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GENERAL MODEL

The modulus |Z*| of the amplitude Z* of the vertical displacement Z of the sphere is assumed to be much smaller
than the average sphere-bubble distance D, so that we can neglect the contribution of Z in the non-linear (o< h?)
factor within the Reynolds equation (see Eq. (4) in the main text). The complex version of the latter becomes:

12ric {Z* + u*(r)} Cfr [ (D + 21;;)8 dpd*ir)] : (S1)

with identical notations as in the main text. The excess pressure and deformation fields are set to zero above a given
cut-off radius b, i.e.:

p*(r)=0,u"(r)=0, r>b. (S2)

We then introduce the discrete Hankel transform. The amplitudes of the excess pressure and deformation fields are
expanded in terms of Fourier-Bessel series [1]. For r € [0,b], one thus has:
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where Jj is the Bessel function of the first kind with index 0, and b ¢y the kth root of Jy. The series coefficients are

related to the amplitude of the deformation field via the inversion relation:
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where J; is the Bessel function of the first kind with index 1. We further introduce the dimensionless variables:
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so that Eq. (S1) and the linearized Young-Laplace equation (Eq. (5) in the main text) respectively become:
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where D, = 16R§Hnw/ «v is a typical viscocapillary distance that emerges from the rescaling. By integrating Eq. (S6)
with respect to x, and invoking the Fourier-Bessel decomposition, we find:

and:
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where Uy, = uy/Z* and Py = ppD?/(nRegZ*w). Using Eq. (S7), one can show that:
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Injecting the last relation in Eq. (S8), one gets:
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Then, we perform the Fourier-Bessel inversion by applying to Eq. (S10) the operator m fOB dy yJ1 (Yry) (%),
1
where (x) stands for a function of y, and we find:

Pp=Ax+Y MgP, VkeN, (S11)
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where Aj, and M}, ; are defined as:
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Finally, the amplitude of the hydrodynamic force is F}f = 27 fob drrp*(r). The mechanical impedance G* = —F*/Z*
can thus be expressed as [2]:
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The mechanical impedance can be estimated numerically from this last equation, restricting the summation to e.g.
k < 1000. We checked the robustness of the results against a change of that arbitrary upper bound.

LARGE-DISTANCE ASYMPTOTIC MODEL

We assume that the ratio D./D is a small parameter, and we expend the amplitude of the dimensionless excess
pressure field as:

P*(z) ~ Pi(z) + %Pf(a:) : (S15)

The leading-order term Py is given by Eq. (S6) in the undeformed-bubble limit, and reads:
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Similarly, the leading-order amplitude U of the dimensionless deformation field can be found by inserting Fj in
Eq. (S7), and by invoking the boundary condition U5 (z = B) = 0. We find:
3i D
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Then, introducing U in Eq. (S6) allows us to express the next-order correction in pressure:
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where Liy denotes the dilogarithm function [3]. After some algebra, we find that:

G =R[G] ~ % (%)2 [— 1+ log(1 +BQ)} )

which is the dimensionless equivalent of Eq. (6) in the main text.
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