Jolan Philippe
email: jolan.philippe@imt-atlantique.fr

Hélène Coullon
email: helene.coullon@imt-atlantique.fr

Massimo Tisi
email: massimo.tisi@imt-atlantique.fr

Gerson Sunyé

Towards Transparent Combination of Model Management Execution Strategies for Low-Code Development Platforms

Keywords: agement, •Computing methodologies →Parallel algorithms, Multi-strategy, Low-code development, Model-Driven Engineering, OCL, Spark

HAL is

INTRODUCTION

Research in so ware engineering has produced several high-level abstractions to facilitate application development. Following this line, recent low-code development platforms (LCDPs) [START_REF] Tisi | Lowcomote: Training the Next Generation of Experts in Scalable Low-Code Engineering Platforms[END_REF] propose visual interfaces for so ware development, distributed as platformsas-a-service (PaaS), which minimize the need for users to write code. Most LCDPs are based on the description of application behavior with models, as promoted by model-driven engineering (MDE). In the MDE approach, models are the central and unifying point of the conception: they can represent knowledge, architectures, data, and so on. To be useful, models must be manageable by adding, removing, updating or querying information. e performance of these operations represent a eld of study in the MDE community.

More speci cally, model-management in LCDPs has a significant need for automatic and transparent e cient and scalable operations, for manipulating, querying and analyzing models. We identify three main reasons for this need. First of all, LCDPs need to provide complex visual development environments with low response time. For LCDPs that use models in the development phase, most of the model-management operations are executed at design time, e. g., for editing, validating, transforming the model. e required time for responding to a graphical command is a quality factor of the LCDP tool and has an in uence on the developer's comfort [START_REF] Perez | Reactive model transformation with ATL[END_REF], and on her e ciency. Cloud-based LCDPs have speci c needs. For instance, they can integrate recommendation systems that may need to perform queries over the whole LCDP repository, to propose useful pa erns to the user. Optimizing such design-time operations is important and challenging, especially when they require processing large-scale design models (or unions of models).

A second scalability issue arises when LCDPs need to manipulate large instance models of data, e. g., as it happens today in several (automotive, aeronautics, civil) engineering domains. In this paper we will consider a running case where a (ctional) company in social networking provides a LCDP to its users. rough the LCDP, users will be able to write their own apps over a huge social graph [START_REF] Ching | One Trillion Edges: Graph Processing at Facebook-scale[END_REF], represented as a model. Because of the sheer size of the model, providing an e cient solution is necessary.

e third reason for the need of e cient model-management in LCDPs is the number of concurrent operations on the platform. Due to the potential massive use of LCDPs, there is a need to run a big number of operations in parallel for many users. In the context of a PaaS, numerous customers may query models, thus servers or shared databases. Hence, e cient concurrent execution of modelmanagement operations is necessary.

To improve e ciency and scalability, recent research on modelmanagement studied parallel and concurrent programming as well as speci c execution models for model-management languages.

ese techniques range from implementing speci c execution algorithms (e. g., RETE) to compiling toward distributed programming models (e. g., MapReduce). In this paper we use the term execution strategies and (or just strategy) as a general way to denote these techniques. ese techniques are sometimes quali ed as paradigms in the literature, but this term may lead to confusion with programming paradigms (functional, logic, etc.).

e diversity of strategies that have been employed poses several scienti c challenges. Most model-management languages implement a single execution strategy with speci c strengths and weaknesses depending on the use case. Some existing solutions in MDE o er more than a single execution strategy but the choice is le to the user which requires expertise on parallelism or distribution [START_REF] Krause | Implementing Graph Transformations in the BulkSynchronousParallel Model[END_REF]. Moreover, it appears that performance for some use cases could be improved by the combination of di erent strategies. To abide by low-code philosophy, the con guration of these development platforms should be as transparency as possible, even automatic.

In this paper we illustrate the variability of existing strategies, and emphasize the need for a multi-strategy vision for modelmanagement where strategies can be automatically switched and combined to e ciently address the given model-management scenario. Furthermore, we stress the need for automatic choice and con guration of strategies to enhance performance of LCDPs. We outline code-related and DevOps challenges of a such approach and provide hints for technical solutions to these problems. e rest of the paper is organized as follows. We motivate our work with an example in Section 2. Section 3 presents the necessary background and analyzes the existing computational strategies in model management. We introduce the multi-strategy approach in Section 4, and exemplify the variability of parallel execution strategies for the use case. In Section 5 we describe the main challenges for achieving a multi-strategy model-management engine. We nally conclude in Section 6.

MOTIVATING EXAMPLE

Social network vendors o en provide speci c development platforms, used by developers to build apps that extend the functionality of the social network. Some networks are associated with marketplaces where developers can publish such apps, and end-users can buy them. Development platforms typically include APIs that allow analyzing and updating the social network graph.

As a running example for this paper, we consider a scenario where a vendor adds a LCDP to allow end-users (also called citizen developers in the LCDP jargon) to implement their own apps. Such LCDP could include a WYSIWG editor for the app user-interface, and a visual work ow for the behavioral part. In particular, the LCDPs would need to provide mechanisms, at the highest possible level of abstraction, to express queries and updates on the social graph. In Fig. 1 we show the simple metamodel for the social graph that we will use in the paper. e metamodel has been originally proposed at the Transformation Tool Contest (TTC) 2018 [START_REF]Proceedings of the 11th Transformation Tool Contest, co-located with the 2018 Soware Technologies: Applications and Foundations[END_REF], and used to express benchmarks for model query and transformation tools. In this metamodel, two main entities belong to a SocialNetwork. First, the Posts and the Comments that represent the Submissions, and second, the Users. Each Comment is wri en by a User, and is necessarily a ached to a Submission (either a Post or another Comment).

Besides commenting, the Users can also like Submissions.

As an example, in this paper we focus on one particular query, also de ned in TTC2018: the extraction of the three most debated posts in the social network. To measure how debated is the post, we associate it with a numeric score. e LCDP will have to provide simple and e cient means to de ne and compute this score.

We suppose the vendor to include a declarative query language for expressing such computation on the social graph, and storing scores as a derived properties of the graph (i.e. new properties of the social graph that are computed on demand from other information in the graph).

In Listing 1 we implement the query to get the top-three debated posts in a model conforming to the presented metamodel, using the formula de ned in TTC2018. e query is wri en in OCL, the most used declarative query language in MDE. In particular we use the ATL avor of OCL.

In this code, a score of 10 is assigned to the post for each comment that belongs to it. Comments belong to a post in a recursive manner: a comment belongs to a post if it is a ached either to the post itself, or to a comment that already belongs to the post. en, a score of 1 is also added every time a belonging comment is liked.

e query is de ned using three (a ribute) helpers, that can be seen as derived properties. e rst helper, allComments (line 7 to 11), collects recursively all the comments of a Submission. e second helper, countLikes counts how many times a comment that belongs to the given post has been liked. en, the score of a Post is calculated by summing the result of countLike and the number of its belonging comments multiplied by ten. Finally the top three posts are obtained by the query topPosts sorting the posts by decreasing score, and selecting the rst three.

e simple declarative query in listing has not been de ned with e ciency concerns in mind. Indeed, since we cannot make assumptions on the background of citizen developers, our LCDP cannot presume that they will structure the query for satisfying any Listing 1: An OCL query for the rst task of the TTC 2018. performance requirement. As a result, when the number of users increases, soon the size of the social graph makes the computation of this query challenging. First of all, the list Post.allInstances() (line 2) becomes too large to manipulate. Especially the full sorting of posts (line 3) seems prohibitive. Without an e cient mechanism, the naive recomputation of allComments each time it is called, is a further performance waste. If we consider the typical frequency of updates for social network graphs, keeping the list of top posts up-to-date by fully recomputing this query at each update could consume a signi cant amount of infrastructure resources.

Moreover, the most e cient way to execute the query does not depend only on the given query de nition and metamodel structure, but on several characteristics of the usage scenario. A technique to optimize a particular use case typically has signi cant overhead in other use cases. Factors that can in uence this choice in our example can be related to the model size (e.g. order of magnitude for the number of Users), frequency of updates (e.g. of new Submissions), average model metrics (e.g. average number of Comments per Post), acceptable response time for the nal query (topPosts), infrastructure constraints and resources (e.g. available memory, CPUs) and so on. In some cases techniques can be combined, further complexifying the search for the optimal solution.

Finally, while in this paper we will focus exclusively on this example, it is not di cult to identify similar issues for update operations (e.g. removal of all information for an unsubscribing user) or transformation (e.g. for storing the graph in a particular persistence format).

EXECUTION STRATEGIES IN MODEL MANAGEMENT

In this section we outline the execution strategies that are commonly used to enhance the e ciency of model-management. e below presented strategies have been identi ed with their use in MDE. In this Section, we only focus on the strategies, regardless of the chosen language for their implementations. We also give an overview of the existing applications of these strategies in modelmanagement tools. e two main categories of model-management tools we consider are model transformation (MT) and query (MQ). On the one hand, model transformation is the conversion process of one or more input models to output models (model-to-model) or text (model-totext). A model transformation that produces a model as output can be either an in-place (i.e., direct modi cation of the input model) or an out-place transformation (i.e. production of a new model from the input one). On the other hand, a model query analyzes source models to compute the desired data value. Finally, some general key concepts (e.g., matching), that can be used both in MT and MQ are using strategies to improve the performances of engines. ese concepts are also discussed in the current Section.

Avoiding computations

Incrementality and laziness are the main strategies used in MDE for minimizing the sequence of basic operations needed to perform a query or transformation. ey have been classi ed as strategies for reactive execution in [START_REF] Perez | Reactive model transformation with ATL[END_REF], since they foster a model of computation where the model-management system reacts to update and request events, (note that the term is only inspired by the reactive programming paradigm in the sense of [START_REF] Harel | On the Development of Reactive Systems[END_REF], that we wont discuss here).

We classify existing applications of these strategies to modelmanagement tools in the columns of Table 1, depending on their scope:

• MQ or MT if the strategy is applied to the whole model query or transformation; • Matching if the strategy is only applied to the matching phase (the subgraph isomorphism of the pa ern to query/transform, over the full model) of the model query/transformation; • Collections if the strategy is only applied to the computation of collections during the query/transformation.

Table 1: Reactive strategies for model-management in literature.

MQ MT Matching Collection Incrementality [START_REF] Cabot | Incremental integrity checking of UM-L/OCL conceptual schemas[END_REF] [29] [START_REF] Bergmann | Incremental Pa ern Matching in the Viatra Model Transformation System[END_REF][START_REF] Varró | A Rete Network Construction Algorithm for Incremental Pa ern Matching[END_REF] Laziness [START_REF] Tisi | Lazy Evaluation for OCL[END_REF] [41] [START_REF] Gerth | Cache Oblivious Distribution Sweeping[END_REF][START_REF] Willink | Deterministic Lazy Mutable OCL Collections[END_REF] 3.1.1 Incrementality. Incrementality is an event-based pa ern, whose goal is to reduce the number of needed operations when a change happens within the input model. Instead of applying from scratch the whole set of operations on the new input model, incrementality allows the system to apply only the operations impacted by updates. Since the system needs to apply a subset of operations, a trace to relate the output pieces to input elements is necessary.

e approach leads then to an additional memory cost, with a good trade-o only if changes occur o en enough.

To achieve incremental execution of transformation rules, Calvar et al. designed a compiler to transform a code wri en with ATL [START_REF] Éo Le Calvar | Ecient ATL Incremental Transformations[END_REF], a QVT-like (ery View Transformation) language to Java code.

e output program takes advantage of active operations of the language.

e active mechanism works as an observer pa ern: the values are de ned as mutable, and changes are noti ed to an external observer. From there, it is easy to isolate what part of the model has been changed, and then to deduce what rules must be operated again. To illustrate their proposal, they applied their evaluation to two cases including on social media models to illustrate the e ciency of the strategy for querying models that have strong user activity. is is not the single a empt of integrating incremental aspects in ATL.

In [START_REF] Cabot | Incremental integrity checking of UM-L/OCL conceptual schemas[END_REF], Cabot et al. present an incremental evaluation of OCL expressions that are used to specify elements of a model in ATL.

ey used a such approach to state integrity preservation of models at runtime. Instead of testing the whole integrity of a model every time it is changed, the proposed system is able to determine when, and how, each constraint must be veri ed.

For example, the RETE algorithm for pa ern matching, presented in [START_REF] Varró | A Rete Network Construction Algorithm for Incremental Pa ern Matching[END_REF], constructs a network to specify pa erns and, at runtime, tracks matched pa erns. Instead of matching a whole pa ern, the RETE algorithm will match the subparts of the pa ern until ge ing a full match. Incrementality is here used to update the incomplete pa erns, without fully recalculating the matching for all the present candidates. In MDE, the Eclipse VIATRA framework has an implementation of the RETE algorithm to achieve an incremental pa ern matching [START_REF] Bergmann | Incremental Pa ern Matching in the Viatra Model Transformation System[END_REF]. e choice of using an incremental algorithm is due to the focus of the tool. Indeed, the VIATRA platform focuses on event-driven and reactive transformations thus an e cient solution, for handling multiple changes, has been chosen.

Laziness.

Laziness is also commonly used by model management tools. In general, laziness reduces computations by removing the ones that are not needed to answer to the user requests. Indeed, by using laziness, pieces of output are calculated only when they are needed by the user. is "call-by-need" approach is mainly used on big models, known as Very Large Models (VLMs). Since users may want to get only a part of the output, computing the whole query/transformation is unnecessary.

In [START_REF] Tisi | Lazy Execution of Model-to-Model Transformations[END_REF], Tisi et al. extended the model transformation mechanism of ATL with laziness. Elements of the target model are rstly initialized, but their content is generated only when a user tries to access it. To do so, the model navigation mechanism has a tracking system, which provides, for a target element, the rules that must be executed. In addition, the tracking system keeps information about already executed rules to avoid recomputation. Other engines, such as ETL (Epsilon Transformation Language), from the Epsilon framework, implements a similar approach.

Besides model transformation, laziness is also used in model querying. In [START_REF] Tisi | Lazy Evaluation for OCL[END_REF], Tisi et al. rede ne OCL features with laziness aspects. For instance, operations of the language are rede ned to be evaluated with a lazy strategy. Also, the work proposes lazy collections that respect the OCL speci cation. e la er is similar to the collections proposed by Willink in [START_REF] Willink | Deterministic Lazy Mutable OCL Collections[END_REF]. e OCL collections are implemented as generic Java classes, with lazy operators.

ese approaches aim at tackling OCL related e ciency issues. For example, because of the OCL collections are immutable, the successive add of elements in a collection would create intermediate data structures. More generally, the composition of operation calls would cause an evaluation of a cascade of operations. e proposed implementation of a lazy evaluation optimizes such common cases.

Parallelizing computations

Parallelism designates the use of several processing units in order to achieve a global operation. ere exist many kinds of parallel architectures, from multi-cores to clusters of GPUs. In this paper, we only focus on the parallelism strategies that may be used to take advantage of parallel architectures.

In Table 2, we classify how parallelism has been applied to model management in literature, by the following columns:

• MQ or MT if the whole model query or transformation is parallelized; • Matching if the work only parallelizes the matching phase of the model query/transformation; • Performance whether the work pays particular a ention to the impact of data distribution or task distribution on performance. We classify the strategies into three categories: data-parallelism (Section 3.2.1); task-parallelism (Section 3.2.2), both of them being synchronous strategies; and one example of asynchronous strategy (Section 3.2.3). 3.2.1 Data-Parallelism. In a data-parallel approach, data is split and distributed across several computation units. en, the same piece of program (from a single basic operation, to a complex function) is applied simultaneously on each part of data by each processing unit without synchronization. Furthermore, additional synchronizations and communications may be needed between processing units to correctly compute the overall result. For instance, data may need to be merged into a single result. is computation strategy is the one followed by the parallel algorithmic skeletons [START_REF] Cole | Algorithmic skeletons : a structured approach to the management of parallel computation[END_REF] on data structures [START_REF] Coullon | e SIPSim implicit parallelism model and the SkelGIS library[END_REF][START_REF] Philippe | PySke: Algorithmic Skeletons for Python[END_REF].

MapReduce [START_REF] Rey | MapReduce: Simpli ed Data Processing on Large Clusters[END_REF] is a an example of programming model, designed for parallelism, that takes advantage of this strategy. However, MapReduce is mainly adapted and implemented for distributed arrays or lists, and the approach is not directly suitable for all types of data structures. For instance, Pregel [START_REF] Malewicz | Pregel: A System for Largescale Graph Processing[END_REF] is a strategy that aims at easing parallel computations on graphs by using a vertex-centric approach. In Pregel, graphs are speci ed by their vertices, each of them embedding information on their incoming and outgoing edges. A Pregel program is iterative, and is decomposed in three main phases: a computation on top of a vertex value, a generation of messages, and the send of messages through the edges of the vertex. is process is simultaneously applied to each vertex of a graph (such as a map in MapReduce). Data-parallelism is adapted and adopted in case of large datasets. Indeed, to make pro table the parallel execution of a single computation on data, the data chunks must be large enough, otherwise an overhead has to be paid without much bene ts from the parallelization e ort [START_REF] Amdahl | Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities[END_REF][START_REF] Coullon | Extensibility and Composability of a Multi-Stencil Domain Speci c Framework[END_REF].

Benelallam et al. [START_REF] Benelallam | ATL-MR: model transformation on MapReduce[END_REF] use data-parallelism for distributing models among computational cores to reduce computation time in the ATL model transformation engine. e MapReduce version of ATL makes independent transformations of sub-parts of the model by using a local "match-apply" function.

en, the reduction aims at resolving dependencies between map outputs.

e proposed approach guarantees be er performance on basic cases such as the transformation of a class diagram to a relational schema. In a more recent work [START_REF] Benelallam | Distributing relational model transformation on MapReduce[END_REF], the same authors highlight the good impact of their strategy for data partitioning. Instead of randomly distributing the same number of elements among the processors, they use a strategy based on the connectivity of models.

[25] illustrates how a model can be considered as a typed graph with inheritance and containment. Considering a model as a graph data-structure, the graph technologies can directly be applied to models. For instance, Imre et al. e ciently use a parallel graph transformation algorithm on real-world industrial-sized models for model transformation [START_REF] Imre | Parallel Graph Transformations on Multicore Systems[END_REF]. In [START_REF] Mezei | Towards truly parallel model transformations : A distributed pa ern matching approach[END_REF], Mezei et al. use graph rewriting operations based on task-parallelism to matching operations in large models in their transformation tool Visual Modeling and Model Transformation (VMTS). e Henshin framework [START_REF] Krause | Implementing Graph Transformations in the BulkSynchronousParallel Model[END_REF] proposes to extract the matching part of its transformation rules into vertex-centric code (i.e., Pregel). Another possibility to use Pregel in model transformation is by using a DSL, such as [START_REF] Tung | Towards Systematic Parallelization of Graph Transformations Over Pregel[END_REF] for graph transformation. e proposed compiler transform the code wri en with the DSL into an executable Pregel code.

Task-Parallelism.

A task-parallel program focuses on the distribution of tasks instead of data. According to [START_REF] Rouse | Task, De nition. h ps[END_REF], "a task is a basic unit of programming that an operating system controls" within a job. is concept is o en associated to multi-threading.

e grain size of tasks depends on the context of the execution. At the operating system level, tasks may be entire programs while at the program level, they may be a single request, or a single operation. Because of concurrency, and the limited number of processing units, tasks executions must be ordered by considering both priorities, and dependencies across tasks. Ordering tasks in parallel are similar to the work ow concept. Task-parallelism will be preferred to data-parallelism when tasks are complex enough, or when the number of tasks is large enough to exploit parallelism capacities of the underlying parallel architecture (i.e., hardware).

[43] proposes a formal description of parallelism opportunities in OCL. Two main kinds of operation are targeted: the binary operations that can have their operands evaluated simultaneously, and the iterative processes of independent treatments. In [START_REF] Madani | Towards Optimisation of Model eries: A Parallel Execution Approach[END_REF], Madani et al. use multi-threading for "select-based" operations in EOL, the OCL-like language of the Epsilon framework, for querying models.

e extension of the language with parallel features for selective operations have shown a non-negligible speed-up (up to 6x with 16 cores) in their evaluations on a model conform to the Internet Movie Database (IMDb) metamodel 1 . Next to query evaluation, 1 h p://www.imdb.com/interfaces multi-threading is also used for model transformation. In [START_REF] Tisi | Parallel Execution of ATL Transformation Rules[END_REF], Tisi et al. present a prototype of an automatic parallelization for the ATL transformation engine, based on task-parallelism. To do so, they just use a di erent thread for each transformation rule application, and each match, without taking into account concurrency concerns (e.g., race conditions).

Asynchronism.

Both data-parallelism and task-parallelism can be de ned as synchronous strategies where synchronizations are explicitly performed through communication pa erns, or tasks dependencies. Asynchronism is another way of programming parallelism where synchronism is not explicitly coded but implicitly handled by an additional mechanism between processing units. For example, the Linda approach [START_REF] Carriero | Linda in Context[END_REF], is based on the treatment of asynchronous tasks or data, shared in a common knowledge base, the "blackboard" [START_REF] Buschmann | Pa ern-Oriented So ware Architecture -Volume 1: A System of Pa erns[END_REF]. More speci cally, in Linda several processes access a shared tuple space representing the shared knowledge of a system. e processing units interact with the shared space by reading, and/or removing tuples.

LinTra is a Linda-based platform for model management and has several types of implementation. First, on a shared-memory architecture (i.e., a same shared memory between processors, typically multi-threading solutions), LinTra proposes parallel in-place transformations [START_REF] Loli Burgue Ño | Parallel In-place Model Transformations with LinTra[END_REF] and parallel out-place transformations [START_REF] Loli Burgue Ño | A Linda-based platform for the parallel execution of out-place model transformations[END_REF]. Both strategies have signi cant gains in performance, compared to sequential solutions. Nonetheless, shared-memory architecture are ne for not too big models. Indeed, since the memory is not distributed, a too big model could lead to a out-of-memory errors.

is phenomenon happens more concretely in an out-place transformation since two models are involved during the operation. e rst prototype of distributed out-place transformations in LinTra, is presented in [START_REF] Loli Burgue Ño | A Linda-based platform for the parallel execution of out-place model transformations[END_REF], and works with sockets for communicating the machines. is rst proposal remains naive. at is why, Burgueno et al. proposes a more realistic prototype for transformations on distributed architecture [START_REF] Loli Burgue Ño | Towards Distributed Model Transformations with LinTra[END_REF]. But the use of a distributed architecture raises new questions: how to distribute data and, how to distribute tasks? ey applied di erent strategies mixing both the evaluation of tasks on a single or on multiple machines, and storing the source and target models on the same, or on di erent machines.

e study was conducted for the speci c IMDb test case only, and then does not provide a general conclusion about the bene ts of a such solution.

One can note from Table 2 that only two papers of the related work on parallelism in MDE o er a detailed performance analysis according to the data or tasks distribution. However, both these papers clearly show that many factors can in uence performance such as the size of models, their reading/writing modes (e.g., inplace), the distribution of the models and the distribution of the operations to perform on them and so on.

MULTI-STRATEGY MODEL MANAGEMENT

Each of the research e orts presented in Tables 1 and2 exploit a single strategy for optimizing model-management operations. Typically, the strategy is applied in an additional implementation layer for the model-management language, e.g. an interpreter or compiler.

We say that a query or transformation engine performs multistrategy model management if it automatically considers di erent strategies, instead of a single one, in order to manipulate models in an e cient way. According to Section 3 and to the best of our knowledge, such approach does not exist in the literature.

In this section, we exemplify the multi-strategy approach by implementing the OCL query of Listing 1 in di erent ways, using di erent strategies of parallelism. e goal of this Section is not to provide the most e cient solutions for solving the given problem. Instead, it aims at illustrating the diversity of solutions, that each have its own advantages depending on the use cases. To do so, we implemented several solutions using di erent parallel strategies and compared them. Also, this section only illustrates the variability of single solution, and not their possible combination.

Our prototype is built on top of Spark2 , an engine designed for big data processing. In addition to parallel features of Spark on data structures, called Resilient Distributed Datasets (RDDs), the Scala implementation of Spark proposes several APIs including a MapReduce-style one, an API for manipulating graphs (GraphX [START_REF] Gonzalez | GraphX: Graph Processing in a Distributed Data ow Framework[END_REF] that embeds the possibility to de ne Pregel programs), and a SQL interface to query data-structures. Because the framework proposes di erent parallel execution strategies, we only focused on parallel approaches to illustrate the need of a multi-strategy approach. Comparing solutions that include laziness and incrementality aspects is a part of our future works. In our implementation example, we use GraphX, in addition to its provided Pregel function, and MapReduce features. We represent instances of SocialNetwork as a GraphX graph where each vertex is a couple of a unique identi er and an instance of either a User or a Submission (Comment or Post). Edges represent the links of elements of a model conforming the meta-model presented in Figure 1, labeled by a String name. We keep exactly the same labels from the meta-model for [0..1] or [1..1] relations but we use singular names for [0.. *] relations (e. g., one edge "like" for each element of the "likes" relationship). For the rest of this section, we consider sn a GraphX representation of a SocialNetwork.

Considering that there exists an implementation for the function score, that will be detailed later in this section, the OCL query topPosts of Listing 1 can be rewri en using Spark, as presented in Listing 2.

Listing 2: Spark implementation of a query from TTC 2018. First, the SN!Post.allInstances() statement of the OCL specication is translated into the application of a ltering function on the vertices of the graph sn (line 1). A sorting with a decreasing order is then applied to the score values (computed by the score function) of each vertex. e projection _._2 returns the second element of the vertex values, that is an instance of Post, while _._1 would have returned its identi er within the graph. At the end of line 2, the current structure is still a RDD. Because of the small number of values we aim at nally obtaining, the structure is converted into a sequential array of values (function collect), from which we get the rst three values. We can notice the similar structure between the Spark and OCL queries. Hence, the global query can almost be directly translated from one language to the other. However, the scoring function can be implemented in many di erent ways with many di erent strategies. We illustrate this through three implementations in the rest of this section: direct-naive, pregel, and highly-parallel. en we discuss these three implementations and open to the multi-strategy approach.

Direct naive implementation

e rst implementation, namely direct-naive, shown in Listing 3, directly follows the OCL helpers from Listing 1. e rst auxiliary function countLikes, corresponding to the homonym helper, sums the number of like relations for each comment of a given post (lines 17 to 21). e second auxiliary function score (lines 23 and 24) is also a direct Spark translation from the OCL query. It uses parallelism, coupled with the lazy evaluation provided by Spark. Indeed, the execution of operations on RDDs is not started until an action is triggered. In our example, collect and count are these actions. Finally, the allComments function is de ned recursively using GraphX features. e direct-naive implementation of score uses three functions that are inspired by functional languages: filter which removes all the elements of a list that do not respect a given predicate; map that applies a function to every element; and flatMap which is a composition of map and flatten.

e la er is equivalent to flatten from Listing 1. e implementation rst gets the direct comments of a post (lines 10 and 11), and, using an auxiliary function getComments, recursively gets all the belonging comments (lines 13 and 14). e method flatMap of lines 8 and 13 transforms the list of lists, into a list of comments.

Pregel implementation

e second solution, namely pregel, proposed in Listing 4, is a Pregelbased implementation. e main idea of this solution is, starting from a Post, counting the number of comments and the number of likes for these comments by propagating messages through edges of the graph by using Pregel. To do so, we declare two variables, nbComments, and nbLikes, that can be seen as aggregators, i.e., global accumulator of values.

e propagation is processed using the Pregel support of GraphX that works as follows. At each iteration, the function mer eMs accumulates into a single value the incoming messages (line 20), that are stored in a iterable structure, from the previous iteration (with an initial message de ned for the rst iteration). is value is used by pro with the previous vertex n to generate the new vertex data n+1 . With this value, messages are generated with sendMs and sent to vertices through edges for the next iteration. Because the stucture which stores the message must be iterable, all the messages must be of type Iterator. An empty message is then produced by Iterator.empty. e program stops when no message is produced for the next iteration. In our implementation, messages are tuples of two values. e rst one is an integer value for specifying which vertices should compute and send messages. Besides, if the integer is negative, then all the vertices should compute. e second one aims at precising what .flatMap(_.dstAttr compose getComments).collect) value must be incremented (either the number of comments (false), or likes (true)). e initial step of the execution questions the model to get the id of the vertex containing the Post we want to score (line 3 and 4). is identi er is added to every vertex to provide them a global view on the computation status (line 6). en, messages are propagated through the edges to belonging comments of computed vertices, or to the users who likes the scoped comment (line 13 to 19). At the message reception, the computation will increment the aggregator according to the second value of the message (line 9 to 11). A er the execution of the pregel function, a score value is calculated using nbComments and nbLikes.

MapReduce implementation

Listing 5 illustrates a solution with a higher level of parallelism, namely highly-parallel, that uses a MapReduce approach. e purpose of this third solution is to process as much as possible operations in parallel in a rst time, and then go through the graph to reduce these values. e rst step counts the number of direct subcomments, and the number of likes, for each element of the model, using a map and reduce-by-key composition (line 3 to 7). Because the number of likes has not the same importance than the number of belonging comments in the score calculation, two keys are created for a single element: one for counting each property (i.e., number of comments and number of likes). en a graph-traversal operation calculates the total number of belonging comments and likes for a given post. However, the keys are only created if a comment, or a like, exists. en, to initialize values, we use a composition of find that returns an option, and getOrElse in the case of the absence of the key. e la er returns the value of the option if it exists, and a default value otherwise We do not expect to gain performances with this approach because the operations are not costly enough. However, having a highly parallel approach largely increase the scalability of the program.

Discussion on multi-strategy

First, the complexity of the solutions direct-naive and pregel can be compared. On the one hand, the complexity on time of the direct implementation of the OCL query, can be given as the sum of the complexity of allComments and countLikes. Considering n the number of nodes, these two complexities are de ned as follows. First, allComments is a depth-rst search of complexity O (n + m) with m the number of comment edges (i.e., the depth of belonging comments). Second, countLikes is composed by a depth-rst search, and the map of a function whose complexity is O (n). en, the complexity of the mapping part is given by O (n 2). Since the complexity of the sum operation is negligible, we do not consider it in the calculation of the global complexity. By summing these values, we obtain a complexity of O (n 2 + m) for the direct implementation of the scoring function. On the other hand, the Pregel implementation complexity is bounded by O (n 2), in the case of all comments are all belonging to the same post. Naturally, the second solution will be preferred since its complexity is lower. However, if the model has a small depth of belonging comments (i.e., a small value for m), the two solutions are not signi cantly di erent. e Pregel solution has nonetheless an important weakness. Indeed, for optimization reasons, pro is only applied to vertices that have received messages from the previous step. en, considering the case where the comments are all commented once, the pro function will be applied to only one vertex. Hence, the parallelism level strongly depends on the number of siblings of each comment. With Pregel, only active vertices, i.e., vertices which received a message from the previous iteration, compute the vprog function.

us, the number of operations concurrently executed in Pregel varies from the less to the most commented and liked element. On the contrary, the highly parallel implementation executes the processing operations on every elements of the model. In the latter, the parallelism level of graph-traversal has the same limitation than the Pregel implementation, but always process a less complex operation (i.e., a reduction as a sum of integer values).

e three above parallel approaches can solve the same problem, but their e ciency depends on external parameters. For executing the topPosts query, a multi-strategy engine would compile it to:

• the direct-naive implementation if the depth of belonging comments is small;

• the pregel solution if the environnement has few resources for parallelism; • the highly-parallel solution if the score computation needs big calculation on the vertices themselves. As mentioned at the beginning of the Section, our proposed solutions do not claim to be the most e cient ones. ey are based on three parallelism strategies to illustrate the variability of possible solutions for a given problem. Considering the all presented strategies of Section 3, a more robust solution could include reactive aspects. For this particular example, mixing incrementality and parallelism would avoid useless calculations when the score of a single post has changed. For instance, the independent scores could be calculated once using parallelism, and, when a change occur, use incrementality to avoid the recomputation of unchanged elements. Considering a possible deletion of a part of the model (e.g., deletion of a user, and then of all his posts, and comments), laziness could be incorporated to the solution, to only recompute potential new most-debated posts.

CHALLENGES IN MULTI-STRATEGY MODEL-MANAGEMENT

In the perspective of low-code platforms, a multi-strategy engine should be fully automated, from the automatic strategy selection to the automatic con guration and deployment on distributed infrastructures. Our approach is di erent from the multi-strategy approach proposed in [START_REF] Amrani | Towards a Formal Speci cation of Multi-paradigm Modelling[END_REF] which is focused on languages and their salient features. e conception of a multi-strategy engine leads to many scienti c challenges that we divide in two parts in the rest of this section: the challenges related to the code and the challenges related to DevOps.

Code-related challenges

A rst scienti c challenge that arises from the multi-strategy approach is the automatic and transparent selection of the most adapted strategy for a given model-management operation. e motivating example of Section 2 shows the large variability to take into account to make the right choice. We divide this variability in di erent properties that should be considered:

• properties on the input model: size, meta-model, topology, etc.; • properties on the operation to perform: update, launch, request, read or write, the frequency of the operation, etc.; • properties on the available infrastructures: type of frameworks compatible or already deployed on the infrastructure; is variability results in a combinatorial choice that could be solved by using constraint programming, or by leveraging machine learning techniques to automatically learn how to associate these properties together.

e second challenge related to the code aspect is that an initial code wri en with a MDE solution may need to be rewri en to follow the chosen execution strategy, while guaranteeing the same expected output. In other words, a code rewriting or code generation challenge is raised by the multi-strategy approach. In particular, formal semantics for the model-management engine may be of high importance to guarantee a correct output code [START_REF] Tisi | CoqTL: an Internal DSL for Model Transformation in Coq[END_REF].

As example, Listings 3, 4, and 5 described in Section 4 all present a di erent way of writing a code from the initial OCL solution shown in Listing 1. e complexity and the level of parallelism of the solutions have been discussed in Section 4.

DevOps-related challenges

In the context of low-code platforms, automatically handling the strategy selection and the code generation is not the only concern. Once generated, the code must be deployed and run on complex distributed infrastructures. ese tasks should be as transparent as the previous code-related challenges. Hence, a rst challenge is automatically handling the deployment of a set of model operations that potentially use di erent strategies, onto the associated infrastructures that could themselves be very heterogeneous (e. g. di erent public Cloud solutions such as AWS, or private Clouds, hybrid Clouds, etc.). is complexity should be handled at the LCDP level, which requires safe and e cient deployments [START_REF] Chardet | Madeus: A formal deployment model[END_REF][START_REF] Coullon | Integrated Model-checking for the Design of Safe and E cient Distributed So ware Commissioning[END_REF].

Furthermore, choosing a given strategy, o en involves deploying code on existing frameworks or platforms that implement that strategy. For instance, when choosing the MapReduce (respectively Pregel) strategy, Hadoop3 (resp. Giraph4 or Spark 5) should be used to bene t from e cient implementation. All these frameworks are highly con gurable, e. g., MapReduce has more than one hundred parameters [START_REF] Lama | AROMA: automated resource allocation and con guration of MapReduce environment in the cloud[END_REF]). Because of their large number of parameters, nding their optimal con guration is a di cult problem. is additional layer of con guration represents an additional combinatorial challenge. Several solutions could provide a good trade-o . For instance, instead of providing a full con guration for the tools, which is very costly, a performance prediction built from con guration samples could be used. is solution has been adopted by Pereira et al. [START_REF] Pereira | Sampling E ect on Performance Prediction of Con gurable Systems: A Case Study[END_REF]. Another approach would be to make a full cost estimation but only considering critical parameters. For example, give the right level of parallelism by providing an approximation of the optimal number of mapper and reducer in a MapReduce job 6 . More formal approaches can also be used to estimate the cost of parallel programs (e.g., cost model for GraphX [START_REF] Kumar | Cost Model for Pregel on GraphX[END_REF]), and compare the di erent solution using additional parameters such as hardware con guration (e.g., the bridging Bulk Synchronous Parallel cost model [START_REF] Valiant | A Bridging Model for Parallel Computation[END_REF]).

Using formal approaches to estimate the cost of a parallel program such as BSP cost model [START_REF] Valiant | A Bridging Model for Parallel Computation[END_REF] or Pregel cost estimation [START_REF] Kumar | Cost Model for Pregel on GraphX[END_REF].

Finally, as for the combinatorial problem of choosing the right strategy, machine learning techniques could be adopted [START_REF] Martin | Machine Learning and Con gurable Systems: A Gentle Introduction[END_REF].

CONCLUSION

In this paper, we made an overview of what, and how, execution strategies can be used for model driven engineering. In the context of developing low-code platforms for managing models, these strategies might be used for optimizing performances. However, a wrong use of a computational model can have a bad impact on calculation e ciency. e motivating example presented in Section 2 and the implementations of Section 4 illustrate that by using di erent strategies and di erent combinations of paradigms for a given input model, di erent advantages could be observed, such as complexity, and parallelism level. Di erent paradigms may be chosen, according to di erent properties: the type of input model, its size, its topology, the type of computation to perform, and the available infrastructure.

e future goal of a such prototype is to drive a complete study of how the paradigms can be used and combined, and to classify them depending on use cases.

Figure 1 :

 1 Figure 1: e metamodel of a social network (TTC 2018)

17 18

 17 helper context SN!Post def : score = 19 10*self.allComments→size() + 20 self.countLikes;

1 2 . 3 .

 23 sn.vertices.filter(v => v.isInstanceOf[Post]) sortBy(score(_._2), ascending=false) collect.take[START_REF] Amrani | Towards a Formal Speci cation of Multi-paradigm Modelling[END_REF]

Listing 3 :

 3 Direct implementation of score.

3 // recursive function 4 def

 34 getComments (co : Comment) : List[Comment] = 5 List(co).union(sn.triplets 6 .filter(t => t.srcAttr == co 7 & t.attr == comment) 8

 (p).size + countLikes(p)

Listing 4 : 5 6 7 (8 (

 4578 Pregel implementation of score. 1 def score(p: Post) = { 2 var nbComment, nbLike = 0L // Aggregators 3 val fstId = sn.vertices 4 .filter(v => v._2 == p).first._1 sn.mapVertices((_, v) => (fstId, v)).pregel initialMsg = (fstId, false)) vprog = (id, value, merged) => 9 if (merged_msg._1 == id || merged_msg._1 < 0)

Listing 5 : 2 / 6 . 7 .

 5267 Highly parallel implementation of score. 1 def score(p: Post) = { / number of likes and comments per element 3 val scores = sn.triplets 4 .filter(t => t.attr == likedBy 5 | t.attr == comment) map(t => ((t.attr, t.srcAttr), 1L)) reduceByKey((a,b) => a + b).collect

Table 2 :

 2 Parallelism for model-management in literature.

	MQ	MT	Matching Perf.
	Task-parallelism [30, 43]	[24, 40]	[34]	
	Data-parallelism	[4, 26, 42]	[26]	[5]
	Asynchronism	[8-10]		[9]

 s is not liked

	12	scores.find(e => e._1._2 == s
	13	& e._1._1 == likedBy)
	14	.getOrElse(default)._2
	15	var nbComment = // 0 if s is not commented
	16	scores.find(e => e._1._2 == s
	17	& e._1._1 == comment)
	18	.getOrElse(default)._2
	19	// recursive call
	20	val subScores = sn.triplets
	21	.filter(t => t.srcAttr == s
	22	& (t.attr == likedBy
	23	|t.attr == comment))
	24	.map(_.dstAttr compose getScore).collect
	25	// sum of all score from belonging comments
	26	for (score <-subScores) {
	27	nbLike += score._1
	28	nbComment += score._2
	29	}
	30	(nbLike, nbComment)
	31	}
	32	val score_p = getScore(p)
	33	10L * score._1 + score._2

34

}

h ps://spark.apache.org/

h p://hadoop.apache.org/

h ps://giraph.apache.org/

h p://spark.apache.org/

h p://wiki.apache.org/hadoop/HowManyMapsAndReduces

ACKNOWLEDGMENTS

is paper disseminates results from the Lowcomote project, that received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk odowska-Curie grant agreement No 813884.