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Figure 1: Our method is able to detect the morphology and pose of articulated shapes, given an elementary anatomical model, from a single
static scan. Our approach is equally effective for human, animal shapes and even imaginary creatures.

Abstract

3D acquisition of archaeological artefacts has become an essential part of cultural heritage research for preservation or
restoration purpose. Statues, in particular, have been at the center of many projects. In this paper, we introduce a way to
improve the understanding of acquired statues representing real or imaginary creatures by registering a simple and pliable
articulated model to the raw point set data. Our approach performs a Forward And bacKward Iterative Registration (FAKIR)
which proceeds joint by joint, needing only a few iterations to converge. We are thus able to detect the pose and elementary
anatomy of sculptures, with possibly non realistic body proportions. By adapting our simple skeleton, our method can work on

animals and imaginary creatures.
CCS Concepts

e Computing methodologies — Shape modeling; Point-based models;

1. Introduction

With the progress of 3d scanning techniques, it is now common to
create digital replicas of artworks, which will remain forever in-
tact, while their real-world counterparts will slowly decay due to
time damage or human activity. As part of the automatic process-
ing of scanned statues, it is often necessary to identify the pose and
anatomy of the model. Indeed, registering a model to a statue is
useful for many applications. For example, one can bring statues
to a common pose to better compare their style. It can also serve to
combine statue parts to restore broken statue virtually or to animate
a statue.

While pose recognition has been efficiently addressed for human
models, in particular using Machine Learning algorithms, these
methods can only work if the model fits the training dataset of shape
models. A challenge of artistic human statues compared to real
human scans lies in the difference in aesthetic perception. Indeed
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many sculptors favored the perceived beauty of their work over the
realism of human proportions [Hus55,New34]. As we will see, this
has drastic consequences for example-based machine learning al-
gorithms, which fail at adapting to these statues. As for imaginary
creatures, no such training database exist. Hence there is a need
for simple anatomical models, that can be fitted without requiring
an extensive training on various creatures, animals or humans with
nonrealistic body proportions.

In this work, we focus on human statues with no or few gar-
ments, animals, and imaginary creatures. Furthermore, we consider
that the digitized statues are provided as point sets. We propose a
method for calibrating and registering a simple articulated model
to a point set, which we named Forward And bacKward Iterative
Registration (FAKIR). FAKIR works directly on the point cloud,
avoiding thus the tedious meshing step. FAKIR iterates between
assigning each point to its best corresponding model part and op-
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timizing the anatomical model pose and proportions accordingly,
and converges in only a few iterations.

To summarize, our contributions are the following:

e A simple articulated model efficiently representing a statue pose
and anatomy.

e An efficient calibration and registration process based on inverse
kinematics principles.

2. Related work

Anatomical Model. Designing anatomical models for human
shapes has raised a lot of interest in Computer Graphics. The
most common representation consists in a more or less detailed
graph of bones such as the ones used in the MakeHuman frame-
work [Bas00], while some methods go beyond this kind of el-
ementary skeleton representation and model every single mus-
cle to increase realism [LGK*12]. Due to our nonrealistic con-
text, we will focus here on basic skeletons, which are pliable and
efficient enough for our purpose. A skeleton-based model con-
sists of two components: a skeletal structure [BKOO] and a rep-
resentation for the volume surrounding it. This representation can
be either mesh surfaces or volumetric primitives. Recent surface-
based models [ASK*05,PMRMB15,LMR*15,HSS*09,ZB15] are
learned from numerous scans of real people. Among those, SMPL
[LMR*15] is a human anatomical mesh model in which a set of
parameters control non-rigid deformations resulting from a statisti-
cal study on a large number of humans and positions. However,
to our knowledge, there is no approach that allows us to posi-
tion this model from a static point cloud without positioning the
model close to the data or without using 2D views and deep learn-
ing. It works well for the capture of human motion and shape
in a video [ZPBPM17] or images [BKL*16, HBL*17]. But this
model has a poor performance when the data is unrealistic which is
common for archaeological statues. Another possible shape rep-
resentation is based on volumetric primitives, e.g. using medial
axis transform (MAT) [Blu67, SCYW15], metaballs [PFO1], B-
meshes [JLW10] or other primitives [GD96, SBR*04, ARM*19].
Among these models, the sphere-mesh model [TGB13], a vari-
ant of convolution surfaces [BS91], has been introduced for rep-
resenting mesh models by packing spheres into it and encoding
their structure. Conceptually, the sphere-mesh model can be seen
as a piecewise linear simplification of the computational geome-
try skeleton [TDS*16]. Although sphere-meshes were developed
to extract the shape structure from an input mesh, they can be used
to represent an anatomical model by imposing constraints on them.
As such, it has been used successfully for representing hand skele-
tons [TPT16,RTTP17]. This model is light and pliable and we will
also rely on it.

Skeleton registration Registering a model to a shape is an impor-
tant task which has received much research interest. The goal can
be to animate a shape by skeleton rigging and skinning, or to detect
human poses. Skeleton rigging can be performed manually [BKOO,
JLW10], but a few methods have investigated automatic processes.
In particular, the Pinocchio algorithm [BPO7] adapts a skeleton to
a static mesh by defining an objective function and maximizing it.
It works by packing spheres into the mesh and by considering their

centers, gathered in a graph, as the admissible joint positions. This
pre-computation makes the skeleton pose estimation tractable. On
points sets, a ¢ !_medial skeleton could be used [HWCO*13] al-
ternatively to sphere-packing, but it is not suitable for noisy or in-
complete data, as shown by our experiments. If the input data is dy-
namic, it is possible to infer, or track, a skeleton from it. Most track-
ing approaches [SBB10, GSDA* 09, TZMS04] focus on the capture
of the positions of the joints, and deduce pose parameters (angles)
and intrinsic parameters (e.g. bone lengths) from it. Many of such
tracking methods [SHG™ 11, WZC12] start with a calibrated skele-
ton but the calibration itself can be performed from a depth video
and a set of known admissible poses [TPT16, RTTP17, TTR*17].
Such methods require a dynamic scene and cannot apply to the
static shape rigging problem. It is also possible to rely on a database
of people scans to learn the pose and deformation of human bodies
using the SMPL model [HLRB12, WHB11, AMX™18]. Recently,
CNN-based detectors, such as DeepCut [PIT*16] and OpenPose
[CSWS17] were used for 2D joints detection in images or videos.
Bogo et al. [BKL*16] estimate the 3d human pose and proportions
from a single image by fitting a SMPL model to DeepCut estimated
joint positions. Using multi-view images over time [HBL*17] im-
proves the pose accuracy, however the human proportions remain
approximate. Human tracking can also be done without needing a
model [BBLR15]. Similarly it is possible to register two models
using manifold-harmonics based non rigid registration [LRB*16],
but this would not help for skeleton-based registration. Learning
approaches can also work from a single image [LIPM19,AMB™*19].

Registering an SMPL skeleton directly to a point cloud has
been addressed using deep learning directly on point sets aug-
mented with feature detection [JCZ19], but this method only tar-
gets human shapes, which it learns from a database, while our
method can work on nonrealistic anatomies and on various an-
imals, as will be demonstrated in our experiments. Deforming a
point cloud to match a template mesh has also been tackled using
auto-encoders [LSS*19], but this requires a full template mesh for
each model. Our required skeleton model is much lighter. Finally,
recently, the FARM [MMRC20] method builds on the functional
map framework to register a parametric model (such as the SMPL
one) to a mesh or a point set in a fully automatic way. This ap-
proach reaches state of the art results while being the closest in
goal to ours, and we will compare to it.

Finally, —some methods [HSR*09, ZPBPMI17, PM-
PHB17, YZZ*19] aim at finding a person’s pose despite its
sometimes loose clothing, but this is outside the scope of our

paper.

Our registration algorithm makes extensive use of kinematic
chains, processing them alternatively forward and backwards. In
spirit, this is related to inverse kinematics, and in particular the
Fabrik [AL11] and CCD [WC91] algorithms. Indeed, both meth-
ods define kinematic chains and compute their transformation from
an input pose to a target pose by updating pose parameters one af-
ter the other alternatively forward and backward along each chain.
However the similarity ends here, since our goal is to estimate not
only the pose but also the proportions of the model limbs using
data-attachment constraints in a static framework.
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3. Anatomy and Pose estimation
3.1. Human model

In our context of artistic statues, it is necessary to devise a human
model with few constraints, allowing to fit a sculpture which does
not follow the human proportion beauty canons. The existing fully
detailed human templates modeling every single limb and muscle
in a very realistic way are too constrained for our purpose.

We introduce an anatomical model inspired by the sphere-
mesh model [TGB13], already successfully used for hand track-
ing [TPT16,RTTP17], using only one-dimensional elements. In this
model, each bone is represented by a sphere-mesh B corresponding
to the envelope of the union of a set of spheres centered on a seg-
ment and with a linearly varying radius (Figure 2b). Each bone is
defined by two end sphere centers ¢y and c¢p with associated radii
r1 and r; respectively. The segment [cjc;] is the medial axis of the
bone. For each point ¢ € [c]cy], the radius of the sphere centered at

; — ih o= el
cisr(c)=(1—=1)r; +tr, witht = Tereall”

The sphere-mesh model is controlled by the length [ = ||cicz||
and the pair of sphere radii r = {ry,r,}. Consequently, we denote
the sphere-mesh model for one bone as B(/,r). We also denote by
o the angle of the conic part of the bone, as illustrated on Figure 2a.
Importantly enough, the bones we are defining do not correspond
to anatomical bones, but more to limbs (i.e. it includes a coarse
description of the flesh volume around the anatomical bone). By
analogy to inverse kinematics, we keep the word bone instead of
limb.

o a
T . ll’z
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(b) Sphere-mesh of a 3D bone.

(a) Cross-section of a bone

Figure 2: The sphere-mesh of a bone is the union of the spheres
centered on segment [c|c;], with radius varying linearly between
the two extremities of the segment.

With this type of bone element, we construct a simple human
body template with a very coarse respect of human proportions as
an initial body shape (Figure 3a) but we can construct a template for
any other animal or imaginary creature (Figure 3b) as well. Our hu-
man body template contains 22 bones {By };—1.22. Three of those
correspond to the pelvis and have no relative motion: their length
is fixed up to a common scale parameter that will be determined
during the registration, along with the orientation of the triplet. Ad-
ditionally, a special bone is used to connect the spine bone to the
neck, and its length and orientation directly depend on the adjacent
spine bone. The other bones have no constraint on their relative
proportions. The bones are organized into 5 chains, depicted in dif-
ferent colors in Figure 3. These chains are independent with the
only constraint that some extremities must remain anchored to the
spine. The orientation of the chains is used to define the predeces-
sor and successor of each bone. The ordering will be reversed to
process the chain forward and backward several times during the
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registration process. Each bone is thus fully defined by its intrin-
sic parameters (length and two radii) and by its extrinsic parameter
(rotation with respect to its predecessor). Because of the simplic-
ity of the sphere-mesh bone model, the distance from a point to
the model can be easily computed. In contrast, using a mesh model
would make these computations much more demanding.

—
.

(b) Centaur model

(a) Human model

Figure 3: Skeleton and sphere-mesh models for humans and cen-
taurs. For the human model: the bones are organized into 5 chains
shown in different colors. 4 additional bones are drawn in black:
the pelvis which is a constrained triplet of bones, and the connec-
tion bone between the spine and the neck. Our model can also be
adapted to various creatures, even imaginary ones such as a cen-
taur.

3.2. Distance between the model and a point set

To capture the anatomy and the pose of a statue, we need a distance
function to measure how the sphere-mesh model fits a point set P,
even if the points are far from the bones they should be attached
to. The sphere-mesh model calibration and registration strives to
reduce the distance between the sampled points and their corre-
sponding bones on the sphere-mesh. The problem is that the bone
to which a point should be assigned is unknown, especially if the
model has not been calibrated beforehand and if it is far from the
data. Therefore, the target bone is usually replaced by the closest
bone. We assume that the coordinates of the points are provided
with a coarse approximation of the oriented normal. This speeds
up the registration when the model is not close to the data, but it
remains possible to implement our registration algorithm with a
simple Euclidean distance from the points to the model.

Distance from a point to one bone. We start by defining the
normal-constrained projection of a sampled point p on a single
bone B by using the oriented normal vector n, to disambiguate the
choice between several orthogonal projection possibilities. Given
a point p in the ambient space with oriented normal np, we con-
sider the lines passing through p and orthogonally intersecting the
sphere-mesh surface (possibly crossing its interior) at some points.

Whenever it is possible, we select the projection p whose normal
n; has positive scalar product with np. Considering this normal-
constrained orthogonal projection allows for a faster convergence
and better results (see the supplementary material for more details).
Since each point p has a normal-constrained projection on all the
bones, we refer to its normal-constrained projection on bone By as
P If no subscript is provided, p refers to the normal-constrained
projection of p on the closest bone.
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Distance from a point set to a sphere-mesh chain. Given a
point set P and a sphere-mesh chain of K bones, we first need
to approximate the subset of current points that project on each
bone. In the following, we define the point set P, as the subset
of points p € P which are closest to bone By using the distance
dr = ||p — Prll,k = 1---K. Once the assignment is computed, the
one-bone distance function Ej, is defined as the sum of squared dis-
tances from points of P, to bone By:

~ 2
Er(Pe,Bi(l, i), 06) = Y [lp — el (N
PEP;
Importantly enough, the subset P, and the one-bone energy Ej de-
pend on the position of the initial extremity of the chain of bones
involving By, as well as the parameters of the other bones in the
chain.

The sum of one-bone distance functions measures the fitness of
the model and serves as an objective function that we aim to mini-
mize in order to capture the anatomy and pose of the sphere-mesh
that best corresponds to our point set.

K
E=Y Y lp—padl* ©)
k

=1p€EP

In the next sections, we will also be interested in the distance
restricted to two adjacent bones By and By 1, which we call two-
bones energy:

_ 0 U
Egpr= Y. llp=pcl"+ Y 1lp— prsa Il (3)
PEP: PEP+1

3.3. FAKIR : Forward And bacKward Iterative Registration

To register our anatomical model, we propose a kinematic ap-
proach taking into account the way the model is articulated.
Contrarily to many methods that work from videos or multiple
views [TPT16,RTTP17], our method requires only one joint center
to be close to its optimal position, the rest of the skeleton pose be-
ing arbitrary. Inspired by the FABRIK [AL11] and CCD [WC91]
algorithms, our registration algorithm successively loops forward
and backward through the chains of bones so as to rotate and scale
them to match the data, refining the parameters while temporarily
fixing the extremities of some bones. Hence our algorithm is named
Forward And bacKward Iterative Registration (FAKIR). An origi-
nality of our method is that bones are mainly considered by consec-
utive pairs, which allows for a more robust estimation of the pose
and skeleton parameters along a chain. The optimization of the pa-
rameters related to bone Bj requires that there are relevant points
attracting that bone into the data attachment term, which justifies a
special order for the optimizations (see the supplementary for de-
tails).

Registration process for a chain of bones. If the parameters of
bone By, have not yet been initialized, and that it is close to a sub-
set of points to which it should ideally be associated, the estima-
tion of the one-bone energy is meaningful and the minimization of
this energy can be used to initialize the position and radii of that
bone with respect to the data. Our algorithm gradually rotates and
scales the current bone B; with respect to its predecessor, updat-
ing P, after each step, so that P, gradually contains more relevant

points. However, if P, is empty, the bone is first rotated around the
three axis until some input points are projected onto it to bootstrap
the optimization. Once the position of Bj has been approximately
found, the algorithm turns to the coarse estimation of the position
of By1. All these computations are driven by the minimization of
the one-bone energy. However, the one-bone energy alone might
be inefficient to approximate the full length of a bone accurately.
To alleviate that, in an intertwined manner, a finer local registration
is performed each time two consecutive bones By and By have
been processed, by minimizing the two-bone energy. This process
optimizes the common joint position and radius while keeping the
two other joints fixed. It is the most important component in our
algorithm. Once a chain of K bones has been positioned and scaled
over its entire length, we repeat the process forward and backward
in the chain in order to further refine the joints positions and radii
between pairs of consecutive bones, using only two-bone energies
optimizations. Extremity bones are optimized based on the one-
bone energy after each forward or backward pass. The full process
is summarized in Algorithm 1 and illustrated with a chain of three
bones in Figure 4.

Notice that if two limbs are aligned, the joint position can not be
guessed from the data and it may cause several limbs to be included
in a single primitive of our sphere-mesh. To avoid this, very loose
constraints on the differences in proportions between consecutive
bones can be set.

Algorithm 1 Forward and backward iterative registration

Input: A point set P and a sphere-mesh chain of K bones with one chain
extremity close to its optimal position
Output: The registered sphere-mesh chain.
1: Initialization:
2: Fix the center of the first extremity of the chain. Rotate the first bone
and adjust its radii and length by minimizing the one-bone energy;
3: fork:=1to K—1do
4: Consider the pair of bones By, By :
5:  Fix the position of the joint common to By and By, 1;
6 Alternate between the optimization of By, |’s rotation w.r.t By, opti-
mization of By, 1’s intrinsic parameters and update of Py ;
7 Fix the positions of the 2 joints that By and By; do not share, and
free their common joint;

8:  Compute the position and the radius of the common joint by using
the two-bones energy.
9: end for

10: Compute the length of the last bone and the radius of the last sphere.
11: Forward and Backward registration loop:

12: repeat

13: Reverse the order of the bones in the chain;

14: fork:=1toK—1do

15: Consider the pair of bones By, By :

16: Fix the positions of the 2 joints that By and By do not share;

17: Compute the position and the radius of the common joint by using
the two-bones energy.

18:  end for

19:  Compute the length of the last bone and the radius of the last sphere
with the one-bone energy.
20: until convergence

Optimization of a single bone As stated above, the optimization
of the one-bone energy is only used for estimating the parameters
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Figure 4: Overview of the forward and backward iterative registration for a 3-bone chain. From an initial position (a), the chain extremity
c1 is fixed and the first bone By is rotated and scaled to roughly calibrate its dimensions and pose through the optimization of the one-bone
energy (b); the bone By is fixed and the parameters of the second bone By are roughly calibrated in turn (c); joint c; which is common
to the first two bones is scaled and its position is optimized, by using the two-bones energy, the other joints being fixed (d); The position
and length of the third bone B3 are then coarsely calibrated through one-bone optimization and the process continues by alternating single
bone optimization and two-bones optimization, until the last bone of the chain (e). After this first coarse calibration forward pass finishes,
a backward pass using only two-bone optimizations is performed (f) permitting to refine the pose and skeleton parameters and solve for the
chain extremity position. With few forward and backward pass involving two-bone optimization only, the model is registered (g).

of the extremities of a chain, or for the very first forward pass in
Algorithm 1.

In the single-bone case, the aim is to estimate the 3D rotation
of the bone, its length and the radius of its free extremity by mini-
mizing the one-bone energy Ey (P, By (I, i), 0k ), where 0 are the
angles of rotation with respect to the predecessor bone. This op-
timization is performed using the Levenberg-Marquardt algorithm
for each parameter. In particular, the rotation can be decomposed
into two rotations around two axes that are orthogonal to cxcy 1, in-
deed the rotation around cycy. 1 is not considered since it leaves the
bone unchanged. To optimize 0y, we iteratively look for the best an-
gle 0 + 80;. At a minimum, VSGAEk(kaBk(lrv rk)79k +086,) =0,
and the value for 80 follows. The details for the damped least-
squares estimation are provided in the supplementary material for
all parameters.

Optimization for the joint between two consecutive bones. The
optimization of the position and radius of the joint between two
consecutive bones (B, By, 1) is performed by optimizing a set of
four parameters in a loop (an angle, two lengths and a radius) min-
imizing the two-bones energy. The two end-sphere centers being
fixed (¢ and cgy, in Figure 5), we first compute the optimal ro-
tation of the two bones around axis cxcgio. We then optimize the
bone lengths f = I + 8l and [y = Iy 1 + 8l;, and, finally, the
radius of the common joint is computed as 4| = riy1 + Or. The
parameters optimization alternates with a recomputation of point
sets Py and Py, 1, which refines the point-to-bone assignment. The
optimization is also performed using the Levenberg-Marquardt al-
gorithm (see the supplementary material for details).

Full Skeleton Registration The full model corresponds to a tree
whose branches are composed of chains. The process of registering
each of the chains must be done in such an order that it gradually
ensures the relevance of the data attached to each chain. Thus, pre-
viously registered chains can be questioned again if their attached
points are reassigned to other chains or if they catch new points
during the process (see Figure 6).

Our system depends on the initial position of a joint chosen as
the root of the skeleton. For example, for human or quadrupeds
models, we assume that the pelvis part of our model is initialized
near the corresponding part of the point set, which is done manually
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(¢) Refine length Iy of Byt

(d) Refine radius ryy

Figure 5: Pairwise Optimization. With fixed extremities c; and
Cit2, the pair of bones By and By is first rotated around axis
CkCi+2. Then the lengths of the bones By and By and their com-
mon radius ryy are optimized successively. After these updates,
the point-to-bone assignment is recomputed. As the process is re-
peated the distances are more accurate since the point-to-bone as-
signment becomes more meaningful.

through a single point and click. Each chain is then registered in
turn using FAKIR yielding a registered skeleton both in terms of
intrinsic parameters and pose in only a couple of iterations.

For human models, the registration order is the following: first
the spine chain is registered, refining the pelvis position and scale
during the process, followed by each of the two leg chains and each
of the two arm chains. When registering the arms and legs chains,
the position for the joint attached to the spine or the pelvis remains
fixed. However, after one arm is registered, changing the spine-arm
joint position, the spine chain is updated accordingly (and similarly
for legs and head), thus the forward and backward chain registra-
tion extends to the whole model. This leads to a calibrated and ac-
curately positioned articulated model.
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(C) First backward passage

(@) mnitialization (b) First forward passage
Figure 6: The assigned points for the first spine is showed in red.
The spine is first registered with points that are not yet assigned to
the legs, which distorts its position. Once the legs are registered,
the registration backtracks to the spine and its position can be cor-
rected. The final result is shown on Figure 15.

4. Results

In this section, we show the performance of FAKIR both on syn-
thetic data and on point sets resulting from statue digitization. We
developed our algorithm in C++, using OpenMP for computing
point to bone distances in parallel. All experiments are run on an
Intel Core 17-4790K CPU @ 4.00GHz. Normals were computed by
using the state of the art approach of Hoppe et al [HDD*92].

4.1. Experiments on synthetic data

We first tested our algorithm on synthetic data to provide a quan-
titative evaluation of the FAKIR performances. We considered a
point set of 5k points sampled on a sphere-mesh of a 4-bone chain
in a specific pose and registered a generic 4-bone chain to it. Al-
though the point set and the initial chain are quite distant from each
other, providing an approximate initial position of a single anchor
point (one of the extremity) is enough to register accurately the
chain. The accuracy of the registration is evaluated as the average
distance between the point set and the model.

In the noiseless case, our algorithm takes 7 iterations to converge
to a O distance in 2.37s, including 0.62s for the first forward pass.
The distance of the point set to the model with respect to the itera-
tions for larger point sets and increasing noise is shown on Figure
7: the number of points has only a moderate impact on the number
of iterations needed to converge (around 7). When there is noise in
the data, the distance also converges in a few iterations indepen-
dently of the noise, however the distance at convergence is directly
correlated to the variance of the noise. As shown by our experi-
ments, FAKIR is rather resilient to even relatively high levels of
noise (Gaussian noise in Figure 8 and Poisson noise in Figure 9).
Figure 10 shows how FAKIR handles an initial position of the an-
chor point that is not in the vicinity of its optimal position in the
point set. FAKIR can handle initial positions that are moderately far
from the true position, but in some cases (last column), the back-
ward optimization of the one-bone energy alone fails to reduce the
length of the first bone and the radius of its free extremity degen-
erates to 0 instead. This is due to the fact that no point is projected
on the spherical free extremity of that bone. This problem could be
avoided by adding a bone occupancy term to the one-bone energy.

A preferential alternative would be to modify the one-bone energy
of the first and last bones by adding a term corresponding to the
distance of the free caps to the data points. However, if the initial
point is reasonably close to its true position, this problem does not
occur. FAKIR is also rather robust to missing data thanks to the it-
erated forward and backward passes (Figure 11). Naturally when
the missing parts are on the first or last bone or when a full bone is
missing, the algorithm cannot predict the right length or angle.

— 5k points

5 — 5Kk points with Gaussian noise ¢ = 0,5
s — 1k points 3 o
5k points with Gaussian noise o = 1
— 5k points — 5Kk points with Gaussian noise 6 = 2
— 5k points with Poisson noise A = 0,5
1 10k points ) ) )

5k points with Poisson noise A =1

Distance
Distance

— 100k points 2 — 5k points with Poisson noise A =2

o o
012345678 91011121314151617 1819 20 01234567 8 910111213 141516 17 18 19 20

Iterations Iterations

Figure 7: Evolution of the registration distance with the iterations
for different number of points in the point set (left image), different
levels of Gaussian noise and Poisson noise (right image).

Figure 8: Evaluation of FAKIR with respect to increasing Gaussian
noise after 20 iterations. The first row shows the initial point set and
the bottom row shows the registered bone chain. From left to right:
without noise, ¢ = 0.5, 6 = 1, and 6 = 2. The total groundtruth
model length is 140 (All values are given in length units).

Figure 9: Evaluation of FAKIR with respect to increasing Poisson
noise after 20 iterations. The first row shows the initial point set and
the bottom row shows the registered bone chain. From left to right:
without noise, A = 0.5, A = 1, and A = 2. The total groundtruth
model length is 140 (All values are given in length units).

4.2. Skeleton registration results on statues
We selected some interesting statues from various sources.
1. Dancer with Crotales, Louvre Museum

2. Dancing Faun, Pompei excavations

submitted to EUROGRAPHICS 200x.
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Figure 10: Evaluation of FAKIR with respect to a bad initial an-
chor point position after 20 iterations. The first row shows the ini-
tial point set and the bottom row shows the registered bone chain.
The last column shows that due to a bad initialization, the points
(plotted in red) that are affected to the first bone do not bring
enough information for the one-bone energy to move the chain ex-
tremity. Then, not enough bones remain to approximate the whole
point set.

S

Figure 11: Evaluation of the FAKIR algorithm with respect to miss-
ing data after 20 iterations. The first row shows the initial point set
and the bottom row shows the registered bone chain.

Aphrodite, Museum of Thorvaldsens

Old man walking, Nye Carlsberg Glyptotek
Esquiline Venus, Capitoline Museum

Old Fisherman Vatican-Louvre, Louvre Museum
Venus de Milo: Louvre Museum

Mermaid, Royal Bibliotek of Copenhagen

® NN R W

While the ’Dancer with crotales’ is a raw point set. The other
7 models are point sets sampled on meshes extracted from the
Sketchfab website. We also use several models from the TOSCA
dataset [BBKOS], including nonhuman models to show the pliabil-
ity of our method.

Figure 12 shows our registrations on four statues. The registra-
tion algorithm performs well for statues depicting naked characters:
in this case, the registration is not hindered by additional clothing
or accessories, and the simple sphere-mesh model fits well the data.
Even with moderate clothing (Dancer with Crotales) FAKIR recov-
ers the pose of the statue (see also the supplementary for more reg-
istration results). FAKIR can also work on incomplete statues on as
shown in Figure 13 and on imaginary creature statues (Figure 14).
We also demonstrate that FAKIR can work with real human bodies
in more complex poses (Figure 15) or animals (Figure 16) from the
TOSCA dataset.

While skeleton extraction is a much explored topic in geometry
processing, we emphasize that extracting a computational geome-
try skeleton is very different than extracting an anatomical skele-
ton [HWCO™ 13, TDS*16]. Figure 17 show the ¢!-medial skeleton

submitted to EUROGRAPHICS 200x.

y/

Figure 12: Registration of 4 statues: the Dancer with Crotales (first
row), the Dancing Faun (second row), Aphrodite (third row) and
the Old Man Walking (fourth row). First column: initial point set,
second column: overlay of the registered model and the point cloud,
third column: registered model.

extracted [HWCO™13] on the Aphrodite and Danseuse with Cro-
tales point sets — to be compared with our results on Figures 18 and
19. This experiment shows that the geometrical skeleton definition
is not enough for our purpose.

We compare FAKIR with Pinocchio [BP07] in Figure 18. The
FAKIR algorithm yields a better skeleton registration, in particular
for the shoulders and neck bones. As far as computation times are
concerned, the Pinocchio method takes about 35s for a mesh with
138048 vertices, which is roughly the same time as the 10 iterations
of FAKIR optimizing not only for the joint positions but also for the
bone radii (38s). Furthermore, a single iteration of FAKIR takes 9s
and already provides a better result with a much more plausible
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Figure 13: Registration of 3 incomplete statues, Esquiline Venus
(first row), Old Fisherman (second row) and Venus de Milo (third
row). First column: initial point set, second column: overlay of the
registered model and the point set, third column: registered model
alone.

e

(a) Mermaid statue  (b) Overlayed regis- (c) Registered model
tered model

Figure 14: FAKIR result on the Mermaid statue, the skeleton is a
human one but with a single chain instead of two legs.

shoulders location. However it is important to note that the Pinoc-
chio method does not require an initial skeleton position, while our
method requires one of the joint to be not far from its optimal posi-
tion (in this experiment we chose the pelvis joint).

We also compare compare FAKIR with the SMPLify method
[BBLR15] (Figure 19). First we compute a front-view rendering
of the shape and run DeepCut [PIT*16] to estimate the joint posi-

Figure 15: Skeleton registration on human in various poses from
the TOSCA dataset.

Figure 16: Skeleton registration on different animals from the
TOSCA dataset. The skeleton is simply the human skeleton (Fig-
ure 3) supplemented with a bone chain for the tail.

tion used for SMPLify. The registration is clearly less accurate than
ours (Figure 19b). We then extend SMPLify method to multi-view
images using epipolar constraints to estimate a 3D joint positions
from 2D joint positions obtained by DeepCut before applying SM-
PLify, which slightly improves the registration (Figure 19c). We
also show that our articulated model regression can serve to ini-
tialize an SMPL model, leading to a better registration than with
DeepCut (Figure 19d). However, the shape estimation of SMPL
still cannot fit a statue with non-realistic body proportions.

Finally we compare FAKIR with the FARM method [MMRC20]

submitted to EUROGRAPHICS 200x.
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(a) Danseuse with crotales (b) Aphrodite

Figure 17: 0 -medial skeletons [HWCO*13] extracted from the
Aphrodite and Danseuse with Crotales point sets. To compare to
our results on Figures 18 and 19.

(a) Pinocchio (b)

(vanilla) (our skeleton) ation) erations)

Pinocchio (€) FAKIR (1 iter- (d) FAKIR (10 i-  (e€) FARM

Figure 18: Comparison with Pinocchio [BP07] and
FARM [MMRC20] algorithm on the Aphrodite statue. From
left to right: (a) Pinocchio with the Pinocchio-provided initial
skeleton (17 bones); (b) Pinocchio with our initial skeleton (22
bones); (c) FAKIR with our initial skeleton after a single forward
iteration; (d) FAKIR with our initial skeleton in 10 iterations.
Only the skeleton is displayed since the bone radii are not taken
into account by Pinocchio. (e) Model reconstructed by the FARM
method.

a fully automatic method for registering an underlying model, such
as SMPL, to a point set or a mesh. While this method exhibits ex-
cellent results on humanoid shapes, in the case of artistic statues,
with irrealistic body proportions (Figure 18) or with moderate gar-
ments (Figure 19), it cannot reconstruct a plausible model. Further-
more, scanned statues often exhibit inconsistent topologies, such as
an arm glued to the body (Figure 18) which is not handled by the
FARM method.

Computation Time The computational bottleneck of FAKIR lies
in the assignment of each point several times during the optimiza-
tion process. This assignment is updated after each bone parameter
change. However, the number of updates is related to the geome-
try of the surface and not to the number of sample points. There-
fore, the overall complexity is linear with respect to the number

submitted to EUROGRAPHICS 200x.

of points. From an experimental point of view, FAKIR is a rea-
sonably light algorithm: for a point cloud of 10000 points and the
22-bone human model, the first forward pass of FAKIR takes 2.5s
and the computation time for one pass decreases to ls in average
afterwards.

Limitations Despite its good results, FAKIR has some limitations.
First, if two consecutive bones are aligned, their length estimation
is not reliable, since the position of the middle joint is undetermined
if no proportion constraint is set on the model. This limitation ap-
pears on the Aphrodite left leg (Figure 12). We could also improve
registration results by adding constraints of symmetry to the energy
functions. However these constraints should be quite loose, because
of the unrealistic proportions of artistic statues. Furthermore, fail-
ure cases include some misalignments due to a local minimum (one
of the arms of the mermaid in Figure 14, the feet of the shape on
the top-right of Figure 15 and the back leg of the centaur in Figure
16.) Further local extrinsic refinement would improve the result. In
addition, a process of local modification of the skeleton structure
could be carried on, followed by an update of its registration. Last,
to avoid any manual intervention, we have tested an automatic ap-
proach by initializing the pelvis in the center of the bounding box
of the points and by orienting it upwards. This initialization is ef-
fective for most standing statues (results provided in the supple-
mentary material). Using principal component analysis to initialize
the orientation of the body would also improve the registration for
classical human poses (e.g. walking, sitting, lying down). However,
the handling of the relaxation process at bifurcations could also be
improved. Currently, the position of the pelvis is not updated by ex-
ploiting the whole information arising from the registration of all
the incident branches.

5. Conclusion and perspectives

We introduced a sphere-mesh anatomical model and a combined
calibration and registration algorithm to estimate the anatomy and
the pose of digitized archaeological statues. Our algorithm is useful
when it is not possible to extract a shape template from a statistical
analysis of examples representative of the diversity of poses and
morphologies. Given the simplicity of our anatomical model, it is
very easy to adapt it to many shapes, such as animals or imaginary
creatures. While our method already gives good results, a further
improvement would be to handle the case of a clothed statue.
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(a) FAKIR

(b) SMPLify + DeepCut 2D

(¢) SMPLify + DeepCut 3D

(d) SMPLify + FAKIR (e) FARM

Figure 19: Comparison with SMPLify on the Danseuse with Crotales. (a) FAKIR registration; (b) SMPLIfy using DeepCut predicted 3D joint
positions on a single rendering; (c) SMPLify using DeepCut predicted 3D joint positions on two rendered views, (d) SMPLIfy using 3D joint
positions estimated by FAKIR; (e) FARM registration. (First row: overlayed registered model; Second row: registered model)
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