but for which
simulating it is equivalent to simulating (v1,v2).
We first create v′1 and v′2, defined as follows: for every i ∈ {1, 2} and j ∈ J1, sK, if there exists
j2 < j such that rij = rij2 6= 0, then v′ij = vij+vij2 , and otherwise v′ij = vij . Since simulating a
pair (vij1 , vij2) is equivalent to simulating (vij1 , vij1 ,+vij2), it is clear that simulating (v′1,v

′
2)

is equivalent to simulating (v1,v2). Now neither v′1 nor v′2 contains two identical non-zero
random parts.
We then create v′′1 and v′′2, defined as follows: v′′1 = v′1, v′′2 = v′2 and for every j1 ∈ J1, sK,
if there exists j2 6= j1 such that r′1j1 = r′2j2 6= 0, then swap the slots j1 and j2 of v′′2. It is
not hard to see that simulating (v′′1,v

′′
2) is equivalent to simulating (v1,v2). Now, two equal

and non-zero random parts in v′′1 and v′′2 are on the same slot.
All the random parts in v′′1 and v′′2 cannot be random uniform independent bits, otherwise
(v′′1,v

′′
2) can be straightforwardly simulated, and then (v1,v2) can be simulated, which

contradicts our hypothesis). This implies that there exists a slot j for which (r′′1j , r
′′
2,j) ∈

{(0, 0), (0, r), (r, 0), (r, r)} where r is a random uniform element of K. We consider four cases:
• There exists a slot j for which (r′′1j , r

′′
2,j) = (0, 0) and either f ′′1j or f ′′2j is not constant.

• There exists a slot j for which (r′′1j , r
′′
2,j) = (0, r) and f ′′1j is not constant.

• There exists a slot j for which (r′′1j , r
′′
2,j) = (r, 0) and f ′′2j is not constant.

• There exists a slot j for which (r′′1j , r
′′
2,j) = (r, r) and f ′′1j + f ′′2j is not constant.

One of these cases must be true, as otherwise (v′′1,v
′′
2) could be simulated. Then, for any j

verifying one of these conditions, we can refer to the proof in the original paper to determine
which probe to add to Pm so that no simulator can simulate C([x1], . . . , [xn])P .

– Finally, if P ′m contains more than one pair of probes, we use the same reasoning to prove
that no simulator can simulate C([x1], . . . , [xn])P1 where P1 is obtained by replacing one
pair of probes in P ′ by a single index i or j or a probe pointing to a cross-product inside a
multiplication gadget. We can then apply this method on the new set of probes P1, to get
another set of probes P2 where another pair of probes is replaced, and so on, until no pairs of
probes are left. We then define A0 as the adversary that returns the last set of probes obtained
this way. By construction, no simulator can output a perfect simulation of the evaluation of
C under this set of probes.

ut

A.2 Game 1 - Game 2 transition

Let us show the following equivalence:

∀A1,∃S1,S1 wins Game 1 ⇐⇒ ∀A2,∃S2,S2 wins Game 2

by considering separately both implications.

We first assume that ∀A2,∃S2,S2 wins Game 2. Let A1 be the adversary that outputs values
x1, . . . ,xn ∈ V and a set of probes P ′. We define A2 as the adversary that outputs the same set
of probes P ′ and input values x1, . . . ,xN where the n first elements are the inputs A1 chose, and
the N − n remaining ones are the decoded outputs of the multiplication and refresh gadgets. It
has been shown in the original paper that the ISW multiplication gadget produces as output a
fresh random uniform sharing. This implies that the multiplication gadgets we consider output a
fresh random uniform sharing vector. These outputs can thus be treated as new uniform inputs
sharing of the same plain value without modifying the evaluation. Thus, C([x1], . . . , [xn])P′ , and
C ′([x1], . . . , [xN ])P′ output the same distribution. Since, by assumption, there exists S2 that wins
Game 2, there exists S1 that wins Game 1 by outputting the same distribution as S2 for the
adversary A2.

We now assume that ∀A1,∃S1,S1 wins Game 1. Let A2 be the adversary that outputs values
x1, . . . ,xN ∈ V and a set of probes P ′. We define A1 as the adversary that outputs the same set of
probes P ′ and the first n values of x1, . . . ,xN . For the same reasons as before, C([x1], . . . , [xn])P′ ,
and C ′([x1], . . . , [xN ])P′ output the same distribution, so we can just define a simulator S2 that
wins Game 2 by outputting the same distribution as S1, a simulator that wins Game 1 for the
adversary A1. ut
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A.3 Game 2 - Game 3 transition

Let us show the following equivalence:

∀A2,∃S2,S2 wins Game 2 ⇐⇒ ∀A3,∃S3,S3 wins Game 3

by considering separately both implications.

From left to right, we first assume that ∀A2,∃S2,S2 wins Game 2. Let A3 be the adversary that
outputs values x1, . . . ,xN ∈ V and a set of probes P ′′ pointing to pairs of inputs of multiplications.
We define A2 as the adversary that outputs the same set of probes P ′′ and the same inputs. By
assumption, there exists a simulator S2 that can perfectly simulate C ′([x1], . . . , [xN ])P′′ and thus
win Game 2. We can then say that there exists S3 that wins Game 3 by outputting the same
distribution as S2 for the adversary A2.

From right to left, we then assume that ∃A2,∀S2,S2 fails Game 2 and show the contrapositive
statement:

∃A2,∀S2,S2 fails Game 2 =⇒ ∃A3,∀S3,S3 fails Game 3.

By assumption, there exists an adversary A2 that ouputs values x1, . . . ,xN ∈ V and a set of probes
P ′ = P ′r ∪ P ′m ∪ Psw such that no simulator S2 can win Game 2. Let us denote by M0, . . . ,Mt

the induced matrices from P ′ as defined in Section 3.3. Since the distribution of the variables
pointed by the probes cannot be simulated, we have

⋂t
i=0〈Mi〉 6= ∅. Since each of these matrices

is non-empty and made up of a concatenation of blocks, with a total number of q ≤ 2t blocks
distributed among t+ 1 matrices, at least one of these matrices is made of exactly one block. We
now show that one of the matrices is made of exactly one block W that is induced by a probe on a
multiplication gadget. A2 can use t probes. If tother are placed on gadgets other than multiplication
gadgets, then a least t+ 1− tother matrices are filled with 2(t− tother) blocks induced by probes
on multiplication gadgets. For the same reasons as before, this implies that there exists a matrix
that contain exactly one block, induced by a probe on a multiplication gadget. Let us define A3 as
the adversary that outputs the same input values as A2 and a set of probes P ′′ defined as follows:

– Select a block W as defined above, induced by a probe on a multiplication gadget m. We can
assume without loss of generality that W comes from the left operand of m.

– For every pair (p1, p2) ∈ P ′m, include (p1, p2) to P ′′.
– For every probe p ∈ P ′r ∪ Prw, let j be the share index of the variable pointed by p. Then,

include (p1, p2) to P ′′, where p1 denotes a probe on the jth share of the left operand and p2 a
probe on the right operand.

By construction, the new set of operands P ′′ induce matrices whose images still intersect, meaning
that no simulator S3 can output a perfect simulation of C ′([x1], . . . , [xN ])P′′ , and thus no simulator
can win Game 3 for the adversary A3. ut

B Proof of Correctness

Let us denote by A (C) the result of Algorithm 1 when run with the circuit C as its input. We
show the following equivalence:

there is a t-probing attack on C ⇐⇒ A (C) is False

which is equivalent to

∃M0, . . . ,Mt(as defined in section 3.3),
⋂t
i=0Mi 6= ∅ ⇐⇒ A(C) is False

from both implications.
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B.1 There is a t-probing attack on C ⇐= A (C) is False

Let us assume that A (C) is False and let us denote by G a graph created during the execution
of the algorithm such that there exists a node b in G and a layer i for which Si,b ∩ 〈Oi,b〉 6= ∅. By
construction, there is exactly one path in G that goes from the node called root and b, where each
node on the path is in a different layer. For the sake of readability, we now label the information
contained in the nodes of that path only by the layer number. For example, Si,b ∩ 〈Oi,b〉 can now
be written Si ∩ 〈Oi〉 without ambiguity.

Let us denote by Oi(α) and Gi(α) the αth elements of the sets Oi and Gi respectively (the
elements being ordered by the order in which they were added to the sets during the execution of
the algorithm), and let us further denote by B(β) the βth column vector of a block B.

Since Si ∩ 〈Oi〉 6= ∅, there exists a vector w ∈ Si, indexes α1, . . . , αri ∈ J1, |Oi|K and sets of
indexes β1, . . . , βri ⊆ J1, sK such that

w =

ri∑
r=1

∑
β∈βr

Oi(αr)(β),

meaning that w is a linear combination of column vectors of free operand blocks. For a given input
block A of a multiplication, let us denote by A the other input operand block. We now define the
matrix M0 = Oi(α1)‖ . . . ‖Oi(αri), the concatenation of the blocks used in the linear combination
w equals to. We also define, for all k ∈ J1, riK the matrix M ′k = Oi(αk) ∈ Qi. Let W be the only
block in the set Q1, and let us call S0 the vector space 〈W 〉 and O0 = ∅. For all A ∈ Qi, there
exists k ∈ J0, i− 1K such that

Sk+1 = Sk ∩ (〈A〉+ 〈Ok〉),

and since Si ⊆ Sj for every j ≤ i, we have

w ∈ Si ⊆ Sk+1 ⊆ 〈A〉+ 〈Ok〉.

As 〈Ok〉 ⊆ 〈Oi−1〉, we can further say that

w ∈ 〈A〉+ 〈Oi−1〉,

meaning that we can construct w from any operand in Qi along with free operands of the previous
layer. For every k ∈ J1, riK, we thus have

w ∈ 〈M ′k〉+ 〈Oi−1〉,

so there exists indexes αk,1, . . . , αk,fk ∈ J1, |Oi−1|K and sets of indexes βk,0, . . . , βk,fk ⊆ J1, sK such
that

w =
∑
β∈βk,0

M ′k(β) +

fk∑
r=1

∑
β∈βk,r

Oi−1(αk,r)(β).

meaning that w is a linear combination of column vectors of M ′k and column vectors of fk free
operand blocks that are in Oi−1.

We then complete the matrix M ′k by defining Mk = M ′k‖(
∥∥fk
r=1
Oi−1(αk,r)). All the blocks

involved in the linear combination are then present in this matrix. In other words, we have w ∈
〈Mk〉. For all r ∈ J1, fkK, we also define the matrix M ′j (with j = ri + (

∑k−1
u=1 fu) + r) by M ′j =

Oi−1(αk,r) ∈ Qi−1. We now have ri−1 = f1 + · · ·+ fri new matrices Mri+1, . . . ,Mri+ri−1
made of

one block of Qi−1 to complete. For the same reasons as before, for every k ∈ Jri + 1, ri + ri−1K,
M ′k ∈ Qi−1, so w ∈ 〈M ′k〉 + 〈Oi−2〉, and then we can reiterate the same process to complete the
matrices M ′k and create ri−2 new matrices to complete, made of one block of Qi−2. We repeat this

process until we have r1 matrices M ′J+1, . . . ,M
′
J+r1

(with J =
∑i
k=2 rk) made of one block of Q1.

Since Q1 = {W}, all these matrices are W , and we define Mj = M ′j for all j ∈ JJ + 1, J + r1K. If

we call R =
∑i
k=1 rk, we thus have defined R+ 1 matrices M0,M1, . . . ,MR made of a total of R

pairs of block operands that satisfy w ∈
⋂R
j=0〈(〉Mj), meaning that there is a probing attack on

C (of order t = R).
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B.2 There is a t-probing attack on C =⇒ A (C) is False

We now assume that there exists matrices M0,M1, . . . ,Mt, made of a total of 2t operand blocks
of probed multiplications, that verify

t⋂
j=0

〈Mj〉 = S 6= ∅.

In the following, we denote by dec the function that associates a matrix made of concatenated
blocks to the set of blocks it is made of. For a given block operand A of a probed multiplication,
we denote by A the other block operand of the multiplication.

Let w be a vector in S. As shown in the demonstration of the game transition between Game 2
and Game 3, there exists j ∈ J0, tK and W ∈ {Ag, Bg}g a block operand of a multiplication gadget
such that Mj = W . Since W ∈ {Ag, Bg}g, the algorithm creates a graph GW , with Q1,root = {W}.
Let us define an additional fictive node root′ such that S0,root′ = 〈W 〉, G0,root′ = ∅, O0,root′ = ∅,
and Q0,root′ = ∅. We now show by induction that the following statement Pi is true for all i ∈ N:

Pi : (∀j < i,∀b,w /∈ Sj,b ∩ 〈Oj,b〉)
=⇒ ((∃b,w ∈ Si,b ∩ 〈Oi,b〉) or (∃b,∃A ∈ {Ag, Bg}g\Qi,b,w ∈ Si,b ∩ (〈A〉+ 〈Oi,b〉)))

Intuitively, this property means that if no attack on w was found by the algorithm before layer i,
then it either finds an attack on layer i or creates a new node in layer i+ 1. We start by showing
that P0 is true. Since

w ∈ S0,root′ ∩ (〈W 〉+ 〈O0,root′〉) = 〈W 〉,
the right predicate is true, so the implication is true as well. We now assume that Pi is true for
a given i ∈ N, and show that Pi+1 is true. We also assume the left side of the implication to be
true: ∀j < i+ 1,∀b,w /∈ Sj,b ∩ 〈Oj,b〉. In particular, we have

∀j < i,∀b,w /∈ Sj,b ∩ 〈Oj,b〉,

and by the induction hypothesis, we deduce that we have

(∃b,w ∈ Si,b ∩ 〈Oi,b〉) or (∃b,∃A ∈ {Ag, Bg}g\Qi,b,w ∈ Si,b ∩ (〈A〉+ 〈Oi,b〉)).

The former cannot be true by assumption, so the latter is true, meaning that there exists b′ such
that w ∈ Si+1,b′ . We now assume that ∀b,w /∈ Si+1,b ∩ 〈Oi+1,b〉 and show that

∃b,∃A ∈ {Ag, Bg}g\Qi+1,b,w ∈ Si+1,b ∩ (〈A〉+ 〈Oi+1,b〉).

More particularly, we show that this is true for b = b′. For all j ∈ J0, tK, let Ej be the set

dec(Mj) ∩ Qi+1,b′ , and let us define ti =
∑t
j=0 |Ej |. For all j ∈ J0, tK, for every block A ∈ Ej , A

and A must be present in the matrices, so we have 2ti blocks of Oi+1,b′ and Qi+1,b′ in the matrices.
We show that however the remaining 2t − 2ti blocks are placed in the matrices, the right-hand
side of the implication is true.

Let us define
tα = |{j ∈ J0, tK | dec(Mj) ∩Qi+1,b′ = ∅}|.

We have t + 1 − tα ≤ ti, so t − ti ≤ tα − 1 < tα, which implies 2t − 2ti < 2tα. This means that
there exists at least one matrix M for which there exists a block A′ ∈ {Ag, Bg}g\Qi+1,b′ such that
{A′} ⊆ dec(M) ⊆ Oi+1,b′ ∪ {A′}. Since w ∈ 〈M〉 and w ∈ Si+1,b′ , this implies that

w ∈ Si+1,b′ ∩ (〈A′〉+ 〈Oi+1,b′〉),

which is exactly what we needed to show.

For all i ∈ N, Pi is true, but since GW has a finite number of layers l, then for i = l + 1, the
implication is true while the right predicate is false, which implies that the left predicate is false,
which is equivalent to

∃j ≤ l,∃b, w ∈ Sj,b ∩ 〈Oj,b〉.
The algorithm thus returns False, and we can further say that an attack on w is detected. And
since this is true for any w ∈ S, we can also say that all the operands that can be retrieved with
probing attacks can be found by the algorithm. ut
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