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1 Introduction and summary

The classification of conformal boundary conditions for a bulk CFT is a difficult problem.
Besides well-known results for rational boundary conditions in rational CFTs (reviewed
in [1]), very little is known even for relatively simple theories. It is natural to ask whether
a systematic approach is feasible — one which does not rely on explicit constructions but
leverages instead the modern conformal bootstrap methods [2] (see [3] for a review and [4]
for a first application to BCFT which relied on results from [5, 6]). A promising methodol-
ogy is to start from theories that are as simple as possible in the bulk. In this work we pursue
precisely such a direction in the case where the bulk theory is a single real free scalar field.

In any spacetime dimension a free scalar can certainly have Dirichlet or Neumann
conformal boundary conditions. The question we try to answer here is whether more
general conformal boundary conditions are possible, for example by coupling the bulk scalar
to new boundary degrees of freedom and flowing to the infrared. These putative boundary
conditions should modify the behavior of the scalar near the boundary and produce non-
trivial boundary correlators, analogous to those of an interacting one lower-dimensional
CFT. We find numerical evidence for at least one such ‘exotic’ boundary condition in four
dimensions, and more generally very strong constraints on the space of potential conformal
boundary conditions.1

In exploring consistent boundary conditions for a free scalar theory we obtained a very
special set of ‘shadow-related’ crossing symmetry equations, as follows. First of all, the
�φ = 0 equation of motion implies that the bulk-boundary expansion of the bulk field φ is
restricted to contain at most two operators that we denote as Ô1 and Ô2; their dimensions
are ∆φ and ∆φ + 1, respectively. At most one of these two operators can vanish, and if
so then we are in the Dirichlet or Neumann case and the two operators are immediately
recognizable as the restriction of φ or ∂⊥φ to the boundary. If they are both non-vanishing
then the operators can be thought of as a ‘shadow pair’ in the sense of Ferrara, Gatto,
Grillo and Parisi [11–14]. Their dimensions match this observation since 2∆φ + 1 = d− 1,

1The existence of such strong constraints is remarkable. In some cases, for example Maxwell theory in
four dimensions, it is known that the space of conformal boundary conditions is vast, since the coupling to
a generic CFT with a U(1) symmetry in three dimensions gives rise to a manifold of BCFTs parametrized
by the bulk gauge coupling [7–10]. Note that this is due to the fact that the gauge coupling is associated
to a bulk operator, and as such it cannot get renormalized by boundary interactions. There is no analogue
of this coupling in the case of a free scalar bulk CFT.
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the dimension of the boundary, but the picture extends to their three-point functions: for
a generic third defect operator Ô with dimension ∆̂ and spin l we find the relations

1

Γ
(
l+∆̂

2

)
Γ
(
d+l−∆̂−2

2

) f̂11Ô(l) = − b2/b1

2Γ
(
d+l−∆̂−1

2

)
Γ
(
l+∆̂+1

2

) f̂12Ô(l) ,

1

Γ
(
l+∆̂

2

)
Γ
(
d+l−∆̂

2

) f̂22Ô(l) = − 2b1/b2

Γ
(
d+l−∆̂−1

2

)
Γ
(
l+∆̂−1

2

) f̂12Ô(l) ,

(1.1)

where
b1
b2

=

√√√√ 1 + 2d−2aφ2

(d− 2) (1− 2d−2aφ2) (1.2)

and aφ2 is the one-point function of the operator φ2 in the presence of the boundary. This
relation between OPE coefficients agrees with the result obtained from applying a shadow
transformation to the relevant three-point functions. In section 2 we derive this equation
by demanding the absence of unphysical singularities in a three-point functions involving
two bulk operators φ.2 Note that the relations as written are still valid when the dimension
of Ô is such that the gamma functions have poles; this is precisely when the operators are
of ‘double-twist’ type and the shadow transformation is singular.

The properties of the previous paragraph already lead to a remarkable bootstrap prob-
lem. Indeed, up to the special ‘double-twist’ operators there is one spectrum and set of OPE
coefficients that needs to solve the five different crossing symmetry equations corresponding
to the possible four-point functions of Ô1 and Ô2.3 This is intriguing in itself, but in the
numerical analysis we can actually impose three more constraints. The first one is related
to the Ward identity for the displacement operator. The second one is that of locality of the
BCFT setup, which translates to the absence of any vector operators of dimension d in the
Ô1×Ô2 OPE. Both of these are described in section 2.2.3. The third one is imposed to sepa-
rate local three-dimensional CFTs, which do not interest us here, from boundary conditions:
this requires the scaling dimension of the first spin 2 operator to be strictly greater than 3.

We have numerically explored the system of crossing equations originating from the
〈1111〉, 〈1122〉 and 〈2222〉 four-point functions in four bulk dimensions subject to all the
above conditions. It might be tempting to conjecture that no non-trivial conformal bound-
ary conditions exist that meet such stringent criteria, but surprisingly this is not quite
what we find. On the one hand, there does exist a large range of possible values of aφ2

2In [15] the same analysis was carried out for defects with a higher co-dimension in the free scalar theory,
leading to similar shadow relations and a proof of triviality in many cases. For non-integer dimensions this
setup can also be used to describe the long-range Ising model, where the relations can be found from the
non-local equation of motion [16]. More details can be found in [17, 18] and a first numerical analysis in
this context was done in [19].

3The corresponding four-point functions should be related by the integral transformation that imple-
ments the shadow symmetry. However it is not clear to us whether the conformal block decompositions
of such shadow-transformed four-point functions are automatically consistent. For example, the integral
transformation is sensitive to contact terms and it seems unlikely that it can be swapped with the sum over
conformal blocks.
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where the first spin 2 operator must have a dimension less than about 3.1. Since this value
is likely to decrease even further when increasing computational power, it is natural to
conjecture that it must converge to 3, and then no conformal boundary conditions would
be possible in this range. On the other hand, for aφ2 near its Neumann value we suddenly
find room for interesting physics: as indicated in figure 2, the first spin 2 operator can have
a dimension of nearly four without violating any other constraint. A corresponding kink in
all the numerical plots points towards at least one possible exotic boundary condition for
a free scalar in this neighborhood. We subject this point to a detailed analysis in section 5
and show that it passes all the obvious consistency checks for a proper local boundary con-
dition. Using the ‘extremal functional’ methods of [20, 21] we also estimate the dimensions
of several low-lying operators and in particular conclude that the higher-spin symmetries of
the bulk theory are broken. We leave for the future the interesting question of identifying
a microscopic candidate for such a conformal boundary condition.

The rest of the paper is organized as follows. In section 2 we study the constraints that
any conformal boundary condition of a free scalar field must obey, and in particular derive
the shadow relations (1.1). In section 3 we provide some examples, starting by reviewing
the free boundary conditions and then using conformal perturbation theory to construct
interacting ones (under the assumption that we can appropriately tune the parameters of
the local degrees of freedom on the boundary). In section 4 we derive the set of crossing
equations for the four-point functions involving Ô1 and Ô2, we organize them in a way
that takes advantage of the exact relations, and we explain the approximations of the
resulting ‘superblocks’ that we use in our numerical implementation. In section 5 we
present the numerical results in the case of d = 4, showing plots that involve several different
characteristic observables, and in particular we show the kink that we mentioned above.
We finally discuss possible future directions in section 6. A summary of the conventions
and various technical results that we used along the way are relegated to the appendices.

2 Analytic constraints on the free scalar BCFT

Consider a free massless scalar field φ in d > 2 dimensions with a planar boundary. We use
the coordinate y ≥ 0 for the direction orthogonal to the boundary, and ~x for the directions
parallel to the boundary. We denote the components of x = (~x, y) ∈ Rd−1 × R+ as xµ,
µ = 1, . . . , d with xd = y, and those of ~x ∈ Rd−1 as xa, a = 1, . . . , d− 1. We are interested
in unitary boundary conditions that preserve the boundary conformal symmetry SO(d, 1).

2.1 Two-point functions with the scalar field

In this section we discuss the bulk-to-boundary OPE (bOPE) of the scalar field for a generic
conformal boundary condition, and the constraints imposed by crossing symmetry on the
bulk two-point function of the scalar field.

2.1.1 Bulk-boundary two-point functions

In this section we review the existence of two operators with protected scaling dimension
in the bOPE of the free scalar field [4, 22–25]. In a BCFT the bulk-boundary two-point
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function of a scalar bulk operator O of scaling dimension ∆O and a scalar boundary operator
Ô of scaling dimension ∆̂

Ô
is [4–6]

〈O(~x, y)Ô(0)〉 =
b
OÔ

y
∆O−∆̂

Ô(|~x|2 + y2)∆̂
Ô

. (2.1)

The bOPE coefficient b
OÔ

, which is real for Hermitian operators, is not determined by
symmetry. Specializing O to be a free scalar φ of scaling dimension ∆φ = d

2 − 1, the
equation of motion �φ = 0 gives

0 = 〈�φ(~x, y)Ô(0)〉 =
(
d

2 − ∆̂
Ô

)(
d

2 − 1− ∆̂
Ô

) b
φÔ

y
d
2−∆̂

Ô
+1(|~x|2 + y2)∆̂

Ô

. (2.2)

Therefore the possible scaling dimensions for boundary primaries with bφÔ 6= 0 are

∆̂1 = d

2 − 1 , ∆̂2 = d

2 . (2.3)

Without loss of generality, we can assume there is at most one boundary operator of di-
mension ∆̂1 with bφÔ 6= 0, that we denote as Ô1, and similarly for ∆̂2, the corresponding
operator being denoted as Ô2.4 As observed in [25], the scaling dimensions of these op-
erators add up to d − 1, which suggests that the two operators might be thought of as a
‘shadow pair’. In the next subsection we will show that also their three-point functions are
compatible with such a ‘shadow relation’. The bOPE of the free scalar is [4–6]

φ(~x, y) = b1 C d
2−1[y, ~∇2] Ô1(~x) + b2 y C d

2
[y, ~∇2] Ô2(~x) . (2.4)

where we defined bi ≡ bφÔi , i = 1, 2. The explicit form of the differential operator C∆̂i
[y, ~∇2]

is given in appendix A. The bOPE can be used to reconstruct bulk correlators starting from
the boundary ones.

2.1.2 Bulk two-point function

Next, we consider the two-point function

〈φ(~x1, y1)φ(~x2, y2)〉. (2.5)

This correlator is not completely fixed by the symmetry as it depends on the cross-ratio

ξ ≡ (x1 − x2)2

y1y2
≡ |~x1 − ~x2|2 + (y1 − y2)2

y1y2
. (2.6)

We can compute (2.5) by plugging twice the bOPE (2.4), using the diagonal and unit-
normalized boundary two-punt functions

〈Ôi(~x1)Ôj(~x2)〉 = δij
1

|~x1 − ~x2|2∆̂i

, i, j = 1, 2 (2.7)

4When multiple boundary operators with degenerate dimensions ∆̂1 or ∆̂2 are allowed, we can always
change basis to recover the assumption above.
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and resumming the contributions from the descendants. The resulting boundary channel
decomposition of (2.5) is

〈φ(~x1, y1)φ(~x2, y2)〉 (2.8)

= 1
(y1y2)

d
2−1

[
b21
2
(
ξ1−d/2 + (ξ + 4)1−d/2

)
+ b22

2(d− 2)
(
ξ1−d/2 − (ξ + 4)1−d/2

)]
.

An alternative way of computing the two-point function (2.5) is to invoke the bulk
OPE φ× φ, namely

φ(x)φ(0) = 1

(x2)d/2−1 + φ2(0) + cφφT
CT

xµxνTµν(0) +
∑

`=4,6,...

cφφ`
CJ`

xµ1 . . . xµ`Jµ1...µ`
` (0) + . . .

(2.9)
where Tµν is the stress tensor, and the operators Jµ1...µ`

` with ` ≥ 4 are the tower of higher-
spin conserved currents present in the free scalar CFT. The OPE data involving the stress
tensor are [26]

cφφT = − d(d− 2)
2(d− 1)Sd

, CT = d

(d− 1)S2
d

, Sd ≡ Vol(Sd−1) = 2πd/2

Γ
(
d
2

) . (2.10)

Plugging in (2.5), we write the two-point function as a sum over bulk one-point functions
and their derivatives. Boundary conformal invariance allows only for scalar bulk one-point
functions [4–6], hence from the φ×φ bulk OPE the only non-trivial contributions are due to

〈φ2(~x, y)〉 =
aφ2

yd−2 , 〈1〉 = a1 = 1. (2.11)

Resumming the contribution from bulk descendants we obtain the bulk channel decompo-
sition of (2.5):

〈φ(~x1, y1)φ(~x2, y2)〉 = ξ1− d2

(y1y2)
d
2−1

[
1 + aφ2 2d−2ξ

d−2
2 (ξ + 4)1− d2

]
. (2.12)

Equating the two different decompositions (2.8) and (2.12) gives the bulk-to-boundary
crossing equation [4]. Since everything else in the equation is fixed, the only dynamical data
are the one-point function coefficient aφ2 on the l.h.s. and the bulk-to-boundary couplings
(b1, b2) on the r.h.s. The solution is [4, 24]

b21 = 1 + 2d−2aφ2 , b22 = (d− 2) (1− 2d−2aφ2) . (2.13)

This result tells us that in any boundary condition for a free scalar the parameter aφ2 is
constrained by unitarity to lie in an interval

− 1
2d−2 = a

(D)
φ2 ≤ aφ2 ≤ a(N)

φ2 = 1
2d−2 . (2.14)

As we indicated above, the boundaries of the interval correspond to the Dirichlet (b1 = 0)
and Neumann (b2 = 0) boundary condition. These elementary boundary conditions will
be discussed in detail in section 3, but in the remainder of this section we will assume
that b1b2 6= 0 because we would like to explore the possibility of more exotic boundary
conditions.
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2.2 Three-point functions with the scalar field

In this section we consider three-point functions with two insertions of the free scalar φ and
a generic boundary operator Ô. Note that, by Lorentz invariance, these correlators can be
non-vanishing only if the third operator transforms as a symmetric and traceless tensor of
SO(d− 1). Without loss of generality we can place the boundary operator at infinity and
consider

〈φ(~x1, y1)φ(~x2, y2)Ô(l)(θ,∞)〉. (2.15)

Following the standard procedure [27], in the above expression we contracted the tensor
indices with a boundary polarization vector θa as follows

Ô(l)(θ,∞) ≡ θa1 . . . θalÔa1,...,al(∞), θ · θ = 0. (2.16)

We will show that the boundary channel expansion of this correlation function exhibits
unphysical singularities, which can be removed only if special conditions are met. Therefore
these conditions have to be satisfied in any conformal boundary condition of the free scalar.

2.2.1 Boundary channel computation

The bOPE (2.4) allows to completely determine the correlator (2.15) in terms of the three-
point functions between the operators Ôi, i = 1, 2, and Ô(l). Conformal invariance fixes
the latter three-point functions to take the form [26, 27]

〈Ôi(~x1)Ôj(~x2)Ô(l)(θ,∞)〉 =
f̂
ijÔ(l)

|~x12|∆̂i+∆̂j−∆̂
P

(l)
‖ (x̂12, θ) , (2.17)

where ∆̂ denotes the scaling dimension of the operator Ô(l) which carries SO(d − 1) spin
l. The dependence on the polarization vector is through the following polynomial

P
(l)
‖ (x̂12, θ) ≡ (−x̂12 · θ)l , x̂a ≡ xa

|~x|
. (2.18)

By Bose symmetry
f̂
ijÔ(l) = (−1)lf̂

jiÔ(l) , (2.19)

which implies that only even spins l are allowed in (2.17) if i = j.
To compute (2.15), we act twice with the bOPE on the boundary three-point func-

tions (2.17). After some algebra to resum the contributions from the descendants, we
obtain the following boundary channel expansion

〈φ(~x1, y1)φ(~x2, y2)Ô(l)(θ,∞)〉 =
P

(l)
‖ (x̂12, θ)

|~x12|d−2−∆̂
(2.20)

×
(
b21f̂11Ô(l) F̂11

∆̂,l
(w+, w−) + b1b2f̂12Ô(l)F̂12

∆̂,l
(w+, w−) + b22f̂22Ô(l)F̂22

∆̂,l
(w+, w−)

)
.

This expression depends on two cross-ratios w±, which we take as follows:

w± = (y1 ± y2)2

|~x12|2
. (2.21)

– 6 –
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The functions F̂ ij
∆̂,l

(w+, w−) are computed in appendix B.1 and their explicit expressions
are given in (B.7). In the next section we will study the analyticity properties of the
correlator (2.20).

2.2.2 Constraints from analyticity of the bulk OPE

Next, we study the same three-point function using the bulk φ × φ OPE. Since the only
singular term in this OPE is given by the identity operator, which does not contribute
to the three-point function, we conclude that the three-point function must be free of
singularities when the two bulk points coincide. In terms of the cross-ratios w±, this limit
corresponds to w+ →∞ with any fixed w−.

As we show in the appendix C, for generic values of their parameters the boundary
blocks on the r.h.s. of (2.20) become singular in this limit. These unphysical singularities
can be removed if the OPE coefficients are related in the following way

f̂11Ô(l) = κ1(∆̂, l)f̂12Ô(l) , κ1(∆̂, l) ≡ −
b2Γ

(
l+∆̂

2

)
Γ
(
d+l−∆̂−2

2

)
2b1Γ

(
d+l−∆̂−1

2

)
Γ
(
l+∆̂+1

2

) ,

f̂22Ô(l) = κ2(∆̂, l)f̂12Ô(l) , κ2(∆̂, l) ≡ −
2b1Γ

(
l+∆̂

2

)
Γ
(
d+l−∆̂

2

)
b2Γ

(
d+l−∆̂−1

2

)
Γ
(
l+∆̂−1

2

) .
(2.22)

For certain special values of the parameters (∆̂, l) some of the blocks on the r.h.s. of (2.20)
are themselves regular. These special values correspond to the poles of the gamma functions
in (2.22) and read (see also table 1)

• ∆̂ = d + l − 2. We have that κ1(∆̂, l) → ∞ while κ2(∆̂, l) remains finite. This sets
f̂12Ô(l) = f̂22Ô(l) = 0, while leaving f̂11Ô(l) unconstrained. We denote these operators
as [Ô1Ô1]0,l.

• ∆̂ = d+l+2n−2 with n a positive integer. We have κ1,2(∆̂, l)→∞ and so f̂12Ô(l) = 0
while f̂11Ô(l) , f̂22Ô(l) remain unconstrained. Given that generically they appear in
both OPEs, we could denote these operators both as [Ô1Ô1]n,l or [Ô2Ô2]n−1,l. For
definiteness, we choose to denote them as [Ô1Ô1]n,l.

• ∆̂ = d+ l+2n−1 and n ∈ N. We have κ1,2(∆̂, l) = 0, which sets f̂11Ô(l) = f̂22Ô(l) = 0
while leaving f̂12Ô(l) unconstrained. We denote these operators as [Ô1Ô2]n,l. Im-
portantly, all odd-spin operators in Ô1 × Ô2 are of this type, as can be seen by
combining (2.22) with Bose symmetry.

The special cases listed above are related to the higher-spin symmetry of the bulk theory,
as we will now explain. We recall that the φ×φ OPE (2.9) contains infinitely many higher-
spin conserved currents J`, with even spin ` ≥ 2 and scaling dimensions ∆` = d+`−2. The
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∆̂− l conditions independent OPE coeff operator

d− 2 b1
b2
κ1(∆̂, l) =∞ f̂11Ô(l) [Ô1Ô1]0,l

d+ 2n− 2, n > 0 b1
b2
κ1(∆̂, l), b2b1κ2(∆̂, l) =∞ f̂11Ô(l) , f̂22Ô(l) [Ô1Ô1]n,l

d+ 2n− 1 b1
b2
κ1(∆̂, l), b2b1κ2(∆̂, l) = 0 f̂12Ô(l) [Ô1Ô2]n,l

Table 1. Table of special multiplets and their selection rules. Recall that b2
1 = 1 + 2d−2aφ2 and

b2
2 = (d− 2) (1− 2d−2aφ2).

conservation of these currents is generically violated by terms localized on the boundary,
leading to the following Ward identities

〈∂µJ
µµ1...µ`−1
` (~x, y) . . . 〉 = δ(y)〈Ôµ1...µ`−1

` (~x) . . . 〉 . (2.23)

In this formula any subset among the ` − 1 symmetric traceless indices {µ1 . . . µ`−1} can
be taken to be parallel to the boundary, with the remaining indices being orthogonal, i.e.
in the y direction. Therefore, the BCFT generically contains boundary operators D(l)

` and
V(l+1)
` of spin l and l+1, respectively, and protected dimensions ∆̂ = d+`−2, where l is an

even integer ranging from 0 to `−2. By ‘generically’ we mean that some of these operators
might actually be absent from the spectrum in special cases. The equations (2.23) can be
equivalently rephrased in terms of the bOPE, namely the operators D(l)

` ,V
(l+1)
` have the

correct dimensions and spins to appear in the bOPE of the bulk higher-spin current J` in a
way that is compatible with its conservation in the bulk. Furthermore, spin selection rules
and bulk conservation imply that V(l+1)

` cannot appear in the bOPE of any J`′ with `′ 6= `,
while the only other bulk current besides J` that can contain D(l)

` in its bOPE is Jl.
The relation to the special cases of (2.22) now stems from the observation that when

` − l = 2n, with n non-negative integer, D(l)
` has the right dimension to be the special

operator [Ô1Ô1]n,l in table 1. Similarly, when ` − l = 2n + 1 with n ∈ N, V(l+1)
` has

the right dimension to be the special operator [Ô1Ô2]n,l+1. We show in general in the
section C.2 of appendix C, and for the special case ` = 2 in the next subsection, that in
fact whenever the operator D(l)

` is present in the bOPE of J`, then it must appear in at least
one of either the OPE of Ô1 with itself or the OPE of Ô2 with itself. Similarly, whenever
V(l+1)
` is present in the bOPE of J`, it must also appear in the OPE of Ô1 with Ô2.

2.2.3 Displacement operator, flux operator and bulk-to-boundary crossing

The case ` = 2 deserves special attention because it corresponds to the bulk stress tensor
Tµν . Then the scalar operator D(0)

2 ≡ D is the so-called displacement operator, and we
will refer to the spin 1 operator V(1)

2 ≡ V(1) as the flux operator. Their general importance
stems from the conservation of momentum Pµ along a time coordinate chosen parallel to
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the boundary. If we split xµ = (τ, ~z, y) then

d

dτ
Pµ(τ) =

∫
dd−2~z

∫ ∞
0

dy ∂t T
tµ(τ, ~z, y)

=
∫
dd−2~z T yµ(τ, ~z, y → 0) ,

(2.24)

where in the second equality we used the conservation to trade the time derivative with
a spatial one, and then rewrote the integral of the spatial derivative as a boundary term.
Choosing µ = y orthogonal to the boundary we find that the limit y → 0 gives the
displacement operator D, which therefore measures the breaking of translations orthogonal
to the boundary and must be non-zero for any sensible boundary condition. Choosing µ
parallel to the boundary, on the other hand, we find the vector operator V(1) and so we
conclude that it measures the flux of energy into the boundary. Theories with a non-trivial
flux operator V(1) 6= 0 may still have a conserved boundary-translation charge, if there is
an additional boundary contribution to the charge P atot = P a + P̂ a satisfying

d

dτ
P̂ a(τ) = −

∫
dd−2~z V(1)a(τ, ~z ) . (2.25)

However the flux operator must be absent in any local unitary BCFT setup. To see why,
note that the locality condition on the boundary is that P̂ a, if non-trivial, should be
expressible as the integral

P̂ a(τ) =
∫
dd−2~z t̂ ta(τ, ~z) , (2.26)

of a local boundary operator with two indices t̂ ba. The condition (2.25) locally takes the
form

∂bt̂
ba = −V(1)a . (2.27)

Moreover, by repeating the argument for the other generators of the conformal group on
the boundary, one can easily show that the operator t̂ ba has spin 2, i.e. it is symmetric
and traceless. Recalling that V(1)a has scaling dimension d and therefore t̂ ba has scaling
dimension d − 1, we see that eq. (2.27) with V(1) 6= 0 is incompatible with the unitarity
bound of a spin 2 operator in d − 1 dimensions. We conclude that indeed in any unitary
BCFT locality implies that

V(1) = 0 (2.28)

in which case P̂ a is trivial. In practice this means that if we couple a bulk CFT (not
necessarily our free scalar theory) to some local boundary degrees of freedom, perhaps
triggering an RG flow to a new conformal boundary condition, then the flux operator must
never appear.5 This is because local boundary degrees of freedom should not be able to
hold a macroscopic amount of energy.

It might be instructive to consider some non-local setups that do feature a flux operator.
The first is a conformal interface, where there is an entire new CFT living on the half space
with y < 0. In that case the stress tensor for each side ‘sees’ a flux operator, but if the

5It is curious that the statement of locality, which in the bulk is encoded by the presence of a stress
tensor, corresponds to the absence of a specific vector operator (in the bOPE of Tµν) in the BCFT setup.
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interface setup is local then these two flux operators are in fact the same operator and
the interface cannot act as a simultaneous energy sink for both sides. Such a setup can
be generalized to the case where our d − 1 dimensional boundary is at the same time
a conformal defect in some d′-dimensional auxiliary space in which it is coupled to an
arbitrary d′-dimensional bulk CFT, perhaps even triggering a boundary/defect RG flow
to some new conformal configuration. According to the general structure of the operator
expansion near a defect of dimension d − 1 in a d′-dimensional CFT, the d′-dimensional
stress tensor can always provide a vector operator of precisely the requisite dimension6

(which is d) and unless the two sides decouple we will observe this as a flux operator in the
d-dimensional BCFT.7 Lastly one could also try to create a non-local setup by adding a
GFF on the boundary and coupling it, perhaps with other degrees of freedom, to the bulk
field. But this scenario is captured by the previous one, because GFFs are just regular
local fields in an auxiliary higher-dimensional space (albeit with non-integral d′).

The previous discussion applied to any BCFT, but for the free scalar theory there are
a few additional results that we can derive. To this end we return to the 〈φφÔ〉 three-point
function of equation (2.20) and take the third operator to be either the flux operator V(1)

or the displacement operator D. Let us thererefore first consider:

〈φ(~x1, y1)φ(~x2, y2)V(1)(θ,∞)〉 . (2.29)

The relations (2.22) in this case give that f̂11V(1) = f̂22V(1) = 0 and leave f̂12V(1) undeter-
mined. On the other hand, the bulk channel decomposition of (2.29) receives contribution
only from the bulk stress tensor Tµν , because — as we explained in the previous subsection
for the general case — spin selection rules and bulk conservation imply that V(1) cannot
appear in the bOPE of any other operator in the OPE (2.9). We find

〈φ(x1)φ(x2)V(1)(θ,∞)〉 = cφφT
CT

[
xµ12x

ν
12〈Tµν(x2)V(1)(θ,∞)〉+ . . .

]
, (2.30)

where the ellipses represent contributions of bulk descendants, and the OPE data of the
stress tensor are given in (2.10). The two-point function on the r.h.s. is completely fixed
by the boundary conformal symmetry up to a single bOPE coefficient bTV(1) [4, 6]. We can
further relate bTV(1) to the two-point function coefficient

〈V(1)(θ1, ~x)V(1)(θ2, 0)〉 = CV(1)
(θ1 · I(~x) · θ2)
|~x|2d

, Iab(~x) ≡ δab − 2x
axb

|~x|2
. (2.31)

From the exact correlator (2.20) we find (details in appendix C.2)

f̂12V(1) = −Sd(d− 2)
2b1b2

bTV(1) = −Sd(d− 2)
b1b2

CV(1) (2.32)

6This simply follows from requiring conservation of the d′-dimensional stress tensor in the allowed bulk-
defect correlators with a vector. For a generic defect CFT these two-point functions were classified in [28, 29].

7Note that a similar statement applies for ` > 2, namely if the operator V(`−1)
` in the bOPE of J`

vanishes then the BCFT admits a conserved charge of spin `, which is given by a bulk spatial integral of
the higher-spin conserved current.
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and we conclude that the flux operator appears in the Ô1 × Ô2 OPE if it also appears in
the bOPE of the stress tensor.8

Next we consider the three-point function involving the displacement operator

〈φ(~x1, y1)φ(~x2, y2)D(∞)〉 . (2.33)

In this case, the relations (2.22) give that f̂12D = 0 while leaving f̂11D and f̂22D undeter-
mined. Using again the general argument from the previous subsection about spin selection
rules and conservation, we have that the only operators in the OPE (2.9) that contribute
to the bulk channel decomposition of (2.33) are φ2 and the bulk stress tensor. Therefore
we have

〈φ(x1)φ(x2)D(∞)〉 =
[
〈φ2(x2)D(∞)〉+ . . .

]
+ cφφT

CT

[
xµ12x

ν
12〈Tµν(x2)D(∞)〉+ . . .

]
, (2.34)

where again the ellipses denote contributions of bulk descendants. Using theWard identities
for the displacement operator [6], the bulk-boundary two-point functions in the r.h.s. are
determined in terms of the parameter aφ2 in (2.14), as well as the coefficient CD in the
two-point function of the displacement operator

〈D(~x)D(0)〉 = CD
|~x|2d

. (2.35)

Comparing with the boundary channel correlator (2.20), after some algebra which we
relegate to appendix C.3, we find

f̂11D =
(d− 2)

(
aφ22d + 2CDS

2
d

)
4(d− 1)Sdb21

, f̂22D =
(d− 2)

(
2CDS

2
d − aφ22d

)
2Sdb22

. (2.36)

The unitarity requirement CD ≥ 0 implies that:

f̂11D ≥
(d− 2)2d

4(d− 1)Sd
aφ2

b21
, f̂22D ≥ −

(d− 2)2d

2Sd
aφ2

b22
. (2.37)

2.2.4 The three-point function with the boundary modes of φ

Another interesting special case of (2.20) arises when the boundary operator is one of the
boundary modes of φ, i.e.

〈φ(~x1, y1)φ(~x2, y2)Ô1(∞)〉, 〈φ(~x1, y1)φ(~x2, y2)Ô2(∞)〉. (2.38)

On general grounds, due to Bose symmetry, there are four independent boundary OPE
coefficients that enter these correlators: f̂111, f̂112, f̂221, f̂222. The latter are further related
to each other, by means of the three independent constraints provided by regularity of the

8These conclusions again have a natural generalization to all the odd-spin protected boundary operators
V(l)
` defined in (2.23), see appendix C.2 for more details.
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φ× φ OPE (2.22):

f̂112 = −2b1
b2

Γ
(
d
4

)2

Γ
(
d−2

4

)2 f̂111 , f̂221 = 1
4
b21
b22

(d− 2)(d− 4)f̂111 .

f̂222 = −1
2
b31
b32

(d− 2)(d− 4)
Γ
(
d
4

)2

Γ
(
d−2

4

)2 f̂111 . (2.39)

Hence, the bulk three-point function 〈φφφ〉 is completely controlled by a single boundary
OPE coefficient, e.g. f̂111. The latter can be non-zero only if the boundary condition breaks
the Z2 global symmetry φ→ −φ , under which both Ôi are odd.

3 Examples

In this section we explore some examples of conformal boundary conditions for a free scalar.
We start by reviewing the free boundary conditions, i.e. Neumann and Dirichlet, and then
construct examples of interacting boundary conditions using conformal perturbation theory
around the free ones. As we will see, these constructions rely on some ad-hoc assumptions
on the spectrum of an additional local 3d sector living on the boundary, which we couple to
the bulk, and therefore they do not prove rigorously the existence of interacting boundary
conditions. On the other hand, they will provide useful benchmarks to compare to our
numerical results in section 5.

3.1 Free boundary conditions

Suppose the theory is fully described by the free bulk action9

S =
∫
dd−1~x

∫ ∞
0

dy
1
2(∂µφ)2 , (3.1)

without any boundary-localized interaction. In order to have a stationary action, besides
the bulk equation of motion �φ = 0 we need to set to zero the boundary term

δS = −
∫
dd−1~x δφ ∂yφ|y=0 = 0 . (3.2)

The two solutions to this condition that preserve boundary conformal invariance are

Neumann: ∂yφ|y=0 = 0 ,
or (3.3)

Dirichlet: φ|y=0 = 0 .

9Note that using this canonical normalization of the action the operator φ has a different normalization

compared to the one in equation (2.9), namely φ|(3.1) =
√

Γ( d
2−1)

4π
d
2

φ|(2.9). We will specify which normaliza-

tion we are using whenever important.
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We can rephrase these conditions in terms of the bOPE of the scalar field. Namely, in (2.4)
we have b2 = 0 and φ|y=0 ∝ Ô1 in the case of Neumann boundary condition, and b1 = 0
and ∂yφ|y=0 ∝ Ô2 in the case of Dirichlet boundary condition. In either case, there is only
one boundary operator in the bOPE of φ, and the full set of boundary correlators can be
simply characterized as the mean-field theory of this operator. This implies that all the
correlation functions of these BCFTs are completely disconnected, i.e. they are computed
by Wick contractions as products of two-point functions. For this reason we call these
boundary conditions ‘free boundary conditions’.

We can also consider additional free boundary conditions that are not Neumann and
Dirichlet. Such a boundary condition is obtained requiring both Ô1 and Ô2 to appear
in the bOPE (2.4), i.e. b1b2 6= 0, and postulating that these operators are two decoupled
generalized free fields.10 However this implies that there is a spin 1 operator of dimension
4 in the spectrum of the boundary theory, namely the vector ‘double-trace’ operator in the
OPE of Ô1 with Ô2, schematically Ô1∂aÔ2−Ô2∂aÔ1. It is easy to check that this operator
also appears in the bOPE of the bulk stress tensor, hence for these boundary conditions
we have a non-vanishing flux operator V(1) 6= 0. Therefore, following the discussion in
the previous section, these are non-local boundary conditions. We conclude that the only
local free boundary conditions are the familiar Neumann and Dirichlet boundary conditions
reviewed above.

3.2 Interacting boundary conditions in perturbation theory

In order to look for examples of interacting boundary conditions, a natural strategy is to
couple the bulk scalar to a CFTd−1 living on the boundary. We turn on some relevant inter-
action between the two sectors and then flow to the IR, hoping to reach a non-trivial BCFT
fixed point. Concretely, we add to the free bulk action (3.1) a boundary action of the form

S∂ = SCFTd−1 +
∑
I

gI

∫
y=0

dd−1~x σ̂I , (3.4)

where σ̂I are some scalar composites made of φ|y=0 or ∂yφ|y=0, depending on whether we
start with Neumann or Dirichlet boundary condition, as well as of local operators of the
CFTd−1. In order to have perturbative control over the resulting RG flow, we will assume
that the operators σ̂I have scaling dimensions

∆̂I = d− 1− εI , 0 < εI � 1 , (3.5)

i.e. the deformations are weakly relevant. Then one can systematically expand observables
of the BCFT at the putative IR fixed point as a series in εI .

We will further assume that the boundary degrees of freedom are local. Technically,
this means that in the absence of bulk-boundary couplings, i.e. for gI = 0, the spectrum of
the CFTd−1 contains a stress tensor t̂ab, which is a conserved, spin 2 primary operator, of

10This includes the case of ‘no boundary’, or more precisely the ‘trivial interface’, where the theory on
the full Rd is re-interpreted as a BCFT. In that case aφ2 = 0 so according to (2.13) this corresponds to
b21 = 1 and b22 = (d− 2).
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protected dimension ∆̂
t̂

= 3. At the perturbative BCFT fixed point this operator gets a
small anomalous dimension, which must be non-negative by unitarity, and actually strictly
positive if the bulk and the boundary are not decoupled. We refer to this spin 2 operator
at the interacting fixed point as ‘pseudo stress tensor’. In the next subsection we show how
to compute the leading order contribution to this anomalous dimension for a rather generic
interaction of the form (3.4), using multiplet recombination. We will then consider more
specific examples for the perturbation, and compute the leading order corrections to the
observables aφ2 and CD, defined in eqs. (2.11) and (2.35), respectively.

Typically, when computing (B)CFT observables in perturbation theory, one first com-
putes the corrections as a function of the coupling constants, and then plugs the value of
the coupling constants at the fixed point, obtained by solving for the zeroes of the beta
functions. However, by restricting to the case with a single bulk-boundary coupling, we
can also avoid the computation of the beta function and simply assume that a perturbative
fixed point exists. This is sufficient because we can consider ratios of the leading order cor-
rections to the observables mentioned above, in such a way that the coupling cancels out
from the ratios — see e.g. equations (3.21), (3.27), (3.33), (3.37). It would be interesting,
but much more laborious, to actually compute the beta functions in terms of the data of
the CFTd−1. This would actually be necessary if one wanted to verify the existence of the
fixed point, or consider higher order corrections/multiple bulk-boundary couplings. The
beta function needed in this setup starts at cubic order in the coupling, and the coeffi-
cient of the cubic term is given by a regularized integral of the four-point function of the
deformation, see e.g. [17, 30] and also [31] for the case of 1d CFTs.11

3.2.1 Anomalous dimension of the pseudo stress tensor

We now consider a slightly more specific bulk-to-boundary interaction, with a single cou-
pling, of the form

S∂ = SCFTd−1 + g

∫
y=0

dd−1~x Ω̂ χ̂ . (3.6)

In the expression above, χ̂ denotes an operator in the CFTd−1 and Ω̂ is any local boundary
operator built out of φ|y=0 or ∂yφ|y=0, depending on whether we are perturbing a Neumann
or Dirichlet free boundary condition. The assumption (3.5) in this case takes the form

∆̂Ω̂ + ∆̂χ̂ = d− 1− ε, 0 < ε� 1 . (3.7)

In the presence of the interaction (3.6) the conservation and the tracelessness of the stress
tensor t̂ab of the CFTd−1 is violated as follows

∂at̂ab = g Ω̂ ∂bχ̂ , t̂aa = g ∆̂χ̂χ̂ . (3.8)

Assuming a nearby fixed point with g2 ∝ ε,12 we have two seemingly problematic features in
the above equations, namely the divergence is not expressed in terms of a primary operator

11The computation of the beta functions for bulk-boundary couplings in terms of the data of the CFTd−1

was performed in [32] for some examples of perturbations around Dirichlet and Neumann. Some perturbative
constructions of interacting boundary conditions for free theories can also be found in [25, 33, 34].

12This is the correct scaling with ε if the three-point function of the operator Ω̂ vanishes for the free
boundary conditions, as in the examples we will consider below. One can also consider cases in which the
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of the undeformed theory, and the operator does not have only a spin 2 component because
the trace is non-zero. Both these issues are solved by defining the ‘corrected’ operator

τ̂ab = t̂ab −
g ∆̂χ̂

(d− 1) δab Ω̂ χ̂ . (3.9)

Taking the divergence we then obtain

∂aτ̂ab = g

d− 1
(
(d− 1− ∆̂χ̂)Ω̂ ∂bχ̂− ∆̂χ̂ χ̂∂bΩ̂

)
. (3.10)

The new operator τ̂ab is a symmetric traceless tensor, and its divergence (3.10) is a primary
spin 1 operator of the undeformed theory, making the recombination of the multiplets
manifest. Note that (3.10) is a manifestation in perturbation theory of the locality condition
that we discussed in 2.2.3. If the boundary degrees of freedom were non-local they would
not have the operator t̂ab and then the right hand side of (3.10) would be a primary operator
of spin 1 and protected dimension d (it is easily checked that indeed this operator would
appear in the bulk-to-boundary OPE of the bulk stress tensor).

We can exploit the recombination to compute the leading order anomalous dimension
of τ̂ab at the interacting fixed point. Let us consider computing the two-point function

〈∂aτ̂ab(~x) ∂cτ̂cd(0)〉 . (3.11)

On the one hand, we can take derivatives of the two-point function of τ̂ab, which is fixed
by boundary conformal invariance to be [26]

〈τ̂ab(~x)τ̂cd(0)〉 = Cτ̂ (g)I
ab,cd(~x)

|~x|2∆̂
τ̂
(g)

,

Iab,cd(~x) ≡ 1
2[Iac(~x)Ibd(~x) + Iad(~x)Ibc(~x)]− 1

d− 1δ
abδcd . (3.12)

The definition of Iab was given in (2.18), and we introduced

Cτ̂ (g) = C
(0)
τ̂

+O(g2) ,

∆̂τ̂ (g) = d− 1 + γ̂τ̂ (g) = d− 1 + γ̂
(1)
τ̂
g2 +O(g4) .

The constant C(0)
τ̂

is the ‘central charge’ of the CFTd−1 that the bulk scalar couples to,
i.e. the coefficient appearing the two-point function of the stress tensor tab before we turn
on the interaction. On the other hand we can compute (3.11) at the leading order in g by
directly using the r.h.s. of (3.10). By comparing the two results, we find

γ̂
(1)
τ̂

= 2
∆̂χ̂(d− 1− ∆̂χ̂)
(d+ 1)(d− 2)

C
(0)
Ω̂
C

(0)
χ̂

C
(0)
τ̂

, (3.13)

three-point function of Ω̂ is non-vanishing, e.g. Ω̂ = φ2|y=0 for a perturbation of Neumann, in which case
g ∝ ε at the fixed point. In any case the precise scaling does not affect any result in this section.
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where C(0)
Ô

denotes the coefficient of the two-point function of the boundary operator Ô
computed at g = 0. With the canonical normalization (3.1) of the bulk action we have

C
(0)
φ =

Γ
(
d
2 − 1

)
2π

d
2

, C
(0)
∂yφ

=
Γ
(
d
2

)
π
d
2

. (3.14)

We note that the leading order anomalous dimension is essentially controlled by the central
charge C(0)

τ̂
of the CFTd−1.

3.2.2 Modified Dirichlet boundary conditions and perturbation theory

We now further specialize to the case in which the free boundary condition is Dirichlet,
and the operator Ω̂ is ∂yφ|y=0, namely we take a deformation of the form

S
(D)
∂ = SCFTd−1 + g

∫
y=0

dd−1~x ∂yφ χ̂ . (3.15)

The interaction term leads to the following modified Dirichlet boundary condition13

φ|y=0 = −g χ̂ . (3.16)

In this case the condition (3.5) gives ∆̂χ̂ = d
2 − 1 − ε, with 0 < ε � 1. As we discussed

above, we assume the existence of a perturbative fixed point with g2 ∝ ε. Plugging in
eq. (3.13) we obtain

γ̂
(1)
τ̂

=
Γ
(
d
2 + 1

)
π
d
2 (d+ 1)

C
(0)
χ̂

C
(0)
τ̂

. (3.17)

Let us now consider the leading order correction to the one-point function coefficient
aφ2(g)

aφ2(g) = −22−d + δaφ2(g2) = −22−d + δa
(1)
φ2 g

2 +O(g4) . (3.18)

The coefficient δa(1)
φ2 must be non-negative as a consequence of the unitarity bound (2.14).

To compute its value, note that the modified Dirichlet boundary condition (3.16) deter-
mines the bOPE coefficient b1 to be14

b1 = −g

√√√√√ 4π
d
2

Γ
(
d
2 − 1

)C(0)
χ̂

(
1 +O(g2)

)
. (3.19)

Plugging this result in the crossing relations (2.13), we find

δa
(1)
φ2 =

24−dπ
d
2C

(0)
χ̂

Γ
(
d
2 − 1

) . (3.20)

13This can be obtained by varying the action (3.15), supplemented by the boundary term
∫
φ∂yφ, with

respect to ∂yφ.
14This formula is simply obtained by appropriately normalizing the operators involved, namely Ô1 needs

to have unit-normalized two-point function and the bulk scalar field needs to have unit-normalized contri-
bution of the identity in the bulk OPE, see also footnote 9.
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Having obtained two observables we can form a ratio that does not depend on the value of
the coupling at the putative fixed point, namely

γ̂τ̂ (g)
δaφ2(g) =

γ̂
(1)
τ̂

δa
(1)
φ2

+O(g2) =
2d−4Γ

(
d
2 − 1

)
Γ
(
d
2 + 1

)
πd(d+ 1)

1
C

(0)
τ̂

+O(g2) . (3.21)

This quantity depends on the central charge C
(0)
τ̂

of the CFTd−1 that the bulk scalar
couples to.

Next, we consider the leading order correction to the coefficient CD in the two-point
function of the displacement operator

CD = C
(D)
D + δCD(g) = C

(D)
D + δC

(1)
D g2 +O(g4) , (3.22)

where C(D)
D denotes the value at the free Dirichlet boundary condition. The displacement

operator in this theory is [5, 6]

D =
(1

2(∂yφ)2 − 1
2(∂aφ)2 + 1

4
d− 2
d− 1∂

2
aφ

2
)∣∣∣∣
y=0

. (3.23)

Note that this formula makes sense even for an interacting boundary condition if we in-
terpret the composite operators on the right hand side as products of φ|y=0 and ∂yφ|y=0,
made finite by subtracting all the singular terms in the OPE. This is because D(~x) =
limy→0 T

yy(~x, y) and the bulk operator T yy is always equal to (3.23). (The scaling dimen-
sion of D is guarantueed to come out correctly because φ|y=0 and ∂yφ|y=0 have protected
dimensions.) This observation allows us to easily compute the two-point function of D in
conformal perturbation theory for the modified Dirichlet condition (3.16). We find that the
contributions from φ|y=0 are O(g4) whereas the two-point function of ∂yφ|y=0 is corrected
already at O(g2) by the interaction term (3.15) and is given by:

〈∂yφ(0, ~x)∂yφ(0, ~x′)〉

=
Γ
(
d
2

)
π
d
2

1
|~x− ~x′|d

+ g2

Γ
(
d
2

)
π
d
2

2 ∫
dd−1~u

|~x− ~u|d
∫

dd−1~u′

|~x′ − ~u′|d
C

(0)
χ̂

|~u− ~u′|d−2 +O(g4)

=
Γ
(
d
2

)
π
d
2

1
|~x− ~x′|d

1− g2
2π

d
2C

(0)
χ̂

Γ
(
d
2 − 1

)
+O(g4) .

(3.24)

Note that the integrals have a power-law UV divergence for ~u ∼ ~x and ~u′ ∼ ~x′ that we
subtracted. As a check, the result (3.24) implies

b2 =
√

2(d− 2)

1− g2
π
d
2C

(0)
χ̂

Γ
(
d
2 − 1

)
+O(g4) , (3.25)

which is in perfect agreement with the correction (3.20) that we computed for aφ2 and the
crossing relations (2.13). Using (3.24) to compute the two-point function of 1

2(∂yφ)2
∣∣∣
y=0
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and therefore of D, we obtain

C
(D)
D =

Γ
(
d
2

)2

2πd , δC
(1)
D = −

(d− 2)Γ
(
d
2

)
C

(0)
χ̂

π
d
2

. (3.26)

We can then form another ratio of observables that is independent of the coupling at the
putative perturbative fixed point

δCD(g)
δaφ2(g) = δC

(1)
D

δa
(1)
φ2

+O(g2) = −
2d−3Γ

(
d
2

)2

πd
+O(g2) . (3.27)

Note that this ratio does not depend on any data of the CFTd−1 and therefore it is a
universal result for deformations of the form (3.15) of the Dirichlet boundary condition.

3.2.3 Modified Neumann boundary conditions and perturbation theory

As a final example, we consider deformations of the Neumann free boundary condition by
the following interaction

S
(N)
∂ = SCFTd−1 + g

∫
y=0

dd−1~x φ χ̂ . (3.28)

The interaction gives rise to the following modified Neumann boundary condition

∂yφ|y=0 = g χ̂ . (3.29)

The condition (3.5) now gives ∆̂χ̂ = d
2 − ε, with 0 < ε � 1, and again we will assume the

existence of a perturbative fixed point with g2 ∝ ε. Plugging in eq. (3.13) we obtain

γ̂
(1)
τ̂

=
Γ
(
d
2 − 1

)
4π

d
2

d

d+ 1
C

(0)
χ̂

C
(0)
τ̂

. (3.30)

To compute the variation of the parameter aφ2 we use the same strategy as in the
previous example, namely it follows from the modified Neumann condition that

b2 = g

√√√√√ 4π
d
2

Γ
(
d
2 − 1

)C(0)
χ̂

(
1 +O(g2)

)
, (3.31)

and using the crossing relations (2.13) this gives

δa
(1)
φ2 = −

23−dπ
d
2C

(0)
χ̂

Γ
(
d
2

) . (3.32)

Note that this has an opposite sign compared to eq. (3.20), in agreement with the unitarity
bounds (2.14). The coupling-independent ratio then is

γ̂τ̂ (g)
δaφ2(g) =

γ̂
(1)
τ̂

δa
(1)
φ2

+O(g2) = −
2d−4Γ

(
d
2 − 1

)
Γ
(
d
2 + 1

)
πd(d+ 1)

1
C

(0)
τ̂

+O(g2) . (3.33)
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Like in the previous example we now compute the correction to CD, again using the
definition (3.23) as the starting point. The main difference is that in this case the leading-
order correction comes from the second and third terms in eq. (3.23), namely those involving
φ|y=0, while the first term involving ∂yφ|y=0 only starts contributing at subleading order
O(g4). We will then only need the two-point function of φ|y=0 up to O(g2) corrections,
that is

〈φ(0, ~x)φ(0, ~x′)〉

=
Γ
(
d
2 − 1

)
2π

d
2

1
|~x− ~x′|d−2 + g2

Γ
(
d
2 − 1

)
2π

d
2

2 ∫
dd−1~u

|~x− ~u|d−2

∫
dd−1~u′

|~x′ − ~u′|d−2

C
(0)
χ̂

|~u− ~u′|d
+O(g4)

=
Γ
(
d
2 − 1

)
2π

d
2

1
|~x− ~x′|d

1− g2
π
d
2C

(0)
χ̂

Γ
(
d
2

)
+O(g4) . (3.34)

The integrals have a power-law UV divergence for ~u ∼ ~u′ that we subtracted. As a check,
from (3.24) we obtain

b1 =
√

2

1− g2
π
d
2C

(0)
χ̂

2Γ
(
d
2

)
+O(g4) , (3.35)

which, upon substitution in the crossing equations (2.13), gives a correction to aφ2 in
agreement with (3.32). Using (3.34) we obtain

C
(N)
D =

Γ
(
d
2

)2

2πd , δC
(1)
D = −

Γ
(
d
2

)
C

(0)
χ̂

π
d
2

. (3.36)

Comparing with (3.26) we see that the value at the free boundary condition is the same
for Neumann and Dirichlet, while the leading correction differs by a factor of d−2. Taking
the ratio with δa2

φ we get

δCD(g)
δaφ2(g) = δC

(1)
D

δa
(1)
φ2

+O(g2) = −
2d−3Γ

(
d
2

)2

πd
+O(g2) , (3.37)

which notably is the same as the one obtained for the deformation of Dirichlet in eq. (3.27).
Like in that example, this ratio is universal for deformations of the form (3.28) of the
Neumann boundary condition, because it does not depend on data of the CFTd−1.

4 Bootstrapping boundary conditions for a free scalar

4.1 Crossing equations

In this section we present the crossing equation for the mixed system of four-point functions
of the boundary modes of φ, namely

〈Ôi(~x1)Ôj(~x2)Ôm(~x3)Ôn(~x4)〉. (4.1)
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The crossing equations for a generic mixed system of scalars, labelled by indices i, j,m, n,
were derived in [35] and read

∑
Ô(l)

[f̂
ijÔ(l) f̂mn

Ô(l)
F ij,mn
∓,∆̂,l

(u, v)± f̂mjÔ
(l)
f̂
inÔ(l)F

mj,in

∓,∆̂,s
(u, v)] = 0, (4.2)

where u = x2
12x

2
34

x2
13x

2
24

and v = x2
23x

2
14

x2
13x

2
24
. The functions F ij,mn

±,∆̂,l
are the following combinations of

the ordinary s-channel conformal blocks g∆̂ij ,∆̂mn

∆̂,l

F ij,mn
±,∆̂,l

(u, v) ≡ v
1
2 (∆̂m+∆̂j)g

∆̂ij ,∆̂mn

∆̂,l
(u, v)± u

1
2 (∆̂m+∆̂j)g

∆̂ij ,∆̂mn

∆̂,l
(v, u). (4.3)

Note that not all equations in this system (4.2) are independent, since15

F ij,mn
±,∆̂,l

(u, v) = Fmn,ij
±,∆̂,l

(u, v), F ij,ij
±,∆̂,l

(u, v) = F ji,ji
±,∆̂,l

(u, v), F ij,kk
±,∆̂,l

(u, v) = F ji,kk
±,∆̂,l

(u, v).
(4.4)

Due to Bose symmetry (2.19) we have the OPE selection rule

f̂ij
Ô(l) = (−1)l f̂jiÔ

(l)
. (4.5)

If we specialize all these ingredients to our problem where i, j,m, n ∈ {1, 2} then we find 7
independent crossing equations:

0 =
∑
Ô(l)

f̂11
Ô(l)

f̂11Ô(l)F
11,11
−,∆̂,l

(u, v),

0 =
∑
Ô(l)

f̂22
Ô(l)

f̂22Ô(l)F
22,22
−,∆̂,l

(u, v),

0 =
∑
Ô(l)

f̂12
Ô(l)

f̂12Ô(l)F
12,12
−,∆̂,l

(u, v),

0 =
∑
Ô(l)

f̂11
Ô(l)

f̂12Ô(l)F
11,12
−,∆̂,l

(u, v),

0 =
∑
Ô(l)

f̂12
Ô(l)

f̂22Ô(l)F
12,22
−,∆̂,l

(u, v),

0 =
∑
Ô(l)

(−1)lf̂12
Ô(l)

f̂12Ô(l)F
12,21
∓,∆̂,l

(u, v)± f̂11
Ô(l)

f̂22Ô(l)F
11,22
∓,∆̂,l

(u, v) .

(4.6)

15Recall that [36, 37]

g∆12,∆34
∆,` (u/v, 1/v) = (−1)`v

∆34
2 g−∆12,∆34

∆,` (u, v) = (−1)`v
−∆12

2 g∆12,−∆34
∆,` (u, v),
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In our case the operators must also obey the OPE relations (2.22). Imposing those, the
system of equations can be rewritten as follows (details can be found in appendix D)

0 = ~V1 +
∑

l=even
f̂12Ô(l) f̂12

Ô(l) ~V+,∆̂,l

+
∑

l=odd,...
∆̂=d+l−1+2n
n=0,1,...

f̂12Ô(l) f̂12
Ô(l) ~V−,∆̂,l

+
∑
`∈2N

∑
even l<`
∆̂=d+`−2

(
f̂11Ô(l) f̂22Ô(l)

)
~V0,∆̂,l

f̂11
Ô(l)

f̂22
Ô(l)

 .

(4.7)

The quantities ~V±,∆̂,l,
~V
1,∆̂,l are 7-component vectors defined in (D.5), (D.6) and ~V0,∆̂,l are

vectors of 2 × 2 matrices defined in (D.7). Beside the identity, the first line accounts for
‘unprotected’ primaries, i.e. operators of generic scaling dimension away from the poles of
the gamma functions in (2.22). The last two lines take into account the tower of ‘protected’
operators listed in table 1, which can have both odd and even spin. The indices of the
OPE coefficients are contracted according to the conventions of appendix A.

4.2 Implementing the exact relations

We will numerically ‘bootstrap’ a set of crossing equation in the sense of [2]. For most
problems, the fastest program available for this task is the semidefinite program solver
SDPB [38]. We have used the recent version [39] which supports the ‘hotstarting’ algorithm
suggested in [40]. In order to use SDPB efficiently, the ingredients of the crossing equations
must be approximated as rational functions of the scaling dimension such that all poles
of odd order lie at or below the unitarity bound. This is always possible when the basis
functions are conformal blocks and we refer the reader to [35] for details. The complication
in this work is that the vector ~V+,∆̂,l in (4.7) has several occurences of ∆̂ which are not in
conformal blocks. In this section we explain how to overcome this technical difficulty, but
the reader can omit it in a first reading.

As shown in appendix D, we must consider linear combinations in which the coeffi-
cients are various products of κ1(∆̂, l) and κ2(∆̂, l) — the functions from (2.22). While
these types of blocks were first introduced for studying the long-range Ising model, in the
numerical analysis of [19] only the last two components of (D.6) were used. In addition,
κ1(∆̂, l)κ2(∆̂, l) was treated as a vector with > 1000 discrete evaluations, thereby eschew-
ing some of the benefits of semidefinite programming. In this work, we do not need to
limit ourselves to those crossing equations that involve only the product κ1(∆̂, l)κ2(∆̂, l)
where b1 and b2 cancel out. Thanks to (2.13), the other products only introduce one new
parameter and it has a clear physical meaning in the BCFT context. To remedy the second
problem, we need to discuss the approximation theory of gamma functions.
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To start, it is easily verified that

κ1(∆̂, l) = − b2
2b1

κ(∆̂, l)

κ2(∆̂, l) = − b1
2b2

(∆̂ + l − 1)(d+ l − ∆̂− 2)κ(∆̂, l)
(4.8)

with

κ(∆̂, l) =
Γ
(
l+∆̂

2

)
Γ
(
d+l−∆̂−2

2

)
Γ
(
d+l−∆̂−1

2

)
Γ
(
l+∆̂+1

2

) . (4.9)

As such, a rational approximation16 for κ(∆̂, l)2 will cover the cases of κ1(∆̂, l)2, κ2(∆̂, l)2

and κ1(∆̂, l)κ2(∆̂, l). The most expensive step for our purposes will be the Weierstrass
formula

Γ(z) = e−γz

z

∞∏
k=1

(
1 + z

k

)−1
ez/k (4.10)

which introduces a new series of poles for each gamma function. Unlike [19], which sug-
gested using (4.10) on the full function, we will only apply it to the −∆̂ part of κ(∆̂, l)2.

The +∆̂ part, since it is regular, should be approximated with one of the many expres-
sions for the Wallis ratio. This is a quantity which has attracted interest for hundreds of
years due to the application of calculating π. In particular, we note the asymptotic formula

Γ(z + 1)
Γ
(
z + 1

2

) . √z + 1
4 + 1

32z + 8 , z →∞. (4.11)

It was found in [41] that (4.11) is the n = 1 case in a sequence of approximants that
have the schematic form (zn + . . . )

1
2n . We cannot use these higher radicals due to the

requirement that κ(∆̂, l)2 be a rational function but it is still possible to make (4.11)
arbitrarily accurate. One simply applies the functional equation n times to arrive at

Γ(z + 1)
Γ
(
z + 1

2

) .
(
z + 1

2

)
n

(z + 1)n

√
z + n+ 1

4 + 1
32z + 32n+ 8 , z →∞. (4.12)

We have not found it necessary to choose a large value of n. For example, even when z = 1
4 ,

Weierstrass does not become better than (4.11) until k = 36.

16With infinitely many poles above the unitarity bound it is clear that any rational approximation for
κ(∆̂, l)2 is going to have significant errors in the semi-infinite range of allowed values for ∆̂. Extremely large
values of ∆̂ should however be unimportant for the numerical results, and for a finite window of values a
rational approximation is perfectly feasible. We have attempted to account for this in practice by using the
simpler crossing equations (4.6) to cover the ‘tail’ of the more constraining crossing equations. Each time
we approximate κ(∆̂, l)2 with ∆̂ ∈ [∆0,∞), we allow these extra conformal blocks, multiplying independent
f
ijÔ

coefficients, to have an exchanged scaling dimension in [∆0 + 20,∞).
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We will now quote expressions for the two factors of κ(∆̂, l)2. Using (4.12) with n = 1,

Γ
(

∆̂+l
2

)2

Γ
(

∆̂+l+1
2

)2 =

 2(∆̂ + l + 1)
(∆̂ + l)(∆̂ + l + 2)

Γ
(

∆̂+l+4
2

)
Γ
(

∆̂+l+3
2

)


2

≈
[

2(∆̂ + l + 1)
(∆̂ + l)(∆̂ + l + 2)

]2
8∆̂2 + 8(2l + 5)∆̂ + 8l2 + 40l + 51

8(2∆̂ + 2l + 5)
.

(4.13)

The singular part requires a cutoff which we call kmax.

Γ
(
d+l−∆̂−2

2

)2

Γ
(
d+l−∆̂−1

2

)2 ≈ e
γ
kmax∏
k=1

e
1
k

kmax∏
k=0

∆̂− d− l − 2k + 1
∆̂− d− l − 2k + 2

2

≈ 1
kmax

kmax∏
k=0

(∆̂− d− l − 2k + 1)2

(∆̂− d− l − 2k + 2)2
.

(4.14)

While it is optional to resum the exponent in the second step, the logarithmic behaviour
of the harmonic series makes it convenient.

The expressions (4.13) and (4.14) have been implemented as a patch for the helper
program PyCFTBoot [42]. For the poles exhibited here, which are two units apart, we have
taken kmax = 20. The poles coming from conformal blocks [35] are only one unit apart
so we take kmax = 40 for those. The standard way to account for poles in ∆̂ is to absorb
them into the OPE coefficients of (4.7) so that crossing symmetry becomes a statement
about polynomials. The most desirable type of problem for SDPB is one in which these
polynomials can be expressed in terms of an orthonormal basis [38]. Recently, [43] gave an
example of a problem which cannot be optimized in this way. In our case, this privileged
basis of polynomials is again unavailable due to the 20 double poles of (4.14) that are above
the unitarity bound. For this reason, we have opted to still use the simple crossing equa-
tions (4.6) for spins above a certain cutoff l0. For most of the bounds in the next section,
this is l0 = 4 while some of them have been redone with l0 = 6. Seeing almost no difference,
we conclude that the exact relations for l = 0 and l = 2 are doing most of the work.

The other limitation of our approach is that the square root in (4.12) can only be
eliminated when the κi(∆̂, l) appear quadratically. This forces us to drop 〈Ô1Ô1Ô1Ô2〉
which is linear in κ1(∆̂, l) and 〈Ô2Ô2Ô2Ô1〉 which is linear in κ2(∆̂, l). These two correlation
functions exchange the same operator families as the other three being considered in (4.6).
According to standard lore, in such a case the addition of these extra correlators does not
affect the bounds.

5 Numerical results for 4d/3d systems

Let us collect the constraints used for the numerical bootstrap analysis. First, we take
the crossing equations for 〈Ô1Ô1Ô1Ô1〉, for 〈Ô1Ô1Ô2Ô2〉 and 〈Ô2Ô2Ô2Ô2〉 given in (4.6).
These apply to any (possibly non-local) CFT containing the operators Ô1 and Ô2. Second,
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we have the exact OPE relations (4.13) and (4.14) which are necessary for a solution of
these crossing equations to be an admissible boundary condition for a massless free scalar
in d dimensions. These conditions reduce the crossing equations to equation (4.7) at the
cost of introducing a new parameter, aφ2 , that our bounds will depend on. Notice that
this in particular implies that the odd-spin operators can only have the scaling dimensions
of the generalized free theory. Third, the boundary spectrum cannot have a stress tensor,
so it is natural to demand that the first spin 2 operator has a dimension ∆̂τ̂ strictly larger
than d− 1. Fourth, we should demand that the flux operator V(1) of dimension d is absent
to avoid interfaces and other possible sources of non-locality on the boundary, see the
discussion in 2.2.3. Fifth, we have the Ward identities for the displacement operator (2.36)
which restrict f̂11D and f̂22D to a curve parametrized by CD.

We will set d = 4 throughout in order to work with a correlator system that involves 3d
conformal blocks.17 As discussed in [44, 45], similar problems with 2d blocks often require
more experimentation with the gaps being imposed. These works are concerned with
maximizing the gap in the scalar sector, and indeed, we can provide a nice preview of our
results by doing the same. Figure 1 bounds the dimension of the lightest exchanged scalar,
which we call ∆̂ε̂, as a function of the pseudo stress tensor dimension ∆̂τ̂ . To obtain this plot
we scanned over all the allowed values of aφ2 . The so obtained blue region is clearly smaller
than the pink region, obtained without imposing the OPE relations, or the single correlator
region delineated by the upper black line. Three further comments are worthwhile.

First, we observed that much of the constraining power came from our fourth con-
straint, i.e. the exclusion of the dimension d vector V(1) = [Ô1Ô2]0,1 from the spectrum. In
fact, if we were to reinstate just this vector then the blue region would expand to almost
the same size as the pink region. We emphasize that the OPE relations are essential to
meaningfully impose this constraint: they prevent the appearance of vector operators of
dimensions very close to d that would numerically be indistinguishable from V(1). Fur-
thermore, because of the fake primary effect [46, 47] the block for V(1) can be mimicked in
our numerical analysis by a spin 2 operator of dimension 3, and therefore the constraint
that ∆̂τ̂ > 3 (strictly) is also essential to ensure that it is really absent. This latter ar-
gument relies on the observation that, for a spin 2 operator whose dimension ∆̂ → 3, the
corresponding combination of blocks that enters in the crossing equation (4.7) is:

κ1(∆̂, 2)κ2(∆̂, 2)g0,0
∆̂,2

(u, v)− g−1,1
∆̂,2

(u, v) = 4
5(∆̂− 3)

g−1,1
4,1 (u, v) + . . . (5.1)

by virtue of the OPE relations discussed in section 4, whose notation we follow here. There-
fore we can recover a vector operator if we assume that its overall coefficient f̂12Ô(l) f̂12

Ô(l) ∝
(∆̂− 3).

Second, for the Dirichlet or Neumann boundary conditions either Ô1 or Ô2 vanishes
so in some sense they are not within the reach of our numerical analysis. On the other
hand we can find a more general solution including both Ô1 and Ô2 as independent GFFs,
with any value of aφ2 . This solution does contain the vector V(1), and because of the fake
primary effect we just discussed it corresponds to the point with ∆̂ε̂ = 2 and ∆̂τ̂ = 3, which
is well within the allowed region.

17For the computation of the conformal blocks in three dimensions we have used the ‘rational approxi-
mation’ outlined in [35].
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Figure 1. A plot showing the upper bound on the dimension of ε̂, the first scalar, other than
the identity, seen by any of the OPEs in our correlator system. The unshaded region is the one
that follows from a single correlator

〈
Ô1Ô1Ô1Ô1

〉
. The pink region, which is more restrictive, uses

the multi-correlator system but the only inputs it uses from the exact relations are the odd-spin
operator dimensions given in table 1. The blue region, more restrictive again, follows from a genuine
use of the exact relations. Since these depend on aφ2 , we have extremized ∆̂

ε̂
over a third axis which

is not shown.

Third, one may check that these bounds are saturated by the following two extremal
solutions. The point (∆̂τ̂ , ∆̂ε̂) = (4, 2) represents the ‘single GFF’ solution where Ô1 is a
GFF and ε̂ = Ô2 = Ô2

1. This satisfies our crossing equations because it consists entirely
of protected operators in (4.7). Also, the aforementioned vector is indeed absent from the
spectrum of primaries because [Ô1Ô2]0,1 is a descendant of Ô3

1 in this theory. Since the
bound in figure 1 can only decrease as a function of ∆̂τ̂ , we can be confident that it will stop
changing once it hits ∆̂ε̂ = 2. In the blue plot, this turns out to happen well before ∆̂τ̂ = 4.
We can also understand the point (∆̂τ̂ , ∆̂ε̂) ≈ (3, 2.95): here the four-point function of Ô1
can be the extremal solution for a local three-dimensional CFT with ∆̂ = 1, which according
to [48] has ∆̂ε̂ ≈ 2.95, and then Ô2 can be a disconnected GFF. This setup satisfies all of
the constraints we have imposed (we are of course not imposing ∆̂τ̂ > 3 here) except for
the absence of V(1), which again manifests itself as a spin 2 operator of dimension 3.

We find it plausible that, with infinite computational power, the drop from ∆̂ε̂ ≈ 2.95
becomes infinitely sharp leading to a value of ∆̂ε̂ = 2 almost everywhere. The remainder
of this section is about what lies below ∆̂ε̂ = 2.18

18The bulk has a global reflection symmetry φ→ −φ under which Ô1 and Ô2 are odd but ε̂ is even. Since
∆̂
ε̂
< 3 always, and ∆̂

ε̂
≤ 2 seems likely, any non-trivial boundary condition must be (strongly) unstable

even for RG flows that preserve the Z2 symmetry. The cases of Dirichlet and Neumann are not included in
this discussion because as we explained in these cases one should remove many operators from the spectrum.
The Neumann condition is also (strongly) unstable due to the operator φ2, while in the Dirichlet case the
leading Z2 even deformation is (∂yφ)2 so this boundary condition is stable.
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Figure 2. Bounds on the dimension of the leading spin 2 operator τ̂ over the range − 1
4 < aφ2 < 1

4
with our best estimate for the allowed region shaded in blue. The curves have nmax = 5, 6, 7, 8 in
the notation of [49, 50]. As for the number of derivative components being kept in each crossing
equation, these correspond to 21, 28, 36, 45 respectively. The dotted line shows the maximum pos-
sible value for ∆̂

τ̂
from leading order conformal perturbation theory under the assumption that the

Ising model is the 3d CFT with the lowest central charge.

5.1 A universal bound

The next parameter to introduce is aφ2 , which through (2.13) determines b1 and b2, in
order to more fully exploit the exact relations. When scanning over aφ2 , it is instructive
to first determine its value for the two extremal solutions at (∆̂τ̂ , ∆̂ε̂) = (4, 2) and at
(∆̂τ̂ , ∆̂ε̂) ≈ (3, 2.95) discussed above. In the first we found a spin 2 boundary operator
with ∆̂τ̂ = 4 corresponding to an unprotected block in the first line of (4.7). Since the
overall coefficient of this combination is f̂12Ô(l) f̂12

Ô(l) , which vanishes for this theory, (2.22)
tells us that we must be in a situation where κ2(4, 2) blows up. As shown in the middle row
of table 1, this can only happen for an Ô1 double-trace if b2 = 0. Consequently, this solution
sits at aφ2 = 1

4 . In the other extremal solution, the spin 2 operator with ∆̂τ̂ = 3 needs to be
absent from Ô2× Ô2 since Ô2 is a GFF. The only way to make this compatible with (2.22)
is to have aφ2 = −1

4 . Proceeding to intermediate values of aφ2 , it is useful to maximize ∆̂τ̂

since this can be interpreted as a measure of how non-local a CFT is. Figure 2 presents this
result. The four different lines correspond to four different search spaces, giving a sense
of how close we are to having an optimal bound. Every other plot in this section uses the
number of components corresponding to the second most restrictive region in figure 2.
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Figure 2 enables a comparison with the results of conformal perturbation theory, par-
ticularly around aφ2 = −1

4 where the bound is very strong and we can make a meaningful
comparison with the deformation of the Dirichlet boundary conditions by a putative 3d
CFT with a scalar operator with ∆̂χ̂ = 1− ε, that we studied in section 3.2.2. Recall that,
according to equation (3.17), the anomalous dimension of the spin 2 operator depends on
the unperturbed central charge C(0)

τ̂
. Even though we do not know a theory with an op-

erator that can play the role of χ̂, it is clear that the central charge of a unitary 3d CFT
cannot be arbitrarily small. In fact, we believe that it is not unreasonable to assume that
the 3d Ising CFT with19

C
(0)
τ̂
≈ 0.95C free

τ̂
(5.2)

is the theory with the lowest possible central charge. An early indication for this conjecture
was the local minimum corresponding to the Ising CFT found in [51, 52], and recently in [53]
a rigorous lower bound was found that, with sufficient numerical precision, is likely to lie
between about 0.6C free

τ̂
and 0.95C free

τ̂
. For us this implies that

C
(0)
τ̂

> 0.95C free
τ̂

⇒
(3.21)

γ̂τ̂ < 0.46 δaφ2 (5.3)

as a bound on the anomalous dimension of the first spin 2 operator. In figure 2 it follows
that every such example must lie below the dotted line. The possibilities obeying (5.3)
are all within the allowed region for now, but we will see that many of them are ruled out
when we add more constraints.

5.1.1 The kink and the extremal spectrum

We now come to the most striking feature of figure 2 which is the jump near the right hand
side. Since the convergence appears to be rapid in this vicinity, we can be confident that
the coordinate at which the curve flattens again is not tending towards aφ2 = 1

4 . In other
words, there is a kink at (aφ2 , ∆̂τ̂ ) ≈ (0.215, 3.966) which obeys the exact relations and
cannot be one of the free boundary conditions. If it is truly a new boundary condition then
it must obey a further constraint that we have not yet imposed: the Ward identity (2.36)
for the displacement operator. This is one of the reasons we would like to investigate the
spectrum at the kink in more detail.

The extremal spectrum. The extremal functional method [20, 21] allows for the ex-
traction of an approximate spectrum and OPE coefficients for any point on the boundary
of an allowed region. We have done so at two points: the first is the kink in figure 2 and
the second involves a tuning of the displacement central charge CD using the procedure
that will be explained in the next subsection. The CFT data for operators with ∆̂ < 6.5
are listed in table 2. The black numbers were obtained from the output of the script in [54]
and the red numbers were computed using the OPE relations. Our OPE coefficients are
defined such that

g∆̂,l(z, z) ∼ (−1)l
[

4z
(1 +

√
1− z)2

]∆̂

+ . . . (5.4)

for the standard cross-ratios z and z̄ approaching zero along the diagonal.
19We are using conventions such that Cfree

τ̂
= 3

32π2 .
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(aφ2 , ∆̂τ̂ , CD) = (0.215, 3.966, 0.0050)
l ∆̂ f̂11O f̂12O f̂22O

0 0.561 −0.2549 0.6690 −2.4365
0 1.815 −2.0305 1.0807 −2.4953
0 3.381 −0.1749 0.9209 1.6047
0 4 See (5.8)
0 4.466 0.1032 0.4145 −1.6912
0 6 0.1065 0 0.3046
1 6 0 0.3702 0
2 3.966 −0.7775 0.2489 −1.0387
2 5.188 −0.0176 0.7099 1.2956
2 6 0.2549 0 0.8199
3 6 0 0.3666 0
4 5.791 −0.0044 0.0755 −1.9929

(aφ2 , ∆̂τ̂ , CD) = (0.218, 3.970, 0.0050)
l ∆̂ f̂11O f̂12O f̂22O

0 0.555 −0.2399 0.6625 −2.5352
0 1.826 −2.0122 1.0635 −2.5603
0 3.227 −0.0973 0.9453 0.8731
0 4 See (5.10)–(5.11)
0 4.859 0.0181 0.3998 −0.3778
0 6 0.1057 0 0.4466
1 6 0 0.3707 0
2 3.970 −0.7799 0.2319 −1.0137
2 5.311 −0.0308 0.7837 2.8659
2 6 0.2533 0 0.8633
3 6 0 0.3652 0
4 5.960 −0.0085 0.0334 −0.8782

Table 2. The low-lying spectrum at two points in (aφ2 , ∆̂
τ̂
, CD) space. The point associated with

the left table is still visible after projecting down to just (aφ2 , ∆̂
τ̂
) — it is the kink in figure 2. Due

to our maximization choice, we see every possible operator with odd spin. Protected operators (the
ones with integer scaling dimensions) of even spin have vanishing mixed OPE coefficients and they
start above the leading twist. Unprotected operators have their OPE coefficients related by (2.22)
and thus we have shown calculated values in red.

Notice that the most stable result is obtained after maximizing an OPE coefficient
near the boundary of the plot to make the functional as close to extremal as possible. We
have chosen to optimize the coefficient of the V(3)

4 operator, which is a spin 3 operator
of dimension 6. Our reason for doing so is to avoid another interference from the fake
primary effect: much like V(1)

2 can be mimicked by a spin 2 operator of dimension almost
3, the V(3)

4 operator can be mimicked by a spin 4 operator of dimension almost 5. However
this scenario is unnatural, not only because of the existence of an operator very close to
the unitarity bound but also because the absence of V(3)

4 would imply that the higher-spin
charge corresponding to the bulk spin 4 current is preserved by the boundary. We do not
expect such an ‘integrable’ boundary, and our optimization minimizes the chances of an
unwanted spin 4 operator taking the place of V(3)

4 .
After going through this maximization, a reassuring feature we observe is that there is

no even spin l operator with ∆̂ = d+ l− 2, as anticipated in the range of the sum in (4.7).
Such a block, if present, would have to be treated with ~V0,d+l−2,l because the exact relations
degenerate at this point. But indeed, bulk spin ` currents only have boundary modes up to
l = `−1 in the bOPE and there is no reason for l = ` to be present as a protected operator.

The displacement Ward identity. With the spectrum in hand we can investigate
whether the Ward identity (2.36) for the displacement operator is satisfied. However this
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is again a rather subtle business, this time because there might be other scalar operators
of dimension 4. The correct procedure is as follows.

Consider all the scalar operators of dimension 4 in the putative extremal solution at
the kink. One of these operators is the displacement operator, and its coefficients f̂11D and
f̂22D must obey (2.36), i.e. they are constrained to lie on a curve parameterized by CD.
Every other operator is then not a displacement operator, meaning that it must be absent
from the bulk-to-boundary OPE of the stress tensor: bTD′ = 0 for any ‘non-displacement’
D′. Repeating the arguments in appendix C.3 this leads to the condition that:

f̂11D′ =
bφ2D′

12b21
, f̂22D′ = −

bφ2D′

2b22
. (5.5)

with bφ2D′ arbitrary. So from a physical perspective (2.36) and (5.5) are the equations to
be checked.

On the numerical side of things we do not get these coefficients so cleanly; instead we
are given the elements of the matrix corresponding to20

∑
O=D,D′

 λ̂2
11O λ̂11Oλ̂22O

λ̂11Oλ̂22O λ̂2
22O

 , (5.6)

where λ̂ijO denotes the OPE coefficient with unit-normalized two-point function of O,
and it is up to us to cook up a series of OPE coefficients λ̂ijO for operators D and D′ in
order to fit this data. (The switch from f̂ijO to λ̂ijO is deliberate: numerically we obtain
OPE coefficients for unit-normalized operators, so the coefficients in (2.36) should really
be scaled by

√
CD.)

For the spectrum on the left hand side of table 2 we numerically obtain a matrix of
rank 1 whose factorization yields λ̂11D

λ̂22D

 =

0.4695
1.1936

 . (5.7)

Since we have only one operator this must be the displacement, so we can check com-
patibility with the Ward identity (2.36). Remarkably we find that it is well obeyed with
CD = 0.0050 — a strong indication that the extremal solution is actually physical! We
also obtain that f̂11D

f̂22D

 =

0.0332
0.0844

 (5.8)

for the OPE coefficients.
For the spectrum on the right hand side of table 2 we find that

∑
O=D,D′

 λ̂2
11O λ̂11Oλ̂22O

λ̂11Oλ̂22O λ̂2
22O

 =

0.2291 0.2397
0.2397 13.199

 . (5.9)

20A priori the sum could feature more than one non-displacement operator. Equation (5.5) however
dictates that all such operators point in the same direction in the two-dimensional OPE space and their
contributions just get added. The correlation functions we analyzed can therefore not distinguish between
one or more non-displacement operators.
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This is a matrix of rank two and we need more than one operator. It is natural to try to
see if we can fit it with one displacement and one non-displacement operator. Notice that
the matrix has three independent entries but for the two operators we only have the two
parameters CD and bφ2D′ . Two simple approaches can be taken at this point. In the first
approach, we demand that a non-displacement is exactly present and extract bφ2D′ :

λ̂11D′

λ̂22D′

 =

 bφ2D′

12b21
− bφ2D′

2b22

⇒ bφ2D′ = 1.775,

λ̂11D

λ̂22D

 = ±

0.472
1.088

 . (5.10)

To fit the rest of the matrix we need the given displacement OPE coefficients, which lead to
CD = 0.0053 from λ̂11D and CD = 0.0049 from λ̂22D. Alternatively, in the second approach,
we demand that one of the outer products is an exact displacement and extract CD and
OPE coefficients for the non-displacement:

λ̂11D

λ̂22D

 =

2S2
4CD+16aφ2

6S4b21
√
CD

2S2
4CD−16aφ2

S4b22
√
CD

⇒ CD = 0.0050,

λ̂11D′

λ̂22D′

 = ±

 0.085
−3.452

 . (5.11)

This leads to bφ2D′ = 1.914 from λ̂11D′ and bφ2D′ = 1.767 from λ̂22D′ . Although the small
mismatches in both approaches might be due to numerical errors, it seems reasonable to
conclude that this solution is not as physical as the solution on the left hand side of table 2.

5.2 Local boundary conditions

As with numerical bounds on the gap, the exact relations also lead to significant improve-
ments for bounds on OPE coefficients. Consider again the (unit-normalized) displacement
operator which appears with the coefficients λ̂11D and λ̂22D. To constrain them, we setλ̂11D

λ̂22D

 7→ λ̂D

cos θ
sin θ

 (5.12)

as in [55], then apply standard methods for bounding the magnitude of an OPE-space
vector [56]. Figure 3 shows the results of this exercise for different values of aφ2 .

A first thing to note is once more the importance of the exact OPE relations in (2.22).
Without them the allowed region would certainly be the union of all the regions in figure 3.
However for aφ2 → 1

4 we observe an unbounded growth in the vertical direction (note the
different vertical scales), and therefore λ̂22D is really only bounded by virtue of the OPE
relations.

The dotted line represents the combinations of OPE coefficients that obey the Ward
identity (2.36), parameterized by the displacement central charge CD. As discussed above,
the non-trivial fact about the kink in figure 2 was that it happened to sit on this line. The
intersection of the dotted line with the allowed region also translates into a lower and upper
bound for CD for each value of aφ2 . This is shown as the pink region in figure 4. This bound
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(a) aφ2 = −0.249. (b) aφ2 = −0.24. (c) aφ2 = −0.04.

(d) aφ2 = 0.04. (e) aφ2 = 0.24. (f) aφ2 = 0.249.

Figure 3. Six allowed regions for the OPE-space vector of the unit-normalized displacement. The
dotted line shows the physical locus for λ̂11D and λ̂22D, i.e. (2.36) divided by

√
CD. When this line

becomes vertical (defining a unique λ̂11D in order for λ̂22D to be finite), it saturates our bound.
This does not quite happen in the opposite limit of the line becoming horizontal. Note that in
the GFF example there are two candidates for the displacement. Both [Ô1Ô1]1,0 and [Ô2Ô2]0,0 are
compatible with these bounds if we treat them as different operators that satisfy λ̂11Dλ̂22D = 0.

is certainly valid but rather crude: it does not take into account the restriction (5.5) on addi-
tional scalar operators of dimension 4 that are not the displacement. To do better we can as-
sume a fixed displacement operator with a certain CD in the crossing equations by replacing

~V1 7→ ~V1 + 1
S2

4CD

(
2S2

4CD+16aφ2

6b21

2S2
4CD−16aφ2

b22

)
~V0,4,0

2S2
4CD+16aφ2

6b21
2S2

4CD−16aφ2

b22

 (5.13)

and removing the scalar of dimension 4 from the special operators in the crossing equa-
tion (4.7). We then bisect in CD to find the allowed region, and this leads to the much
improved blue region in figure 4.

One may wonder if the blue region allows for other scalar operators of dimension 4
that are not the displacement operator. The answer is that it does, because such operators
lie in the allowed continuum of operators. Furthermore,

f̂22D′

f̂11D′
= κ2(4, 0)
κ1(4, 0) = −6b

2
1
b22
, (5.14)

which implies that the limit of a scalar operator as ∆̂ → 4 in the continuum is actually
exactly a D′ operator whose OPE coefficients automatically obey (5.5). So fixing CD not
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Figure 4. An asymmetric plot showing the minimum and maximum CD as a function of aφ2 . In
the blue region, all dimension 4 scalars not singled out by (5.13) are constrained to satisfy bTD′ = 0.
No such constraint is made in the pink region which leads to weaker bounds. The dotted lines give
the predictions of conformal perturbation theory which are model-independent at leading order. A
slight kink in the upper right corner looks well positioned to be identified with the kink in figure 2.

only allows one to single out a displacement operator for which the Ward identities (2.36)
are obeyed, it also ensures that (5.5) holds for every other scalar of dimension 4.

We can compare figure 4 to the conformal perturbation theory results (3.27) and (3.37).
The lines corresponding to potential perturbative fixed points saturate the lower bound
on CD once the proper constraints on dimension 4 scalars are imposed. These emanate
from the points (aφ2 , CD) =

(
±1

4 ,
1

2π4

)
at which the upper and lower bounds are forced

to meet by the Ward identity. The other point that can be explained analytically is the
origin which is associated with no boundary at all. This point has to be allowed by the
pink region since it corresponds to adding zero in (5.13). Once we classify dimension 4
scalars into displacements and non-displacements, it appears that there are no longer any
nearby solutions that would allow us to see this point in the blue region. To see that they
cannot arise from a GFF construction, consider the explicit displacement operator (3.23).
We may rewrite it as

D =
√

CD
(d− 2)2b41 + b42

(
(d− 2)b21[Ô1Ô1]1,0 + b22[Ô2Ô2]0,0

)
(5.15)

by using the bulk two-point function (2.8) to relate the double-traces of φ and ∂yφ to those

– 32 –



J
H
E
P
1
2
(
2
0
2
0
)
1
8
2

Figure 5. The maximum possible ∆̂
τ̂
for several points in the most interesting region of figure 4.

Planes are inserted below points with the same value of aφ2 for visibility. The red point has its
spectrum shown in the left columns in table 2.

involving Ô1 and Ô2. The rules of GFF then allow us to go from (5.15) to

f̂11D = b21(d− 2)2
√

2(d− 1)

√
CD

(d− 2)2b41 + b42
, f̂22D = b22

√
2CD

(d− 2)2b41 + b42
. (5.16)

For a generic aφ2 , there is no CD which can make both of these coefficients satisfy the Ward
identity.

After producing universal bounds in the (aφ2 , ∆̂τ̂ ) and (aφ2 , CD) planes, it is natural to
try scanning in all three parameters. This means choosing a grid of points in the allowed
blue region of figure 4 and maximing the spin 2 gap at each one. The best feature of
this plot is that every point with ∆̂τ̂ > 3 is guaranteed to obey all the constraints given
above: exact OPE relations, no stress tensor, no flux operator, and the Ward identity for
the displacement operator. For aφ2 ≥ 0.20, which is the vicinity of the kink, the results are
shown in figure 5.

Before we discuss this figure, let us comment first on the analysis for more general aφ2

and for which the data is not shown. This analysis indicated that the maximum spin 2 gap,
so the points on the boundary of figure 2, correspond to the largest possible values of CD, so
the points near the upper boundary of figure 4. On the other hand, near the lower boundary
of figure 4 the spin 2 gap remains very close to 3. Since the perturbative line in figure 4 is
near this lower boundary, it indicates that the corresponding line in figure 2 must actually
be quite a bit flatter than the slope determined by the Ising model central charge (5.3). In
short, the (non-rigorous!) extrapolation of the one-loop analysis to small but finite values
of δaφ2 indicates that the Dirichlet boundary condition can only be driven to a weakly
coupled fixed point if the 3d CFT that triggers the RG flow has a large central charge.
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Let us return to figure 5. Our best candidate for a non-trivial boundary condition,
the left of table 2, may be found by hugging the upper edge of figure 4 and looking for
where ∆̂τ̂ jumps. As suggested by the extremal spectrum, this happens at (aφ2 , ∆̂τ̂ , CD) =
(0.215, 3.966, 0.0050) and corresponds to the red point in the figure. We see that the
two-dimensional kinks in previous figures have become a three-dimensional feature: a cliff
appears to develop around this point.

The spectrum on the right of table 2 corresponds to (aφ2 , ∆̂τ̂ , CD) =
(0.218, 3.970, 0.0050) which appears to be a more generic point in this three parameter
space. We originally chose this point by hugging the lower edge of pink region in fig-
ure 4, i.e. by bisecting in ∆̂τ̂ without the constraint (5.5) for non-displacement scalars of
dimension 4. This produces a jump at (aφ2 , CD) = (0.218, 0.0044) in that plot. However,
re-interpreting the extra dimension 4 scalars found in that solution as discussed above
shifted CD from 0.0044 to 0.0050. (As discussed above, this is under the assumptions that
the Ward identities hold for this point.)

Notice also that ∆̂τ̂ → 3 rather smoothly as CD approaches its lowest possible value.
According to the dashed line in figure 4 this is where we could find potential weakly coupled
fixed points from the Neumann end. As for the Dirichlet end discussed above, one might
take this as an indication that the anomalous dimension of the three-dimensional stress
tensor cannot be too big.

6 Outlook

We set out to investigate whether a free real scalar field could have conformal boundary
conditions other than Dirichlet or Neumann. The bulk equation of motion restricted the
two- and three-point functions of φ so strongly that we found that all non-trivial boundary
conditions must support a shadow pair of boundary operators of dimensions ∆φ and ∆φ +
1. The numerical analysis in four bulk dimensions (so three boundary dimensions) of
correlation functions of this shadow pair yielded interesting results. On the one hand, for
a large range of values of aφ2 (the one-point function of the bulk φ2 operator) there must
be a spin 2 operator relatively close to the unitarity bound, providing some evidence for
the absence of interesting boundary conditions. On the other hand, for aφ2 near its upper
bound of 1/4 this maximal value shoots up and we observed an interesting kink in the data
at about aφ2 = 0.215 with a spin 2 operator of dimension 3.966 and CD approximately
equal to 0.0050. More numerical data is provided in table 2. This could be a new conformal
boundary condition for the free scalar field.

It the future it would be interesting to see whether the shadow relations can be explored
analytically rather than numerically. Indeed, one could ask whether the shadow transform

Õ(x) =
∫
ddy

1
(x− y)2(d−∆)O(y) (6.1)

can be applied to four-point functions and conformal blocks? As we have seen, the shadow
transformation is singular for three-point functions when the scaling dimension of the third
operator is of double-twist type, so it is not entirely obvious that shadow transforming one
or more operators in a consistent four-point function automatically leads to another con-
sistent four-point function. Our expectation is instead that contact terms will become im-
portant because they get magnified to non-trivial functions by the shadow transformation.
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It would of course also be interesting to understand the possible new conformal bound-
ary condition that corresponds to the kink in our numerical plots. One approach would
be to try to ‘move’ the kink by changing the problem. For example, we could try different
spacetime dimensions d or generalize the problem to N > 1 free scalar fields.21 These
would of course be interesting studies in their own right, but if we can dial a parameter like
d or N to a value where the kink merges with a free boundary condition then that would
provide strong indications for a possible perturbative approach to the problem. Another
approach would be to put the free bulk theory in AdS: then we can add a mass term to
the bulk field which would continuously change the scaling dimensions but which is not
expected to spoil the conformality of the boundary and a conformal bootstrap analysis
should always be possible [57].

An obvious direction for the future is to try to extend the analysis of this paper to
other examples of free theories in the bulk, such as the free scalar in other spacetime
dimensions, the free fermion in any d or the free vector in d = 4. In the latter case it
would be extremely interesting to see if there is any signature of the continuous family of
boundary conditions [10] in the bootstrap approach, perhaps along the lines of the previous
bootstrap study of conformal manifolds in [58].

More generally, the ‘landscape’ of boundary conditions for a given CFTd is a wide open
problem. It therefore remains an interesting target for further explorations. The subject
is even richer because, as this paper exemplifies, we need to modify the usual crossing
symmetry equations in surprising ways when defects, boundaries, or interfaces are taken
into account.
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A Conventions

A.1 bOPE

Consider a scalar bulk operator O, not necessarily free. The bOPE of O is completely
determined by SO(d, 1) symmetry, up to a certain collection of CFT data [5, 6]

O(~x, y) =
∑
Ô

∑
n

bO
Ô

y
∆O−∆̂

Ô

(
−1

4y
2~∇2

)n
n!
(
∆̂Ô + 3−d

2

)
n

Ô(~x) . (A.1)

One can check that the expression above reproduces the bulk-to-boundary correlators (2.1),
once applied to the boundary two-point functions

〈Ô(~x)Ô′(0)〉 =
ĈÔÔ′

|~x|2∆̂
Ô

, ĈÔÔ′ = δÔ
′

Ô ĈÔÔ , (A.2)

and using that bOÔĈÔÔ = bOÔ. We will take unit-normalized boundary two-point func-
tions, except for the protected operators that can appear in the bOPE of the bulk conserved
currents J`. Such operators, collectively denoted by Ĵ (l)

` (with l = 0, . . . ` − 1) have their
normalization fixed by the Ward identities (2.23), and therefore the coefficients in their
two-point functions are physical

〈D(~x)D(0)〉 = CD
|~x|2d

,

〈Ĵ (l)
` (~x, z1)Ĵ (l)

` (0, z2)〉 = C
Ĵ

(l)
`

(z1 · I(x̂) · z2)l

(~x2)|d+`−2 .

(A.3)

When the bulk operator O is a free scalar φ, as we explained in 2.1.1, the scaling
dimensions of its boundary modes Ôi are completely determined by the bulk equation of
motion. The expression (A.1) becomes (compare to (2.4))

φ(~x, y) =
∑
i=1,2

∑
n

bi

y∆φ−∆̂i

(
−1

4y
2~∇2

)n
n!
(
∆̂i + 3−d

2

)
n

Ôi(~x) . (A.4)

Conventionally, we choose unit normalization for the boundary modes of φ

〈Ôi(0)Ôj(∞)〉 = δij , (A.5)

such that biφ = bφi ≡ bi.

A.2 Boundary OPE and physical OPE coefficients

We denote generic boundary operators as Ôk, where the label k indicates collectively all
possible indices of the local operator. The OPE between two boundary operators Ôi is (up
to boundary descendants)

Ôi(~x)Ôj(0) ∼
∑
k

f̂ij
k

|~x|∆̂i+∆̂j−∆̂k

Ôk(0) + . . . (A.6)
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The boundary two-point functions are normalized as in (A.2). We use the Zamolodchikov
metric ĈÔÔ′ to raise and lower indices of f̂ijks. Concretely (sum over repeated indices)

〈Ôi(~x1)Ôj(~x2)Ôm(∞)〉 = f̂ij
kĈkm

|x12|∆̂i+∆̂j−∆̂m

≡ f̂ijm

|x12|∆̂i+∆̂j−∆̂m

. (A.7)

With these conventions, we have that the displacement operator, whose normalization is
taken as in (A.3), enters the generic boundary OPE (A.6) as

Ôi(x)Ôj(0) ⊃ f̂ij
D

|x|∆̂i+∆̂j−d
D(0) + . . . , (A.8)

and a generic boundary four-point function as

〈Ôi(0)Ôj(x)Ôk(1)Ôm(∞)〉 ⊃ f̂ijDf̂km
D〈D(0)D(∞)〉(1 + . . . )

= f̂ij
Df̂kmD g

∆̂ij ,∆̂kl

D (u, v)

= f̂ijDf̂kmD
CD

g
∆̂ij ,∆̂kl

D (u, v) .

(A.9)

In the equation above we introduced the conformal blocks, which are normalized as (5.4).
Alternatively we can think of D to be unit-normalized, such that the physical boundary
OPE coefficient is

〈Ôi(0)Ôj(x)Ôk(1)Ôm(∞)〉 ⊃ λ̂ijDλ̂kmD g
∆̂ij ,∆̂kl

D (u, v), λ̂ijD = f̂ijD√
CD

(A.10)

Similar remarks apply for other protected operators that can appear in the bOPE of the
bulk conserved currents J`.

B Three-point function conformal blocks

In this appendix we derive the conformal block decomposition of the free field φ three-point
function with a generic boundary operator Ô(l)

〈φ(~x1, y1)φ(~x2, y2)Ô(l)(θ,∞)〉. (B.1)

We will obtain closed-form expressions for all the conformal blocks exchanged in the bound-
ary channel of this three-point function. We also compute some bulk channel blocks, while
leaving a more complete study for the future.

B.1 Blocks in the boundary channel

We start from the blocks in the boundary channel. As we explained in the main text (see
section 2.2), the expansion of the correlator (B.1) in a basis of boundary conformal blocks
can be obtained by acting twice with the bOPE on the generic three-point functions

〈Ôi(~x1)Ôj(~x2)Ô(l)(θ,∞)〉 =
f̂
ijÔ(l)

|~x12|∆̂i+∆̂j−∆̂
P

(l)
‖ (x̂12, θ), (B.2)
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and then resumming the contributions from boundary descendants. The polynomials P (l)
‖

are defined in (2.18). Applying the bOPE (2.4) and using the identity

∇2n
~x12

(
(−~x12 · θ)l

|~x12|2t

)
= 4n(t)n

(
1 + t− l − d− 1

2

)
n

(−~x12 · θ)l

|~x12|2t+2n , (B.3)

we can rewrite (B.1) as

〈φ(~x1,y1)φ(~x2,y2)Ô(l)(θ,∞)〉=
∑

i,j=1,2
bibj f̂ijÔ(l)P

(l)
‖ (x̂12,θ) (B.4)

×
∑
m,n

(−1)m+n

m!n!
y1

∆̂i−∆φ+2ny2
∆̂j−∆φ+2m

|~x12|−2κij+2m+2n−l

×
(−κij)m(−κij +m)n

(
−κij− ĥ− l

)
m

(
−κij +m− ĥ− l

)
n(

∆̂i− ĥ
)
n

(
∆̂j− ĥ

)
m

.

In the above formula we introduced

κij ≡ −
1
2(∆̂i + ∆̂j − ∆̂ + l), ĥ ≡ d− 3

2 . (B.5)

The infinite sum in the r.h.s. of (B.4) can be explicitly performed, and the result takes the
form

〈φ(~x1, y1)φ(~x2, y2)Ô(l)(θ,∞)〉 =
P

(l)
‖ (x̂12, θ)

|~x12|d−2−∆̂
(B.6)

×
(
b21f̂11Ô(l) F̂11

∆̂,l
(w+, w−) + b1b2f̂12Ô(l)F̂12

∆̂,l
(w+, w−) + b22f̂22Ô(l)F̂22

∆̂,l
(w+, w−)

)
.

The quantities F̂ ij
∆̂,l

are hypergeometric functions of the cross-ratios w± (defined in (2.21))

F̂11
∆̂,l

(w+, w−) = 1
2

[
2F1

(
1− ∆̂− l

2 ,
d− 2 + l − ∆̂

2 ; 1
2;−w−

)
+ (w+ ↔ w−)

]
,

F̂12
∆̂,l

(w+, w−) = 1
2

[(
(−1)l − 1

)
w−

1/2
2F1

(
2− ∆̂− l

2 ,
d+ l − ∆̂− 1

2 ; 3
2;−w−

)

+
(
(−1)l + 1

)
w+

1/2
2F1

(
2− l − ∆̂

2 ,
d+ l − ∆̂− 1

2 ; 3
2;−w+

)]
,

F̂22
∆̂,l

(w+, w−) = 1
2(∆̂ + l − 1)(d− 2 + l − ∆̂)

×
[

2F1

(
1− ∆̂− l

2 ,
d− 2 + l − ∆̂

2 ; 1
2;−w−

)
− (w− ↔ w+)

]
.

(B.7)

Note that in terms of two cross-ratios

ξ ≡ |~x12|2 + (y1 − y2)2

y1y2
, ζ ≡ (|~x23|2 + y2

2)y1
(|~x13|2 + y2

1)y2
∼

x3→∞
y1
y2
, (B.8)
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the cross-ratios w± can be rewritten as

w± = − (1± ζ)2

1− (ξ + 2)ζ + ζ2 . (B.9)

We have checked that (B.6) satisfies the Klein-Gordon equation with the correct con-
ditions. As a further consistency check, we note that the defect channel blocks for the
two-point function (2.8) can be recovered from (B.7) by setting ∆̂ = l = 0 and f̂ij1 = δij .

B.2 Scalar blocks in the bulk channel

Next, we will be interested in the bulk conformal block expansion of (B.1). For simplicity
we will consider only the case where the third operator is a boundary scalar, while leaving
the general case for future work. In the bulk channel we plug the φ × φ OPE (2.9) to
convert (B.1) into an infinite sum over bulk-to-boundary two-point functions

〈φ(~x1, y1)φ(~x2, y2)Ô(∞)〉 =
∑

Ok⊂φ×φ
cφφ
Ok〈Ok(~x2)Ô(∞)〉+ . . . (B.10)

with the ellipsis denoting contributions from bulk descendants, which are fixed by
SO(d + 1, 1) conformal symmetry. As discussed in the main text (see subsection 2.2.2),
spin selection rules and current conservation imply that the bulk operator φ2 is the only
contribution to the r.h.s. of (B.10) for generic ∆̂ not equal to the scaling dimension of J`.
In this more generic case we have

〈φ(~x1, y1)φ(~x2, y2)Ô(∞)〉 =
[
〈φ2(x2)Ô(∞)〉+ . . .

]
≡ b

φ2ÔW
φφÔ
φ2 (~x12, y1, y2). (B.11)

Note that when ∆̂ equals the scaling dimension of J`, we should add to the previous expres-
sion an additional contribution proportional to 〈J`(x2)Ô(∞)〉 (see e.g. the case of the dis-
placement in C.3). It is not difficult to computeWφφÔ

φ2 by plugging the bulk OPE into (2.15)
and resumming the bulk descendants. Using the explicit form of the differential operator
that controls the scalar exchange (see e.g. [60]), we find the following series expansion

b
φ2ÔW

φφÔ
φ2 (~x12, y1, y2) =

b
φ2Ô

y
2∆φ−∆̂
2

∞∑
n=0

(− ξ
16)n

n!
Γ
(
d−1

2

)
Γ(2∆φ + 2n− ∆̂)

Γ(2∆φ − ∆̂)Γ
(
n+ d−1

2

)
× 2F1

(
∆φ + n, d− ∆̂ + 2n− 2; 2∆φ + 2n; 1− y1

y2

)
,

(B.12)

where the cross-ratio ξ is defined in (2.6). There are various interesting special situations
in which the result (B.12) produces simple closed-form formulae. In the ‘cylindrical’
configuration y1 = y2 = y the infinite sum gives a simple hypergeometric function

WφφÔ
φ2 (~x12, y, y) = 1

y2∆φ−∆̂
2F1

(
d− ∆̂− 2

2 ,
d− ∆̂− 1

2 ; d− 1
2 ;− χ̂4

)
, (B.13)

where we introduced a cross-ratio χ̂

χ̂ = |~x12|2

y2 , (B.14)
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which is nothing but the restriction of ξ defined in (2.6) to the ‘cylindrical’ configuration.
As explained in appendix C.2, this result can be also derived by ‘inverting’ the boundary
channel expansion (B.6). As a final comment, we note that the series representation (B.12)
yields simple closed-form expressions, some of which will be presented in appendix C.3,
when the third operator is of D(0)

` type.

C OPE relations and bulk-to-boundary crossing

In this appendix we discuss in detail the derivation of the main results presented in section 2.

C.1 Derivation of the OPE relations

In this appendix we derive the OPE relations (2.22). The starting point is the boundary
channel expansion for the correlator (B.1), given in (2.20). Away from other operator
insertions, the φ×φ OPE requires this three-point function to be analytic around xµ1 = xµ2
(recall that the identity in (2.9) decouples). In order to study this limit, it is convenient
to place the two bulk operators at the same transverse distance i.e. y1 = y2 = y, such that
the expression (2.20) simplifies as follows:

〈φ(~x1, y)φ(~x2, y)Ô(l)(θ,∞)〉 =
P

(l)
‖ (x̂12, θ)

yd−2−∆̂
χ̂−

1
2 (d−2−∆̂) (C.1)

×
{

1
2b

2
1f̂11Ô(l)

[
1 + 2F1

(
1− l − ∆̂

2 ,
d+ l − ∆̂− 2

2 ; 1
2;− 4

χ̂

)]

+ b1b2f̂12Ô(l) [1 + (−1)l] χ̂−
1
2 2F1

(
2− l − ∆̂

2 ,
d+ l − ∆̂− 1

2 ; 3
2;− 4

χ̂

)

+
b22f̂22Ô(l)

2(∆̂ + l − 1)(∆̂− l − d+ 2)

[
1− 2F1

(
1− ∆̂− l

2 ,
d+ l − ∆̂− 2

2 ; 1
2;− 4

χ̂

)]}
,

where χ̂ is the cross-ratio defined in (B.14). In this configuration with y1 = y2 Bose
symmetry (2.19) implies that this expression vanishes when l is an odd integer, so we first
consider even l. We then require (C.1) to be analytic around ~x1 = ~x2, for finite y. For
generic values of d, l, ∆̂, the r.h.s. of (C.1) contains unphysical singularities, since

〈φ(~x1,y)φ(~x2,y)Ô(l)(θ,∞)〉 ∼
χ̂→0

(−~x12 ·θ)l

yd+l−2−∆̂
(C.2)

×
[

1
2 χ̂

1+ ∆̂−d−l
2

(
b21f̂11Ô(l)−

b22f̂22Ô(l)

(∆̂+ l−1)(d−∆̂+ l−2)

)

+
√
πΓ

(
d−3

2 + l
)

23−l−∆̂χ̂
d−3

2 +l

 2b1b2f̂12Ô(l)

Γ
(
l+∆̂+1

2

)
Γ
(
d+l−∆̂−1

2

)

+
b21f̂11Ô(l)(∆̂+ l−1)(d−∆̂+ l−2)+b22f̂22Ô(l)

(∆̂+ l−1)Γ
(
l+∆̂

2

)
Γ
(
d+l−∆̂

2

)
+ . . .

 ,
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up to higher powers of χ̂. Such unphysical singularities cancel from the r.h.s. of (C.1)
precisely when the OPE relations (2.22) are satisfied, such that the analytic result at
y1 = y2 is

〈φ(~x1, y)φ(~x2, y)Ô(l)(θ,∞)〉 = b1b2f̂12Ô(l)

P
(l)
‖ (x̂12, θ)

yd−2−∆̂

×
√
πΓ
(

3−d
2 − l

) [
1− cot

(
1
2π(∆̂ + l)

)
cot

(
1
2π(d− ∆̂ + l)

)]
2d−∆̂+l−1Γ

(
1− l+∆̂

2

)
Γ
(

∆̂−d−l+4
2

)
× χ̂l/2 2F1

(
d+ l − ∆̂− 2

2 ,
d+ l − ∆̂− 1

2 ; d− 1
2 + l;− χ̂4

)
.

(C.3)

When ∆̂ approaches some special integer dimensions some of the boundary blocks in
the r.h.s. of (C.1) are themselves regular and (C.2) is not valid. This can happen when:

• The dimension of Ô equals that of a double-twist combination of Ô1 and Ô1

∆̂ = d+ l + 2n− 2, n ∈ N, (C.4)

• The dimension of Ô equals that of a double-twist combination of Ô2 and Ô2

∆̂ = d+ l + 2n, n ∈ N, (C.5)

• The dimension of Ô equals that of a double-twist combination of Ô1 and Ô2

∆̂ = d+ l + 2n− 1, n ∈ N. (C.6)

We then analyse these special cases separately. Requiring the cancellation of any residual
singularity on the r.h.s. of (C.1), will again impose certain relations between the boundary
OPE coefficients. It is reassuring to see that these special cases are captured by the
appropriate limits of the general result (2.22).

We now discuss the case when l is an odd integer. Starting from (2.20), we need to
set f̂11Ô(l) = f̂22Ô(l) = 0 (as dictated by Bose symmetry) so that the three-point function is
proportional to f̂12Ô(l) . We then study analyticity around ~x1 = ~x2 for finite y12 ≡ y1 − y2.
For generic values of d, l, ∆̂ this correlator features unphysical singularities, since

〈φ(~x1,y1)φ(~x2,y2)Ô(l)(θ,∞)〉 ∼
~x12→0

b1b2f̂12Ô(l) (−~x12 ·θ)l (C.7)

×
(
−
√
π

2

) y∆̂+l−1
12

|~x12|d+2l−3

Γ
(
d−3

2 + l
)

Γ
(
l+∆̂+1

2

)
Γ
(
d+l−∆̂−1

2

)+
Γ
(

3−d
2 − l

)
(y12)2−d+∆̂−l

Γ
(

1− l
2−

∆̂
2

)
Γ
(

4−d−l+∆̂
2

)+ . . .

 ,

up to subleading terms. Because of the first term in the above expression, which is singular
for d ≥ 3 (for d = 3 and l = 0 the singularity is logarithmic), for generic ∆̂ we must set
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f̂12Ô(l) = 0. On the other hand, the boundary blocks are themselves regular and the (C.7)
is not valid when the dimension of Ô equals

∆̂ = d+ l + 2n− 1, n ∈ N. (C.8)

Again we see that the relations (2.22), together with the constraints from Bose symme-
try (2.19), promptly capture these special cases. The analytic correlator (2.20) on the
special dimensions (C.8) then reads

〈φ(~x1, y1)φ(~x2, y2)Ô(l)(θ,∞)〉 = b1b2f̂12Ô(l) (−~x12 · θ)l

×
(
−
√
π

2

) Γ
(

3−d
2 − l

)
Γ
(
n+ 3

2

)
Γ
(

3−d
2 − l − n

)y2n+1
12 2F1

(
−n− 1

2 ,−n; d− 1
2 + l;− 1

w−

)
.
(C.9)

C.2 Matching with the bulk

Owing the results from the previous subsection, we are now ready to discuss the conse-
quences of the bulk-boundary crossing symmetry for the three-point functions (B.1).

The first step is to derive the leading terms in the bulk channel expansion of the
correlator (B.1). To this end, recall that the φ × φ OPE (2.9) contains a scalar φ2 and
infinitely many conserved currents J`, with ` ∈ 2N and ∆` = d+ `− 2. The bulk-boundary
two-point functions between J` and any boundary operator Ô(l) are further constrained by
current conservation. The operator Ô(l) can appear in the bOPE of J` if

〈∂µJ
µµ1...µ`−1
` (~x, y)Ôa1...al(0)〉 = 0. (C.10)

For l < `, this condition is satisfied only if ∆̂ = ∆`, so that Ô is a protected boundary
primary. On the other hand, for l = `, conservation is automatically ensured with no
extra conditions on ∆̂,22 so Ô is unprotected. This is of course compatible with the Ward
identities (2.23).

We now plug the φ× φ OPE into (B.1), impose the selection rules from conservation
in order to figure out which bulk primary can couple to Ô(l) and finally compare to the
boundary channel expansion. We conclude that:

• When ∆̂ 6= d + ` − 2 and l is odd, Ô(l) cannot couple to any bulk operator in the
φ × φ, and the three-point function must vanish. This perfectly matches with the
expectations from the boundary channel.

• When ∆̂ 6= d + ` − 2 and l is even, Ô(l) can only couple to a spin l bulk current Jl
(or to φ2 when l = 0). This is consistent with what we expect from the boundary
channel, where we are left with only one unknown OPE coefficient f̂12Ô(l) . In either
case, from the leading bulk OPE we have

〈φ(~x1, y)φ(~x2, y)Ô(l)(θ,∞)〉 ∼
~x12→0

cφφl bJlÔ(l)

CJl
P

(l)
‖ (x̂12, θ)

χ̂l/2

yd−2−∆̂
+ . . . , (C.11)

22Indeed, 〈(∂J`) Ô`〉 = 〈J`−1Ô`〉 must vanish since J`−1 does not contain any spin ` component in its
bOPE.
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and, after comparing to (C.3) we find

cφφlbJlÔ(l)

CJl
= b1b2f̂12Ô(l)

√
π Γ

(
3−d

2 − l
) [

1− cot
(

1
2π(∆̂ + l)

)
cot

(
1
2π(d− ∆̂ + l)

)]
2d−1−∆̂+lΓ

(
1− l+∆̂

2

)
Γ
(

∆̂−l−d+4
2

) .

(C.12)
The result for a scalar (l = 0) operator Ô is simply obtained from the former by
setting cφφ0 = CJ0 = 1 and b

J0Ô(0) ≡ bφ2Ô.

We can use the result above in order to re-interpret the expression for (B.1) obtained
using the boundary OPE in terms of the bulk OPE, and compute the corresponding
bulk block. This procedure is unambiguous, since in both channels there is just one
undetermined OPE coefficient. In practice, we solve (C.12) for f̂12Ô(l) and plug the
result into (C.3). We find

WφφÔ(l)

Jl
(~x12, y, y)

=
P

(l)
‖ (x̂12, θ)χ̂l/2

y2∆φ−∆̂
2F1

(
d+ l − ∆̂− 2

2 ,
d+ l − ∆̂− 1

2 ; d+ 2l − 1
2 ;− χ̂4

)
.

(C.13)

As a consistency check, note that for l = 0 the above expression reproduces the block
WφφÔ
φ2 (~x12, y, y), which was computed explicitly in (B.13). The same logic can be

applied to compute the bulk blocks at generic transverse positions y1, y2, starting
from the boundary channel decomposition (2.20).

• When ∆̂ = d + ` − 2 and l is even there are two cases. For ` > l, the primary Ô(l)

can couple to both Jl and J`. The number of undetermined bulk OPE coefficients
then matches that of the boundary ones (f̂11Ô(l) and f̂22Ô(l)). As an example, in
section C.3 we explicitly solve the bulk-to-boundary bootstrap for the case of ` = 2
with l = 0, but similar results can be obtained for the more general case of D(l)

` . When
` = l the operator Ô(l) can only couple to Jl, and this matches with the number of
undetermined boundary OPE coefficients (f̂11Ô(l)).

• When ∆̂ = d+ `− 2 and l is odd the only possible bulk contribution comes from the
spin ` currents J`. From the leading bulk OPE limit at |~x12| = 0 we have

〈φ(~x1, y1)φ(~x2, y2)V(l)
` (θ,∞)〉 ∼

x12→0

cφφ`
CJ`

b
J`V

(l)
`

(y12)`−l (~x12 · θ)l + . . . , (C.14)

where y12 = y1 − y2. So, after comparing to (C.9) (note that `− l = 2n+ 1) we find

cφφ`bJ`V
(l)
`

CJ`
= b1b2f̂12V(l)

`

√
πΓ
(

3−d
2 − l

)
2Γ
(
`−l+2

2

)
Γ
(

4−d−`−l
2

) . (C.15)

The Ward identity (2.23) further relates the coefficient b
J`V

(l)
`

to the coefficient in

the two-point function of V(l)
` , e.g. for the flux operator V(1)

2 ≡ V(1) the coefficient
in eq. (2.31). In the case of V(1), upon plugging the value of cφφT and CT given
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in eq. (2.10), the result (C.15) gives precisely the first equality of eq. (2.32). The
second equality is obtained upon using that bTV(1) = 2ĈV(1) , as dictated by the Ward
identity (2.23).

C.3 Displacement Ward identity

In this appendix we derive the displacement Ward identity presented in section 2.2.3. The
starting point is the three-point function of the displacement operator D with the free bulk
scalar. From (2.20) and after imposing the OPE relations (2.22), this reads

〈φ(~x1, y1)φ(~x2, y2)D(∞)〉 = y1y2b
2
2f̂22D + b21f̂11D

[
|~x12|2 − (d− 1)

(
y2

1 + y2
2

)]
. (C.16)

We want to match this expression against the bulk OPE channel expansion. As we discussed
in the main text — see around (2.34) — this receives a contribution from the φ2 as well
as from the stress tensor. The complete expression, i.e. including contributions from bulk
descendants, is

〈φ(x1)φ(x2)D(∞)〉 = bφ2DW
φφD
φ2 (~x12, y1, y2) + cφφT

CT
xµ12x

ν
12〈Tµν(x2)D(∞)〉. (C.17)

The first term in the r.h.s. of the above equation is the 〈φ2D〉 bulk block, which is computed
by (B.12)

WφφD
φ2 (~x12, y1, y2) = (d− 1)(y1 + y2)2 − |~x12|2

4(d− 1) . (C.18)

The second term is the contribution from the bulk stress tensor and reads [5, 6]

〈Tµν(x)D(∞)〉 = bTD

(
δµyδνy −

1
d
δµν

)
, bTD = dCD

d− 1 . (C.19)

Note bulk descendant operators of Tµν do not enter into (C.17), since (C.19) is a constant.
One can further use the Ward identities for the displacement operator [5, 6] to relate the
bOPE coefficient bφ2D to the one-point function of φ2:

bφ2D = −aφ2
2d(d− 2)

Sd
, Sd ≡ Vol(Sd−1) = 2πd/2

Γ
(
d
2

) . (C.20)

We can now equate (C.16) to (C.17) and solve for f̂11D and f̂22D. The result is

f̂11D =
aφ22dCT (d− 2)− 4CDcφφTSd

4CT (d− 1)Sdb21
, f̂22D = −

aφ22dCT (d− 2) + 4CDcφφTSd

2CTSdb22
.

(C.21)
The final formula (2.36) is obtained by plugging in the above expression the values (2.10)
of cφφT and CT corresponding to a d-dimensional free scalar field. It is pleasant to see that
the final result (2.36) is consistent with the Ward identity [5]∫

dd−1~x 〈φ(x1)φ(x2)D(~x)〉 = (∂y1 + ∂y2)〈φ(x1)φ(x2)〉. (C.22)
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D Crossing equations in a vectorial form

In section 4.1 we derived the system of 7 independent crossing equations (4.6). The latter
can be rewritten in a vectorial form by introducing the 7-component vectors of 3×3 matrices
~V∆̂,l

0 =
∑
Ô,l

(
f̂11
Ô(l)

f̂12
Ô(l)

f̂22
Ô(l)

)
~V∆̂,l


f̂11Ô(l)

f̂12Ô(l)

f̂22Ô(l)

 . (D.1)

The explicit form of ~V∆̂,l is given in (D.4). The odd l terms in the above expression are
subjected to further restrictions. Firstly, Bose symmetry implies that f̂11Ô(l) = f̂22Ô(l) = 0.
Secondly, the odd-l primaries must have scaling dimensions ∆̂ = d+ l+2n−1, with n ∈ N,
as follows from the exact relations (2.22). It is then convenient to rewrite (D.1) as

0 =
∑

Ô,l=even

(
f̂11
Ô(l)

f̂12
Ô(l)

f̂22
Ô(l)

)
~V∆̂,l


f̂11Ô(l)

f̂12Ô(l)

f̂22Ô(l)



+
∑
l=odd

∆̂=d+l+2n−1
n=0,1,...

f̂12
Ô(l)

f̂12Ô(l)

(
0 1 0

)
~V∆̂,l


0
1
0

 .

(D.2)

For numerical purposes it is convenient to isolate, in the crossing equations above, the
contributions from the primaries with fixed dimensions from those in the continuum. Such
special primaries are the identity 1 (for which (2.22) implies f̂121 = 0 and we choose
the normalization f̂ii1 ≡ f̂ii = 1), as well as the boundary modes of the bulk higher-
spin currents, D(l)

` and V(l+1)
` of spin l and l + 1 in the notation of section 2.2.2. Upon
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implementing the exact relations (2.22), we rewrite (D.2) as follows

0 =
(
1 0 1

)
~V0,0


1
0
1


︸ ︷︷ ︸

≡~V1

+
∑

Ô,l=even

f̂12Ô(l) f̂12
Ô(l) (

κ1(∆̂, l) 1 κ2(∆̂, l)
)
~V∆̂,l


κ1(∆̂, l)

1
κ2(∆̂, l)


︸ ︷︷ ︸

≡~V
+,∆̂,l

+
∑
l=odd

∆̂=d+l+2n−1
n=0,1,...

f̂12Ô(l) f̂12
Ô(l) (

0 1 0
)
~V∆̂,l


0
1
0


︸ ︷︷ ︸

≡~V
−,∆̂,l

+
∑
`∈2N

∑
l<`,even
∆̂=d+`−2

(
f̂11Ô(l) 0 f̂22Ô(l)

)
~V∆̂,l


f̂11
Ô(l)

0
f̂22
Ô(l)


︸ ︷︷ ︸
≡
(
f̂11Ô(l) f̂22Ô(l)

)
~V

0,∆̂,l

f̂11
Ô(l)

f̂22
Ô(l)



.

(D.3)

The first line in the expression above accounts for the identity 1 as well as for the unpro-
tected, even-spin operators. The second line accounts for the odd-spin operators i.e. belong-
ing to the family V(l)

` . The third line contains even-spin protected operators i.e. belonging
to the family D(l)

` . The 7-component vectors ~V±,∆̂,l,
~V
1,∆̂,l are defined in (D.5), (D.6). The
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quantities ~V0∆̂,l are 7-component vectors of 2× 2 matrices defined in (D.7).

~V∆̂,l =




F 11,11
−,∆̂,l

(u, v) 0 0

0 0 0
0 0 0




0 0 0
0 0 0
0 0 F 22,22

−,∆̂,l
(u, v)




0 1
2F

11,12
−,∆̂,l

(u, v) 0
1
2F

11,12
−,∆̂,l

(u, v) 0 0

0 0 0


0 0 0
0 0 1

2F
12,22
−,∆̂,l

(u, v)

0 1
2F

12,22
−,∆̂,l

(u, v) 0




0 0 0
0 F 12,12
−,∆̂,l

(u, v) 0

0 0 0




0 0 1
2F

11,22
−,∆̂,l

(u, v)

0 (−1)lF 12,21
−,∆̂,l

(u, v) 0
1
2F

11,22
−,∆̂,l

(u, v) 0 0




0 0 1
2F

11,22
+,∆̂,l

(u, v)

0 −(−1)lF 12,21
+,∆̂,l

(u, v) 0
1
2F

11,22
+,∆̂,l

(u, v) 0 0





, (D.4)

~V1 =



F 11,11
−,∆̂,l

(u, v)

F 22,22
−,∆̂,l

(u, v)

0
0
0

F 11,22
−,∆̂,l

(u, v)

F 11,22
+,∆̂,l

(u, v)


, ~V−,∆̂,l =



0
0
0
0

F 12,12
−,∆̂,l

(u, v)

−F 12,21
−,∆̂,l

(u, v)

F 12,21
+,∆̂,l

(u, v)


, (D.5)
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~V+,∆̂,l =



κ1(∆̂, l)2F 11,11
−,∆̂,l

(u, v)

κ2(∆̂, l)2F 22,22
−,∆̂,l

(u, v)

κ1(∆̂, l)F 11,12
−,∆̂,l

(u, v)

κ2(∆̂, l)F 12,22
−,∆̂,l

(u, v)

F 12,12
−,∆̂,l

(u, v)

κ1(∆̂, l)κ2(∆̂, l)F 11,22
−,∆̂,l

(u, v) + F 12,21
−,∆̂,l

(u, v)

κ1(∆̂, l)κ2(∆̂, l)F 11,22
+,∆̂,l

(u, v)− F 12,21
+,∆̂,l

(u, v)



, (D.6)

~V0,∆̂,l =



F 11,11
−,∆̂,l

(u, v) 0

0 0


 0 0

0 F 22,22
−,∆̂,l

(u, v)


 0 0

0 0

 0 0
0 0

 0 0
0 0

 0 1
2F

11,22
−,∆̂,l

(u, v)
1
2F

11,22
−,∆̂,l

(u, v) 0

 0 1
2F

11,22
+,∆̂,l

(u, v)
1
2F

11,22
+,∆̂,l

(u, v) 0





. (D.7)
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