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GENERAL MODEL

The modulus |Z∗| of the amplitude Z∗ of the vertical displacement Z of the sphere is assumed to be much smaller
than the average sphere-bubble distance D, so that we can neglect the contribution of Z in the non-linear (∝ h3)
factor within the Reynolds equation (see Eq. (4) in the main text). The complex version of the latter becomes:
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with identical notations as in the main text. The excess pressure and deformation fields are set to zero above a given
cut-off radius b, i.e.:

p∗(r) = 0 , u∗(r) = 0 , r > b . (S2)

We then introduce the discrete Hankel transform. The amplitudes of the excess pressure and deformation fields are
expanded in terms of Fourier-Bessel series [1]. For r ∈ [0, b], one thus has:
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∞∑
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ukJ0(φkr) , (S3)

where J0 is the Bessel function of the first kind with index 0, and b φk the kth root of J0. The series coefficients are
related to the amplitude of the deformation field via the inversion relation:
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where J1 is the Bessel function of the first kind with index 1. We further introduce the dimensionless variables:
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so that Eq. (S1) and the linearized Young-Laplace equation (Eq. (5) in the main text) respectively become:
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and:
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where Dc = 16R2
effηω/γ is a typical viscocapillary distance that emerges from the rescaling. By integrating Eq. (S6)

with respect to x, and invoking the Fourier-Bessel decomposition, we find:
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where Uk = uk/Z
∗ and Pk = pkD

2/(ηReffZ
∗ω). Using Eq. (S7), one can show that:
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Injecting the last relation in Eq. (S8), one gets:
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Then, we perform the Fourier-Bessel inversion by applying to Eq. (S10) the operator 2
B2J2

1 (ψkB)

∫ B
0

dy yJ1(ψky)(∗),
where (∗) stands for a function of y, and we find:
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Mk,lPl , ∀k ∈ N∗ , (S11)

where Ak and Mk,l are defined as:
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and:
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Finally, the amplitude of the hydrodynamic force is F ∗h = 2π
∫ b

0
dr r p∗(r). The mechanical impedance G∗ = −F ∗/Z∗

can thus be expressed as [2]:
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The mechanical impedance can be estimated numerically from this last equation, restricting the summation to e.g.
k ≤ 1000. We checked the robustness of the results against a change of that arbitrary upper bound.

LARGE-DISTANCE ASYMPTOTIC MODEL

We assume that the ratio Dc/D is a small parameter, and we expend the amplitude of the dimensionless excess
pressure field as:

P ∗(x) ' P ∗0 (x) +
Dc

D
P ∗1 (x) . (S15)

The leading-order term P ∗0 is given by Eq. (S6) in the undeformed-bubble limit, and reads:

P ∗0 (x) = − 3i

(1 + x2)2
. (S16)

Similarly, the leading-order amplitude U∗1 of the dimensionless deformation field can be found by inserting P ∗0 in
Eq. (S7), and by invoking the boundary condition U∗1 (x = B) = 0. We find:

U∗1 (x) = − 3i
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Then, introducing U∗1 in Eq. (S6) allows us to express the next-order correction in pressure:
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where Li2 denotes the dilogarithm function [3]. After some algebra, we find that:

G′ = R[G∗] ' 3
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which is the dimensionless equivalent of Eq. (6) in the main text.
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