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Abstract
The production of χc1(3872) and ψ(2S) hadrons is studied as a function of charged
particle multiplicity in pp collisions at a center-of-mass energy of 8 TeV, corresponding
to an integrated luminosity of 2 fb−1. For both states, the fraction that is produced
promptly at the collision vertex is found to decrease as charged particle multiplicity
increases. The ratio of χc1(3872) to ψ(2S) cross-sections for promptly produced
particles is also found to decrease with multiplicity, while no significant dependence
on multiplicity is observed for the equivalent ratio of particles produced away from
the collision vertex in b-hadron decays. This behavior is consistent with a calculation
that models the χc1(3872) structure as a compact tetraquark. Implications for the
binding energy of the χc1(3872) state are discussed.
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In recent years, multiple new resonances containing heavy quarks have been observed
that do not fit into the framework of conventional hadrons, see Ref. [1] for a recent review.
The most studied of these exotic hadrons is the χc1(3872) state, also known as X(3872).
It was first discovered in the mass spectrum of J/ψπ+π− in B-meson decays by the
Belle collaboration [2], and has since been confirmed by multiple other experiments [3–6].
Despite intense scrutiny, the exact nature of the χc1(3872) state is still unclear.

Multiple explanations of the χc1(3872) structure have been proposed. Shortly after its
discovery, it was considered as one of several possible charmonium states [7]. However,
LHCb has since measured the quantum numbers to be JPC = 1++ [8], which disfavors its
assignment as conventional charmonium because no compatible charmonium states with
these quantum numbers are expected near the measured mass [9]. Other models consider
the χc1(3872) state to be a tetraquark, which may have further substructure, composed of
a diquark-antidiquark bound state [10–12] or a hadrocharmonium state where two light
quarks orbit a charmonium core [13]. Mixtures of various exotic and conventional states
have also been studied [14–17]. The remarkable proximity of the χc1(3872) mass to the
sum of the D0 and D∗0 meson masses have led to the consideration of its structure as a
hadronic molecule, a state comprising these two mesons bound via pion exchange [18,19].
In this case the binding energy of the χc1(3872) hadron would be small, as the mass
difference (MD0 + MD∗0) −Mχc1(3872) = 0.07 ± 0.12 MeV/c2 is consistent with zero [20].
Consequently, these models assign the χc1(3872) state a large radius of O(10 fm) [17,21].
Results from recent LHCb studies of the χc1(3872) line shape are compatible with the
molecular interpretation but do not exclude other possibilities [20,22].

Techniques developed to study quarkonium production in proton-nucleus (pA) collisions
can be used to probe the binding energy of hadrons. Measurements of charmonium
production in pA collisions at fixed target experiments [23,24] and colliders [25–30] showed
that ψ(2S) production is suppressed more than J/ψ production in rapidity regions where
a relatively large number of charged particles are produced. Similarly, measurements of
Υ production at the Large Hadron Collider (LHC) revealed that the Υ (2S) and Υ (3S)
states are suppressed more than the Υ (1S) [31, 32]. As the effects governing heavy quark
production and transport through the nucleus are assumed to be similar for states with
the same quark content, the mechanism for the suppression of excited states is expected
to occur in the late stages of the collision, after the heavy quark pair has hadronized
into a final state. Models incorporating final-state effects, such as heavy quark pair
breakup via interactions with comoving hadrons, describe the relative suppression of
excited quarkonium states in pA collisions [33–37]. Similar final-state effects can also
disrupt formation of the χc1(3872) state via interactions with pions produced in the
underlying event [38], and would be especially significant if the χc1(3872) structure is a
large, weakly bound hadronic molecule.

High-multiplicity pp collisions provide a hadronic environment that approaches heavy
ion collisions in many respects. Recently, phenomena typically thought only to occur in
collisions of large nuclei have been observed in high-multiplicity pp collisions, including a
near-side ridge in two-particle angular correlations [39], strangeness enhancement [40], and
collective flow [41]. Multiplicity-dependent modification of Υ production has also been
observed [42]. Therefore, high-multiplicity pp collisions provide a testing ground for exam-
ining final-state effects observed on quarkonium in pA and AA collisions. Measurements
of such effects can provide new constraints on the structure of the χc1(3872) [43].

In this Letter, measurements of the fractions of χc1(3872) and ψ(2S) states, fprompt,
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that are produced promptly at the pp collision vertex as a function of charged particle
multiplicity are presented. The χc1(3872) and ψ(2S) states are compared by measuring
the ratio of the χc1(3872) to ψ(2S) cross-sections, as a function of multiplicity. The
χc1(3872) and ψ(2S) candidates are reconstructed through their decays to the J/ψπ+π−

final state, where the J/ψ meson subsequently decays to µ+µ− pairs. This study uses data
collected with the LHCb detector at a center-of-mass energy

√
s = 8 TeV, corresponding

to an integrated luminosity of 2 fb−1.
The LHCb detector [44, 45] is a single-arm forward spectrometer covering the pseu-

dorapidity range 2 < η < 5, designed for the study of particles containing b or c quarks.
The detector elements comprise a silicon-strip vertex detector (VELO) surrounding the
pp interaction region that allows b hadrons to be identified from their characteristically
long flight distance; a tracking system that provides a measurement of the momentum,
p, of charged particles; two ring-imaging Cherenkov (RICH) detectors that discriminate
between different species of charged hadrons, and a series of tracking detectors interleaved
with hadron absorbers for identifying muons. In this analysis, multiplicity is represented
by the number of charged particle tracks reconstructed in the VELO, NVELO

tracks . The VELO
track-reconstruction efficiency has been measured to be about 99% [46].

Simulation is required to model the effects of the detector acceptance and the imposed
selection requirements. In the simulation, pp collisions are generated using Pythia [47,48]
with a specific LHCb configuration [49]. Decays of unstable particles are described by
EvtGen [50]. The interaction of the generated particles with the detector, and its
response, are implemented using the Geant4 toolkit [51] as described in Ref. [52].

Events considered in this analysis are selected by a set of triggers designed to record
events containing the decay J/ψ → µ+µ−. Tracks from triggered events that are identified
as good muon candidates are retained. The muons are required to have momentum p >
10 GeV/c and a momentum component transverse to the beam direction pT > 650 MeV/c.
Candidate J/ψ mesons are formed from a pair of oppositely charged muons with an
invariant mass within ±39 MeV/c2 (corresponding to 3 times the resolution on the mass)
of the known J/ψ mass and combined pT > 3 GeV/c. Charged pion candidates are selected
using particle identification information from the RICH detectors. They are required
to have p > 3 GeV/c to ensure that the pions are above threshold in one of the RICH
detectors, and have pT > 500 MeV/c to reduce combinatorial background.

Selected µ+µ−π+π− combinations that form a good-quality common vertex are fitted
with kinematic constraints that require all tracks to originate from a common vertex
and constrain the dimuon mass to the known J/ψ mass [53]. The decay kinematics are
required to satisfy MJ/ψπ+π− −MJ/ψ −Mπ+π− < 300 MeV/c2 and the candidates must
have pT > 5 GeV/c and be within the pseudorapidity range 2 < η < 4.5. The resulting
J/ψπ+π− invariant-mass spectrum is shown in Fig. 1.

To avoid multiplicity biases arising from tracks produced in multiple collisions that
occur in the same beam crossing, only events with a single reconstructed collision vertex
are considered. The position of collision vertices is restricted to a range along the beam
direction −60 < z < 120 mm, to avoid biases from missing tracks that fall outside the
VELO acceptance.

Both χc1(3872) and ψ(2S) hadrons can be produced promptly at the pp collision
vertex, either directly or in strong decays of higher charmonia states, or in the decays
of b hadrons, which travel several millimeters before decaying. The prompt component
of the signal is separated from the component originating from b decays by performing
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a simultaneous fit to the J/ψπ+π− invariant-mass spectrum and the pseudo decay-time
spectrum. The pseudo decay-time tz is defined as

tz ≡
(zdecay − zPV)×M

pz
, (1)

where zdecay−zPV is the difference between the positions of the reconstructed vertex of the
J/ψπ+π− and the collision vertex along the beam axis, M is the known mass [53] of the
reconstructed ψ(2S) or χc1(3872) candidate, and pz is the candidate’s momentum along
the beam axis. The signal in the tz spectrum is fit with a delta function representing
the prompt component and an exponential decay function representing the component
from b decays, which are convolved with a double Gaussian resolution function. Two
different parameterizations of the tz background components using mass sidebands above
and below the mass peak of interest are employed. The first is an empirically determined
analytical function as was done in Ref. [54] and the second directly uses the tz shape
templates taken from the mass sidebands in the data.

In the fit to the invariant-mass spectrum, the ψ(2S) peak is represented by a sum of
two Crystal Ball functions, as in a previous LHCb analysis at 7 TeV [55]. The measured
χc1(3872) peak is well described by a Gaussian function. The background contribution is
studied by examining the invariant-mass spectrum constructed by like-sign pion pairs,
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Figure 1: The J/ψπ+π− invariant-mass spectrum. The inset shows the region of the χc1(3872)
resonance.
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Figure 2: The ψ(2S) (left) invariant-mass and (right) tz spectrum in the pT and multiplicity
ranges pT > 5 GeV/c and 60 < NVELO

tracks < 80, with the simultaneous fit superimposed.

and is found to be well described by third-order Chebyshev polynomials; this shape is
used to represent the background when fitting the J/ψπ+π− mass spectra. The invariant
mass and tz spectra are divided into bins of NVELO

tracks , and the fit is performed in each bin,
separately for the ψ(2S) meson and χc1(3872) state. An example is shown in Fig. 2.

The total yield and the measured fraction of the inclusive signal that is produced at
the collision vertex for each state is determined by a fit. Due to the different production
mechanisms, the observed χc1(3872) and ψ(2S) hadrons from these sources have different
momentum distributions, which may lead to differences in acceptance and reconstruction
efficiencies. To account for this effect, the pT distributions of prompt and displaced
signal candidates are extracted from the data using the sP lot technique [56], and the pT
distributions of the simulated particles are weighted to match those of the data. Since these
measurements are binned in multiplicity and effects of multiplicity-dependent breakup
may depend on pT, the simulation is reweighted to match pT distributions extracted from
low- and high-multiplicity samples. The difference in the acceptance and reconstruction
efficiencies found using these different parameterizations of the pT distributions is taken
as a systematic uncertainty. Corrections are applied to account for the relative acceptance
of the LHCb spectrometer between particles produced at the primary vertex and in b
decays εaccprompt/ε

acc
b , which is determined via simulation to be 1.00±0.01 for the ψ(2S) state

and 1.02±0.01 for the χc1(3872) state, and for the relative reconstruction and selection
efficiencies εrecoprompt/ε

reco
b , which are 0.99±0.03 for the ψ(2S) state and 1.11±0.04 for the

χc1(3872) state. The central value of fprompt is taken as the average of the values obtained
from the two fitting methods, while the difference is taken as a systematic uncertainty,
which ranges from 1% to 2% for the ψ(2S) fits and from 2% to 6% for the χc1(3872)
fits. This uncertainty is uncorrelated between bins and is comparable to the statistical
uncertainty on the ψ(2S) data, while the statistical uncertainty dominates on the χc1(3872)
data. The uncertainty on the relative efficiency is taken as a systematic uncertainty on
fprompt, which is correlated between the data points for each species. The resulting values
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function of the number of tracks reconstructed in the VELO. The vertical error bars (boxes)
represent the uncorrelated (correlated) uncertainties, while the horizontal error bars indicate bin
widths.

of fprompt as a function of multiplicity are shown in Fig. 3, up to NVELO
tracks = 200. The

fraction of events with NVELO
tracks >200 is negligible and is not included in the analysis. The

horizontal position of each point is the average value of NVELO
tracks for signal events within

that bin.
A clear decrease of fprompt is seen as the multiplicity increases, for both the ψ(2S) and

χc1(3872) hadrons. This could be due to a combination of several effects: the average
multiplicity is higher in events containing a bb̄ pair due to their fragmentation into
hadrons and subsequent decays [57,58]; or the suppression of prompt ψ(2S) and χc1(3872)
production via interactions with other particles produced at the vertex, which decreases
the prompt production in high-multiplicity events, but does not affect production in b
decays.

The prompt and b-decay components are examined directly by calculating the ratio of
the χc1(3872) and ψ(2S) cross-sections, σχ/σψ, times their respective branching fractions
to the J/ψπ+π− final state, Bχ and Bψ. This ratio is given by
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σχ
σψ

Bχ
Bψ

=
Nχ f

χ
prompt

Nψ f
ψ
prompt

εaccψ

εaccχ

εrecoψ

εrecoχ

εPIDψ

εPIDχ

. (2)

Here, N is the signal yield, fprompt is the prompt fraction and the ε terms represent
various efficiency corrections of the corresponding state. The ratio of cross-sections from
b decays is found by replacing fprompt with (1−fprompt) in Eq. 2. Correlated systematic
uncertainties largely cancel in the ratio, and the result is dominated by uncorrelated
uncertainties. The ratio of efficiencies for four charged decay products to fall within the
LHCb acceptance, εaccψ /εaccχ , is found via simulation to be consistent with one with an
uncertainty of approximately 1% that is determined by varying the pT distributions of
the simulated ψ(2S) and χc1(3872) hadrons. Control samples of identified muons and
pions obtained from data are used to measure the ratio of muon and pion identification
efficiencies, εPIDψ /εPIDχ , which is near one with an uncertainty of about 1% due to the finite
size of the control sample. The only relative efficiency that has a significant deviation from
unity is the ratio of reconstruction efficiencies, εrecoψ /εrecoχ , which is found via simulation to
be 0.58±0.02 (0.65±0.04) for particles that are produced promptly (in b-decays). This is
due to the different kinematic properties of the pion pair produced in the decays: pions
from χc1(3872) hadron decays proceed through an intermediate ρ0(770) resonance [59]
and have a higher reconstruction efficiency than pions from the ψ(2S) decay due to
their higher pT . The uncertainty on the ratio of reconstruction efficiencies is taken from
the variations observed when weighting the pT distributions of the simulated ψ(2S) and
χc1(3872) hadrons to match those in the data in different multiplicity bins, as previously
discussed.

The ratio of cross-sections is shown in Fig. 4. A decrease in the prompt production of
χc1(3872) hadrons relative to prompt ψ(2S) mesons is observed as the charged particle
multiplicity increases. To illustrate this effect, a linear fit to this data, which considers
only the uncorrelated uncertainties, is performed and returns a negative slope that differs
from zero by 5 standard deviations.

After preliminary LHCb results on multiplicity-dependent χc1(3872) production were
presented [60], calculations of these observables based on the Comover Interaction Model
[34, 35] were performed [43]. In this model, promptly produced χc1(3872) and ψ(2S)
hadrons interact with other produced particles, with a breakup cross-section σbr that is
determined by their radius and binding energy. The model assumes no interactions at low
multiplicity, and the calculations are normalized to the data in the lowest multiplicity bin.
A purely molecular χc1(3872) has a large radius and correspondingly high σbr, and is quickly
dissociated as multiplicity increases. If coalescence provides an additional formation
mechanism for molecular χc1(3872), the ratio σχc1(3872)/σψ(2S) rises with multiplicity.
Neither of these calculations are consistent with the data. A compact tetraquark χc1(3872)
has a slightly larger radius and σbr than the ψ(2S), and in this scenario σχc1(3872)/σψ(2S)
gradually decreases with multiplicity, matching the measured trend.

In contrast to the prompt data, the ratio of cross-sections for production in b decays
shows a slight increase, which is not statistically significant. A linear fit to these data
points, again without considering the correlated systematic uncertainty, gives a positive
slope that is consistent with zero within 1.6 standard deviations. Since these hadrons
originate from displaced decay vertices of b hadrons, they are not subject to suppression
via interactions with other particles produced at the primary vertex. Consequently,
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Figure 4: The ratio of the χc1(3872) and ψ(2S) cross-sections measured in the J/ψπ+π− channel
as a function of the number of tracks reconstructed in the VELO. The point-to-point uncorrelated
(correlated) uncertainties are shown as vertical error bars (boxes) and the bin widths are shown
as horizontal error bars. See text for details on calculations from Ref. [43]

this ratio is set only by the branching fractions of b decays to χc1(3872) and ψ(2S)
hadrons. The multiplicity dependence of b hadron production has not been studied in
detail and modification of the b hadron admixture could affect χc1(3872) production, as
different b hadron species may have different decay probabilities to χc1(3872) states [61,62].
However, the uncertainties preclude drawing any firm conclusions on multiplicity-dependent
modifications of b hadronization from this data.

In conclusion, the prompt χc1(3872) and prompt ψ(2S) production cross-sections
decrease relative to their production via b decays as the charged particle multiplicity
increases in pp collisions at 8 TeV. A comparison between the χc1(3872) and ψ(2S)
states shows that, in contrast to production from b-decays, which display no significant
dependence on multiplicity, prompt production of χc1(3872) is suppressed relative to
prompt ψ(2S) production as multiplicity increases. This observation is an important
ingredient to obtain a full understanding of the nature of the χc1(3872) state.
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lUniversità di Padova, Padova, Italy
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pUniversità della Basilicata, Potenza, Italy
qScuola Normale Superiore, Pisa, Italy
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