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ABSTRACT:

Monitoring observable processes in Satellite Image Time Series (SITS) is one of the crucial way to understand dynamics of our

planet that is facing unexpected behaviors due to climate change. In this paper, we propose a novel method to assess the evolution

of objects (and especially their surface) through time. To do so, we first build a space-time tree representation of image time series.

The so-called space-time tree is a hierarchical representation of an image sequences into a nested set of nodes characterizing the

observed regions at multiple spatial and temporal scales. Then, we measure for each node the spatial area occupied at each time

sample, and we focus on its evolution through time. We thus define the spatio-temporal stability of each node. We use this attribute

to identify and measure changing areas in a remotely-sensed scene. We illustrate the purpose of our method with some experiments

in a coastal environment using Sentinel-2 images, and in a flood occurred area with Sentinel-1 images.

1. INTRODUCTION

1.1 Motivation

Due to the climate change, it is crucial to have information

about earth dynamics regularly. For instance, sea level rise is

changing rapidly and up to date information about our earth is

required. Sea level change may be caused by flood or tide, and

observation capability of coastal side is increasing with data

availability (Salameh et al., 2019). Remote sensing images en-

able us to observe our earth with improved technology. New

satellite missions such as Sentinel provide effective temporal

resolution with approximately 5 days revisit time.

Unsurprisingly, Satellite image time series (SITS) analysis con-

tinues to gain popularity in the literature. Such data combine

spatial and temporal dimensions and they can be used for many

problems such as assessing the temporal evolution of phenom-

ena or objects (Méger et al., 2019). Supervised classification

algorithms currently represent the state-of-the-art in automatic

mapping and monitoring of our planet, e.g. with deep neural

networks that have reached very good performances on some

well-defined scenarios. However, due to the difficulty to col-

lect training data for each time sample, these methods might

look less appealing than unsupervised algorithms (Petitjean et

al., 2012). Indeed, although there are several reference data

provided by industrial or institutional players, such data remain

very expensive and time-costly to produce. Accurate unsuper-

vised methods are thus needed to understand our entire Earth

without requirement of reference data.

1.2 Related work

This paper aims at assessing evolving objects or phenomena

in an unsupervised fashion. More precisely, we consider two

use cases where observation of water areas is crucial: tides in

Sentinel-2 images and floods in Sentinel-1 images. To do so, we
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propose a novel methodology relying on morphological hier-

archies. In this section, we review some related works, from

both an application and a methodological point of view.

Tide and flood mapping. Monitoring natural disasters is an

important task for post-disaster management. Flood is one of

the most common disasters and it is necessary to distinguish

changes related to water from the other changes in order to cor-

rectly find affected regions. Another natural event caused by

water activity occurs in intertidal zones. Both events result from

water mobility. According to (Salameh et al., 2019), availabil-

ity of multitemporal images can provide an optimal solution for

beach topography monitoring.

On the tide observation side, a k-means clustering is used in

(Soares et al., 2012) in order to monitor intertidal zones. As a

postprocessing, the authors apply morphological filtering (clos-

ing) to the SAR images. Their work relies on bitemporal ana-

lysis, thus making a limited usage of the temporal informa-

tion. Pixelwise monitoring of intertidal zones with multitem-

poral Synthetic Aperture Radar (SAR) images is proposed in

(Catalao, Nico, 2016) with a method to analyse pixelwise in-

tensity variations. Although their method is promising, object-

based analysis is known to be more efficient than pixel based

analysis for wetland landscape applications (Berhane et al.,

2018) . In (Gonçalves, Henriques, 2015), authors used optical

airborne images to extract Digital Surface Model (DSM) from

coastal areas. Nevertheless, such DSM are not always available.

As far as flood detection is concerned, Synthetic Aperture

Radar (SAR) is known to be a valuable data source (Martinis

et al., 2015, Tang et al., 2018). The SAR backscatter depends

on the physical properties of the objects and, since water is re-

flecting less than other materials (Tang et al., 2018), it is a dis-

criminative feature for water detection. Therefore, radiomet-

ric thresholding of backscatters is known as an efficient way

to extract water areas (Giustarini et al., 2013). However, such

a method is very sensitive to noise and spatial regularization



thus appears as a relevant strategy to improve robustness. Re-

cently, flood detection was addressed with hierarchical repres-

entations (Tuna et al., 2019). A min-tree was used to find an op-

timal threshold and extract water regions. Although threshold-

ing is an effective method, it is struggling when the scene in-

cludes soil moistures. Computation of the Normalized Differ-

ence Flood Index (NDFI) from SAR images was recently intro-

duced in (Cian et al., 2018), but its effective usage requires long

time series data. Our aim is to propose an unsupervised method

that extracts continuous spatio-temporal information from SITS

since water shows a highly active behavior.

Morphological hierarchies and stable features. We aim at

proposing a new, unsupervised method which is able to con-

duct an object-based analysis of the images in the temporal

domain. Morphological hierarchies are multiscale representa-

tions of an image that provide access to the objects it contains

at various scales-of-interest. More specifically, the question of

building a morphological hierarchy for modelling a time series

was addressed in our previous work (Tuna et al., 2020). We

have used a component tree to observe the spatial structures in

the time domain through temporal connectivity. As a related

object-based temporal analysis work, we can mention the use

of Maximally Stable Extremal Region (MSER) for video se-

quences in (Donoser et al., 2010). A similar methodology was

used for real-time text detection in (Gómez, Karatzas, 2014).

They did not use temporal connectivity, but instead built a hier-

archical representation for each time sample. To monitor the

temporal evolution, a graph-based hierarchical representation

was also used in (Khiali et al., 2019). The authors built a graph

from predefined objects and then analyzed the evolution of an

object through time. They aim to find objects which share a

similar evolution. We also focus on such evolution but propose

to do so through the definition of a novel spatio-temporal stabil-

ity measure computed from a morphological hierarchy. Indeed,

during the last decades, morphological hierarchies have been

used for many applications (see (Bosilj et al., 2018) for a recent

survey). However, to the best of our knowledge, such a spatio-

temporal attribute was never used jointly with a morphological

hierarchy, while such a definition would allow us to rely on ef-

ficient and scalable algorithms and process large satellite image

time series.

1.3 Contributions

In this paper, we inspire from the MSER concept built through

a component tree approach to measure the stability in the tem-

poral domain. Our contributions are twofold: i) we propose

a new attribute called spatio-temporal stability to describe the

evolution of regions through time; ii) we demonstrate the prac-

tical interest of this attribute for Earth Observation with two

applications related to monitoring of water areas: flood map-

ping from Sentinel-1 and intertidal monitoring with Sentinel-2.

Let us emphasize that our method is unsupervised so it does not

require training samples to learn the observed phenomena.

Organization of our paper is as follows. Section 2 provides

some brief information about morphological representations

usually built from still images but recently extended to satellite

image time series. The spatio-temporal stability attribute and

its post-processing will be presented in Section 3. Experimental

results will be discussed in Section 4, before we conclude our

paper in Section 5.

2. TREE REPRESENTATION

We recall here how to build a morphological hierarchy, that rep-

resents an image through a tree structure. Furthermore, we de-

scribe the space-time tree model recently proposed in (Tuna et

al., 2020) that we use to derive our spatio-temporal stability at-

tribute.

2.1 Component tree

As a representative example of morphological hierarchies, we

consider in this paper the component trees (a.k.a max and min-

trees). They were introduced by (Jones, 1999) as hierarchical

image representation structures based on connected compon-

ents. A tree consist of vertices and edges such as T = (V,E).
We recall here their definition using the following notations.

Let I be a grayscale image defined on the domain Ω ∈ N
2 and

taking values in V , i.e. I : Ω ∈ N
2 → V ∈ Z, x 7→ I(x) = v,

with x and v denoting respectively the 2D pixel coordinates and

intensity. The multi-scale representation is built using success-

ive thresholdings with a threshold λ ∈ Z, the lower and upper

threshold sets being defined as

[I ≤ λ] = {x ∈ Ω, I(x) ≤ λ} (1)

[I ≥ λ] = {x ∈ Ω, I(x) ≥ λ} (2)

where λ is an intensity threshold taking values within the im-

age intensity range.range of the image intensity. From these

lower and upper sets, it is possible to extract the set of connec-

ted components C(I) (given a predefined connectivity, e.g. 4-

or 8-connectivity in images). These components are also called

as nodes, and the node set of a tree is the union of its compon-

ents:

V (I) =
⋃

∀k,λ

Ck
λ(I) (3)

where C denotes a connected component, k its index in the level

λ of the image I . For the sake of simplicity, we will omit k
and I notations in the sequel. The tree is created by finding

parent-child relationships of each node. The root is the only

node which has no parent and it covers the whole image. Leaves

of the component tree include maximum (i.e. brighter objects)

or minimum (i.e. darker objects) values of the image, for the

max-tree and min-tree respectively.

2.2 Space-time tree

While morphological hierarchies have been built from still im-

ages for decades, their definition over spatio-temporal data such

as satellite image time series is more recent. In (Tuna et al.,

2020), several strategies to build such a hierarchy have been in-

troduced, and we focus here on the space-time tree. It assumes

the SITS being seen as a spatio-temporal cube, where the two

usual spatial dimensions are completed by a third dimension

related to time. From this cube it is possible to build a single

tree T (I1, . . . , In) where n is the length of the time series. The

nodes of this space-time tree contain elements from multiple

time stamps (i.e. pixels from multiple images in the series). If

we denote the time dimension as a subscript of a node Cλ,t,

space-time tree nodes can be represented as union of connected

components from each time stamp separately:

Cλ,t = Cλ,1 ∪ Cλ,2 . . . ∪ Cλ,n. (4)

Figure 1 shows a space-time max-tree example with a simple

4 × 4 × 3 matrix and the 6-connectivity rule which is created



Figure 1. Space-time max-tree example (best seen in colors).

by gathering the 4 spatial connectivity and the 1 temporal con-

nectivity (i.e. two temporal neighbors, previous and next). Each

color represents a specific image and each arrow shows one

node of the tree. The 6-connectivity rule can be formulated

as

N6(x) = {(x′, t′) 6= (x, t) | max(|x− x′|, |t− t′|) = 1} (5)

It should be noted that, if a pixel faces some intensity change in

the series (i.e. Ii(x) 6= Ii+1(x)), there will be no temporal con-

nectivity and thus will result in two different nodes in the tree.

We recall the root of the tree covers the whole time series and

includes all three images. We can see that some nodes include

pixels from every image/date, while some others include pixels

from only one. Additionally, a real (but still simple) example is

provided in Figure 2. We selected a few nodes from the whole

tree for the sake of visualization. As we can see, such a model

allows us to deal with spatio-temporal patterns present in the

satellite image time series.

3. METHOD

We now explain how we build the spatio-temporal stability at-

tribute from the tree. Then, we will use this attribute to select

some specific nodes of interest in the tree. Finally, an optional

step consisting of area filtering will be discussed.

3.1 Spatio-Temporal Stability

As already stated, we propose to extend the stability concept

used in the famous MSER method to deal with the temporal di-

mension. Thus, we define the spatio-temporal stability of each

node from the area ratio of the successive connected compon-

ents though time. Here the area refers to the amount of pixels

in the node (Marcotegui et al., 2017) and we denote area of a

node as A(C). We formulate the stability attribute St as

St(Cλ) =
1

n− 1

n−1
∑

i=1

min(A(Cλ,i), A(Cλ,i+1))

max(A(Cλ,i), A(Cλ,i+1))
(6)

where A represents the area attribute of the relevant C. The root

node covers the whole spatial support all along the time series

and thus has a spatio-temporal stability of 1 independently of

the length n of the series.

Figure 3 illustrates the spatio-temporal stability attribute of the

nodes from the Figure 2. For each node of the tree, we provide

the area occupied at each given time sample, as well as the

spatio-temporal stability. Spatio-temporal stability attribute of

the root node equals 1 as expected. As we mentioned before,

some nodes may cover a single date, thus have a null area in the

other images. We set the stability attribute to 0 for these nodes.

3.2 Node Selection

The stability measure can then be used to identify evolving or

non-evolving objects in SITS. One way to extract information

from trees is filtering. Filtering a tree consists in pruning the

nodes according to some predefined criteria, usually by com-

paring node attributes to some threshold. If our interest relates

to evolving or unstable objects, nodes with low stability will

be sought. To do so, we first retain all nodes having a stability

lower than a given threshold h. We then assign each pixel to the

level of the node that is closest to the root (i.e. with the lowest

λ value in case of a max-tree) to build the reconstructed image

I ′:
I ′(x) = min(λ | x ∈ Cλ(I), St(Cλ(I)) ≤ h) (7)

and we set remaining pixels to 0. Let us note that a first pruning

step is systematically applied to remove all nodes with stability

equal to 0, that correspond to noisy regions appearing at a single

time stamp.

To illustrate, let us consider the tree in Figure 3a. Since we

aim to find unstable regions, we should select some relatively

low threshold, e.g., h = 0.5. We then reconstruct the image

(Fig. 3b) as usually done with tree-based filtering approaches.

An additional example is provided in Figure 4 to show the be-

havior of our approach. We can see a series of synthetic images

with intensities that evolve through time together with the result

of unstable region detection (or stable regions filtering). As we

can notice, the spatio-temporal stability allows us to distinguish

changing objects and static ones despite of intensity variations.

We used the same threshold value h = 0.5.

4. EXPERIMENTS

To illustrate the practical interest of our method, we have con-

ducted two sets of experiments. The first aims to detect floods

in Sentinel-1 SITS, while the second is focused on intertidal

monitoring in Sentinel-2 SITS.

4.1 Flood mapping from Sentinel-1

For this first use case, we consider a series of Sentinel-1A im-

ages acquired over Montmirail, North of France and East of

Paris. More precisely, the data in use come with a spatial resol-

ution of 10m, and consists in Ground Range Detected products



Figure 2. Space-time max-tree example built from real remote sensing data. The tree is built with 3 images and nodes include up to

three images.

St{16,16,16}=1

St{0,0,1}=0 St{6,9,8}=0.78

St{4,5,5}=0.9

St{3,4,4}=0.88

St{2,1,2}=0.5

St{1,0,0}=0

St{1,2,2}=0.75

St{1,1,1}=1

St{0,1,0}=0

(a) Tree with stability attributes

0 0 0 0
0 0 0 0
0 0 0 0
0 5 4 0

0 0 0 0
0 5 0 0
0 5 0 0
0 0 4 0

0 0 0 0
0 0 0 0
0 0 0 0
0 4 4 0

(b) Reconstructed images after filtering with spatio-temporal stability

threshold h = 0.5.

Figure 3. Illustration of the spatio-temporal stability analysis of

a space-time tree.

Image Acquisition Dates

I1 17/07/2017

I2 10/08/2017

I3 25/01/2018

Table 1. Acquisition dates of Sentinel-1 images

with the Interferometric Wide Swath (IW) and VV polarization.

The SITS is made of 3 images (892×1941) as detailed in Table

1.

In order to assess the ability of our method to achieve flood

detection, we use the Copernicus Emergency Management Ser-

vice flood mapping1 shape files as reference. A flooding event

occurred on 22 January 2018, i.e. between second and third im-

ages of the series, as shown in Figure 5. Flood mapping can

be considered as a specific application of change detection fo-

cused on water areas. So we compare the flooded scene with a

non-flooded one (e.g. before the flood event) to identify among

water regions those that are actually changing (i.e., floods) that

we distinguish from water bodies. We then end with the fol-

lowing difference image (where i is the time when flooding is

visible):

Ifi = I ′i − I ′i−1 (8)

Since constant waters have the same location in successive im-

ages, they are removed in If . Finally, build a binary map

through a simple threshold that discard null values:

If =

{

255 Ifi > 0

0 otherwise
(9)

After finding the unstable nodes with a threshold empirically set

to h = 0.2, some artifacts can remain (Cian et al., 2018) due to

the double bounce effect, the backscatter similarity of dry soil,

etc. In order to overcome these small errors, we post-process

1https://emergency.copernicus.eu/



Method F1

Proposed 0.78

(Tuna et al., 2019) 0.73

(Cian et al., 2018) 0.60

Table 2. Quantitative evaluation of flood detection results for

different methods using the F1 measure.

the binary change detection map If with a small area filtering

(i.e., with an area threshold ha = 20).

We report in Table 2 some quantitative evaluation obtained with

the F1 score, i.e. the harmonic mean of precision and recall

measures, defined as 2 TP/(2 TP + FP + FN)) where TP are

true positives (i.e., flooded pixels that were correctly detected

by the method), FPs false positives (i.e., non-flooded regions

detected as flooded) and FNs false negatives (i.e. flooded re-

gions that have not been detected). We compare our results with

those provided by two existing methods: the min-tree based ra-

diometric thresholding (Tuna et al., 2019) that also relies on

spatial attributes extracted from morphological hierarchies, and

the Normalized Difference Flood Index (NDFI) (Cian et al.,

2018) thresholding approach.

Figure 5 illustrates the original SITS (a-c) and the reference

data (d), as well as the results obtained by the different methods

(e-g): NDFI (Indfi), min-tree based radiometric thresholding

(Tuna et al., 2019) (Imin) and our proposed method (If ). To

ease visual assessment, flooded areas are given using the fol-

lowing color codes: TPs in green, FNs in red, and FPs in yel-

low. We also provide some close-up illustrations. We can see

from both Figure 5 and Table 2 that our method outperforms

existing ones.

(a) I1 (b) I2 (c) I3

(d) I′
1

(e) I′
2

(f) I′
3

Figure 4. Synthetic example with input (top) and reconstructed

(bottom) images.

4.2 Intertidal monitoring with Sentinel-2

We used Sentinel-2 images around Morbihan, France. Morbi-

han and the Brittany region are well-known for their high tide

behaviours. We limit ourselves to a sample SITS made of small

extracts (632× 927px) to ease visualization, considering 5 im-

ages which were acquired in 2018 with a spatial resolution of

10m. We selected only cloud-free images in this illustrative ex-

ample. We used level 2A products provided by the THEIA land

data center 2. Since there is no ground truth data for this ap-

plication, we only report some visual assessment of our results.

Acquisition dates of these images are given in Table 3. Since

2https://www.theia-land.fr/en/satellite-data/

Image Acquisition Dates

I1 01/06/2018

I2 01/07/2018

I3 06/07/2018

I4 11/07/2018

I5 31/07/2018

Table 3. Acquisition dates of Sentinel-2 Images

our focus in this paper is on the spatio-temporal nature of the

data, we simplify each multispectral image into a grayscale one

by computing the Normalized Difference Water Index (NDWI)

(McFeeters, 1996) for each pixel. We recall that NDWI can be

calculated from green (G) and near-infrared (NIR) bands of an

image as NDWI = (G − NIR)/(G + NIR). Since water

pixels appear brighter than other classes on the NDWI image,

we used the max-tree for this experiment.

Figure 6 illustrates our experiments with Sentinel-2 images.

Original images can be seen in the first row. We set the spatio-

temporal stability of each pixel according to the stability of the

deepest nodes they belong to (i.e., the one with the highest in-

tensity value). More explicitly, water areas show higher val-

ues than the other parts of the images. We provide the spatio-

temporal stability images Isti in the second row. The third row is

the result obtained after filtering the space-time tree nodes with

a spatio-temporal stability threshold empirically set to h = 0.4
and reconstructing the filtered SITS. We can notice some over-

lap between the detected regions and the water regions visible in

the original images. As expected, no land or sand region are de-

tected by our method. For instance, I3 shows some sandy areas

on the water at the top left of the image and this is not detected

as water in I ′3. We have also added a red rectangle in I ′3, to em-

phasize where the temporal connectivity has helped to ensure a

correct detection. Although there is a gap in the spatial domain,

this region still belongs to a node with high stability thanks to

the successive images. Another red rectangle is given for I ′5.

This part is dramatically growing at that time and correctly de-

tected as an intertidal area with our method. Even if there is no

temporal relationship, water pixels are connected in the spatial

domain. For the sake of comparison, we provide in the last row

the result of a pixel-based variation analysis Ivar obtained with

the method from (Catalao, Nico, 2016). We can see in this last

image that the tide areas are detected but the method does not

provide a result per date. Besides, there are wrongly detected

areas caused by intensity changes though time.

5. CONCLUSION

In this paper, we have introduced a new spatio-temporal stabil-

ity attribute that can be efficiently measured from a space-time

tree, i.e. a multiscale, hierarchical representation of a satellite

image time series. This attribute relies on size variability of

the tree nodes in the temporal domain. We used this attribute

to monitor dynamic water regions such as floods in Sentinel-1

and intertidal zones in Sentinel-2. Since component trees are

limited to analyze objects that are brighter or darker than their

surroundings, future work will include using this attribute with

other morphological hierarchies (e.g. tree of shapes, multiscale

segmentations).
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Figure 5. Flood Observation (from top to bottom): Original Sentinel-1 images (a)-(c); Reference image for flood (d); Results with

NDFI (e), the min-tree threshold analysis (f), and our method (g). Results are given in green, red, and yellow for TP, FN, and FP

respectively.
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Figure 6. Intertidal Observation. a-e: Input Sentinel-2 NDWI images; f-j: Stability feature image for each time sample; k-o: Tide

Observation for each time sample with our method; p: Tide observation with the pixelwise variation method.
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