Contactless rheology of finite-size air-water interfaces - Supplementary Material -

Vincent Bertin, ${ }^{1,2, *}$ Zaicheng Zhang, ${ }^{1, *}$ Rodolphe Boisgard, ${ }^{1}$ Christine Grauby-Heywang, ${ }^{1}$ Elie Raphaël, ${ }^{2}$ Thomas Salez,,${ }^{1,3, \dagger}$ and Abdelhamid Maali ${ }^{1, \ddagger}$
${ }^{1}$ Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France. ${ }^{2}$ UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.
${ }^{3}$ Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.

(Dated: February 25, 2021)

1. THEORY

The bubble's surface profile follows the Young-Laplace equation [1]:

$$
\begin{equation*}
\gamma \kappa=\frac{\gamma}{r} \frac{\partial}{\partial r}\left[r \frac{\partial h_{\mathrm{b}} / \partial r}{\sqrt{1+\left(\partial h_{\mathrm{b}} / \partial r\right)^{2}}}\right]=\Delta P(t)+p(r, t) \tag{S1}
\end{equation*}
$$

where κ denotes the interfacial curvature, which is expressed in cylindrical coordinates (see Fig. (1) in the main article). The hydrodynamic excess pressure fields is denoted p, and ΔP is a Lagrange multiplier associated with the volume conservation of the air bubble. This multiplier corresponds to the pressure difference across the interface. At equilibrium, the pressure difference is $-2 \gamma / R_{\mathrm{b}}$, where R_{b}^{-1} is the curvature radius of the bubble. Here, we write the pressure difference as $\Delta P(t)=-2 \gamma / R(t)$. In the following, we neglect gravity and focus on bubbles that are smaller than the capillary length. In addition, we consider acute contact angles θ, as is the case for an air bubble deposited onto a PS substrate within water. Therefore, the bubble's surface profile $h_{\mathrm{b}}(r, t)$ is a multivalued function of r, and Eq. (S1) is valid only in the upper part of the bubble, corresponding to the z_{+}branch in Fig. S1. One can integrate Eq. (S1) with respect to r and get:

$$
\begin{equation*}
\frac{r \partial h_{\mathrm{b}} / \partial r}{\sqrt{1+\left(\partial h_{\mathrm{b}} / \partial r\right)^{2}}}=-\frac{r^{2}}{R(t)}+\frac{1}{\gamma} \int_{0}^{r} p\left(r^{\prime}, t\right) r^{\prime} \mathrm{d} r^{\prime} \tag{S2}
\end{equation*}
$$

The excess pressure field decays over a typical radial extent $\sim \sqrt{2 R_{\text {eff }} D}$, that is the usual hydrodynamic radius in lubrication problems, where $R_{\text {eff }}$ is the effective curvature radius of the liquid-gap thickness between the sphere and the bubble. We focus on the situations in which this typical hydrodynamic radius is small with respect to the bubble size, yielding the scale separation: $\sqrt{2 R_{\text {eff }} D} \ll R_{\mathrm{b}}$.

OUTER SOLUTION

FIG. S1: Schematic of the outer problem.

We use the method of matched asymptotic expansions [2], following specifically Refs. [3, 4]. We first describe the outer solution (denoted with the subscript "out"), which is a good approximation of the solution outside the hydrodynamic region, i.e. for $r \gg \sqrt{2 R_{\mathrm{eff}} D}$. In this limit, the integral $2 \pi \int_{0}^{r} p\left(r^{\prime}, t\right) r^{\prime} \mathrm{d} r^{\prime}$ does essentially not depend on r and can be approximated by the hydrodynamic force $F(t)=2 \pi \int_{0}^{\infty} p\left(r^{\prime}, t\right) r^{\prime} \mathrm{d} r^{\prime}$. Therefore, the outer problem is equivalent to the one schematized in Fig. S1. The solution is derived in Ref. [3], and we recall the main steps here. We drop the time dependencies for conciseness, and the two interfacial branches are denoted $z_{ \pm}$, where + denotes the upper section of the bubble and - the lower section (see Fig. S1). The functions $z_{ \pm}$are related to the bubble's surface profile via the relation $h_{\mathrm{b}, \text { out }}=z_{ \pm}-R_{\mathrm{b}}(1+\cos \theta)$. Equation (S2) can be written conveniently for both branches as:

$$
\begin{equation*}
\pm \frac{r \partial z_{ \pm} / \partial r}{\left[1+\left(\partial z_{ \pm} / \partial r\right)^{2}\right]^{1 / 2}}=-\frac{r^{2}}{R}+\frac{F}{2 \pi \gamma} . \tag{S3}
\end{equation*}
$$

The maximal lateral extent R_{+}of the bubble (see Fig. S1) can be found by taking the limit $\partial z_{ \pm} / \partial r \rightarrow \mp \infty$ in Eq. (S3), and satisfies the polynomial equation $R_{+}^{2} / R-R_{+}=F /(2 \pi \gamma)$. Equation (S3) can be integrated and the solution can be expressed using the elliptic integrals of the first and second kinds, \mathcal{F} and \mathcal{E} respectively, and the constant R_{+}as:

$$
\begin{equation*}
z_{ \pm}(r)= \pm\left[R_{+} \mathcal{E}(K(r), q)-\frac{F}{2 \pi \gamma} \frac{R}{R_{+}} \mathcal{F}(K(r), q)\right] \mp\left[R_{+} \mathcal{E}\left(K\left(r_{1}\right), q\right)-\frac{F}{2 \pi \gamma} \frac{R}{R_{+}} \mathcal{F}\left(K\left(r_{1}\right), q\right)\right] \tag{S4}
\end{equation*}
$$

with:

$$
\begin{equation*}
K(r)=\arcsin \left(\sqrt{\frac{R_{+}^{2}-r^{2}}{R_{+}^{2}-\left(\frac{F}{2 \pi \gamma}\right)^{2} R^{2} R_{+}^{-2}}}\right), \quad q^{2}=1-\frac{\left(\frac{F}{2 \pi \gamma}\right)^{2} R^{2}}{R_{+}^{4}}, \tag{S5}
\end{equation*}
$$

and where r_{1} denotes the contact radius of the bubble on the substrate. We focus on situations in which the bubble's deformation is small, i.e. in the small-force limit where $\frac{F}{2 \pi \gamma} \ll R_{\mathrm{b}}$, which allows us to expand Eq. (S4) to leading order in $F /\left(2 \pi \gamma R_{\mathrm{b}}\right)$. For $r \ll R$, we find:

$$
\begin{equation*}
z_{+}(r) \simeq R\left[1-\frac{r^{2}}{2 R^{2}}+\sqrt{1-\frac{r_{1}^{2}}{R_{+}^{2}}}\right]+\frac{F}{2 \pi \gamma}\left[1+\sqrt{1-\frac{r_{1}^{2}}{R_{+}^{2}}}+\frac{1}{2} \log \left(\frac{r^{2}}{4 R^{2}}\right)-\log \left(\frac{1+\sqrt{1-\frac{r_{1}^{2}}{R_{+}^{2}}}}{1-\sqrt{1-\frac{r_{1}^{2}}{R_{+}^{2}}}}\right)\right] \tag{S6}
\end{equation*}
$$

The volume of the bubble can be evaluated at leading order and reads:

$$
\begin{equation*}
V_{\mathrm{b}} \simeq \pi R^{3}\left[\frac{2}{3}+\frac{1}{3} \sqrt{1-\frac{r_{1}^{2}}{R_{+}^{2}}}\left(2+\frac{r_{1}^{2}}{R^{2}}\right)+\frac{F}{2 \pi \gamma R}\left(1+\sqrt{1-\frac{r_{1}^{2}}{R_{+}^{2}}}\left(1+\frac{1}{3} \frac{r_{1}^{2}}{R^{2}}\right)\right)\right] . \tag{S7}
\end{equation*}
$$

Then, we can expand R as $R=R_{\mathrm{b}}+\delta R$, and equivalently the pressure drop as $\Delta P=-2 \gamma / R_{\mathrm{b}}+2 \gamma \delta R / R_{\mathrm{b}}^{2}$. Using the polynomial equation on R_{+}, we find $R_{+}=R_{\mathrm{b}}+F /(2 \pi \gamma)+\delta R$, at leading order. To close the problem, one needs to specify the boundary condition at the contact line. Here, we assume that the contact line is pinned, which amounts to take a contact radius $r_{1}=R_{\mathrm{b}} \sin \theta$, where θ is the equilibrium contact angle. Using this condition, we write the volume variation at leading order as:

$$
\begin{equation*}
V_{\mathrm{b}}-V_{\mathrm{b}, 0} \simeq \frac{\pi R_{\mathrm{b}}^{2}}{\cos \theta}\left[\frac{F}{2 \pi \gamma}(1+\cos \theta)+\delta R(1+\cos \theta)^{2}\right] \tag{S8}
\end{equation*}
$$

where $V_{\mathrm{b}, 0}=\pi R_{\mathrm{b}}^{3}\left[2 / 3+\cos \theta-\cos ^{3}(\theta) / 3\right]$ is the bubble volume. Therefore, volume conservation imposes the condition:

$$
\begin{equation*}
\delta R=-\frac{F}{2 \pi \gamma} \frac{1}{1+\cos \theta} . \tag{S9}
\end{equation*}
$$

Introducing this condition in Eq. (S6), we find:

$$
\begin{equation*}
z_{+}(r) \simeq R_{\mathrm{b}}\left(1+\cos \theta-\frac{r^{2}}{2 R_{\mathrm{b}}^{2}}\right)+\frac{F}{2 \pi \gamma}\left[1+\log \left(\frac{r}{2 R_{\mathrm{b}}}\right)-\log \left(\frac{1+\cos \theta}{1-\cos \theta}\right)\right], \tag{S10}
\end{equation*}
$$

and, thus, the outer solution finally reads for $r \ll R_{\mathrm{b}}$:

$$
\begin{equation*}
h_{\mathrm{b}, \mathrm{out}} \simeq-\frac{r^{2}}{2 R_{\mathrm{b}}}+\frac{F}{2 \pi \gamma}\left[1+\log \left(\frac{r}{2 R_{\mathrm{b}}}\right)-\log \left(\frac{1+\cos \theta}{1-\cos \theta}\right)\right] . \tag{S11}
\end{equation*}
$$

INNER SOLUTION

We now focus on the inner asymptotic solution (denoted with the subscript "in"), in the region near the apex of the bubble, for which the radial coordinate r is smaller than the hydrodynamic radius $\sqrt{2 R_{\text {eff }} D}$. In this region, the slope $\partial_{r} h_{\mathrm{b}, \text { in }}$ of the bubble's surface profile is small with respect to unity, such that Eq. (S1) can be linearized into:

$$
\begin{equation*}
\frac{\gamma}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h_{\mathrm{b}, \mathrm{in}}}{\partial r}\right)=\Delta P(t)+p(r, t) . \tag{S12}
\end{equation*}
$$

Therefore, we can expand the bubble's surface profile as the sum of a parabolic equilibrium shape and a deviation $u_{\mathrm{in}}(r, t)$, i.e. : $h_{\mathrm{b}, \mathrm{in}}(r, t) \simeq-\frac{r^{2}}{2 R_{\mathrm{b}}}-u_{\mathrm{in}}(r, t)$. Using Eq. (S9), together with the previous expansion $\Delta P(t) \simeq-2 \gamma / R_{\mathrm{b}}+$ $2 \gamma \delta R(t) / R_{\mathrm{b}}^{2}$, and the linear properties of Eq. (S12), we find:

$$
\begin{equation*}
-\frac{\gamma}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{\mathrm{in}}}{\partial r}\right)=-\frac{F(t)}{\pi R_{\mathrm{b}}^{2}} \frac{1}{1+\cos \theta}+p(r, t) . \tag{S13}
\end{equation*}
$$

The inner solution must match asymptotically the outer solution of Eq. (S11), which imposes the following asymptotic expression at $r \gg \sqrt{2 R_{\text {eff }} D}$:

$$
\begin{equation*}
u_{\mathrm{in}} \sim-\frac{F(t)}{2 \pi \gamma}\left[1-\log \left(\frac{1+\cos \theta}{1-\cos \theta}\right)+\log \left(\frac{r}{2 R_{\mathrm{b}}}\right)\right] . \tag{S14}
\end{equation*}
$$

Finally, in order to write the problem in a closed form, we need to solve the hydrodynamic equation. The excess pressure field follows the Reynolds equation:

$$
\begin{equation*}
\frac{\partial h(r, t)}{\partial t}=\frac{1}{12 \eta r} \frac{\partial}{\partial r}\left[r h(r, t)^{3} \frac{\partial}{\partial r} p(r, t)\right], \tag{S15}
\end{equation*}
$$

where $h(r, t)=h_{\mathrm{s}}(r, t)-h_{\mathrm{b}}(r, t)$ is the liquid gap thickness. In the vicinity of the bubble's apex, we can approximate the sphere's surface profile h_{s} by the parabolic expansion: $h_{\mathrm{s}}(r, t)=D+R_{\mathrm{s}}-\sqrt{R_{\mathrm{s}}^{2}-r^{2}}+Z(t) \approx D+r^{2} /\left(2 R_{\mathrm{s}}\right)+Z(t)$. Combining the latter with the above expansion for $h_{\mathrm{b}, \mathrm{in}}(r, t)$, we find:

$$
\begin{equation*}
h(r, t)=D+\frac{r^{2}}{2 R_{\mathrm{eff}}}+Z(t)+u_{\mathrm{in}}(r, t) . \tag{S16}
\end{equation*}
$$

The modulus $\left|Z^{*}\right|$ of the amplitude Z^{*} of the vertical displacement Z of the sphere and the deformation of the bubble are assumed to be much smaller than the average sphere-bubble distance D, so that we can neglect the contributions of Z and $u_{\text {in }}$ in the non-linear $\left(\propto h^{3}\right)$ factor within the Reynolds equation. The complex version of the latter thus becomes at leading order:

$$
\begin{equation*}
12 \eta r i \omega\left[Z^{*}+u_{\mathrm{in}}^{*}(r)\right]=\frac{\mathrm{d}}{\mathrm{~d} r}\left[r\left(D+\frac{r^{2}}{2 R_{\mathrm{eff}}}\right)^{3} \frac{\mathrm{~d} p^{*}(r)}{\mathrm{d} r}\right] . \tag{S17}
\end{equation*}
$$

Similarly, Eq. (S13) written with complex variables reads:

$$
\begin{equation*}
-\frac{\gamma}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} u_{\mathrm{in}}^{*}}{\mathrm{~d} r}\right)=\frac{G^{*} Z^{*}}{\pi R_{\mathrm{b}}^{2}} \frac{1}{1+\cos \theta}+p^{*}(r) . \tag{S18}
\end{equation*}
$$

Finally, we introduce the dimensionless variables:

$$
\begin{equation*}
x=\frac{r}{\sqrt{2 R_{\mathrm{eff}} D}}, \quad U_{\mathrm{in}}^{*}=\frac{u_{\mathrm{in}}^{*}}{Z^{*}}, \quad P^{*}=\frac{p^{*}}{\frac{\eta R_{\mathrm{eff}} Z^{*} \omega}{D^{2}}}, \quad \mathcal{G}^{*}=\frac{G^{*} D_{\mathrm{c}}}{6 \pi \eta \omega R_{\mathrm{eff}}^{2}}, \quad D_{\mathrm{c}}=\frac{16 R_{\mathrm{eff}}^{2} \eta \omega}{\gamma}, \tag{S19}
\end{equation*}
$$

such that Eqs. (S17) and (S18) become:

$$
\begin{gather*}
24 i\left[1+U_{\mathrm{in}}^{*}(x)\right]=\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\left[x\left(1+x^{2}\right)^{3} \frac{\mathrm{~d} P^{*}(x)}{\mathrm{d} x}\right] \tag{S20}\\
-\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x \frac{\mathrm{~d} U_{\mathrm{in}}^{*}}{\mathrm{~d} x}\right)=\frac{2 R_{\mathrm{eff}} D}{R_{\mathrm{b}}^{2}} \frac{3}{16} \frac{1}{1+\cos \theta} \mathcal{G}^{*}+\frac{D_{\mathrm{c}}}{8 D} P^{*}(x) . \tag{S21}
\end{gather*}
$$

Then, Eqs. (S20) and (S21) are solved numerically using a standard finite-difference scheme. The boundary conditions are set to:

$$
\begin{equation*}
\frac{\mathrm{d} P^{*}}{\mathrm{~d} x}(0)=0, \quad P^{*}\left(x_{\max }\right)=0 \tag{S22}
\end{equation*}
$$

and:

$$
\begin{equation*}
U_{\mathrm{in}}^{*}\left(x_{\max }\right)=\frac{3}{8} \mathcal{G}^{*}\left[1-\log \left(\frac{1+\cos \theta}{1-\cos \theta}\right)+\log \left(\frac{r_{\max }}{2 R_{\mathrm{b}}}\right)\right] \tag{S23}
\end{equation*}
$$

where $x_{\max }=r_{\max } / \sqrt{2 R_{\mathrm{eff}} D}$ and $r_{\max }$ are the dimensionless boundary and corresponding real boundary of the numerical domain, respectively. We checked that the solution is not dependent on $r_{\text {max }}$, in the range where $\sqrt{2 R_{\text {eff }} D} \ll$ $r_{\text {max }} \ll R_{\mathrm{b}}$.

LARGE-DISTANCE ASYMPTOTIC MODEL

In this section, we perform an asymptotic calculation at large distance in the inner model. We assume that D_{c} / D is a small parameter, and we perform the following first-order expansions:

$$
\begin{align*}
U_{\mathrm{in}}^{*}(x) & \simeq 0+\frac{D_{\mathrm{c}}}{D} U_{\mathrm{in}, 1}^{*}(x), \tag{S24}\\
P^{*}(x) & \simeq P_{0}^{*}(x)+\frac{D_{\mathrm{c}}}{D} P_{1}^{*}(x), \tag{S25}\\
\mathcal{G}^{*} & \simeq \mathcal{G}_{0}^{*}+\frac{D_{\mathrm{c}}}{D} \mathcal{G}_{1}^{*} \tag{S26}
\end{align*}
$$

The leading-order term P_{0}^{*} is given by Eq. (S20) in the undeformed-bubble limit, and reads:

$$
\begin{equation*}
P_{0}^{*}(x)=-\frac{3 i}{\left(1+x^{2}\right)^{2}}, \tag{S27}
\end{equation*}
$$

which gives to the classical Reynolds force:

$$
\begin{equation*}
\mathcal{G}_{0}^{*}(x)=i \frac{D_{c}}{D} \tag{S28}
\end{equation*}
$$

Then, the leading-order term $U_{\mathrm{in}, 1}^{*}$ is found by inserting P_{0}^{*} in Eq. (S21), and by invoking the boundary condition of Eq. (S23). We find:

$$
\begin{align*}
U_{\mathrm{in}, 1}^{*}(x) & =\frac{2 R_{\mathrm{eff}} D}{R_{\mathrm{b}}^{2}} \frac{3 i}{32}\left(x_{\max }^{2}-x^{2}\right) \frac{1}{1+\cos \theta}-\frac{3 i}{32}\left[\log \left(1+x_{\max }^{2}\right)-\log \left(1+x^{2}\right)\right] \\
& +\frac{3 i}{16}\left[1-\log \left(\frac{1+\cos \theta}{1-\cos \theta}\right)+\log \left(\frac{r_{\max }}{2 R_{\mathrm{b}}}\right)\right] . \tag{S29}
\end{align*}
$$

In what follows, we neglect the first term of the right-hand side of Eq. (S29) to keep the leading order in $r_{\max } / R_{\mathrm{b}}$. Then, introducing $U_{\mathrm{in}, 1}^{*}$ in Eq. (S20) allows us to express the next-order correction in pressure:

$$
\begin{align*}
P_{1}^{*}(x)=\frac{3}{32}[& \frac{-3-6 \log \left(\frac{1+\cos \theta}{1-\cos \theta}\right)-6 x^{2}+6 \log \left(\frac{r_{\max }}{R_{\mathrm{b}}}\right)-3 \log 4-3 \log \left(1+x_{\max }^{2}\right)}{\left(1+x^{2}\right)^{2}}+\pi^{2} \tag{S30}\\
& \left.-6 \frac{\log \left(1+x^{2}\right)}{1+x^{2}}+3 \log ^{2}\left(1+x^{2}\right)+6 \operatorname{Li}_{2}\left(-x^{2}\right)\right]
\end{align*}
$$

where Li_{2} denotes the dilogarithm function [5]. After some algebra, we find that:

$$
\begin{equation*}
\mathcal{G}_{1}^{*}=\frac{3}{32}\left(\frac{D_{\mathrm{c}}}{D}\right)\left[-3+\log (4)-2 \log \left(\frac{1+\cos \theta}{1-\cos \theta}\right)-2 \log \left(\frac{r_{\max }}{R_{\mathrm{b}}}\right)+\log \left(1+x_{\max }^{2}\right)\right] . \tag{S31}
\end{equation*}
$$

Finally, assuming that the boundary coordinate $x_{\max }$ is much larger than unity, we get:

$$
\begin{equation*}
\mathcal{G}_{1}^{*} \simeq \frac{3}{32}\left(\frac{D_{\mathrm{c}}}{D}\right)\left[-3+\log (4)-2 \log \left(\frac{1+\cos \theta}{1-\cos \theta}\right)+\log \left(\frac{R_{\mathrm{b}}^{2}}{2 R_{\mathrm{eff}} D}\right)\right], \tag{S32}
\end{equation*}
$$

which is the dimensionless equivalent of Eq. (6) in the main text.

2. EXPERIMENTS

GAP-DISTANCE DETERMINATION

The bubble is deposited on a rigid substrate and is approached towards the spherical colloidal probe by imposing an external vertical displacement of the substrate, using a piezo device with a low velocity. Therefore, the position of the bubble's tip, at rest, is known up to a piezo offset (conveniently incorporating the bubble size too). Besides, the hydrodynamic interaction on the spherical probe is triggered by the faster imposed base oscillation of the cantilever. Importantly, the time-averaged hydrodynamic interaction is zero, implying that the DC component of the cantilever's deflection is zero (see Fig. S2). Therefore, the average position of the spherical probe's tip is known, up to another piezo offset (conveniently incorporating the probe and cantilever sizes too). Since the time-averaged vertical deformation of the bubble induced by the hydrodynamic pressure is also zero, the average gap distance D is eventually obtained, up to a combined offset, by subtracting the average probe and bubble's tip positions. Finally, the actual $D=0$ contact position is determined as the point where the deflection increases sharply from zero (see Fig. S2), thus removing any offset at the end.

FIG. S2: Raw AFM data of the DC component of the cantilever's deflection vs average gap distance D.

RAW AMPLITUDE AND PHASE DATA

The experimental raw data for the results presented in Fig. 2a of the main article is shown in Fig. S3. Figure S3(a) shows the amplitude and phase $\left(A_{\infty}, \varphi_{\infty}\right)$ versus the oscillation frequency measured far from the surface ($D=400 \mu \mathrm{~m}$), where the interaction can be neglected. Figure S3(b) shows the measured amplitude A and phase φ of the cantilever oscillation versus the separation distance D, for the experiments performed on: i) a reference polystyrene (PS) surface, and ii) a bubble. Indeed, the base amplitude is a priori unknown. We have thus performed a preliminary calibration experiment, with a PS layer spin-coated onto a silica glass. The PS is hard enough to avoid any measurable deformation. In this rigid situation, the storage impedance vanishes ($G^{\prime}=0$), and at the PS surface the loss impedance diverges $\left(G^{\prime \prime}=6 \pi \eta R^{2} \omega / D \rightarrow \infty\right)$. This implies that near the PS surface (green line in Fig. (S3b)), the amplitude of the cantilever's deflection is nearly equal to the base amplitude ($A=A_{\mathrm{b}}$). In practice, the amplitude of the base oscillation was determined as the measured amplitude just before contact with the PS surface (see inset of Fig. (S3b)). Using Eq. (2) of the main article, with the values measured above, one could calculate the mechanical impedance $G^{*}=-F^{*} / Z^{*}$ for each distance D.

FIG. S3: a) Amplitude A_{∞} and phase φ_{∞} versus oscillation frequency $\omega /(2 \pi)$, measured at a distance $D=400 \mu \mathrm{~m}$. b) Amplitude A and phase φ of the cantilever's oscillation versus D, for the experiments with: i) a PS surface, and ii) a bubble. The frequency is $\omega /(2 \pi)=200 \mathrm{~Hz}$.

AFM RESONANCES

We have employed a liquid cell (DTFML-DDHE, Bruker) that allows for a direct excitation of the cantilever. The cantilever's excitation spectrum shown in Fig. S3(a) is clean and free from spurious peaks related to the mechanical resonances of the AFM.

* These authors contributed equally.
\dagger Electronic address: thomas.salez@u-bordeaux.fr
\ddagger Electronic address: abdelhamid.maali@u-bordeaux.fr
[1] P.-G. De Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves (Springer Science \& Business Media, 2013).
[2] E. J. Hinch, Perturbation Methods, Cambridge Texts in Applied Mathematics (Cambridge University Press, 1991).
[3] D. Bardos, Surface science 517, 157 (2002).
[4] D. Y. Chan, E. Klaseboer, and R. Manica, Soft Matter 7, 2235 (2011).
[5] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol. 55 (US Government printing office, 1948).

