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ABSTRACT

Low-code development platforms are taking an important place in
the model-driven engineering ecosystem, raising new challenges,
among which transparent efficiency or scalability. Indeed, the
increasing size of models leads to difficulties in interacting with
them efficiently. To tackle this scalability issue, some tools are
built upon specific computational strategies exploiting reactivity,
or parallelism. However, their performances may vary depending
on the specific nature of their usage. Choosing the most suitable
computational strategy for a given usage is a difficult task which
should be automated. Besides, the most efficient solutions may
be obtained by the use of several strategies at the same time. This
paper motivates the need for a transparent multi-strategy execution
mode for model-management operations. We present an overview
of the different computational strategies used in the model-driven
engineering ecosystem, and use a running example to introduce the
benefits of mixing strategies for performing a single computation.
This example helps us present our design ideas for a multi-strategy
model-management system. The code-related and DevOps chal-
lenges that emerged from this analysis are also presented.
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1 INTRODUCTION

Research in software engineering has produced several high-level
abstractions to facilitate application development. Following this
line, recent low-code development platforms (LCDPs) [39] propose
visual interfaces for software development, distributed as platforms-
as-a-service (PaaS), which minimize the need for users to write code.
Most LCDPs are based on the description of application behavior
with models, as promoted by model-driven engineering (MDE). In
the MDE approach, models are the central and unifying point of
the conception: they can represent knowledge, architectures, data,
and so on. To be useful, models must be manageable by adding,
removing, updating or querying information. The performance of
these operations represent a field of study in the MDE community.

More specifically, model-management in LCDPs has a signif-
icant need for automatic and transparent efficient and scalable
operations, for manipulating, querying and analyzing models. We
identify three main reasons for this need. First of all, LCDPs need
to provide complex visual development environments with low
response time. For LCDPs that use models in the development
phase, most of the model-management operations are executed at
design time, e. g., for editing, validating, transforming the model.
The required time for responding to a graphical command is a
quality factor of the LCDP tool and has an influence on the devel-
oper’s comfort [33], and on her efficiency. Cloud-based LCDPs have
specific needs. For instance, they can integrate recommendation
systems that may need to perform queries over the whole LCDP
repository, to propose useful patterns to the user. Optimizing such
design-time operations is important and challenging, especially
when they require processing large-scale design models (or unions
of models).

A second scalability issue arises when LCDPs need to manipulate
large instance models of data, e. g., as it happens today in several
(automotive, aeronautics, civil) engineering domains. In this paper
we will consider a running case where a (fictional) company in social
networking provides a LCDP to its users. Through the LCDP, users
will be able to write their own apps over a huge social graph [15],
represented as a model. Because of the sheer size of the model,
providing an efficient solution is necessary.

The third reason for the need of efficient model-management
in LCDPs is the number of concurrent operations on the platform.
Due to the potential massive use of LCDPs, there is a need to run a
big number of operations in parallel for many users. In the context
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of a PaaS, numerous customers may query models, thus servers or
shared databases. Hence, efficient concurrent execution of model-
management operations is necessary.

To improve efficiency and scalability, recent research on model-
management studied parallel and concurrent programming as well
as specific execution models for model-management languages.
These techniques range from implementing specific execution algo-
rithms (e. g., RETE) to compiling toward distributed programming
models (e. g., MapReduce). In this paper we use the term execu-
tion strategies and (or just strategy) as a general way to denote
these techniques. These techniques are sometimes qualified as par-
adigms in the literature, but this term may lead to confusion with
programming paradigms (functional, logic, etc.).

The diversity of strategies that have been employed poses several
scientific challenges. Most model-management languages imple-
ment a single execution strategy with specific strengths and weak-
nesses depending on the use case. Some existing solutions in MDE
offer more than a single execution strategy but the choice is left to
the user which requires expertise on parallelism or distribution [26].
Moreover, it appears that performance for some use cases could
be improved by the combination of different strategies. To abide
by low-code philosophy, the configuration of these development
platforms should be as transparency as possible, even automatic.

In this paper we illustrate the variability of existing strategies,
and emphasize the need for a multi-strategy vision for model-
management where strategies can be automatically switched and
combined to efficiently address the given model-management sce-
nario. Furthermore, we stress the need for automatic choice and
configuration of strategies to enhance performance of LCDPs. We
outline code-related and DevOps challenges of a such approach
and provide hints for technical solutions to these problems.

The rest of the paper is organized as follows. We motivate our
work with an example in Section 2. Section 3 presents the necessary
background and analyzes the existing computational strategies in
model management. We introduce the multi-strategy approach
in Section 4, and exemplify the variability of parallel execution
strategies for the use case. In Section 5 we describe the main chal-
lenges for achieving a multi-strategy model-management engine.
We finally conclude in Section 6.

2 MOTIVATING EXAMPLE

Social network vendors often provide specific development plat-
forms, used by developers to build apps that extend the functionality
of the social network. Some networks are associated with market-
places where developers can publish such apps, and end-users can
buy them. Development platforms typically include APIs that allow
analyzing and updating the social network graph.

As a running example for this paper, we consider a scenario
where a vendor adds a LCDP to allow end-users (also called citizen
developers in the LCDP jargon) to implement their own apps. Such
LCDP could include a WYSIWG editor for the app user-interface,
and a visual workflow for the behavioral part. In particular, the
LCDPs would need to provide mechanisms, at the highest possible
level of abstraction, to express queries and updates on the social
graph.

= SocialNetwork [0..¥] posts

[0..%] users

Ef_i Submission

© id: EString
© name : EString

© id: EString
= timestamp : EDate
© content: EString

1..1] submitter

[1..1] commented

[0..1] likedBy

[0..*] comments

E comment | | H Post |
[0..4] likes ’ ‘ ’

Figure 1: The metamodel of a social network (TTC 2018)

In Fig. 1 we show the simple metamodel for the social graph that
we will use in the paper. The metamodel has been originally pro-
posed at the Transformation Tool Contest (TTC) 2018 [21], and used
to express benchmarks for model query and transformation tools.
In this metamodel, two main entities belong to a SocialNetwork.
First, the Posts and the Comments that represent the Submissions,
and second, the Users. Each Comment is written by a User, and is nec-
essarily attached to a Submission (either a Post or another Comment).
Besides commenting, the Users can also like Submissions.

As an example, in this paper we focus on one particular query,
also defined in TTC2018: the extraction of the three most debated
posts in the social network. To measure how debated is the post, we
associate it with a numeric score. The LCDP will have to provide
simple and efficient means to define and compute this score.

We suppose the vendor to include a declarative query language
for expressing such computation on the social graph, and storing
scores as a derived properties of the graph (i.e. new properties of the
social graph that are computed on demand from other information
in the graph).

In Listing 1 we implement the query to get the top-three debated
posts in a model conforming to the presented metamodel, using
the formula defined in TTC2018. The query is written in OCL, the
most used declarative query language in MDE. In particular we use
the ATL flavor of OCL.

In this code, a score of 10 is assigned to the post for each comment
that belongs to it. Comments belong to a post in a recursive manner:
a comment belongs to a post if it is attached either to the post itself,
or to a comment that already belongs to the post. Then, a score of
1is also added every time a belonging comment is liked.

The query is defined using three (attribute) helpers, that can
be seen as derived properties. The first helper, allComments (line 7
to 11), collects recursively all the comments of a Submission. The
second helper, countLikes counts how many times a comment that
belongs to the given post has been liked. Then, the score of a Post is
calculated by summing the result of countLike and the number of its
belonging comments multiplied by ten. Finally the top three posts
are obtained by the query topPosts sorting the posts by decreasing
score, and selecting the first three.

The simple declarative query in listing has not been defined
with efficiency concerns in mind. Indeed, since we cannot make
assumptions on the background of citizen developers, our LCDP
cannot presume that they will structure the query for satisfying any
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Listing 1: An OCL query for the first task of the TTC 2018.
query topPosts =

SN!Post.allInstances()

3 —sortedBy(e | -e.score)

| —subSequence(1, 3);

o helper context SN!Submission def : allComments =
self.comments

8 —union(

9 self.comments

1 —collect(e | e.allComments)

11 —flatten());

helper context SN!Post def :
14 self.allComments

countLikes =

—collect(e| e.likedBy.size())
—sum();

helper context SN!Post def : score =
10xself.allComments—size() +
20 self.countLikes;

performance requirement. As a result, when the number of users
increases, soon the size of the social graph makes the computation
of this query challenging. First of all, the list Post.allInstances()
(line 2) becomes too large to manipulate. Especially the full sorting
of posts (line 3) seems prohibitive. Without an efficient mechanism,
the naive recomputation of allComments each time it is called, is a
further performance waste. If we consider the typical frequency
of updates for social network graphs, keeping the list of top posts
up-to-date by fully recomputing this query at each update could
consume a significant amount of infrastructure resources.

Moreover, the most efficient way to execute the query does not
depend only on the given query definition and metamodel structure,
but on several characteristics of the usage scenario. A technique to
optimize a particular use case typically has significant overhead in
other use cases. Factors that can influence this choice in our exam-
ple can be related to the model size (e.g. order of magnitude for the
number of Users), frequency of updates (e.g. of new Submissions),
average model metrics (e.g. average number of Comments per Post),
acceptable response time for the final query (topPosts), infrastruc-
ture constraints and resources (e.g. available memory, CPUs) and
so on. In some cases techniques can be combined, further complex-
ifying the search for the optimal solution.

Finally, while in this paper we will focus exclusively on this
example, it is not difficult to identify similar issues for update
operations (e.g. removal of all information for an unsubscribing
user) or transformation (e.g. for storing the graph in a particular
persistence format).

3 EXECUTION STRATEGIES IN MODEL
MANAGEMENT

In this section we outline the execution strategies that are com-
monly used to enhance the efficiency of model-management. The
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below presented strategies have been identified with their use in
MDE. In this Section, we only focus on the strategies, regardless
of the chosen language for their implementations. We also give an
overview of the existing applications of these strategies in model-
management tools.

The two main categories of model-management tools we consider
are model transformation (MT) and query (MQ). On the one hand,
model transformation is the conversion process of one or more
input models to output models (model-to-model) or text (model-to-
text). A model transformation that produces a model as output can
be either an in-place (i.e., direct modification of the input model) or
an out-place transformation (i.e. production of a new model from
the input one). On the other hand, a model query analyzes source
models to compute the desired data value. Finally, some general
key concepts (e.g., matching), that can be used both in MT and MQ
are using strategies to improve the performances of engines. These
concepts are also discussed in the current Section.

3.1 Avoiding computations

Incrementality and laziness are the main strategies used in MDE for
minimizing the sequence of basic operations needed to perform a
query or transformation. They have been classified as strategies
for reactive execution in [33], since they foster a model of compu-
tation where the model-management system reacts to update and
request events, (note that the term is only inspired by the reactive
programming paradigm in the sense of [23], that we wont discuss
here).

We classify existing applications of these strategies to model-
management tools in the columns of Table 1, depending on their
scope:

e MQ or MT if the strategy is applied to the whole model
query or transformation;

e Matching if the strategy is only applied to the match-
ing phase (the subgraph isomorphism of the pattern to
query/transform, over the full model) of the model query/-
transformation;

o Collections if the strategy is only applied to the compu-
tation of collections during the query/transformation.

Table 1: Reactive strategies for model-management in liter-
ature.

MQ | MT || Matching | Collection
Incrementality | [12] | [29] [6, 45]
Laziness [38] | [41] [7, 46]

3.1.1 Incrementality. Incrementality is an event-based pattern,
whose goal is to reduce the number of needed operations when a
change happens within the input model. Instead of applying from
scratch the whole set of operations on the new input model, incre-
mentality allows the system to apply only the operations impacted
by updates. Since the system needs to apply a subset of operations,
a trace to relate the output pieces to input elements is necessary.
The approach leads then to an additional memory cost, with a good
trade-off only if changes occur often enough.
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To achieve incremental execution of transformation rules, Calvar
etal. designed a compiler to transform a code written with ATL [29],
a QVT-like (Query View Transformation) language to Java code.
The output program takes advantage of active operations of the
language. The active mechanism works as an observer pattern:
the values are defined as mutable, and changes are notified to
an external observer. From there, it is easy to isolate what part
of the model has been changed, and then to deduce what rules
must be operated again. To illustrate their proposal, they applied
their evaluation to two cases including on social media models to
illustrate the efficiency of the strategy for querying models that have
strong user activity. This is not the single attempt of integrating
incremental aspects in ATL.

In [12], Cabot et al. present an incremental evaluation of OCL
expressions that are used to specify elements of a model in ATL.
They used a such approach to state integrity preservation of models
at runtime. Instead of testing the whole integrity of a model every
time it is changed, the proposed system is able to determine when,
and how, each constraint must be verified.

For example, the RETE algorithm for pattern matching, presented
in [45], constructs a network to specify patterns and, at runtime,
tracks matched patterns. Instead of matching a whole pattern, the
RETE algorithm will match the subparts of the pattern until getting
a full match. Incrementality is here used to update the incomplete
patterns, without fully recalculating the matching for all the present
candidates. In MDE, the Eclipse VIATRA framework has an imple-
mentation of the RETE algorithm to achieve an incremental pattern
matching [6]. The choice of using an incremental algorithm is due
to the focus of the tool. Indeed, the VIATRA platform focuses on
event-driven and reactive transformations thus an efficient solution,
for handling multiple changes, has been chosen.

3.1.2  Laziness. Laziness is also commonly used by model man-
agement tools. In general, laziness reduces computations by remov-
ing the ones that are not needed to answer to the user requests.
Indeed, by using laziness, pieces of output are calculated only when
they are needed by the user. This “call-by-need” approach is mainly
used on big models, known as Very Large Models (VLMs). Since
users may want to get only a part of the output, computing the
whole query/transformation is unnecessary.

In [41], Tisi et al. extended the model transformation mecha-
nism of ATL with laziness. Elements of the target model are firstly
initialized, but their content is generated only when a user tries to
access it. To do so, the model navigation mechanism has a tracking
system, which provides, for a target element, the rules that must
be executed. In addition, the tracking system keeps information
about already executed rules to avoid recomputation. Other en-
gines, such as ETL (Epsilon Transformation Language), from the
Epsilon framework, implements a similar approach.

Besides model transformation, laziness is also used in model
querying. In [38], Tisi et al. redefine OCL features with laziness
aspects. For instance, operations of the language are redefined to
be evaluated with a lazy strategy. Also, the work proposes lazy
collections that respect the OCL specification. The latter is similar
to the collections proposed by Willink in [46]. The OCL collec-
tions are implemented as generic Java classes, with lazy operators.
These approaches aim at tackling OCL related efficiency issues. For

example, because of the OCL collections are immutable, the suc-
cessive add of elements in a collection would create intermediate
data structures. More generally, the composition of operation calls
would cause an evaluation of a cascade of operations. The proposed
implementation of a lazy evaluation optimizes such common cases.

3.2 Parallelizing computations

Parallelism designates the use of several processing units in order
to achieve a global operation. There exist many kinds of parallel
architectures, from multi-cores to clusters of GPUs. In this paper,
we only focus on the parallelism strategies that may be used to take
advantage of parallel architectures.

In Table 2, we classify how parallelism has been applied to model
management in literature, by the following columns:

e MQ or MT if the whole model query or transformation is
parallelized;

e Matching if the work only parallelizes the matching phase
of the model query/transformation;

o Performance whether the work pays particular attention
to the impact of data distribution or task distribution on
performance.

We classify the strategies into three categories: data-parallelism
(Section 3.2.1); task-parallelism (Section 3.2.2), both of them being
synchronous strategies; and one example of asynchronous strategy
(Section 3.2.3).

Table 2: Parallelism for model-management in literature.

MQ MT Matching | Perf.
Task-parallelism | [30, 43] [24, 40] [34]
Data-parallelism (4, 26, 42] [26] [5]
Asynchronism [8-10] [9]

3.2.1 Data-Parallelism. In a data-parallel approach, data is split
and distributed across several computation units. Then, the same
piece of program (from a single basic operation, to a complex func-
tion) is applied simultaneously on each part of data by each process-
ing unit without synchronization. Furthermore, additional synchro-
nizations and communications may be needed between processing
units to correctly compute the overall result. For instance, data may
need to be merged into a single result. This computation strategy is
the one followed by the parallel algorithmic skeletons [16] on data
structures [19, 35].

MapReduce [20] is a an example of programming model, designed
for parallelism, that takes advantage of this strategy. However,
MapReduce is mainly adapted and implemented for distributed
arrays or lists, and the approach is not directly suitable for all types
of data structures. For instance, Pregel [31] is a strategy that aims
at easing parallel computations on graphs by using a vertex-centric
approach. In Pregel, graphs are specified by their vertices, each
of them embedding information on their incoming and outgoing
edges. A Pregel program is iterative, and is decomposed in three
main phases: a computation on top of a vertex value, a generation
of messages, and the send of messages through the edges of the
vertex. This process is simultaneously applied to each vertex of a
graph (such as a map in MapReduce).
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Data-parallelism is adapted and adopted in case of large datasets.
Indeed, to make profitable the parallel execution of a single compu-
tation on data, the data chunks must be large enough, otherwise
an overhead has to be paid without much benefits from the paral-
lelization effort 2, 17].

Benelallam et al. [4] use data-parallelism for distributing models
among computational cores to reduce computation time in the
ATL model transformation engine. The MapReduce version of ATL
makes independent transformations of sub-parts of the model by
using a local “match-apply” function. Then, the reduction aims
at resolving dependencies between map outputs. The proposed
approach guarantees better performance on basic cases such as the
transformation of a class diagram to a relational schema. In a more
recent work [5], the same authors highlight the good impact of their
strategy for data partitioning. Instead of randomly distributing the
same number of elements among the processors, they use a strategy
based on the connectivity of models.

[25] illustrates how a model can be considered as a typed graph
with inheritance and containment. Considering a model as a graph
data-structure, the graph technologies can directly be applied to
models. For instance, Imre et al. efficiently use a parallel graph
transformation algorithm on real-world industrial-sized models for
model transformation [24]. In [34], Mezei et al. use graph rewriting
operations based on task-parallelism to distribute matching opera-
tions in large models in their transformation tool Visual Modeling
and Model Transformation (VMTS). The Henshin framework [26]
proposes to extract the matching part of its transformation rules
into vertex-centric code (i.e., Pregel). Another possibility to use
Pregel in model transformation is by using a DSL, such as [42] for
graph transformation. The proposed compiler transform the code
written with the DSL into an executable Pregel code.

3.2.2 Task-Parallelism. A task-parallel program focuses on the
distribution of tasks instead of data. According to [36], “a task is
a basic unit of programming that an operating system controls”
within a job. This concept is often associated to multi-threading.
The grain size of tasks depends on the context of the execution. At
the operating system level, tasks may be entire programs while
at the program level, they may be a single request, or a single
operation. Because of concurrency, and the limited number of
processing units, tasks executions must be ordered by considering
both priorities, and dependencies across tasks. Ordering tasks in
parallel are similar to the workflow concept. Task-parallelism will
be preferred to data-parallelism when tasks are complex enough,
or when the number of tasks is large enough to exploit parallelism
capacities of the underlying parallel architecture (i.e., hardware).

[43] proposes a formal description of parallelism opportunities
in OCL. Two main kinds of operation are targeted: the binary oper-
ations that can have their operands evaluated simultaneously, and
the iterative processes of independent treatments. In [30], Madani
et al. use multi-threading for “select-based” operations in EOL, the
OCL-like language of the Epsilon framework, for querying models.
The extension of the language with parallel features for selective
operations have shown a non-negligible speed-up (up to 6x with
16 cores) in their evaluations on a model conform to the Internet
Movie Database (IMDb) metamodel'. Next to query evaluation,

http://www.imdb.com/interfaces
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multi-threading is also used for model transformation. In [40], Tisi
etal. present a prototype of an automatic parallelization for the ATL
transformation engine, based on task-parallelism. To do so, they
just use a different thread for each transformation rule application,
and each match, without taking into account concurrency concerns
(e.g., race conditions).

3.2.3  Asynchronism. Both data-parallelism and task-parallelism
can be defined as synchronous strategies where synchronizations
are explicitly performed through communication patterns, or tasks
dependencies. Asynchronism is another way of programming par-
allelism where synchronism is not explicitly coded but implicitly
handled by an additional mechanism between processing units. For
example, the Linda approach [13], is based on the treatment of
asynchronous tasks or data, shared in a common knowledge base,
the “blackboard” [11]. More specifically, in Linda several processes
access a shared tuple space representing the shared knowledge of
a system. The processing units interact with the shared space by
reading, and/or removing tuples.

LinTra is a Linda-based platform for model management and
has several types of implementation. First, on a shared-memory
architecture (i.e., a same shared memory between processors, typi-
cally multi-threading solutions), LinTra proposes parallel in-place
transformations [10] and parallel out-place transformations [8].
Both strategies have significant gains in performance, compared
to sequential solutions. Nonetheless, shared-memory architecture
are fine for not too big models. Indeed, since the memory is not
distributed, a too big model could lead to a out-of-memory errors.
This phenomenon happens more concretely in an out-place trans-
formation since two models are involved during the operation. The
first prototype of distributed out-place transformations in LinTra,
is presented in [8], and works with sockets for communicating the
machines. This first proposal remains naive. That is why, Burgueno
et al. proposes a more realistic prototype for transformations on
distributed architecture [9]. But the use of a distributed architecture
raises new questions: how to distribute data and, how to distribute
tasks? They applied different strategies mixing both the evalua-
tion of tasks on a single or on multiple machines, and storing the
source and target models on the same, or on different machines.
The study was conducted for the specific IMDD test case only, and
then does not provide a general conclusion about the benefits of a
such solution.

One can note from Table 2 that only two papers of the related
work on parallelism in MDE offer a detailed performance analysis
according to the data or tasks distribution. However, both these
papers clearly show that many factors can influence performance
such as the size of models, their reading/writing modes (e.g., in-
place), the distribution of the models and the distribution of the
operations to perform on them and so on.

4 MULTI-STRATEGY MODEL MANAGEMENT

Each of the research efforts presented in Tables 1 and 2 exploit
a single strategy for optimizing model-management operations.
Typically, the strategy is applied in an additional implementation
layer for the model-management language, e.g. an interpreter or
compiler.
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We say that a query or transformation engine performs multi-
strategy model management if it automatically considers differ-
ent strategies, instead of a single one, in order to manipulate models
in an efficient way. According to Section 3 and to the best of our
knowledge, such approach does not exist in the literature.

In this section, we exemplify the multi-strategy approach by
implementing the OCL query of Listing 1 in different ways, using
different strategies of parallelism. The goal of this Section is not to
provide the most efficient solutions for solving the given problem.
Instead, it aims at illustrating the diversity of solutions, that each
have its own advantages depending on the use cases. To do so, we
implemented several solutions using different parallel strategies and
compared them. Also, this section only illustrates the variability of
single solution, and not their possible combination.

Our prototype is built on top of Spark?, an engine designed for
big data processing. In addition to parallel features of Spark on
data structures, called Resilient Distributed Datasets (RDDs), the
Scala implementation of Spark proposes several APIs including a
MapReduce-style one, an API for manipulating graphs (GraphX
[22] that embeds the possibility to define Pregel programs), and
a SQL interface to query data-structures. Because the framework
proposes different parallel execution strategies, we only focused
on parallel approaches to illustrate the need of a multi-strategy
approach. Comparing solutions that include laziness and incremen-
tality aspects is a part of our future works. In our implementation
example, we use GraphX, in addition to its provided Pregel function,
and MapReduce features. We represent instances of SocialNetwork
as a GraphX graph where each vertex is a couple of a unique iden-
tifier and an instance of either a User or a Submission (Comment or
Post). Edges represent the links of elements of a model conforming
the meta-model presented in Figure 1, labeled by a String name.
We keep exactly the same labels from the meta-model for [0..1] or
[1..1] relations but we use singular names for [0..*] relations (e. g.,
one edge “like” for each element of the “likes” relationship). For
the rest of this section, we consider sn a GraphX representation of
a SocialNetwork.

Considering that there exists an implementation for the function
score, that will be detailed later in this section, the OCL query
topPosts of Listing 1 can be rewritten using Spark, as presented in
Listing 2.

Listing 2: Spark implementation of a query from TTC 2018.

i sn.vertices.filter(v => v.isInstanceOf[Post])
2 .sortBy(score(_._2), ascending=false)
3 .collect.take(3)

First, the SN!Post.allInstances() statement of the OCL specifi-
cation is translated into the application of a filtering function on the
vertices of the graph sn (line 1). A sorting with a decreasing order
is then applied to the score values (computed by the score function)
of each vertex. The projection _._2 returns the second element of
the vertex values, that is an instance of Post, while _._1 would have
returned its identifier within the graph. At the end of line 2, the
current structure is still a RDD. Because of the small number of

Zhttps://spark.apache.org/

values we aim at finally obtaining, the structure is converted into a
sequential array of values (function collect), from which we get
the first three values. We can notice the similar structure between
the Spark and OCL queries. Hence, the global query can almost
be directly translated from one language to the other. However,
the scoring function can be implemented in many different ways
with many different strategies. We illustrate this through three
implementations in the rest of this section: direct-naive, pregel, and
highly-parallel. Then we discuss these three implementations and
open to the multi-strategy approach.

4.1 Direct naive implementation

The first implementation, namely direct-naive, shown in Listing 3,
directly follows the OCL helpers from Listing 1. The first auxiliary
function countLikes, corresponding to the homonym helper, sums
the number of "like" relations for each comment of a given post
(lines 17 to 21). The second auxiliary function score (lines 23 and
24) is also a direct Spark translation from the OCL query. It uses
parallelism, coupled with the lazy evaluation provided by Spark.
Indeed, the execution of operations on RDDs is not started until an
action is triggered. In our example, collect and count are these ac-
tions. Finally, the allComments function is defined recursively using
GraphX features. The direct-naive implementation of score uses
three functions that are inspired by functional languages: filter
which removes all the elements of a list that do not respect a given
predicate; map that applies a function to every element; and flatMap
which is a composition of map and flatten. The latter is equiva-
lent to flatten from Listing 1. The implementation first gets the
direct comments of a post (lines 10 and 11), and, using an auxiliary
function getComments, recursively gets all the belonging comments
(lines 13 and 14). The method flatMap of lines 8 and 13 transforms
the list of lists, into a list of comments.

4.2 Pregel implementation

The second solution, namely pregel, proposed in Listing 4, is a Pregel-
based implementation. The main idea of this solution is, starting
from a Post, counting the number of comments and the number of
likes for these comments by propagating messages through edges
of the graph by using Pregel. To do so, we declare two variables,
nbComments, and nbLikes, that can be seen as aggregators, i.e., global
accumulator of values. The propagation is processed using the
Pregel support of GraphX that works as follows. At each iteration,
the function mergeMsg accumulates into a single value the incom-
ing messages (line 20), that are stored in a iterable structure, from
the previous iteration (with an initial message defined for the first
iteration). This value is used by vprog with the previous vertex v,
to generate the new vertex data v,41. With this value, messages
are generated with sendMsg and sent to vertices through edges for
the next iteration. Because the stucture which stores the message
must be iterable, all the messages must be of type Iterator. An
empty message is then produced by Iterator.empty. The program
stops when no message is produced for the next iteration. In our
implementation, messages are tuples of two values. The first one
is an integer value for specifying which vertices should compute
and send messages. Besides, if the integer is negative, then all the
vertices should compute. The second one aims at precising what
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Listing 3: Direct implementation of score.

def allComments (p : Post) = {
// recursive function
4 def getComments (co : Comment) : List[Comment] =
List(co).union(sn.triplets
filter(t => t.srcAttr == co
7 & t.attr == "comment")
.flatMap(_.dstAttr compose getComments).collect)

10 sn.triplets
11 .filter(t => t.srcAttr == p & t.attr == "comment")
12 .flatMap(_.dstAttr compose getComments).collect

5 def countLikes (p: Post) =

16 allComments(p)

1 .map(c => sn.triplets.filter

18 (t => t.attr == "like" & t.dstAttr == c)
19 .count).sum

1 def score (p : Post) =
22 10 *x allComments(p).size + countLikes(p)

value must be incremented (either the number of comments (false),
or likes (true)). The initial step of the execution questions the model
to get the id of the vertex containing the Post we want to score (line
3 and 4). This identifier is added to every vertex to provide them a
global view on the computation status (line 6). Then, messages are
propagated through the edges to belonging comments of computed
vertices, or to the users who likes the scoped comment (line 13 to
19). At the message reception, the computation will increment the
aggregator according to the second value of the message (line 9
to 11). After the execution of the pregel function, a score value is
calculated using nbComments and nbLikes.

4.3 MapReduce implementation

Listing 5 illustrates a solution with a higher level of parallelism,
namely highly-parallel, that uses a MapReduce approach. The pur-
pose of this third solution is to process as much as possible opera-
tions in parallel in a first time, and then go through the graph to
reduce these values. The first step counts the number of direct sub-
comments, and the number of likes, for each element of the model,
using a map and reduce-by-key composition (line 3 to 7). Because
the number of likes has not the same importance than the number of
belonging comments in the score calculation, two keys are created
for a single element: one for counting each property (i.e., number of
comments and number of likes). Then a graph-traversal operation
calculates the total number of belonging comments and likes for a
given post. However, the keys are only created if a comment, or a
like, exists. Then, to initialize values, we use a composition of find
that returns an option, and getOrElse in the case of the absence of
the key. The latter returns the value of the option if it exists, and
a default value otherwise We do not expect to gain performances
with this approach because the operations are not costly enough.
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Listing 4: Pregel implementation of score.

i def score(p: Post) = {

2 var nbComment, nbLike = @L // Aggregators

3 val fstId = sn.vertices

' filter(v => v._2 == p).first._1

sn.mapVertices((_, v) => (fstld, v)).pregel
(initialMsg = (fstld, false))
8 (vprog = (id, value, merged) =>
9 if (merged_msg._1 == id || merged_msg._1 < @)
10 if (merged_msg._2) nbLike += 1L
1 else nbComment += 1L
12 (merged_msg._1, value._2),
13 sendMsg = t =>

14 if (t.srcld == fstIld | t.srcAttr._1 == -1L)
15 if (t.attr == "comment")

16 Iterator((triplet.dstId, (-1L, false)))
17 if (t.attr == "likedBy")

18 Iterator((t.dstId, (-1L, true)))

19 Iterator.empty,
2 mergeMsg = (m, _) =>m)

10 * nbComment + nbLike

However, having a highly parallel approach largely increase the
scalability of the program.

4.4 Discussion on multi-strategy

First, the complexity of the solutions direct-naive and pregel can
be compared. On the one hand, the complexity on time of the di-
rect implementation of the OCL query, can be given as the sum of
the complexity of allComments and countLikes. Considering n the
number of nodes, these two complexities are defined as follows.
First, allComments is a depth-first search of complexity O(n + m)
with m the number of comment edges (i.e., the depth of belonging
comments). Second, countLikes is composed by a depth-first search,
and the map of a function whose complexity is O(n). Then, the com-
plexity of the mapping part is given by O(n?). Since the complexity
of the sum operation is negligible, we do not consider it in the cal-
culation of the global complexity. By summing these values, we
obtain a complexity of O(n® + m) for the direct implementation of
the scoring function. On the other hand, the Pregel implementation
complexity is bounded by O(n?), in the case of all comments are
all belonging to the same post. Naturally, the second solution will
be preferred since its complexity is lower. However, if the model
has a small depth of belonging comments (i.e., a small value for m),
the two solutions are not significantly different.
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Listing 5: Highly parallel implementation of score.
i def score(p: Post) = {
// number of likes and comments per element
) val scores = sn.triplets
4 .filter(t => t.attr == "likedBy"
| t.attr == "comment")

.map(t => ((t.attr, t.srcAttr), 1L))

7 .reduceByKey((a,b) => a + b).collect

def getScore(s: Submission) = {
10 val default = ((_,_), oL)
1 var nbLike = // @ if s is not liked
12 scores.find(e => e._1._2 ==
13 & e._1._1 == "likedBy")
14 .getOrElse(default)._2
var nbComment = // @ if s is not commented

16 scores.find(e => e._1._2 =='s
1 & e._1._1 == "comment")
18 .getOrElse(default)._2

19 // recursive call
20 val subScores = sn.triplets
21 filter(t => t.srcAttr == s

22 & (t.attr == "likedBy"
23 |t.attr == "comment"))
24 .map(_.dstAttr compose getScore).collect

25 // sum of all score from belonging comments
26 for (score <- subScores) {

27 nbLike += score._1

28 nbComment += score._2

2 3

30 (nbLike, nbComment)

31 }
) val score_p = getScore(p)
33 10L * score._1 + score._2

The Pregel solution has nonetheless an important weakness. In-
deed, for optimization reasons, vprog is only applied to vertices that
have received messages from the previous step. Then, considering
the case where the comments are all commented once, the vprog
function will be applied to only one vertex. Hence, the parallelism
level strongly depends on the number of siblings of each comment.
With Pregel, only active vertices, i.e., vertices which received a
message from the previous iteration, compute the vprog function.
Thus, the number of operations concurrently executed in Pregel
varies from the less to the most commented and liked element.
On the contrary, the highly parallel implementation executes the
processing operations on every elements of the model. In the lat-
ter, the parallelism level of graph-traversal has the same limitation
than the Pregel implementation, but always process a less complex
operation (i.e., a reduction as a sum of integer values).

The three above parallel approaches can solve the same problem,
but their efficiency depends on external parameters. For executing
the topPosts query, a multi-strategy engine would compile it to:

o the direct-naive implementation if the depth of belonging
comments is small;

o the pregel solution if the environnement has few resources
for parallelism;

o the highly-parallel solution if the score computation needs
big calculation on the vertices themselves.

As mentioned at the beginning of the Section, our proposed
solutions do not claim to be the most efficient ones. They are based
on three parallelism strategies to illustrate the variability of pos-
sible solutions for a given problem. Considering the all presented
strategies of Section 3, a more robust solution could include reactive
aspects. For this particular example, mixing incrementality and
parallelism would avoid useless calculations when the score of a
single post has changed. For instance, the independent scores could
be calculated once using parallelism, and, when a change occur, use
incrementality to avoid the recomputation of unchanged elements.
Considering a possible deletion of a part of the model (e.g., deletion
of a user, and then of all his posts, and comments), laziness could
be incorporated to the solution, to only recompute potential new
most-debated posts.

5 CHALLENGES IN MULTI-STRATEGY
MODEL-MANAGEMENT

In the perspective of low-code platforms, a multi-strategy engine
should be fully automated, from the automatic strategy selection
to the automatic configuration and deployment on distributed in-
frastructures. Our approach is different from the multi-strategy
approach proposed in [3] which is focused on languages and their
salient features. The conception of a multi-strategy engine leads to
many scientific challenges that we divide in two parts in the rest of
this section: the challenges related to the code and the challenges
related to DevOps.

5.1 Code-related challenges

A first scientific challenge that arises from the multi-strategy ap-
proach is the automatic and transparent selection of the most
adapted strategy for a given model-management operation. The
motivating example of Section 2 shows the large variability to take
into account to make the right choice. We divide this variability in
different properties that should be considered:

e properties on the input model: size, meta-model, topology,
etc.;

e properties on the operation to perform: update, launch,
request, read or write, the frequency of the operation, etc.;

e properties on the available infrastructures: type of frame-
works compatible or already deployed on the infrastruc-
ture;

This variability results in a combinatorial choice that could be
solved by using constraint programming, or by leveraging machine
learning techniques to automatically learn how to associate these
properties together.

The second challenge related to the code aspect is that an ini-
tial code written with a MDE solution may need to be rewritten
to follow the chosen execution strategy, while guaranteeing the
same expected output. In other words, a code rewriting or code
generation challenge is raised by the multi-strategy approach. In
particular, formal semantics for the model-management engine
may be of high importance to guarantee a correct output code [37].
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As example, Listings 3, 4, and 5 described in Section 4 all present
a different way of writing a code from the initial OCL solution
shown in Listing 1. The complexity and the level of parallelism of
the solutions have been discussed in Section 4.

5.2 DevOps-related challenges

In the context of low-code platforms, automatically handling the
strategy selection and the code generation is not the only concern.
Once generated, the code must be deployed and run on complex
distributed infrastructures. These tasks should be as transparent
as the previous code-related challenges. Hence, a first challenge
is automatically handling the deployment of a set of model opera-
tions that potentially use different strategies, onto the associated
infrastructures that could themselves be very heterogeneous (e. g.
different public Cloud solutions such as AWS, or private Clouds, hy-
brid Clouds, etc.). This complexity should be handled at the LCDP
level, which requires safe and efficient deployments [14, 18].

Furthermore, choosing a given strategy, often involves deploy-
ing code on existing frameworks or platforms that implement that
strategy. For instance, when choosing the MapReduce (respectively
Pregel) strategy, Hadoop? (resp. Giraph* or Spark®) should be used
to benefit from efficient implementation. All these frameworks are
highly configurable, e. g., MapReduce has more than one hundred
parameters [28]). Because of their large number of parameters,
finding their optimal configuration is a difficult problem. This addi-
tional layer of configuration represents an additional combinatorial
challenge. Several solutions could provide a good trade-off. For
instance, instead of providing a full configuration for the tools,
which is very costly, a performance prediction built from configu-
ration samples could be used. This solution has been adopted by
Pereira et al. [1]. Another approach would be to make a full cost
estimation but only considering critical parameters. For example,
give the right level of parallelism by providing an approximation
of the optimal number of mapper and reducer in a MapReduce job®.
More formal approaches can also be used to estimate the cost of
parallel programs (e.g., cost model for GraphX [27]), and compare
the different solution using additional parameters such as hardware
configuration (e.g., the bridging Bulk Synchronous Parallel cost
model [44]).

Using formal approaches to estimate the cost of a parallel pro-
gram such as BSP cost model [44] or Pregel cost estimation [27].

Finally, as for the combinatorial problem of choosing the right
strategy, machine learning techniques could be adopted [32].

6 CONCLUSION

In this paper, we made an overview of what, and how, execution
strategies can be used for model driven engineering. In the con-
text of developing low-code platforms for managing models, these
strategies might be used for optimizing performances. However,
a wrong use of a computational model can have a bad impact on
calculation efficiency. The motivating example presented in Sec-
tion 2 and the implementations of Section 4 illustrate that by using
different strategies and different combinations of paradigms for a

3http://hadoop.apache.org/

“https://giraph.apache.org/

Shttp://spark.apache.org/
®http://wiki.apache.org/hadoop/HowManyMapsAndReduces
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given input model, different advantages could be observed, such
as complexity, and parallelism level. Different paradigms may be
chosen, according to different properties: the type of input model,
its size, its topology, the type of computation to perform, and the
available infrastructure. The future goal of a such prototype is
to drive a complete study of how the paradigms can be used and
combined, and to classify them depending on use cases.
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