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We present non-contact atomic-force microscopy measurements of the hydrodynamic interactions
between a rigid sphere and an air bubble in water at the micro-scale. The size of the bubble is found
to have a significant effect on the response due to the long-range capillary deformation of the air-
liquid interface. To rationalize the experimental data, we develop a viscocapillary lubrication model
accounting for the finite-size effect. The comparison between experiments and theory allows us to
measure the air-liquid surface tension, without contact, paving the way towards robust non-contact

tensiometry of polluted air-liquid interfaces.

The interface between two media has an energy cost
per unit surface, called surface tension, resulting from
the microscopic interactions of the constitutive molecules
at the interface [II, 2]. Surface tension is an important
parameter in soft condensed matter and at small scales
where capillary phenomena usually dominate. Examples
include wetting properties [3, 4], thin-film dynamics [5l
6], multiphase flows...

Surface active molecules — i.e. surfactants — are widely
used to stabilize capillary interfaces on purpose, e.g. in
emulsions or foams, but are also inevitable due to pol-
lution. These contaminants, which are usually adsorbed
at the interface between two immiscible fluids, lower the
surface tension and are responsible for specific rheolog-
ical properties of the interface [7]. To understand the
dynamics of soft materials, the interaction between ob-
jects such as droplets and bubbles, or to quantify the
amount of interfacial contamination, capillary interfa-
cial rheology is essential. Specifically, surface tension is
measured by a large variety of techniques: pendant-drop
method [g], spinning-drop method, Wilhelmy plates or
du Noiiy rings [9], for instance. Moreover, the inter-
facial rheology is usually measured with the Langmuir
trough [I0] or through oscillating-disk devices [11].

A complementary device to measure material prop-
erties is atomic-force microscope (AFM), which has re-
cently been used to study capillary phenomena such as
the interaction between bubbles [12] [13] or droplets [14-
16], the hydrodynamic boundary condition at a water-air
interface [I7, 18], and dynamical wetting [I9-24]. Re-
cently, the AFM has also been employed in a dynamical
mode, and appears to be a remarkable tool to quantify
properties — with the advantage of providing non-contact
measurements [25H29].

In this Letter, we study the force exerted on a water-
immersed sphere attached to an AFM cantilever, that is
driven to oscillate near the apex of an air bubble. The
deformation of the bubble and the force exerted on the
spherical probe are coupled, and result from the hydro-
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Figure 1: A spherical probe (dark blue) attached to an AFM
cantilever (grey) oscillates vertically, along the z axis, within
a water-Sodium Dodecyl Sulfate (SDS) liquid solution (light
blue) and near an air bubble (white). The motion results in an
axisymmetric liquid-gap thickness profile h(r, t) depending on
the radial distance r and time ¢, that includes an axisymmet-
ric vertical deformation field u(r, t) of the bubble surface along

the —z direction, with respect to its equilibrium spherical-cap
shape (dashed line).

dynamic pressure induced by the oscillating water flow.
To rationalize the experimental data, we develop a lu-
brication model accounting for finite-size effects — which
are found to be significant in the linear viscocapillary
response. All together, this method allows for robust in-
terfacial rheology in the absence of any direct contact.

A schematic of the experimental setup in shown in
Fig. [1) [I8, B0]. The cantilever is excited by the base
oscillation R[Ape?], where w and Ay, are the angular
frequency and amplitude of the base vibration, respec-
tively, and R[.] denotes the real part. The system essen-
tially behaves as a damped oscillator, where the vertical
displacement Z(t) of the center of mass of the sphere with
respect to its rest position satisfies:

ch + FbulkZ + ka = Fd + F ) (1)



with m, the effective mass (i.e. including the added fluid
mass) in the bulk, T,k the damping coefficient in the
bulk, k. the stiffness of the cantilever, Fyq the driving
force due to the imposed oscillation of the cantilever, and
F = R[F*e™!] the hydrodynamic force resulting from
the interaction between the oscillating sphere and the
air-liquid interface. The displacement Z(t) of the sphere
includes the cantilever deflection R[Ae“*+%)] measured
by AFM and the base displacement, and thus reads
Z(t) = R[Ae'@te) 4 Apeiwt] = R[Z*e™!], where A and
Z* = Ae'? + Ay, are real and complex amplitudes respec-
tively [30]. We further define the mechanical impedance
G* = —F*/Z*. Invoking the complex version of Eq. ,
the impedance reads:
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where Ay, and ., are respectively the amplitude (A)
and phase () measured far from the bubble (i.e. where
F' vanishes), wy = /ke/m. is the bulk resonance fre-
quency, and @ = mcwo/Tbuk is the bulk quality factor.
Equation provides a direct way to measure G* exper-
imentally from the cantilever’s deflection signal.
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To model theoretically G*, we consider the axisym-
metric system composed of the rigid sphere located at
an average distance D from the apex of the undeformed
air bubble. The ensemble is immersed in an incompress-
ible Newtonian fluid with a dynamical shear viscosity 7.
The liquid-gap thickness is approximated by the near-
axis parabolic expansion:

7“2

h(r,t) ~ D+ 5Ron

+ Z(t) + u(r,t), (3)

with Re_ff1 =R 1+Rg ! and where R, and Ry, are the cur-
vature radii of the sphere and bubble, respectively. We
focus on the situation where D < Reg, so that we can in-
voke the lubrication approximation of the steady Stokes
equations. The experiments are done at low enough fre-
quencies so that we can assume a no-slip boundary con-
dition at the air-liquid interface [I§]. Such a condition
is also assumed at the sphere-liquid interface. There-
fore, the liquid-gap thickness obeys the Reynolds equa-
tion [31]:
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where p(r,t) is the excess hydrodynamic pressure field
with respect to the rest state. Since, in the lubrication
approximation, the excess pressure is invariant along z,
it can be evaluated at the air-liquid interface through the

linearized Young-Laplace equation [15]:
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where = denotes the air-liquid surface tension, and where
small slopes are assumed. The contribution of Hamaker
forces is neglected in the model, as the sphere-bubble
distance in the experiment is in the 10 nm - 20 pm
range, and thus typically larger than the distance be-
low which these forces are dominant. We further assume
a small amplitude of the sphere’s oscillation, so that we
can invoke the linear-response framework, and thus write:
u(r,t) = Rlu*(r)e™!] and p(r,t) = R[p*(r)e™?], with
u*(r) and p*(r) the corresponding complex amplitudes.
Such a viscocapillary problem is sensitive to the total
size of the system, as in Refs. [15] B2] where it has been
shown that the central deformation diverges logarithmi-
cally with the system size. Therefore, it is appropriate
to introduce a cut-off radius b, beyond which we enforce
p*(r > b) =0 and u*(r > b) = 0. Finally, the amplitude

of the hydrodynamic force reads F* = 27 fob drrp*(r) in
the lubrication approximation, which allows us to com-
pute the mechanical impedance G* [33].

The experiments are performed using an AFM (Bio-
scope, Bruker) equipped with a liquid cell (DTFML-DD-
HE). A spherical borosilicate particle (MO-Sci Corpora-
tion) with a Ry = 54 &+ 2 um radius is glued at the edge
of a silicon nitride cantilever (ORC8-10, Bruker AFM
Probes). The stiffness k. = 0.20 £ 0.01 N/m of the
cantilever (with the sphere attached to it) is determined
from the drainage method [34]. The bulk resonance fre-
quency wp/(27) = 1240+3 Hz and the bulk quality factor
@ = 3.440.1 are obtained from the resonance spectrum
at large distance [30]. Air microbubbles are deposited
onto spincoated polystyrene layers, within Sodium Do-
decyl Sulfate (SDS) solutions in water. The SDS concen-
trations C' are in the 0.2 — 40.0 mM range. As measured
with an optical microscope, the bubble radii Ry, are in
the 0.200 — 0.6 mm range, and the contact angles 0 (see
definition in Fig. [1)) are in the 40 — 90° range, with the
exact value depending on C. A multi-axis piezo stage
(NanoT series, Mad City Labs) is used to control the dis-
tance between the sphere and the bubble, by imposing a
displacement to the substrate at very low velocity. The
amplitude A and phase ¢ of the cantilever’s deflection
signal are measured by a lock-in amplifier (Model 7280,
Signal Recovery), and are recorded versus the piezo dis-
placement. Additionally, the DC component of the can-
tilever’s deflection is also recorded and used to determine
the average gap distance D.

The real and imaginary parts of the measured mechan-
ical impedance G* = G’ 4 iG" are plotted in Fig. [2] as
functions of the average sphere-bubble distance D, for
two frequencies. Best fits to the model [33] are also
shown, in good agreement with the data, with the air-
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Figure 2: Real (blue circles) and imaginary (red circles) parts
of the measured mechanical impedance G* = G’ +iG" versus
average sphere-bubble distance D, for a surfactant C' = 1 mM,
and frequencies w/(27) = 200 Hz (a), and 300 Hz (b). The
bubble radius is Ry, = 346 £ 2 pum and the contact angle is
6 = 81 + 2°. The best fits to the model [33] are displayed
with solid black lines, using a single fitting parameter v =
58 + 4 mN/m. The large-distance asymptotic solution for G’
(see Eq. (6)) is also shown with green dashed lines. The slope
triangles indicate power-law exponents.

liquid surface tension v = 58 +£4 mN/m as the only fit-
ting parameter. We note that we used half the contour
length of the undeformed air-liquid interface as a cut-off
radius in the model, i.e. b = (7 — ) Ry,.

Furthermore, two asymptotic regimes can be observed,
at large and small distance respectively. They crossover
near D = 1000 nm, which corresponds to the typical vis-
cocapillary distance D, = 16 R%;nw/~ emerging from the
model [33], and equal to 727 and 1091 nm in Figs. [2|a)
and (b), respectively. At large distance, the viscous
contribution G” dominates and follows a ~ D~! scal-
ing law, as expected from the asymptotic expression
G" ~ 6mnR2gw/D [25]. In contrast, the restoring contri-
bution G’ due to the air-liquid capillary interface appears
with an apparent ~ D™2 scaling law at large distance.
We stress that the latter is not an exact scaling law, due
to a logarithmic correction [33]:

(1520 o

At small distance, both G’ and G” saturate to constant
values, which is reminiscent of elastohydrodynamic re-
sponses near soft substrates [25H27, 291 [35] 36], and might
be related to saturations in the deformation and pressure
fields. At such small distances, the capillary deforma-
tion of the bubble surface essentially accommodates the
sphere’s oscillation, and the liquid is no longer expelled
from the gap, which further leads to a stronger capillary
response than the viscous one.

972 R w?
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In order to reveal the importance of finite-size effects
in the viscocapillary response, we introduce the dimen-
sionless mechanical impedance G* = G*D./(6mnwR2%).
In Fig. the experimental and theoretical dimension-
less mechanical impedances are plotted versus the dimen-
sionless average sphere-bubble distance, for three bubble
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Figure 3: Dimensionless mechanical impedance versus dimen-
sionless distance, for three bubble sizes as indicated, a single
frequency w/(27) = 200 Hz, and a single surfactant con-
centration C' = 1mM. The experimental data are show in
(a). The results of the model are plotted in (b), using the
previously-obtained best-fit parameter v = 58 mN/m, and
the cut-off radius b = (7w — 0) Ry, with § = 81°.

radii. Except for the viscous contribution in the large-
distance limit, the dimensionless impedance is generally
found to depend on the bubble size in a nontrivial way,
which is correctly reproduced by the model. This ob-
servation highlights the importance of finite-size effects
in viscocapillary contacts. We note that the logarithmic
correction in the large-distance asymptotic expression of
the capillary contribution (see Eq. @) contains a bubble-
size dependence which cannot be resolved with the AFM
sensitivity and the current bubble-size range. At small
distance, the size dependence is more pronounced and
both the real and imaginary parts of the dimensionless
impedance decrease when increasing the bubble size.

Having discussed the finite-size effects on the global hy-
drodynamic force, we now investigate their influence on
the amplitudes of the local excess pressure and deforma-
tion fields. Figure[d]shows the results from the model [33]
for D/D. = 10, with the same parameters as in Fig.
We observe that both the real and imaginary parts of the
amplitude of the dimensionless excess pressure field decay
rapidly, on a typical distance ~ y/RegD. The imaginary
part does itself not depend on the cut-off radius, and is
well described by the leading-order rigid-like result (see
Eq. (S16)) in the large-distance asymptotic model [33].
Besides, the real part depends weakly on the cut-off ra-
dius, through the dimensionless number b/v/2Re.qD, as
predicted by the next-order correction (see Eq. (S18)) in
the large-distance asymptotic model [33]. This depen-
dence in the cut-off radius yields the logarithmic correc-
tion in Eq. @ In contrast, both the real and imaginary
parts of the amplitude of the dimensionless deformation
field depend notably on the cut-off radius. This fact re-
sults from the long-range capillary deformation of the
air-liquid interface, and explains the significant finite-size
effects in our global viscocapillary measurements.

So far, the air-liquid surface tension was considered as
a free parameter and was fixed by fitting the AFM ex-
perimental data to the model. The fitted values of the
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Figure 4: Real (a) and imaginary (b) parts of the amplitude
of the dimensionless excess pressure field as functions of the
dimensionless radial coordinate, at a dimensionless distance
D/D. = 10, for the three bubble radii of Fig. 3| as obtained
from the model [33]. The insets display zooms near the sym-
metry axis. In panel (b), Eq. (S16) [33] is plotted (dashed
line) for comparison. Similarly, the real and imaginary parts
of the amplitude of the dimensionless deformation field are
plotted in panels (c) and (d), respectively.

surface tension as a function of the SDS concentration
in water are shown in Fig. [f] We observe that the sur-
face tension globally decreases with increasing surfactant
concentration, as expected. At surfactant concentrations
smaller than ~ 0.5 mM, the surface tension is close to
the 72 mN/m value for pure water. At concentrations
larger than ~ 8 mM, the surface tension saturates to a
value on the order of 30 mN/m. The critical micellar
concentration of SDS in water is estimated to be around
8 mM [37, B8], which is in agreement with the latter ob-
servation. The uncertainty on the fitted surface tension
is on the order of £4 mN/m and may result from two
main sources: i) the experiments at different frequencies
lead to fitted values which vary by a few percents; ii) we
take half the contour length of the undeformed air-liquid
interface as an arbitrary cut-off radius, while one could
possibly make other choices, e.g. the curvature radius of
the undeformed interface, which would modify slightly
the fitted values.

Finally, we discuss the capacity of our method to be
used as a robust tensiometer. To do so, we performed in-
dependent tensiometry experiments on similar air-water-
SDS interfaces using the Wilhelmy-plate method [9]. The
results are shown in Fig. [5] and agree well with the ones
obtained with our method. Possible systematic devia-
tions at the highest concentrations may result from a
surfactant-induced depinning of the contact line of the
bubble on the substrate [39]. In such a scenario, the hy-
drodynamic pressure would not only trigger a local cap-
illary deformation (see Eq. )7 but would also induce a
spreading-dewetting cycle of the bubble on the substrate.
In addition, the bubble resonance frequency being lower

80
[ ° ° i
— 60 Py
g
% 40] W
= ++ t
201 °  Wilhelmy plate
}  AFM
001 0.1 1 10

C' [mM]

Figure 5: Air-water surface tension as a function of surfactant
(SDS) concentration, as obtained from fits (see Fig. [2)) of the
AFM experimental data by the model (red dots). For com-
parison, independent measurements using the Wilhelmy-plate
method are provided (blue dots).

at lower surface tension, capillary waves might be excited
at the air-liquid interface at large surfactant concentra-
tions.

In conclusion, we have studied the viscocapillary in-
teraction between an air bubble and a spherical probe
attached to an AFM cantilever, and immersed within a
surfactant solution in water. The sphere was oscillated
in the direction normal to the air-liquid interface, thus
generating a flow and an associated hydrodynamic pres-
sure field that could deform the interface. The resulting
force exerted on the sphere was measured as a function
of the sphere-bubble distance, and found to depend on
the bubble size. We also developed a model, coupling ax-
isymmetric lubrication flow and capillary deformations,
and accounting for finite-size effects through a cut-off ra-
dial distance. The experimental results were found to be
in good agreement with the model, when assuming the
cut-off radius to be half the contour length of the unde-
formed air-liquid interface, and with the air-liquid surface
tension as a single free parameter. Finally, from a com-
parison with independent tensiometry measurements us-
ing the Wilhelmy-plate method, we discussed the capac-
ity of our novel method to measure surface tensions ro-
bustly. The volume of the liquid required in our method
can be as small as tens of microliters. All together, this
work paves the way to non-contact capillary rheology,
with fundamental perspectives in confined soft matter,
and practical applications towards micro-monitoring of
water contamination.

ACKNOWLEDGEMENTS

The authors thank Elisabeth Charlaix for preliminary
discussions, as well as Samir Almohamad for technical as-
sistance on the Wilhelmy-plate calibration experiments.



Z. 7. acknowledges financial support from the China
Scholarship Council. Z. Z. and A. M. acknowledge fi-
nancial support from Agence Nationale de la Recherche
(ANR-19-CE30-0012).

* These authors contributed equally.

t Electronic address: thomas.salez@u-bordeaux.fr

! Electronic address: abdelhamid.maali@u-bordeaux.fr
[1] P.-G. De Gennes, F. Brochard-Wyart, and D. Quéré,

and A. Wiirger, Physical Review Letters 118, 084501
(2017).

[19] S. Ecke, M. Preuss, and H.-J. Butt, Journal of adhesion
science and technology 13, 1181 (1999).

[20] X. Xiong, S. Guo, Z. Xu, P. Sheng, and P. Tong, Physical
Review E 80, 061604 (2009).

[21] M. Delmas, M. Monthioux, and T. Ondarguhu, Physical
review letters 106, 136102 (2011).

[22] S. Guo, M. Gao, X. Xiong, Y. J. Wang, X. Wang,
P. Sheng, and P. Tong, Physical review letters 111,
026101 (2013).

[23] J. Dupré de Baubigny, M. Benzaquen, L. Fabié, M. Del-
mas, J.-P. Aimé, M. Legros, and T. Ondarguhu, Lang-

Capillarity and wetting phenomena: drops, bubbles, pearls, waves . 31, 9790 (2015).

(Springer Science & Business Media, 2013).

[2] A. Marchand, J. H. Weijs, J. H. Snoeijer, and B. An-
dreotti, American Journal of Physics 79, 999 (2011).

[3] P.-G. De Gennes, Reviews of modern physics 57, 827
(1985).

[4] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley,
Reviews of modern physics 81, 739 (2009).

[5] A. Oron, S. H. Davis, and S. G. Bankoff, Reviews of
modern physics 69, 931 (1997).

[6] R. V. Craster and O. K. Matar, Reviews of modern
physics 81, 1131 (2009).

[7] D. Langevin, Annual review of fluid mechanics 46, 47
(2014).

[8] J. D. Berry, M. J. Neeson, R. R. Dagastine, D. Y. Chan,
and R. F. Tabor, Journal of colloid and interface science
454, 226 (2015).

[9] J. Drelich, C. Fang, and C. White, Encyclopedia of sur-
face and colloid science 3, 3158 (2002).

[10] D. K. Schwartz, C. M. Knobler, and R. Bruinsma, Phys-
ical review letters 73, 2841 (1994).

[11] P. Erni, P. Fischer, E. J. Windhab, V. Kusnezov, H. Stet-
tin, and J. Lauger, Review of scientific instruments 74,
4916 (2003).

[12] I. U. Vakarelski, J. Lee, R. R. Dagastine, D. Y. Chan,
G. W. Stevens, and F. Grieser, Langmuir 24, 603 (2008).

[13] I. U. Vakarelski, R. Manica, X. Tang, S. J. O’Shea, G. W.
Stevens, F. Grieser, R. R. Dagastine, and D. Y. Chan,
Proceedings of the National Academy of Sciences 107,
11177 (2010).

[14] R. R. Dagastine, R. Manica, S. L. Carnie, D. Chan, G. W.
Stevens, and F. Grieser, Science 313, 210 (2006).

[15] D. Y. Chan, E. Klaseboer, and R. Manica, Soft Matter
7, 2235 (2011).

[16] R. F. Tabor, F. Grieser, R. R. Dagastine, and D. Y. Chan,
Journal of colloid and interface science 371, 1 (2012).

[17] O. Manor, I. U. Vakarelski, G. W. Stevens, F. Grieser,
R. R. Dagastine, and D. Y. Chan, Langmuir 24, 11533
(2008).

[18] A. Maali, R. Boisgard, H. Chraibi, Z. Zhang, H. Kellay,

[24] C. Mortagne, K. Lippera, P. Tordjeman, M. Benzaquen,
and T. Ondarguhu, Physical Review Fluids 2, 102201
(2017).

[25] S. Leroy and E. Charlaix, Journal of Fluid Mechanics
674, 389 (2011).

[26] S. Leroy, A. Steinberger, C. Cottin-Bizonne, F. Restagno,
L. Léger, and E. Charlaix, Physical Review Letters 108,
264501 (2012).

[27] R. Villey, E. Martinot, C. Cottin-Bizonne, M. Phaner-
Goutorbe, L. Léger, F. Restagno, and E. Charlaix, Phys-
ical Review Letters 111, 215701 (2013).

[28] D. Guan, C. Barraud, E. Charlaix, and P. Tong, Lang-
muir 33, 1385 (2017).

[29] Z. Zhang, V. Bertin, M. Arshad, E. Raphaél, T. Salez,
and A. Maali, Phys. Rev. Lett. 124, 054502 (2020).

[30] A. Maali and R. Boisgard, Journal of Applied Physics
114, 144302 (2013).

[31] O. Reynolds, Philos. Trans. R. Soc. Lond. 177, 157
(1886).

[32] Y. Wang, B. Zeng, H. T. Alem, Z. Zhang, E. Charlaix,
and A. Maali, Langmuir 34, 1371 (2018).

[33] Supplementary Material can be found at [link to be added
by the editors]. The document provides further technical
details on the computation of the mechanical impedance,
and its asymptotic analytical expression at large dis-
tances. (2000).

[34] V. S. Craig and C. Neto, Langmuir 17, 6018 (2001).

[35] J. M. Skotheim and L. Mahadevan, Physics of Fluids 17,
092101 (2005).

[36] B. Saintyves, T. Jules, T. Salez, and L. Mahadevan, Pro-
ceedings of the National Academy of Sciences 113, 5847
(2016).

[37] Y. Moroi, K. Motomura, and R. Matuura, Journal of
Colloid and Interface Science 46, 111 (1974).

[38] E. Fuguet, C. Rafols, M. Rosés, and E. Bosch, Analytica
Chimica Acta 548, 95 (2005).

[39] K. Joshi and J. F. Gilchrist, Applied Physics Letters 116,
083702 (2020).


mailto:thomas.salez@u-bordeaux.fr
mailto:abdelhamid.maali@u-bordeaux.fr

	Acknowledgements
	References

