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VARIATIONAL APPROXIMATION OF SIZE-MASS ENERGIES FOR

k-DIMENSIONAL CURRENTS∗

Antonin Chambolle1, Luca A.D. Ferrari2,∗∗ and Benoit Merlet3

Abstract. In this paper we produce a Γ-convergence result for a class of energies Fk
ε,a modeled on

the Ambrosio-Tortorelli functional. For the choice k = 1 we show that F1
ε,a Γ-converges to a branched

transportation energy whose cost per unit length is a function fn−1
a depending on a parameter a > 0

and on the codimension n− 1. The limit cost fa(m) is bounded from below by 1 + m so that the limit
functional controls the mass and the length of the limit object. In the limit a ↓ 0 we recover the Steiner
energy. We then generalize the approach to any dimension and codimension. The limit objects are now
k-currents with prescribed boundary, the limit functional controls both their masses and sizes. In the
limit a ↓ 0, we recover the Plateau energy defined on k-currents, k < n. The energies Fk

ε,a then could
be used for the numerical treatment of the k-Plateau problem.
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1. Introduction

Let Ω ⊂ Rn be a convex, bounded open set. We consider vector measures σ ∈M(Ω,Rn) of the form

σ = mτ H1xΣ, (1.1)

where Σ is a 1-dimensional rectifiable set oriented by a Borel measurable tangent map τ : Σ → Sn−1 and
m : Σ → R+ is a Borel measurable function representing the multiplicity. We write σ = (m, τ,Σ) for such
measures. Given a cost function f ∈ C(R+,R+) we introduce the functional

F(σ) :=


∫

Σ

f(m) dH1, if σ = (m, τ,Σ),

+∞, otherwise in M(Ω,Rd).
(1.2)
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2 CMAP, École Polytechnique, CNRS UMR 7641, Route de Saclay, 91128 Palaiseau Cedex, France.
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2 A. CHAMBOLLE

Next, given S = {x1, . . . , xnP } ⊂ Ω a finite set of points and c1, . . . , cnP ∈ R such that
∑nP
j=1 cj = 0, we

consider the optimization problem F(σ) for σ ∈M(Ω,Rn) satisfying

∇ · σ =

nP∑
j=1

cjδxj in D′(Rn). (1.3)

The setting is similar to the one from Beckman [22] and Xia [25]. We model transport nets connecting a given
set of sources {xj ∈ S : cj > 0} to a given set of wells {xj ∈ S : cj < 0} via vector valued measures. For
numerical reasons, we wish to approximate the measure σ = (m, τ,Σ) by a diffuse object (a smooth vector field).
For this, we introduce below a family of corresponding “diffuse” functionals Fε,a that converge towards (1.2)
in the sense of Γ-convergence [8, 9, 14]. This general idea has proved to be effective in a variety of contexts
such as fracture theory, optimal partitions problems and image segmentation [3, 13, 18, 19]. More recently this
tool has been used to approximate energies depending on one dimensional sets, for instance in [20] the authors
take advantage of a functional similar to the one from Modica and Mortola defined on vector valued measures
to approach the branched transportation problem [5]. With similar techniques approximations of the Steiner
minimal tree problem [1, 17, 21] have been proposed in [6, 7].

In the present paper we introduce a family of functionals Fε,a to extend to any ambient dimension n ≥ 2 the
phase-field approximation for a branched transportation energy introduced in [10] for n = 2. The approximating
functionals are modeled on the ones from Ambrosio and Tortorelli [2] and allow to recover in the limit as ε ↓ 0
an energy of the form (1.2) for a particular choice of the cost function f = fa that will be specified below. We
also extend the construction to any dimension and co-dimension. Indeed, for 1 ≤ k ≤ n− 1 integer, we consider
k-rectifiable currents σ = (θ, e,Σ) where Σ is a countably k-rectifiable set with approximate tangent k-plane
defined by a simple unit multi-vector ξ(x) = ξ1(x)∧ · · · ∧ ξk(x) and m : Σ→ R+ is a Borel measurable function
(the multiplicity). The functional (1.2) extends to k-currents σ as follows,

F(σ) :=


∫

Σ

f(m(x)) dHk, if σ = (m, ξ,Σ),

+∞, otherwise.

We will further show that for small values of a parameter a we can approach solutions to the k-Plateau problem.

Let us define the approximate functionals and describe our main results in the case k = 1. For our phase field
approximations we relax the condition on the vector measure σ replacing it by a vector field σε ∈ L2(Ω,Rn). We
then need to mollify condition (1.3). Let ρ : Rn → R+ be a classical radial mollifier such that supp ρ ⊂ B1(0)
and

∫
B1(0)

ρ = 1. For ε > 0, we set ρε = ε−nρ(·/ε). We substitute for (1.3) the condition

∇ · σε =

 nP∑
j=1

cjδxj

 ∗ ρε =

nP∑
j=1

cjρε(· − xj) in D′(Rn). (1.4)

Remark 1.1. Notice that in (1.3) and (1.4) the equality holds in D′(Rn) and not only in D′(Ω) so that there
is no flux trough ∂Ω.

We also consider the functions u ∈W 1,p(Ω, [η, 1]) such that u ≡ 1 on ∂Ω where η = η(ε) satisfies

η = a εn (1.5)
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for some a ∈ R+. We denote by Xε(Ω) the set of pairs (σ, u) such that u is as stated above and σ satisfies
equation (1.4). This set is naturally embedded in M(Ω,Rn) × L2(Ω). For (σ, u) ∈ M(Ω,Rn) × L2(Ω) and
p > n− 1 we set

Fε,a(σ, u; Ω) :=


∫

Ω

[
εp−n+1|∇u|p +

(1− u)2

εn−1
+
u|σ|2

ε

]
dx, if (σ, u) ∈ Xε(Ω),

+∞, in the other cases.

(1.6)

Let X be the subset of M(Ω,Rn)× L2(Ω) consisting of those couples (σ, u) such that u ≡ 1 and σ = (m, τ,Σ)
satisfies the constraint (1.3). Given any sequence ε = (εi)i∈N of positive numbers such that εi ↓ 0, we show that
the above family of functionals Γ-converges to

Fa(σ, u; Ω) =


∫

Σ∩Ω

fa(m(x)) dH1(x), if (σ, u) ∈ X and σ = mτ H1xΣ,

+∞, otherwise.

(1.7)

The function fa : R+ → R+ (introduced and studied in Appendix A) is the minimum value of some optimization
problem depending on a and on the codimension n− 1 (we note fda , with d = n− k in the general case 1 ≤ k ≤
n− 1). In particular we prove that fa is lower semicontinuous, subadditive, increasing, fa(0) = 0 and that there
exists some c > 0 such that

1

c
≤ fa(m)

1 +
√
am
≤ c for m > 0. (1.8)

The Γ-convergence holds for the topology of the weak-∗ convergence for the sequence of measures (σε) and for

the strong L2 convergence for the phase field (uε). For a sequence (σε, uε) we write (σε, uε)→ (σ, u) if σε
∗
⇀ σ

and ‖uε − u‖L2 → 0. In the sequel we first establish that the sequence of functionals (Fε,a)ε is coercive with
respect to this topology.

Theorem 1.2. Assume that a > 0. For any sequence (σε, uε) ⊂M(Ω,Rn)× L2(Ω) with ε ↓ 0, such that

Fε,a(σε, uε; Ω) ≤ F0 < +∞,

there exists σ ∈M(Ω,Rn) such that, up to a subsequence, (σε, uε)→ (σ, 1) ∈ X.

Then we prove the Γ-liminf inequality

Theorem 1.3. Assume that a ≥ 0. For any sequence (σε, uε) ∈ M(Ω,Rn)× L2(Ω) that converges to (σ, u) ∈
M(Ω,Rn)× L2(Ω) as ε ↓ 0 it holds

lim inf
ε↓0

Fε,a(σε, uε; Ω) ≥ Fa(σ, u; Ω).

We also establish the corresponding Γ-limsup inequality

Theorem 1.4. Assume that a ≥ 0. For any (σ, u) ∈ M(Ω,Rn) × L2(Ω) there exists a sequence ((σε, uε)) ⊂
M(Ω,Rn)× L2(Ω) such that

(σε, uε)
ε↓0−→ (σ, u) in M(Ω,Rn)× L2(Ω)
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and

lim sup
ε↓0

Fε,a(σε, uε; Ω) ≤ Fa(σ, u; Ω).

As already stated, we only considered the case k = 1 in this introduction. Section 4 is devoted to the extension
of Theorems 1.2–1.4 in the case where the 1-currents (vector measures) are replaced with k-currents.

Notice that the coercivity of the family of functionals only holds in the case a > 0. However, as a ↓ 0 we have
the important phenomena:

fa
a↓0−→ c1(0,+∞) pointwise,

for some c > 0. As a consequence (1.7) is an approximation of cH1(Σ) for a > 0 small and the minimization
of (1.6) in Xε(Ω) provides an approximation of the Steiner problem associated to the set of points S , for a
suitable choice of the weights in (1.3). In the case k > 1, we obtain a variational approximation of the k-Plateau
problem.

1.1. Structure of the paper

In Section 2 we introduce some notation and recall some useful facts about vector measures and currents, we
also anticipate the optimization problem defining the cost function fda and state some results which are proved
in Appendix A. In Section 3 we establish Theorems 1.2–1.4. In Section 4 we extend these results to the case
1 ≤ k ≤ n− 1. In Section 5 we discuss the limit a ↓ 0.

2. Preliminaries and notation

The canonical orthonormal basis of Rn is denoted by the vectors e1, . . . , en. L n denotes the Lebesgue measure
in Rn and given an integer value k we denote by ωk the measure of the unit ball in Rk, i.e. L k(B1(0)). For a
point x ∈ Rn we note x = (x1;x′) ∈ R× Rn−1. For any Borel-measurable set A ⊂ Rn we denote by 1A(x) the
characteristic function of the set A

1A(x) :=

{
1 if x ∈ A,
0 otherwise.

Given a vector space Y and its dual Y ′ for ω ∈ Y and σ ∈ Y ′ we write 〈ω, σ〉 for the dual pairing.

2.1. Measures and vector measures

We denote with M(Ω) the vector space of Radon measures in Ω and with M(Ω,Rn) =M(Ω)n the vector
space of vector valued measures. For a measure µ ∈M(Ω) we denote by |µ| its total variation, in the vector case
µ ∈M(Ω,Rn) we write µ = τ |µ| where τ is a |µ|-measurale map into Sn−1. We say that a measure is supported
on a Borel set E if |µ|(Ω \E) = 0. For an integer k < n we denote by Hk the k-dimensional Hausdorff measure
as in [4]. Given a set E ∈ Ω, such that, Hk(E) is finite for some k the restriction HkxE defines a Radon measure
in the space M(Ω). A set E ∈ Ω is said to be countably k-rectifiable if up to a Hk negligible set N , E \N is
contained in a countable union of C1 k-dimensional manifolds.
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2.2. Currents

We denote with Dk(Ω) the vector space of compactly supported smooth k-differential forms. For a
k-differential form ω its comass is defined as

‖ω‖ = sup{〈ω, ξ〉 : ξ is a unit, simple k-vector}.

Let Dk(Ω) be the dual to Dk(Ω) i.e. the space of k-currents with its weak-∗ topology. We denote with ∂ the
boundary operator that operates by duality as follows

〈∂σ, ω〉 = 〈σ, dω〉 for all (k − 1)-differential forms ω.

The mass of a k-current M(σ) is the supremum of 〈σ, ω〉 among all k-differential forms with comass bounded
by 1. For any k-current σ such that both σ and ∂σ are of finite mass we say that σ is a normal k-current and
we write σ ∈ Nk(Ω). On the space Dk(Ω) we can define the flat norm by

F(σ) = inf {M(R) +M(S) : σ = R+ ∂S where S ∈ Dk+1(Ω) and R ∈ Dk(Ω)} ,

which metrizes the weak-∗ topology on currents on compact subsets of Nk(Ω). By the Radon-Nikodym theorem
we can identify a k-current σ with finite mass with the vector valued measure τµσ where µσ is a finite positive
valued measure and τ is a µσ-measurable map in the set of unitary k-vectors for the mass norm. In particular
the action of σ on ω can be written as

〈σ, ω〉 =

∫
Ω

〈ω, τ〉 dµσ.

For a finite mass k-current the mass of σ coincides with the total variation of the measure µσ. A k-current σ is
said to be k-rectifiable if we can associate to it a triplet (θ, τ,Σ) such that

〈σ, ω〉 =

∫
Σ

θ〈ω, τ〉 dHk,

where Σ is a countably k-rectifiable subset of Ω, τ at Hk a.e. point is a unit simple k-vector that spans the
tangent plane to Σ and θ is an L1(Ω,HkxΣ) function that can be assumed positive. We will denote with Rk(Ω)
the space of these k-rectifiable currents. Among these we name out the subset Pk(Ω) of k-rectifiable currents for
which Σ is a finite union of polyhedra and θ is constant on each of them, these will be called polyhedral chains.
Finally the flat chains Fk(Ω) consist of the closure of Pk(Ω) in the weak-∗ topology. By the scheme of Federer
([16], 4.1.24) it holds

Pk(Ω) ⊂ Nk(Ω) ⊂ Fk(Ω).

Remark 2.1 (1-Currents and Vector Measures). Since the vector spaces Λ1Rn, Λ1Rn identify with Rn, any
vector measure σ ∈M(Ω,Rn) with finite mass indentifies with a 1-current with finite mass and viceversa. The
divergence operator acting on measures is defined by duality as the boundary operator for currents. In the
following σ ∈ M(Ω,Rn) is called a rectifiable vector measure if it is 1-rectifiable as 1-current. In the same
fashion we define polyhedral 1-measures.



6 A. CHAMBOLLE

2.3. Functionals defined on flat chains

For f : R 7→ R+ an even function we define a functional

Pk(Ω) −→ R+,

P =
∑
j

(mj , τj ,Σj) 7−→ F(P ) =
∑
j

f(mj)Hk(Σj),

on the space of polyhedral currents. Under the assumption that f is lower semi-continuous and subadditive, F
can be extended to a lower semi-continuous functional by relaxation

Fk(Ω) −→ R+,

P 7−→ F(P ) = inf

{
lim inf
Pj→P

F(P ) : (Pj)j ⊂ Pk(Ω) and Pj → P

}
as shown in Section 6 of [23]. Furthermore, in [12] the authors show that if f(t)/t→∞ as t→ 0, then F(σ) <∞
if and only if σ is rectifiable and for any such σ the functional takes the explicit form

F(σ) =

∫
Σ

f(m(x)) dHk(x) if σ = (m, τ,Σ). (2.1)

To conclude this section let us recall a sufficient condition for a flat chain to be rectifiable, proved by White in
Corollary 6.1 of [24].

Theorem 2.2. Let σ ∈ Fk(Ω). If M(σ) + M(∂σ) < ∞ and if there exists a Borel set Σ ⊂ Ω with finite
k-dimensional Hausdorff measure such that σ = σxΣ then σ ∈ Rk(Ω) i.e., σ writes as (m, τ,Σ).

In the context of vector measures the theorem writes as

Theorem 2.3. Let σ ∈M(Ω,Rn). If |σ|(Ω) + |∇ ·σ|(Ω) <∞, ∇·σ is at most a countable sum of Dirac masses
and there exists a Borel set Σ with H1(Σ) <∞ and σ = σxΣ then σ is a rectifiable vector measure in the sense
expressed in Section 2.2.

2.4. Reduced problem results in dimension n − k

This section is devoted to introducing some notation and results corresponding to the case k = 1. In the
sequel, these results are used to describe the energetical behaviour of the (n − k)-dimensional slices of the
configuration (σε, uε). We postpone the proofs to Appendix A.3–A.5. We set d = n − k, p > d and consider ε
to be a sequence such that ε ↓ 0. Let Br(0) ⊂ Rd be the ball of radius r centered in the origin. We consider the
functional

Eε,a(ϑ, u;Br) :=

∫
Br

[
εp−d|∇u|p +

(1− u)2

εd
+
u|ϑ|2

ε

]
dx

where u ∈ W 1,p(Br) is constrained to satisfy the lower bound u ≥ a εd+1 =: η and ϑ ∈ L2(Br) is such that
supp(ϑ) ⊂ Br̃ with 0 < r̃ < r, ‖ϑ‖1 = m. This leads to define the set

Yε,a(m, r, r̃) =
{

(ϑ, u) ∈ L2(Br)×W 1,p(Br, [η, 1]) : ‖ϑ‖1 = m and supp(ϑ) ⊂ Br̃
}
,

and the optimization problem

fdε,a(m, r, r̃) = inf
Yε,a(m,r,r̃)

Eε,a(ϑ, u;Br). (2.2)
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Let fda : [0,+∞) −→ R+ be defined as

fda (m) =

min
r̂>0

{
am2

ωd r̂d
+ ωd r̂

d + (d− 1) ωd q
d
∞(0, r̂)

}
, for m > 0,

0, for m = 0,

(2.3)

with

qd∞(ξ, r̂) := inf

{∫ +∞

r̂

td−1
[
|v′|p + (1− v)2

]
dt : v(r̂) = ξ and lim

t→+∞
v(t) = 1

}
, (2.4)

for r̂ > 0, ξ ≥ 0. For a graph of the profile v realizing the infimum in the latter see Figure A.1. We have the
following results.

Proposition 2.4. For any r > r̃ > 0, it holds

lim inf
ε↓0

fdε,a(m, r, r̃) ≥ fda (m). (2.5)

There exists a uniform constant κ := κ(d, p) such that

fda (m) ≥ κ for every m > 0. (2.6)

Proposition 2.5. For fixed m > 0 let r∗ be the minimizing radius in the definition of fda (m) (2.3). For any δ > 0
and ε small enough there exist a function ϑε = c1Br∗ε with c > 0 such that

∫
Br
ϑε = m and a nondecreasing

radial function uε : Br 7→ [η, 1] such that uε(0) = η, uε = 1 on ∂Br and

Eε,a(ϑε, uε;Br) ≤ fda (m) + δ. (2.7)

Proposition 2.6. The function fda is continuous in (0,+∞), increasing, sub-additive and fda (0) = 0.

3. The 1-dimensional problem

3.1. Compactness

We prove the compactness Theorem 1.2 for the family of functionals (Fε,a)ε. Let us consider a family of
functions (σε, uε)ε↓0, such that (σε, uε) ∈ Xε(Ω) and

Fε,a(σε, uε; Ω) ≤ F0. (3.1)

As a first step we prove:

Lemma 3.1. Assume a > 0. There exists C ≥ 0, depending only on Ω, F0 and a such that∫
Ω

|σε| ≤ C, ∀ ε. (3.2)

As a consequence there exist a positive Radon measure µ ∈ (Rn,R+) supported in Ω and a vectorial Radon
measure σ ∈M(Ω,Rn) with ∇ · σ =

∑
ajδxj and |σ| ≤ µ such that up to a subsequence

uε → 1 in L2(Ω), |σε|
∗
⇀ µ in M(Rn), σε

∗
⇀ σ in M(Rn,Rn).
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Proof. We divide the proof into three steps.

Step 1. We start by proving the uniform bound (3.2). Let λ ∈ (0, 1] and let

Ωλ := {x ∈ Ω : uε > λ} .

Being σε square integrable we identify the measure σε with its density with respect to L n. Therefore splitting
the total variation of σε, we write

|σε|(Ω) =

∫
Ω

|σε| dx =

∫
Ωλ

|σε| dx+

∫
Ω\Ωλ

|σε| dx.

We estimate each term separately. By Cauchy–Schwarz inequality we have

∫
Ωλ

|σε| ≤
(∫

Ωλ

uε|σε|2

ε

)1/2(∫
Ωλ

ε

uε

)1/2

.

Since λ < uε ≤ 1 on Ωλ and
∫

Ωλ
(uε|σε|2)/(ε) dx being bounded by Fε,a(σε, uε) from the previous we get

∫
Ωλ

|σε| ≤
(∫

Ωλ

uε|σε|2

ε

)1/2
√
|Ω|ε
λ
≤
√
|Ω| ε F0

λ
.

Next, in Ω \ Ωλ, by Young inequality, we have

2

∫
Ω\Ωλ

|σε| ≤
∫

Ω\Ωλ

uε|σε|2

ε
+

∫
Ω\Ωλ

ε

uε
.

Using uε ≥ η(ε), η/εn = a and (1− λ)2 ≤ (1− uε)2 in Ω \ Ωλ, we obtain∫
Ω\Ωλ

|σε| ≤
1

2

∫
Ω

uε|σε|2

ε
+

εn

2 η (1− λ)2

∫
Ω

(1− uε)2

εn−1
≤ F0

2
+

F0

2 a (1− λ)2
.

Hence

|σε|(Ω) ≤ F0

2
+

F0

2 a (1− λ)2
+

√
|Ω| ε F0

λ
.

As a > 0, this yields (3.2).

Step 2. We easily see from
∫

Ω
(1− uε)2 ≤ F0ε

n−1 that uε → 1 in L2(Ω) as ε ↓ 0.

Step 3. The existence of the Radon measures µ and σ such that, up to extraction, |σε|
∗
⇀ µ and σε

∗
⇀ σ

follows from (3.2). The properties on the support of µ, on the divergence of σ and the fact that |σ| ≤ µ follow
from the respective properties of σε.

We have just showed that the limit σ of a family (σε, uε)ε equibounded in energy is bounded in mass. In
what follows, we assume a ≥ 0 and that σε is bounded in mass. We show that the limiting σ is rectifiable.
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Proposition 3.2. Assume a ≥ 0 and that the conclusions of Lemma 3.1 hold true. There exists a Borel subset
Σ with finite length and a Borel measurable function τ : Σ→ Sn−1 such that σ = τ |σ|xΣ. Moreover, we have
the following estimate,

H1(Σ) ≤ C∗F0,

where the constant C∗ ≥ 0 only depends on d and p.

This proposition together with Lemma 3.2 and Theorem 2.3 leads to

Proposition 3.3. σ is a 1-rectifiable vector measure and in particular Σ is a countably H1-rectifiable set.

The latter ensures that the limit couple (σ, 1) belongs to X and concludes the proof of Theorem 1.2. We now
establish Proposition 3.2

Sketch of the proof: We first define Σ. Then we show in Lemma 3.5 that for x ∈ Σ, we have
lim infε↓0 Fε,a(σε, uε;B(x, rj)) ≥ κrj for a sequence of radii rj ↓ 0 and κ > 0. The proof of the lemma is based
on slicing and on the results of Appendix A. The proposition then follows from an application of the Besicovitch
covering theorem.

First we introduce the Borel set

Σ̃ :=

{
x ∈ Ω : ∀r > 0, |σ|(Br(x)) > 0 and ∃τ = τ(x) ∈ Sn−1 such that τ = lim

r↓0

σ(Br(x))

|σ|(Br(x))

}
.

We observe that by Besicovitch derivation theorem,

σ = τ |σ|xΣ̃.

Next we fix θ ∈ (0, 1/4n) and define

Γ :=

{
x ∈ Σ̃ : ∃ r0 > 0 such that,

|σ|(Br/4(x))

|σ|(Br(x))
≤ θ for every r ∈ (0, r0]

}
.

We show that this set is |σ|-negligible.

Lemma 3.4. We have |σ|(Γ) = 0.

Proof. Let x ∈ Γ. Applying the inequality |σ|(Br/4(x)) ≤ θ|σ|(Br(x)) with r = rk = 4−kr0, k ≥ 0, we get

|σ|(Brk) ≤ θk|σ|(Br0). Hence there exists C ≥ 0 such that

|σ|(Br(x)) ≤ Cr(ln 1/θ)/(ln 4).

Letting λ = (ln 1
θ )/(ln 4), we have by assumption λ > n. Therefore, for every ξ > 0 there exists rξ = rξ(x) ∈ (0, 1)

such that

|σ|(Brξ(x)) ≤ ξ|Brξ(x)|.

Now, for R > 0, we cover Γ∩BR with balls of the form Brξ(x)(x). Using Besicovitch covering theorem, we have

Γ ∩BR ⊂ ∪N(n)
j=1 Bj ,
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where N(n) only depends on n and each Bj is a (finite or countable) disjoint union of balls of the form
Brξ(xk)(xk). Then we get

|σ|(Γ ∩BR) ≤
N(n)∑
j=1

|σ|(Bj) ≤ N(n)ξ|Bj | ≤ N(n)|BR+1|ξ.

Sending ξ to 0 and then R to ∞, we obtain |σ|(Γ) = 0.

Set Σ := Σ̃ \ Γ, from Lemma 3.4, we have σ = τ |σ|xΣ. Recall that S = {x1, . . . , xnP }.

Lemma 3.5. For every x ∈ Σ \S , there exists a sequence (rj) = (rj(x)) ⊂ (0, 1) with rj ↓ 0 such that

lim inf
ε↓0

Fε,a(σε, uε;B(x, rj)) ≥
√

2κ rj ,

where κ is the constant of Proposition 2.4.

Proof. Let x ∈ Σ\S . Without loss of generality, we assume x = 0 and τ(x) = e1. Let ξ > 0 be a small parameter
to be fixed later. From the definition of Σ, there exists a sequence (rj) = (rj(x)) ⊂ (0,d(x,S )) such that for
every j ≥ 0,

σ(Brj ) · e1 ≥ (1− ξ)|σ|(Brj ) and |σ|(Brj/4) ≥ θ|σ|(Brj ). (3.3)

Let us fix j ≥ 0 and set, to simplify the notation, r = rj and r∗ = r/
√

2. Recall the notation x = (x1, x
′) ∈

R× Rn−1 and define the cylinder

Cr∗ := {x : |x1| ≤ r∗ and |x′| ≤ r∗}

so that Cr∗ ⊂ Br and Br/4 ⊂ Cr∗/2, as shown in Figure 1. Let χ ∈ C∞c (Rn−1, [0, 1]) be a radial cut-off function

such that χ(x′) = 1 if |x′| ≤ 1
2 and χ(x′) = 0 for |x′| ≥ 3

4 . Then, we note χr∗(x
′) = χ(x′/r∗) and for s ∈ [−r, r],

we set

∀s ∈ [−r, r], gε(s) := e1 ·
∫
B′r∗

σε(s, x
′)χr∗(x

′) dx′.

Since σε is divergence free, e1 · σε(·, s) has a meaning on the hyperplane {x1 = s} in the sense of trace,
moreover, gε is continuous. Now, let us fix r̂ ∈ [(1− ξ)r∗, r∗] such that µ({−r̂, r̂} × B′r) = 0 (which holds true
for a.e. r̂ ∈ [(1− ξ)r∗, r∗]) and let us define the mean value,

ḡε :=
1

2r̂

∫ r̂

−r̂
gε(s) ds.

From σε
∗
⇀ σ, |σε|

∗
⇀ µ, we have

lim
ε↓0

ḡε =

(
1

2r̂

∫
(−r̂,r̂)×B′r∗

χr∗(x
′) dσ(s, x′)

)
· e1 =: m. (3.4)
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Figure 1. Illustration of the sections of Br, Br/4 and Cr∗ . In grayscale we represent the level
sets of the function χr∗(x

′)1[−r̂,r̂].

From (3.3), we see that m > 0 for ξ small enough. Indeed, we have

(1− ξ)|σ|(Br) ≤ +2r̂m+ σ(Br) · e1 =

∫
Br

(
1− χr∗(x′)1[−r̂,r̂]

)
dσ(s, x′) · e1

≤ 2r̂m+

∫
Br

(
1− χr∗(x′)1[−r̂,r̂]

)
d|σ|(s, x′)

≤ 2r̂m+ |σ|(Br)−
∫
Br

χr∗(x
′)1[−r̂,r̂] d|σ|(s, x′).

Since by construction χr∗(x
′)1[−r̂,r̂] ≥ 1Br/4 , using the second inequality of (3.3), we have

m ≥ 1

2r̂
(θ − ξ)|σ|(Br) > 0,

for ξ small enough. Similarly, denoting Π : Rn → Rn−1, (t, x′) 7→ x′ the orthogonal projection onto the last
(n− 1) coordinates, we deduce again from (3.3) that

|Πσ|(Cr∗) ≤
√
ξm

θ − ξ
2r̂. (3.5)

Now, for ε small enough, we have ∇ · σε = 0 in Cr∗ . Using this, we have for almost every s, t ∈ [−r̂, r̂], with
s < t,

gε(t)− gε(s) =

∫ t

s

[∫
B′r∗

σε(x
′, h) · ∇′χr∗(x′) dx′

]
dh.

Integrating in s over (−r̂, r̂), we get for almost every t ∈ [−r, r],

gε(t)− ḡε =
1

2r̂

∫
(−r̂,r̂)×B′r∗

φt(x
′, h) · σε(x′, h) dx′ dh
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with

φt(h, x
′) =

{
(h+ r̂)∇′χr∗(x′) if h < t,

(h− r̂)∇′χr∗(x′) if h > t.

We deduce the following convergence

gε(t)−m
ε↓0−→ 1

2r̂

∫
(−r̂,r̂)×B′r∗

φt(h, x
′) · dσ(h, x′). (3.6)

in the L1(−r̂, r̂) topology. Using (3.5), we see that the above right hand side is bounded by c
√
ξ

θ−ξm. Taking into

account (3.5) and the continuity of gε, we conclude that

lim inf
ε↓0

gε(t) ≥
(

1− c
√
ξ

θ − ξ

)
m for t ∈ [−r̂, r̂].

Next, by decomposing the integral we have

Fε,a(σε, uε;Br) ≥
∫ r̂

−r̂

∫
B′r∗

[
εp−n+1|∇uε|p +

(1− uε)2

εn−1
+
uε|σε|2

ε

]
dx′ dt

≥
∫ r̂

−r̂

∫
B′r∗

[
εp−n+1|∇uε|p +

(1− uε)2

εn−1
+
uε|χr∗(x′)σε|2

ε

]
dx′ dt.

(3.7)

Let us set

ϑtε(x
′) := |χr∗(x′)σε(t, x′)|.

By construction ϑtε has the properties:

– ϑtε ∈ L1(B′r∗),

– lim infε↓0
∫
B′r∗

ϑtε(x
′) dx′ ≥ lim infε↓0 gε(t) ≥

(
1− c

√
ξ

θ−ξ

)
m = m̃ > 0,

– supp(ϑtε) ⊂ B′r̃ with r̃ := 3
4r∗ < r∗.

By definition of the minimization problem introduced in Section 2.4, we have

Fε,a(σε, uε;Br) ≥
∫ r̂

−r̂

[
inf

(ϑ,u)∈Yε,a(m̃,r,r̃)
Eε,a(ϑ, u;Br)

]
dt =

∫ r̂

−r̂
fε,a (m̃, r, r̃) dt. (3.8)

Taking the infimum limit, by Fatou’s lemma and equation (2.6) of Proposition 2.4 we get

lim inf
ε↓0

Fε,a(σε, uε;Br) ≥
∫ r̂

−r̂
lim inf
ε↓0

fε,a (m̃, r, r̃) dt ≥ 2 r̂ κ.

The latter holds for almost every r̂ ∈ [(1− ξ)r∗, r∗] and eventually, since the r∗ = r/
√

2, we conclude

lim inf
ε↓0

Fε,a(σε, uε;Br) ≥
√

2κ r.
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The proof of Proposition 3.2 is then obtained via the Besicovitch covering theorem [15].

3.2. Γ-liminf inequality

In this section we prove the Γ-liminf inequality stated in Theorem 1.3.

Proof of Theorem 1.3. With no loss of generality we assume that lim infε↓0 Fε,a(σε, uε) < +∞ otherwise the
inequality is trivial. For a Borel set A ⊂ Ω, we define

H(A) := lim inf
ε↓0

Fε,a(σε, uε;A),

so that H is a subadditive set function. By assumption, the limit measure σ is 1-rectifiable; we write σ =
mτ H1xΣ. Furthermore we can assume σ to be compactly supported in Ω. Consider a convex open set Ω0 such
that supp(∇ · σ) = S ⊂⊂ Ω0 ⊂⊂ Ω and let h := [0, 1]×Rn → Rn be a smooth homotopy of the indentity map
on Rn onto a contraction of Ω into Ω0 such that h(t, ·) restricted to Ω0 is the identity map, for any t ∈ [0, 1]. Let

σt = h(t, ·)]σ, indeed lim inft↓0 F(σt, 1) ≥ F(σ, 1) as σt
∗
⇀ σ. Further ∇ · σt = ∇ · σ since h(t, ·) is the identity

on S . Now we claim that

lim inf
r↓0

H
(
B(x, r)

)
2r

≥ fa(m(x)) for H1-almost every x ∈ Σ. (3.9)

Let us fix λ ≥ 1 and let us note fa,λ(t) := min(fa(t), λ). We then introduce the Radon measure

H ′λ(A) :=

∫
Σ∩A

fa,λ(m) dH1.

Now, let δ ∈ (0, 1). Assuming that (3.9) holds true, there exists Σ′ ⊂ Σ with H1(Σ\Σ0) = 0 such that for every
x ∈ Σ0, there exists r0(x) > 0 with

(1 + δ)H
(
B(x, r)

)
≥ 2rfa,λ(m(x)) for every r ∈ (0, r0(x)).

By the Besicovitch differentiation Theorem, there exists Σ1 ⊂ Σ with H1(Σ\Σ1) = 0 such that for every x ∈ Σ1,
there exists r1(x) > 0 with

(1 + δ)2rfa(m(x)) ≥ H ′λ

(
B(x, r)

)
for every r ∈ (0, r1(x)).

We consider the familly B of closed balls B(x, r) with x ∈ Σ0 ∩Σ1 and 0 < r < min(r0(x), r1(x)) and we apply
the Vitali-Besicovitch covering theorem ([4], Thm. 2.19) to the family B and to the Radon measure H ′λ. We
obtain a disjoint family of closed balls B′ ⊂ B such that

H ′λ(Ω) = H ′λ(Σ) =
∑

B(x,r)∈B′

H ′λ

(
B(x, r)

)
≤ (1 + δ)2

∑
B(x,r)∈B′

H
(
B(x, r)

)
≤ (1 + δ)2H(Ω).

Sending λ to infinity and then δ to 0, we get the lower bound H(Ω) ≥
∫

Σ
fa(m) dH1 which proves the theorem.

Let us now establish the claim (3.9). Since σ is a rectifiable measure, we have for H1-almost every x ∈ Σ,

1

2r

∫
ϕ(x+ ry) d|σ|(y)

r↓0−→ m(x)

∫
R
ϕ(tτ(x)) dt for every ϕ ∈ Cc(Rn), (3.10)
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and

1

2r

∫
B(x,r)∩Σ

|τ(y)− τ(x)| d|σ|(y)
r↓0−→ 0. (3.11)

Let x ∈ Σ \ S be such a point. Without loss of generality, we assume x = 0, τ(0) = e1 and m := m(0) > 0. Let
δ ∈ (0, 1). Our goal is to establish a precise lower bound for Fε,a(σε, uε;C) where C is a cylinder of the form

Cδr := {x ∈ Rn : |x1| < δr, |x′| < r} .

For this we proceed as in the proof of Lemma 3.5, here, the rectifiability of σ simplifies the argument. Let
χδ ∈ C∞c (Rn−1, [0, 1]) be a radial cut-off function with χδ(x′) = 1 if |x′| ≤ δ/2, χδ(x′) = 0 if |x′| ≥ δ. For ε > 0
and r ∈ (0,d(0, ∂Ω)), we define for s ∈ (−r, r),

gδ,rε (s) := e1 ·
∫
Rn−1

σε(s, x
′)χδ(x′/r) dx′.

We also introduce the mean value

gδ,rε :=
1

2r

∫ r

−r
gδ,rε (s) ds.

From (3.10), we have for r > 0 small enough,

gδ,r0 :=
1

2r

∫ r

−r
e1 ·

∫
Rn−1

σε(s, x
′)χδ(x′/r) dx ds ≥ (1− δ)m.

For such r > 0, we deduce from σε
∗
⇀ σ that for ε > 0 small enough

gδ,rε :=
1

2r

∫ r

−r
gδ,rε (s) ds ≥ (1− 2δ)m. (3.12)

We study the variation of gδ,rε (s). Using ∇ · σε = 0 in Cδr , we compute as in the proof of Lemma 3.5,

gδ,rε (t)− gδ,rε =
1

2r

∫
(−r,r)×Bδr

φt(x
′, h) · σε(x′, h) dx′ dh

with

φt(h, x
′) =

{
(h+ r̂)∇′χδ(x′/r) if h < t,

(h− r̂)∇′χδ(x′/r) if h > t.

Using again the convergence σε
∗
⇀ σ, we deduce

gδ,rε (t)− gδ,rε
ε↓0−→ 1

2r

∫
(−r,r)×Bδr

φt(x
′, h) · dσ(x′, h),
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in L1(−r, r). Now, since e1 · ∇′χδ ≡ 0, we deduce from (3.11) that the right hand side goes to 0 as r ↓ 0. Hence,
for r > 0 small enough, ∣∣∣∣∣ 1

2r

∫
(−r,r)×Bδr

φt(x
′, h) · σ(x′, h) dx′ dh

∣∣∣∣∣ ≤ δm.

Using (3.12), we conclude that for r > 0 small enough and then for ε > 0 small enough, we have

gδ,rε (t) ≥ (1− 3δ)m, for a.e. t ∈ (−r, r).

By definition of the codimension-0 problem, we conclude that

Fε,a(σε, uε;C
δ
r ) ≥ 2rfn−1

ε,a ((1− 3δ)m) .

Sending ε ↓ 0 and recalling that we omit the superscript when it is n− 1, we obtain

H(Cδr ) ≥ 2rfa ((1− 3δ)m) .

We notice that H(B√1+δ2 r) ≥ H(Cδr ). Dividing by 2
√

1 + δ2 r and taking the liminf as r ↓ 0, we get

lim inf
r↓0

H(B√1+δ2 r)

2
√

1 + δ2 r
≥ fa ((1− 3δ)m)√

1 + δ2
.

Sending δ to 0, we get (3.9) by lower semi-continuity of fa.

3.3. Γ-limsup inequality

Proof of Theorem 1.4. Let us suppose F(σ, u; Ω) < +∞, so that in particular u ≡ 1. From Xia [26], we can
assume σ to be supported on a finite union of compact segments and to have constant multiplicity on each
of them, namely polyhedral vector measures are dense in energy. We first construct a recovery sequence for a
measure σ concentrated on a segment with constant multiplicity. Then we show how to deal with the case of a
polyhedral vector measures.

Step 1. (σ concentrated on a segment.) Assume that σ is supported on the segment I = [0, L]×{0} and writes
as m · e1H1xI . Consider m constant so that ∇ · σ = m(δ(0,0) − δ(L,0)) and

F(σ, 1; Ω) = fa(m)H1(I) = Lfa(m).

For δ > 0 fixed, we consider the profiles

uε(t) :=


η, for 0 ≤ t ≤ r∗ε,

vδ

(
t

ε

)
, for r∗ε ≤ t ≤ r,

1 for r ≤ t,

and ϑε =
m χB′r∗ε(x

′)

ωn−1 (εr∗)n−1

with r∗ and vδ, defined in Proposition 2.5 with d = n− 1. Assume r∗ ≥ 1 and let d(x, I) be the distance function
from the segment I and introduce the sets

Ir∗ε := {x ∈ Ω : d(x, I) ≤ r∗ε} , and Ir := {x ∈ Ω : d(x, I) ≤ r} .
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Set uε(x) = uε(d(x, I)) and σ1
ε = mH1xI ∗ ρε, where ρε is the mollifier of equation (1.4). We first construct the

vector measures

σ1
ε = σ1

ε e1 and σ2
ε(x1, x

′) = ϑε(|x′|) e1.

Alternatively, σ2
ε = σ ∗ ρ̃ε for the choice ρ̃ε(x1, x

′) = χB′r∗ε(x
′)/ ωn−1(εr∗)

n−1. Let us highlight some properties

of σ1
ε and σ2

ε . Both vector measures are radial in x′, with an abuse of notation we denote σ1
ε(x1, s) = σ1

ε(x1, |x′|).
Since, both σ1

ε and σ2
ε are obtained trough convolution it holds supp(σ1

ε)∪ supp(σ2
ε) ⊂ Ir∗ε and they are oriented

by the vector e1 therefore |σ1
ε | = σ1

ε and |σ2
ε | = ϑε. Furthermore for any x1, it holds∫

{x1}×B′r∗ε

[
σ1
ε(x1, x

′)− ϑε(x′)
]

dx′ = 0 (3.13)

We construct σε by interpolating between σ1
ε and σ2

ε . To this aim consider a cutoff function ζε : R → R+

satisfying

ζε(t) = 1 for t ≤ r∗ε or t ≥ L− r∗ε,
ζε(t) = 0 for 2 r∗ε ≤ t ≤ L− 2 r∗ε, and |ζ ′ε| ≤

1

r∗ε
.

and set 
σ3
ε · e1 = 0,

σ3
ε · ei(x1, x

′) = −ζ ′ε(x1)
xi

|x′|n−1

∫ |x′|
0

sn−2
[
σ1
ε(x1, s)− ϑε(s)

]
ds, for i = 2, . . . , n.

The integral corresponds to the difference of the fluxes of σ1
ε and σ2

ε through the (n − 1)-dimensional disk
{x1} ×B′. For σ3

ε we have the following

∇ · σ3
ε =− ζ ′ε(x1)

n∑
i=2

[(
1

|x′|n−1
− (n− 1)x2

i

|x′|n+1

)∫ |x′|
0

sn−2
[
σ1
ε(x1, s)− ϑε(s)

]
ds

+
x2
i

|x′|2
[
σ1
ε(x1, |x′|)− ϑε(|x′|)

]]
= −ζ ′ε(x1)

[
σ1
ε(x1, |x′|)− ϑε(|x′|)

]
. (3.14)

Let

σε = ζε σ
1
ε + (1− ζε)σ2

ε + σ3
ε .

In force of equation (3.14) and from the construction of σ1
ε , σ2

ε and ζε we have

∇ · σε = ∇ · (ζεσ1
ε) +∇ · (1− ζε)σ2

ε +∇ · σ3
ε = ζε∇ · σ1

ε + ζ ′ε(σ
1
ε − ϑε) +∇ · σ3

ε = ζε∇ · σ1
ε = ∇ · (σ ∗ ρε).

In addition for any (x1, x
′) such that |x′| ≥ r∗ε from (3.13) we derive

σ3
ε · ei(x1, x

′) = −ζ ′ε(x1)
xi

|x′|n−2

∫ |x′|
0

sn−1
[
σ1
ε(x1, s)− ϑε(s)

]
ds = 0
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Figure 2. Illustration of the interval I and both its r and (r∗ε)-enlargement for r∗ ≥ 1. In
grayscale we plot the levels of the function ζε, whilst the striped region corresponds to the
cylinder Cr,ε.

which justifies supp(σε) ⊂ Ir∗ε. Let us now prove

lim sup
ε↓0

Fε,a(σε, uε; Ω) ≤ Lfa(m) + Cδ.

We split Ω as the union of Ω \ Ir, Cr,ε := Ir ∩ [2 ε, L − 2 ε] × Rn−1 and Dε and D′ε, as show in Figure 2,
where Dε = {x1 ≤ 2 r∗ ε} ∩ Ir∗ε and D′ε = {x1 ≥ L− 2 r∗ ε} ∩ Ir∗ε. On Ω \ Ir we notice that σε = 0 and uε = 1
therefore

Fε,a(σε, uε; Ω \ Ir) = 0.

Observe that |Dε| = |D′ε| = Cεn, then we have the upper bound

∫
Dε

|σε|2 dx ≤ 2
m2 r2

∗
εn−2

(∫
B1

ρ2 dx+ C

)
.

Taking into consideration this estimate we obtain

Fε,a(σε, uε;Dε) = Fε,a(σε, uε;D
′
ε) ≤

(1− η)2

εn−1
L n(Dε) + 2m2 r2

∗
η

εn−2
. (3.15)

Finally on Cr,ε both σε and uε are independent of x1 and are radial in x′ then by Fubini’s theorem and
Proposition 2.5 we get

Fε,a(σε, uε;Cr,ε) =

∫ L−2 εr∗

2 εr∗

∫
B′r

Eε,a(ϑε, uε) ≤ L (fa(m) + C δ).

Adding all together gives the desired estimate. It remains to discuss the case r∗ < 1. From the point of view of
the construction of σε we need to replace the functions ζε with

ζ̃ε(t) = 1 for t ≤ ε or t ≥ L− ε,
ζ̃ε(t) = 0 for 2 ε ≤ t ≤ L− 2 ε, and

∣∣∣ζ̃ ′ε∣∣∣ ≤ 1

ε
.
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Figure 3. On the left the striped region corresponds to supp(σε), remark that the balls of radius√
3ε centered respectively in (0; 0) and (L; 0) contain the modifications we have performed to

satisfy the constraint. On the right we illustrate the level-lines of the cutoff function ζ̃ε in
grayscale.

This choice ensures that σε has all the properties previously obtained with r∗ ε replaced by ε accordingly.
Define

wε(t) :=


η, for t ≤

√
3ε

1− η
r −
√

3
(t−
√

3) + η, for
√

3ε ≤ t ≤ r.

and set

uε = min{uε(d(x, I)), wε(|x|), wε(|x− (L; 0)|)}.

with these choices for uε and σε the estimates follow analogously with small differences in the constants.

Step 2. Case of a generic σ in polyhedral form. Indeed, in force of the results quoted in Section 2.3 it is sufficient
to show equation (1.4) for a polyhedral vector measure. Following the same notation introduced therein let

σ =

N∑
j=1

mjH1xΣj τj .

With no loss of generality we can assume that the segments Σj intersect at most at their extremities. We
consider measures σ satisfying constraint (1.3) so that if a point P belongs to Σj1 , . . . ,ΣjP it must satisfy of
Kirchhoff law,

jP∑
j1

zjmj =

{
ci, if P ∈ S ,

0, otherwise,
(3.16)

where zj , is +1 if P is the ending point of the segment Σj with respect to its orientation, and −1 if it is the
starting point. Let σjε and ujε be the sequences constructed above for each segment Ik and define

σε =

N∑
j=1

σjε and uε = min
j

{
ujε
}
.
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Let Pj and Qj be respectively the initial and final point of the segment Σj and recall that, by the construction
made above, for each j

∇ · σjε = mj

(
δPj − δQj

)
∗ ρε

then by linearity of the divergence operator, it holds

∇ · σε =

N∑
j=1

∇ · σkε =

N∑
j=1

mj

(
δPj − δQj

)
∗ ρε

and the latter satisfies constraint (1.4) in force of equation (3.16). To conclude let us prove that

lim sup
ε↓0

Fε,a(σε, uε; Ω) ≤
N∑
j=1

fa(mj)H1(Σj). (3.17)

Indeed the following inequality holds true

Fε,a(σε, uε; Ω) ≤
N∑
j=1

Fε,a(σε, u
j
ε; Ω).

Suppose

supp(σj1ε ) ∩ supp(σj2ε ) ∩ · · · ∩ suppσjPε 6= ∅

for some j1, . . . , jP and all ε. Let rj1∗ , . . . , r
jP
∗ be the radii introduced above for each of these measures, let

r∗ = max{rj1∗ , . . . , rjP∗ , 1} , set m = max{mj1 , . . . ,mjP } and consider Dj1 , . . . , DjP as defined previously. Since

∣∣∣∣∣
jP∑
k=1

σkε

∣∣∣∣∣
2

≤ C
jP∑
k=1

∣∣σkε ∣∣2
and uε ≤ ujε for any j, we have the following inequality

Fε,a(σε, uε; supp(σj1ε ) ∩ · · · ∩ supp(σjPε )) ≤ C
jP∑
k=j1

Fε,a(σkε , u
k
ε ;Dk)

And by inequality (3.15) follows

Fε,a(σε, uε; supp(σj1ε ) ∩ · · · ∩ supp(σjPε )) ≤ C

 (1− η)2

εn−1

jP∑
k=j1

L n(Dk) + 2m2 r2
∗

η

εn−2

 .

Which vanishes as ε ↓ 0. Let us remark that the intersection supp(σj1ε )∩ supp(σj2ε )∩ · · · ∩ suppσjPε is non empty
for any ε only if the segments Σj1 , . . . ,ΣjP have a common point. Since we are considering a polyhedral vector
measure composed by N segments the worst case scenario is that we have 2N intersections in which at most N
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segments intersects. We conclude

Fε,a(σε, uε; Ω) ≤
N∑
j=1

Fε,a(σjε, u
j
ε; Ω) + C(N)

 (1− η)2

εn−1

jP∑
k=j1

L n(Dk) + 2m2 r2
∗

η

εn−2


which, passing to the limit, yields inequality (3.17).

4. The k-dimensional problem

4.1. Setting

Let σ0 ∈ Pk(Ω) a polyhedral k-current with finite mass and let S := supp(∂σ0) be compactly contained in
Ω. We want to minimize a functional of the type (2.1) where the set of candidates ranges among all currents
Dk(Ω) such that

∂σ = ∂σ0 in Dk(Rn).

Let us introduce a parameter η = η(ε) which satisfies

η(ε) = aεn−k+1 for a ∈ R+ (4.1)

and let Xε(Ω) be the set of couples (σε, uε) where uε ∈W 1,p(Ω, [η, 1]) and has trace 1 on ∂Ω and σε is of finite
mass with density absolutely continuous with respect to L n. In this case we identify the current σε with its
L1(Ω,Λk(Rn)) density. Furthermore as in equation (1.4) given a convolution kernel ρε we impose the constraint

∂σε = (∂σ0) ∗ ρε in Dk(Rn).

For (σε, uε) ∈ Dk(Ω)× L2(Ω) let

Fkε,a(σε, uε; Ω) :=


∫

Ω

[
εp−n+k|∇uε|p +

(1− uε)2

εn−k
+
uε|σε|2

ε

]
dx, if (σε, uε) ∈ Xε(Ω),

+∞, otherwise.

(4.2)

Let us denote with X the set of couples (σ, u) such that σ is a k-rectifiable current satisfying (4.1) and u ≡ 1.
In this section we show that for any sequence ε ↓ 0 the Γ-limit of the family (Fkε,a)ε∈R+ is the functional

Fka (σ, u; Ω) =


∫

suppσ

fn−ka (m(x)) dHk(x), if (σ, u) ∈ X,

+∞, otherwise in M(Ω,Rn)× L2(Ω),

(4.3)

where the function fn−ka : R+ → R+ is the function obtained in Appendix A for the choice d = n − k and is
endowed with the same properties stated for f in Section 1. In particular under the assumption p > n− k we
first prove a compactness theorem.

Theorem 4.1. Assume that a > 0. For any sequence ε ↓ 0, (σε, uε) ∈ Dk(Ω)× L2(Ω) such that

Fkε,a(σε, uε; Ω) ≤ F0 < +∞
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then uε → 1 and there exists a rectifiable k-current σ ∈ Dk(Ω) such that, up to a subsequence, σε
∗
⇀ σ and

(σ, 1) ∈ X.

Then we show the Γ-convergence result, namely

Theorem 4.2. Assume that a ≥ 0.

(1) For any (σ, u) ∈ Dk(Ω)× L2(Ω) and any sequence (σε, uε) ∈ Dk(Ω)× L2(Ω) such that (σε, uε)→ (σ, u) it
holds

lim inf
ε↓0

Fkε,a(σε, uε; Ω) ≥ Fka (σ, u; Ω).

(2) For any couple (σ, u) ∈ Dk(Ω)×L2(Ω) there exists a sequence (σε, uε) ∈ Dk(Ω)×L2(Ω) such that (σε, uε)→
(σ, u) and

lim sup
ε↓0

Fkε,a(σε, uε; Ω) ≤ Fka (σ, u; Ω).

4.2. Compactness and k-rectifiability

Proof of Proposition 4.1. By the same procedure of Lemma 3.1 we obtain

|σε|(Ω) ≤ F0

2
+

F0

2 a (1− λ)2
+

√
|Ω| ε F0

λ
(4.4)

and ∫
Ω

(1− uε)2 ≤ εn−k F0.

Therefore by the weak compactness of Dk(Ω) we obtain the existence of a limit k-current σ a limit measure µ

and a subsequence ε such that σε
∗
⇀ σ, |σε|

∗
⇀ µ. As in the 1-dimensional case it is still necessary to prove the

rectifiability of the limit current. This is obtained by showing that the support of σ is of finite size.

Step 1. Preliminaries and good representative for v ∈ Λk(Rn). Let us introduce the set

I := {I = (i1, . . . , ik) : 1 ≤ i1 < i2 < · · · < ik ≤ n}, eI = ei1 ∧ · · · ∧ eik .

So that Λk(Rn) is the Euclidean space with basis {eI}I∈I . Let v ∈ Λk(Rn) and consider the problem

a0 = max{a ∈ R : v = af1 ∧ · · · ∧ fk + t : (f1, . . . , fn) orthonormal basis, t ∈ (f1 ∧ · · · ∧ fk)⊥}.

Notice that a0 ≥ 1/
√
|I|. Assume that the optimum for the preceding problem is obtained with (f1, . . . , fn) =

(e1, . . . , en). We note

v = a0eI0 +
∑
i∈I1

aIeI +
∑
I∈J

aIeI

with

I0 = e1 ∧ · · · ∧ ek, I1 := {I = (i1, . . . , ik) ∈ I : 1 ≤ i1 < · · · < ik−1 ≤ k < ik ≤ n}, J := I \ (I1 ∩ I0).
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We claim that aI = 0 for I ∈ I1. Indeed, let I1 = (e1, . . . , el−1, el+1, . . . , ek, eh) ∈ I1 and for φ ∈ R, let eφ be
orthonormal base defined as

ei = eφi for i 6= {l, h}, el = cos(φ)eφl − sin(φ)eφh, eh = sin(φ)eφl + cos(φ)eφh.

In this basis

v =
(
a0 cos(φ) + aI1(−1)k−l sin(φ)

)
eφI0 + tφ, with wφ ∈ (eφ)⊥.

By optimality of (e1, . . . , en) we deduce aI1 = 0 which proves the claim. Hence we write

v = a0eI0 + t, with t ∈ span{eI : I ∈ J }. (4.5)

Now we let Let θ ∈ (0, 1/4n) and Σ be the set of points for which there exists a sequence rj ↓ 0 such that

σ(Brj (x))

|σ|(Brj (x))
−→ w(x) ∈ SΛk(Rn) and

|σ|(Brj/4(x))

|σ|(Brj (x))
≥ θ.

In particular w is a |σ|-measurable map and we have σ = w |σ|xΣ.

Step 2. Flux of σε trough a small (n − k)-disk. Consider a point x ∈ Σ \S , with no loss of generality we
assume x = 0. Let v = w(0), up to a change of basis, by equation (4.5) we write

v = a0eI0 + t, with t ∈ span{eI : I ∈ J }.

Let j sufficiently small, such that Brj ∩S = ∅ and

σ(Brj ) · v ≥ (1− ξ)|σ|(Brj ). (4.6)

Set, to simplify notation, rj = r and r∗ = r/
√

2. For x ∈ Rn we write (x′, x′′) ∈ Rk × Rn−k for the usual
decomposition and denote B′r, B

′′
r the k-dimensional and the (n − k)-dimensional ball respectively. Let χ ∈

C∞(B′′1 ) be a radial cut-off function with χ(x′′) = 1 for |x′′| ≤ 1/2 and χ(x′′) = 0 for |x′′| ≥ 3/4. Set χr∗(x
′′) =

χ(x′′/r∗), then since σε is a L1 function for ε > 0 we can define

gε(x
′) :=

∫
B′′r∗

χr∗(x
′′)〈σε, eI0〉 dx′′ =

∫
B′′r∗

χr∗(x
′′)σ0

ε dx′′ (4.7)

for any x′ ∈ B′r∗ . Let us compute ∂lgε(x
′) for l ∈ {1, . . . , k}. Since ∂σε = 0 in Br, it holds 〈σε, dω〉 = 0 for any

smooth (k − 1)-differential form ω ∈ Dk−1(Br). Choosing ω of the form

ω = β(x) dx1 ∧ . . . dxl−1 ∧ dxl+1 ∧ · · · ∧ dxk (4.8)

we obtain

dω = (−1)l−1∂lβ(x) dx1 ∧ · · · ∧ dxk + (−1)k−1
d∑

h=k+1

∂hβ(x) dx1 ∧ . . . dxl−1 ∧ dxl+1 ∧ · · · ∧ dxk ∧ dxh.
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Denote σIε = 〈σ, eI〉, then imposing 〈σε, dω〉 = 0 for every β ∈ C∞c (Br) in (4.8) yields

(−1)k−l∂lσ
0
ε +

∑
h∈{k+1,...,d}

I=(1,...,l−1,l+1,...,k,h)

∂hσ
I
ε = 0.

Hence,

∂lgε(x
′) =

(−1)k−l

r∗

∑
h∈{k+1,...,d}

I=(1,...,l−1,l+1,...,k,h)

∫
B′′r∗

∂hχr∗(x
′′)σIε dx′′. (4.9)

Let us introduce the notation

σI1ε :=
∑
I∈I1

σIε eI ,

denoting with ∇′ the gradient with respect to x′, equation (4.9) rewrites as

∇′gε(x′) =
1

r∗

∫
B′′r∗

Y

(
x

r∗

)
σI1ε dx′′. (4.10)

Where Y is smooth and compactly supported in B′′1 and with values into the linear maps : span{eI : I ∈
I1} → Rk. Let us prove that, for some r̂, the functions gε converge in BV-∗ to some g. First for a.e. choice of
r̂ ∈ [(1− ξ)r∗, r∗] it must hold µ(∂B′r∗ ×B

′′
r∗) = 0 so that

gε(x
′) =

∫
B′′r∗

χr∗(x
′′)〈σε, eI0〉 dx′′

ε↓0−−→
∫
B′′r∗

χr∗(x
′′) d〈σ, eI0〉 =: g(x′). (4.11)

Secondly we define the mean value

g :=
1

|B′r̂|

∫
B′r̂

g(x′) dx′ =
1

|B′r̂|

∫
B′r̂

[∫
B′′r∗

χr∗(x
′′) dσ0

]
dx′.

and taking advantage of (4.6) and the definition of Σ, we see that

g ≥

(
θ√
|I|
− ξ

)
|σ|(Br)
|B′r̂|

> 0.

On the other hand, denoting Π : Rn → Rn−k, x 7→ x′′, from (4.5), we have

|Πσ|(B′r̂ ×B′′r∗) ≤
√

3ξ

(
θ√
|I|
− ξ

)
|B′r̂| g.

Now from (4.10) and (4.11) and the latter we obtain

〈D′g, φ〉 =
1

r∗

∫
B′r̂×B′′r∗

φ(x′) Y

(
x′′

r∗

)
dσI1 and |D′g|(B′r̂) ≤

C |B′r̂|
√
ξ g

r∗
.
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Finally from Poincaré–Wirtinger inequality and the convergence gε → g in L1(B′r̂) is easy to show that for any
sufficiently small ε the sets

Aε =

{
x ∈ Br̂ : gε(x) ≥ g

8

}

are such that |Aε| ≥ |B′r̂|/2.

Step 3. Conclusion. Set ϑε(x
′, x′′) = |χr∗(x′′)σ0

ε | and observe that for fixed x′ by construction

∫
Br∗

ϑε(x
′, x′′) dx′′ = gε(x

′).

Therefore for any x′ ∈ Aε it holds
∫
Br∗

ϑε(x
′, x′′) dx′′ ≥ g/8. Furthermore supp(ϑε(x

′)) ⊂ B′r̃ with r̃ := 3
4r∗ < r∗.

Now, by Fubini

Fkε,a(σε, uε;Br) ≥
∫
Aε

∫
B′′r

[
εp−n+k|∇uε|p +

(1− uε)2

εn−k
+
uε|σε|2

ε

]
dx′′ dx′

≥
∫
Aε

∫
B′′r∗

[
εp−n+k|∇uε|p +

(1− uε)2

εn−k
+
uε|ϑε(x′, x′′)|2

ε

]
dx′′ dx′ (4.12)

With the notation introduced in Section 2.4 and by defintion of Aε

Fε,a(σε, uε;Br) ≥
∫
Aε

inf
(ϑ,u)∈Y ε,a(g/8,r,r̃)

Ekε,a(ϑ, u) dx′ =

∫
Aε

fn−kε,a (g/8, r, r̃) dx′ = fn−kε,a (g/8, r, r̃) |Aε|.

Taking the infimum limit, by Proposition 2.4, in particular equation (2.6) we get

lim inf
ε↓0

Fkε,a(σε, uε;Br) ≥ lim inf
ε↓0

fn−kε (g/8, r, r̃) |Aε| ≥ κ
|B′r̂|

2
. (4.13)

Recall that the latter stands for a.e. r̂ ∈ [(1− ξ)r∗, r∗] and r∗ = r/
√

2 thus we may rewrite

lim inf
ε↓0

Fkε,a(σε, uε;Br) ≥ κ
ωk r

k

21+k/2
.

As in Lemma 3.5 we conclude applying Besicovitch theorem to obtain Hk(Σ) < +∞. Finally, thanks to the
latter and equation (4.4), Theorem 2.2 applies and σ is a k-rectifiable current.

4.3. Γ-liminf inequality

Proof of item (1) of Theorem 4.2. With no loss of generality we assume that lim infε↓0 Fkε,a(σε, uε) < +∞
otherwise the inequality is trivial. For a Borel set A ⊂ Ω, we define

Hk(A) := lim inf
ε↓0

Fkε,a(σε, uε;A),
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so that Hk is a subadditive set function. By assumption, the limit current σ is k-rectifiable; we write σ =
mτ HkxΣ. We claim that

lim inf
r↓0

Hk
(
B(x, r)

)
ωk rk

≥ fn−ka (m(x)) for Hk-almost every x ∈ Σ. (4.14)

Assuming the latter the proof is achieved as in Theorem 1.3. To establish the claim (4.14) we restrict our
attention to a single point and we assume x = 0, m = m(0) and τ(0) = e1 ∧ · · · ∧ ek then for any ξ > 0 there
exists r0 = r(ξ) such that

〈σ, e1 ∧ · · · ∧ ek〉(Br) ≥ (1− ξ)|σ|(Br) and (1− ξ)m ≤ |σ|(Br)
ωkrk

≤ (1 + ξ)m, for r ≤ r0. (4.15)

Let δ be an infinitesimal quantity and set, for r < r0, r̂ =
√

1− δ2 r and r̃ = δr and define the cylinder

Cδ,r(e1,∧ · · · ∧ en) = Cδ,r :=
{

(x′;x′′) ∈ Rk × Rn−k : |x′| ≤ r̂ and |x′′| ≤ r̃
}
.

Let χ(x′′) be the radial cutoff introduced in the previous proposition and set χr̃(x
′′) = χ(x′′/r̃), σ0

ε = 〈σε, e1 ∧
· · · ∧ ek〉 and for any x′ ∈ B′r̂ set

gε(x
′) :=

∫
B′′r̃

χr̃(x
′′) d〈σε, eI0〉 =

∫
B′′r̃

χr̃(x
′′) dσ0

ε ,

as in equation (4.7). Up to a smaller choice for r0 we can assume Br ∩S = ∅ therefore ∂σxBr = 0, and from
equations (4.7)–(4.10) it holds

∇′gε(x′) =
1

r̃

∫
B′′r̃

Y
(x
r̃

)
dσI1ε .

For a.e. choice of δ it holds |σ|(∂B′r̂ ×B′′r̃ ) = 0 therefore, for any such choice, γε converges in BV (Br̂) to

g(x′) :=

∫
B′′r̃

χr̃(x
′′) dσ0 and 〈D′g, φ〉 =

1

r̃

∫
B′r̂×B

′′
r̃

φ(x′) Y

(
x′′

r̃

)
dσI1 .

Now we use (4.15) to improve the estimates on g and |D′g|. Indeed, for δ sufficiently small, r̃ < r̂/2 therefore
Br̃ ⊂ B′r̂ ×B′′r̃ and

lim
ε↓0

gε ≥ (1− ξ) 1

|B′′r̂ |

∫
B′r̂×B

′′
r̃

χr∗(x
′) d|σ| ≥ (1− ξ)2m.

and denoting Π : Rn → Rn−k, x 7→ x′′ we have

|Πσ|(Cr) ≤ (1 + ξ)
√

3ξ |B′r̂| m and |D′g|(B′r̂) ≤
C |B′r̂|

√
ξ m

r̃
.

Choose r sufficiently small then by Poincaré-Wirtinger inequality there exists a set A of almost full measure in
Br̂ such that gε(x

′) ≥ (1− ξ)2m, and following the proof of the previous lemma (Step 3) up to equation (4.13)
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we get

lim inf
ε↓0

Fkε,a(σε, uε;Br) ≥ lim inf
ε↓0

fn−kε,a

(
(1− ξ)2m, r, r̃

)
|A|.

Since ξ and δ are arbitrary and |A| can be chosen arbitrary close to |Br̂| applying Proposition 2.4 with d = n− k
to the latter we conclude

lim inf
ε↓0

Fkε,a(σε, uε;Br) ≥ fn−ka (m)ωkr
k.

4.4. Γ-limsup inequality

For the lim-sup inequality, we start by approximating σ with a polyhedral current: given δ > 0, there exists
a k polyhedral current σ̃ satisfying ∂σ̃ = ∂σ0 and with F(σ̃ − σ) < δ and Fa(σ̃) < Fa(σ) + ε. This result of
independent interest is established in [11]. A similar result has been proved recently by Colombo et al. in
Proposition 2.6 of [12] (see also [23], Sect. 6). The authors build an approximation of a k-rectifiable current
in flat norm and in energy but their construction creates new boundaries and can not ensure the condition
∂σ = ∂σ0.

Proof of item (2) of Theorem 4.2. By Theorem 1.1 and Remark 1.6 from [11] we can assume that σ is a poly-
hedral current. We show how to produce the approximating (σε, uε) for σ supported on a single k-dimensional
simplex Q. We assume with no loss of generality that Q ⊂ Rk, and that σ writes as

m HkxQ ∧ (e1 ∧ · · · ∧ ek).

For δ > 0 fixed, we consider the optimal profiles

uε(t) :=


η, for 0 ≤ t ≤ r∗ε,

vδ

(
t

ε

)
, for r∗ε ≤ t ≤ r,

1 for r ≤ t,

and ϑε =
m χB′′r∗ε(x

′′)

ωn−k (εr∗)n−k

with r∗ and vδ, defined in Proposition 2.5 for the choice d = n− k. We denote ∂Q the relative boundary of Q
and given a set S we write d(x, S) for the distance function from S. Recall that we use the notation St for the
t-enlargement of the set S and S′ to denote its projection into Rk. We first assume, as did for the case k = 1,
r∗ ≥ 1, and introduce ζε a 0-form depending on the first k variables x′, satisfying

ζε(x
′) = 1, for x′ ∈ (∂Q)′r∗ε := {x ∈ Ω : d(x′, ∂Q) ≤ r∗ε} ,

ζε(x
′) = 0, for x′ ∈ Ω \ (∂Q)′2r∗ε,

| dζε| ≤
1

r∗ε
.

Then we proceed by steps, first set σ1
ε := (|σ| ∗ ρε)

σ1
ε = σ1

εe1 ∧ · · · ∧ ek and σ2
ε(x′, x′′) = ϑε(|x′′|) ∧ (e1 ∧ · · · ∧ ek).
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and observe that supp(σ1
ε)∪ supp(σ2

ε) ⊂ Qr∗ε, both σ1
ε and σ2

ε are radial in x′′ and with a small abuse of notation
we denote σ1

ε(x
′, s) = σ1

ε(x
′, |x′′|), finally for any x′

∫
{x′}×B′′r∗ε

[σ1
ε(x
′, |x′′|)− ϑε(|x′′|)] dx′′ = 0.

Now we take advantage of ζε in order to interpolate between σ1
ε and σ2

ε , note that such interpolation may affect
the boundary of the new current therefore we first introduce σ3

ε which corrects this defect. In particular set

σ3
ε(x′, x′′) = −

n∑
i=k+1

[
xi

|x′′|n−k

∫ |x′′|
0

sn−k−1
[
σ1
ε(x
′, s)ϑε(s)

]
x dζε ds

]
∧ ei,

and

σε = σ1
εxζε + σ2

εx(1− ζε) + σ3
ε .

With this choice by a calculation similar to equation (3.14) it holds

∂σε = −∂σ ∗ ρεxζε − σ1
εx dζε − ∂σ2

εx(1− ζε)︸ ︷︷ ︸
=0

+σ2
εx dζε + ∂σ3

ε = (∂σ) ∗ ρε.

On the other hand the phase-field is simply defined as uε(x) = uε(d(x,Q)). In the case r∗ < 1 we need to modify
the construction. For σε it is sufficient to replace every occurrence of ζε with ζ̃ε, which satisfies

ζ̃ε(x
′) = 1, for x′ ∈ (∂Q)′ε := {x ∈ Ω : d(x′, ∂Q) ≤ ε} ,

ζ̃ε(x
′) = 0, for x′ ∈ Ω \ (∂Q)′2ε,∣∣∣ dζ̃ε

∣∣∣ ≤ 1
ε .

Now let

wε(t) :=


η, for t ≤

√
3ε,

1− η
r −
√

3
(t−
√

3) + η, for
√

3ε ≤ t ≤ r.

and set

uε = min{uε(d(x,Q)), wε(d(x, ∂Q))}.

Remark 4.3. Given a polyhedral current σ such that ∂σ = ∂σ0 we perform our construction on each simplex
and define σε as the sum of these elements. The linearity of the boundary operator grants that ∂σε = ∂σ0 ∗ ρε.
The phase field is chosen as the pointwise minimum of the local phase fields. Finally the estimation for the
Γ-limsup inequality is achieved in the same manner as Theorem 1.4.
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5. Discussion about the results

By Lemma A.4 for any fixed d = n− k the cost function fda pointwise converges as a ↓ 0 to the function

f(m) =

{
κ, for m > 0,

0, if m = 0,

where κ is the constant value obtained in Proposition 2.4 and depends on d. This condition is sufficient to prove
that the family of functionals Fka , parametrized in a, Γ-converges to the functional

Fk(σ; Ω) :=

κ H
k(Σ ∩ Ω), for σ = mτ HkxΣ,

+∞, otherwise.

As a matter of fact for any sequence σa
∗
⇀ σ in Dk(Ω) it holds

lim inf
a↓0

Fka (σ; Ω) ≥ Fk(σ; Ω)

since fda (m) ≥ κ. On the other hand setting σa := σ we construct a recovery sequence for any σ and obtain the
Γ-limsup inequality

lim sup
a↓0

Fka (σa; Ω) = lim sup
a↓0

Fka (σ; Ω) = Fk(σ; Ω).

This allows to interpret our result as an approximation of the Plateau problem in any dimension and
co-dimension.

Appendix A. Reduced problem in dimension n− k

A.1 Auxiliary problem

In this appendix we show the results previously enunciated in Section 2.4, with the notation introduced
therein let us define the auxiliary set

Y ε,a(m, r) =
{

(ϑ, u) ∈ L2(Br)×W 1,p(Br, [η, 1]) : ‖ϑ‖1 = m and u|∂Br ≡ 1
}
,

and the associated minimization problem

f
d

ε,a(m, r) = inf
Y ε,a(m,r)

Eε,a(ϑ, u;Br). (A.1)

First we show that both fdε,a(m, r, r̃) and f
d

ε,a(m, r) are bounded by the same constant as ε ↓ 0 and that the

value of the second term is achieved by a radially symmetric couple of Y ε,a(m, r). These two facts are then used

to show that for each m the limit values of f
d

ε,a(m, r) and fdε,a(m, r, r̃) as ε ↓ 0 are equal and independent of the
choices (r, r̃) to the extent that 0 < r̃ < r. Let us start by showing the first two properties.
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Lemma A.1. For each ε, m > 0 and r > 0

(a) there exists a constant C = C(m, a) ≤ C0(1 +
√
am) such that for

0 < ε ≤ min

{
r̃

(
√
am)1/d

,
r

1 + (
√
am)1/d

}
,

there holds,

fdε,a(m, r, r̃) < C and f
d

ε,a(m, r) < C. (A.2)

(b) Both the problem defined in equation (2.2) and equation (A.1) admit a minimizer. Moreover among the
minimizers of Eε,a in Y ε,a(m, r) it is possible to choose a radially symmetric couple (ϑε, uε) such that uε
is radially non-decreasing and ϑε is radially non-increasing.

Proof.

(a) Let r1 > 0 and ε > 0 such that r1ε ≤ r̃, (1 + r1)ε ≤ r, we define

uε(x) :=


η if |x| < r1ε,

η + (1− η)(|x|/ε− r1) if r1ε ≤ |x| < (1 + r1)ε,

1 if (1 + r1)ε ≤ |x| < r,

ϑε(x) :=


m

|Br1ε|
if |x| < ε,

0 if ε ≤ |x| < r.

By construction, (uε, ϑε) ∈ Yε,a(m, r, r̃)∩Y ε,a(m, r). We estimate successively the three terms of the energy.
First, since ε|∇uε| = (1− η) ≤ 1 in B(1+r1)ε \Br1ε and vanishes outside,∫

Br

εp−d|∇uε|p dx ≤ |B(1+r1)ε \Br1ε| ε−d ≤ ωd(1 + r1)d.

Next, bounding |1− uε| by the characteristic function of B(1+r1)ε we have∫
Br

(1− uε)2

εd
dx ≤ ωd(1 + r1)d.

Finally, ∫
Br

uε|ϑε|2

ε
dx =

1

ωdrd1

ηm2

εd+1
=
am2

ωdrd1
.

Gathering the estimates yields to the bound

max{fdε,a(m, r, r̃), f
d

ε,a(m, r)} ≤ Eε,a(uε, ϑε) ≤ 2ωd(1 + r1)d +
am2

ωdrd1
.

Then, assuming (
√
am)1/dε ≤ r̃ and (1 + (

√
am)1/d)ε ≤ r, we can set r1 := (

√
am)1/d. We obtain,

max{fdε,a(m, r, r̃), f
d

ε,a(m, r)} ≤ C(1 +
√
am).

(b) To show the existence of minimizers for both minimization problems we use the direct method of the
Calculus of Variation. The lower semicontinuity of the integral with integrand u|ϑ|2 is ensured by Ioffe’s
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theorem ([4], Thm. 5.8). Now given any minimizing couple (ϑ̂ε, ûε) ∈ Y ε,a(m, r), let ϑε be the decreasing

Steiner rearrangement of ϑ̂ε and uε the increasing rearrangement of ûε. Indeed, since ûε has range in [η, 1],
we still have uε |∂Br ≡ 1. Polya’s Szego and Hardy-Littlewood’s inequalities ensure

Eε,a(ϑε, uε) ≤ Eε,a(ϑ̂ε, ûε).

Let us prove the asymptotic equivalence of the values fdε,a(m, r, r̃) and f
d

ε,a(m, r) as ε ↓ 0.

Lemma A.2 (Equivalence of the two problems). For any r̃ < r and m > 0 it holds

|fdε,a(m, r, r̃)− fdε,a(m, r)| ε↓0−→ 0.

Proof.

Step 1: [fdε,a(m, r, r̃) ≤ fdε,a(m, r) +O(1)]

Consider for each ε the radially symmetric and monotone couple (ϑε, uε) ∈ Y ε,a(m, r) as introduced in the
previous lemma. Take ξ ∈ (η, 1) and let us set

rξ := sup{t ∈ (0, r) : uε(t) ≤ ξ} with rξ = 0 if the set is empty. (A.3)

By Cauchy–Schwarz inequality it holds

C ≥

∫
Br\Brξ

uε|ϑε|2 dx

ε
≥ ξ

(∫
Br\Brξ

|ϑε| dx
)2

ωd rdε
.

Let us define ∆ξ :=
∫
Br\Brξ

|ϑε|, the latter ensures that ∆ξ ∈ o(ε1/2). Let us now set ϑ̂ε =

(
mϑε∫
Brξ

ϑε

)
1Brξ which

is not null for ε small. We have (ϑ̂ε, uε) ∈ Yε,a(m, r, r̃) if and only if rξ ≤ r̃. Indeed, this holds as

C ≥
∫
B′rξ

(1− uε)2

εd
dx ≥ ωd (1− ξ)2

(rξ
ε

)d
, (A.4)

which ensures that rξ = O(ε). Finally let us evaluate the energy

Eε,a(ϑ̂ε, uε) =

∫
Br

[
εp−d|∇uε|p +

(1− uε)2

εd
+
uε|ϑ̂ε|2

ε

]
dx

=

∫
Br

[
εp−d|∇uε|p +

(1− uε)2

εd

]
dx+

∫
Brξ

uεm
2 |ϑε|2

ε(
∫
Brξ

ϑε)2
dx

≤ m2 ωd(∫
Brξ

ϑε

)2Eε,a(ϑε, uε) = [1 +O(1)]Eε,a(ϑε, uε).

Passing to the infimum we get

fdε,a(m, r, r̃) ≤ fdε,a(m, r) +O(1). (A.5)
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Step 2: [f
d

ε,a(m, r) ≤ fdε,a(m, r, r̃) + o(1)]
Consider a minimizing couple (ϑε, uε) such that

fdε,a(m, r, r̃) = Eε,a(ϑε, uε).

Let χ be a smooth cutoff function such that χ(x) = 1 if |x| ≤ r̃ and χ(x) = 0 if |x| > r+r̃
2 and set vε =

χuε + (1 − χ). By construction (ϑε, vε) ∈ Y ε,a(m, r), furthermore, since uε ∈ (0, 1], it holds that uε ≤ vε and
(1 − uε)2 ≥ (1 − vε)2. Moreover as vε ≡ uε on Br̃ we have

∫
Br
uε|ϑε|2 dx =

∫
Br
vε|ϑε|2 dx. Eventually, we

estimate the gradient component of the energy as follows∫
Br

εp−d|∇vε|p dx =

∫
Br

εp−d|χ∇uε + (uε − 1)∇χ|p dx

≤
∫
Br

εp−d(|∇uε|+ |∇χ|)p dx

≤
∫
Br

εp−d|∇uε|p dx+ C(r, χ)
(
E1−1/p
ε,a (ϑε, vε)ε

p−d
p + εp−d

)
,

where we have used the inequality (|a|+ |b|)p ≤ |a|p + Cp(|a|p−1|b|+ |b|p) and Holder inequality. We get

f
d

ε,a(m, r) ≤ Eε,a(ϑε, vε) ≤ Eε,a(ϑε, uε) +O(ε
p−d
p ) = f r̃ε (m, r) + o(1). (A.6)

Step 3: Combining inequalities (A.5) and (A.6) we obtain fdε,a(m, r, r̃)− fdε,a(m, r) = o(1).

A.2 Study of the transition energy

Given two values r1 < r2 let us introduce the functional

Gd(v; (r1, r2)) :=

∫ r2

r1

td−1
[
|v′|p + (1− v)2

]
dt

and for any triplet (ξ, r1, r2) ∈ [0, 1]× R+ × R+ we set

qd(ξ, r1, r2) := inf
{
Gd(v; (r1, r2)) : v ∈W 1,p(r1, r2), v(r1) = ξ and v(r2) = 1

}
. (A.7)

This value represents the cost of the transition from ξ to 1 in the ring Br2 \Br1 . We will say that a function v
is admissible for the triplet (ξ, r1, r2) if it is a competitor in the above minimization problem. Let us investigate
the properties of the function introduced.

Lemma A.3. For any fixed triplet (ξ, r1, r2) ∈ [0, 1]× R+ × R+ the infimum in equation (A.7) is a minimum.
Moreover there is a unique function achieving the minimum which is nondecreasing with range in the interval
[ξ, 1]. Finally the function qd satisfies the following properties

(1) r2 7→ qd(ξ, r1, r2) is nonincreasing,
(2) r1 7→ qd(ξ, r1, r2) is nondecreasing,
(3) ξ 7→ qd(ξ, r1, r2) is nonincreasing, and g(1, r1, r2) = 0.

Recalling the definition (2.4) of qd∞, we have qd∞(ξ, r̂) = qd(ξ, r1,∞), and qd∞(0, 0) > 0. Furthermore for any
r > 0 the map ξ 7→ qd∞(ξ, r) is convex and continuous on (0,+∞).
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Figure A.1. Profile of the function v obtained by a numerical optimization of problem (A.7),
for the choice of the parameters p = 3, d = 2, r1 = 2, r2 = 40 and ξ = 0.

Proof. Let (ξ, r1, r2) ∈ [0, 1]× R+ × R+, the infimum is actually a minimum by means of the direct method of
the calculus of variations. Such minimum is absolutely continuous on the interval (r1, r2) by Morrey’s inequality
and is unique since Gd(v; (r1, r2)) is strictly convex in v. Let v ∈W 1,p(r1, r2) be a minimizer of (A.7) set

v = min{max(v, ξ), 1}

then Gd(v; (r1, r2)) ≤ Gd(v; (r1, r2)) if v 6= v. As a consequence for every minimizer of (A.7) we have ξ ≤ v ≤ 1.
Similarly setting

v(s) = max{v(t) : r1 ≤ t ≤ s}

we have Gd(v; (r1, r2)) ≤ Gd(v; (r1, r2)) if v 6= v. Hence v is nondecreasing.
Let us now study the monotonicity of qd. To do so let v be the minimizer for (ξ, r1, r2):

(1) Let r2 > r2 and let us extend v by 1 on the interval (r2, r2). We have

qd(ξ, r1, r2) = Gd(v; (r1, r2)) = Gd(v; (r1, r2)) ≥ qd(ξ, r1, r2).

Hence r2 7→ qd is nonincreasing.
(2) Let 0 < r1 < r1 and set ∆ = rd1 − rd1 > 0 and r2 = (rd2 −∆)

1
d < r2. Define the diffeomorphism

φ : (r1, r2) −→ (r1, r2), (A.8)

s 7−→
[
sd −∆

]1/d
.
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Let v be the minimizer of (A.7) and v(s) = v ◦ φ(s). Let us remark that φ′(s) = sd−1/φ(s)d−1, thus it holds

qd(ξ, r1, r2) =

∫ r2

r1

td−1
[
|v′|p + (1− v)2

]
dt =

∫ r2

r1

φ(s)d−1

[
|v′|p

|φ′(s)|p
+ (1− v)2

]
φ(s)′ ds

=

∫ r2

r1

sd−1

[(
1 +

∆

sd −∆

) pd
d

|v′|p + (1− v)2

]
ds ≥ qd(ξ, r1, r2) ≥ qd(ξ, r1, r2).

Therefore r1 7→ qd is nondecreasing.
(3) Let 0 ≤ ξ < ξ ≤ 1 and v the absolutely continuous, nondecreasing minimizer of problem qd(ξ, r1, r2). Then

there exists r ∈ (r1, r2) for which v(r) = ξ. Hence

qd(ξ, r1, r2) ≥ Gd(v; (r, r2)) ≥ qd(ξ, r, r2) ≥ qd(ξ, r1, r2).

Hence, ξ 7→ qd is nonincreasing. Finally, for ξ = 1 consider the constant function v ≡ 1 to get qd(1, r1, r2) = 0.

Indeed, in view of the monotonicity, for every r1 and r2 we have

g(0, r1, r2) ≥ g(0, 0,+∞) = qd∞(0, 0).

Let us show qd∞(0, 0) > 0. As a matter of facts, taken the minimizer v for the problem (2.4), there exists
r ∈ (0,+∞) such that v(r) = 1/2 and we have

qd∞(0, 0) ≥
∫ r

0

td−1
[
|v′|p + (1− v)2

]
dt =

∫ r

0

td−1|v′|p dt+
rd

4 d
.

A direct evaluation gives

min

{∫ r

0

td−1|v′|p dt : v(r) = 0 and v(r) = 1/2

}
=
c

r

and we obtain the estimate

qd∞(0, 0) ≥ c

r
+
rd

4 d
> 0.

Lastly, let us show that for any r the function qd∞(·, r) is convex. Consider two values ξ1, ξ2 ∈ (0, 1) and
the associated minimizers v1, v2 for the respective energy qd∞(·, r). Indeed, for any λ ∈ (0, 1) the function
λv1 + (1− λ)v2 is a competitor for the minimization problem qd∞(λξ1 + (1− λ)ξ2, r), therefore it holds

qd∞(λξ1 + (1− λ)ξ2, r) ≤
∫ ∞
r

td−1
[
|λv1 − (1− λ)v2|p + (1− λv1 + (1− λ)v2)2

]
dt

≤ λqd∞(ξ1, r) + (1− λ)qd∞(ξ2, r).

Thus qd∞(·, r) is continuous in the open interval (0, 1). To show the continuity in 0 let ξ be small and v =
argmin qd∞(ξ, r). Set

h(t) :=


1

1−
√
ξ

(t− ξ), t <
√
ξ,

t, t ≥
√
ξ
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and observe that h ◦ v is a competitor for the problem qd∞(0, r). Then

qd∞(0, r) ≤
∫ ∞
r

td−1
[
|(h ◦ v)′|p + (1− h ◦ v2

]
dt

≤ 1

(1−
√
ξ)p

qd∞(ξ, r) +

∫ ∞
r

td−1
[
(1− h ◦ v)2 − (1− v)2

]
dt.

Let us estimate the second addend in the latter. By the definition of f we have∫ ∞
r

td−1
[
(1− h ◦ v)2 − (1− v)2

]
dt =

∫
{v<
√
ξ}
td−1

[
(1− h ◦ v − v)2(v − h ◦ v)2

]
dt

≤ 4ξ

∫
{v<
√
ξ}
td−1 dt ≤ 4ξ

(1−
√
ξ)2

qd∞(ξ, r).

Since qd∞(·, r) is monotone we have

|qd∞(0, r)− qd∞(ξ, r)| ≤ max

{
1− (1−

√
ξ)p

(1−
√
ξ)p

,
4ξ

(1−
√
ξ)2

}
κ,

which shows that qd∞(·, r) is continuous in 0.

A.3 Proof of Proposition 2.4

We show that

lim inf
ε↓0

f
d

ε,a(m, r) ≥ fda (m)

then equation (2.5) easily follows from Lemma A.2. For m = 0 set ϑ = 0 and u = 1, then (ϑ, u) ∈ Yε,a(0, r) for
any radius r and Eε,a(ϑ, u;Br) = 0 for each ε. Now suppose m > 0 and let ξ ∈ (η, 1). Consider the radially
symmetric and monotone minimizing couple (ϑε, uε) of Lemma A.1 and rξ introduced in equation (A.3). Let
us split the set of integration in the two sets Brξ and Br \Brξ , we obtain

f
d

ε,a(m, r) = Eε,a(ϑε, uε) ≥∫
Br\Brξ

[
εp−d|∇uε|p +

(1− uε)2

εd

]
dx︸ ︷︷ ︸

aε

+

∫
Brξ

(1− uε)2

εd
dx+

∫
Br

uε|ϑε|2

ε
dx︸ ︷︷ ︸

bε

. (A.9)

We deal with each addend separately. First observe that by Cauchy–Schwarz inequality, it holds

m2∫
Br

1
uε

dx
≤
∫
Br

uεϑ
2
ε dx.

Plugging the latter in the term bε of (A.9) we have

bε ≥
∫
Brξ

(1− uε)2

εd
dx+

m2

ε
(∫

Br\Brξ
1
uε

dx+
∫
Brξ

1
uε

dx
)
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taking into account η ≤ uε ≤ ξ in Brξ , ξ ≤ uε ≤ 1 in Br \Brξ and η = a εd+1 we obtain

bε ≥ ωd(1− ξ)2
(rξ
ε

)d
+

m2

ωd
a

(rξ
ε

)d
+ ωd

εrd

ξ

. (A.10)

Since bε ≤ f
d

ε,a(m, r) ≤ C(m) we deduce that rξ/ε belongs to a fixed compact subset K = K(m, ξ) of (0,+∞).
Up to extracting a subsequence, which we do not relabel, we can suppose rξ/ε to converge to some r̂ > 0. Let
us now consider the term aε. Let vε be the radial profile of uε

aε =

∫
Br\Brξ

[
εp−d|∇uε|p +

(1− uε)2

εd

]
dx = (d− 1) ωd

∫ r/ε

rξ/ε

td−1
[
|v′ε|p + (1− vε)2

]
dt.

With the notation introduced in Section A.2 and Lemma A.3 therein we deduce

lim inf
ε↓0

aε ≥ (d− 1)ωd lim inf
ε↓0

qd (ξ; (rξ/ε, r/ε)) ≥ (d− 1)ωd q
d
∞(ξ, r̂),

where qd∞ has been defined in (2.4). Combining inequality (A.10) and the latter we get

lim
ε↓0

f
d

ε,a(m, r) ≥ (d− 1)ωd q
d
∞(ξ, r̂) + (1− ξ)2 ωd r̂

d +
a m2

ωd r̂d
.

Sending ξ to 0 we have, by continuity (Lem. A.3) qd∞(ξ, r̂)→ qd∞(0, r̂). Then taking the infimum in r̂, we obtain

lim inf
ε↓0

f
d

ε,a(m, r) ≥ min
r̂

{
(d− 1)ωd q

d
∞(0, r̂) + ωd r̂

d +
a m2

ωd r̂d

}
.

Again by Lemma A.3 the function qd∞(0, r̂) is nondecreasing in r̂, and qd∞(0, 0) > 0 therefore setting

κ := (d− 1)ωd q
d
∞(0, 0) ≤ fda (m)

we conclude the proof of Proposition 2.4.

A.4 Proof of Proposition 2.5

Let δ > 0, by Lemma A.3 for ε sufficiently small

qd(η; (r∗, r/ε)) ≤ qd∞(0, r∗) + δ.

Let

vδ(t) = argmin
{
Gd
(
v;
(
r∗,

r

ε

))
dt : v (r∗) = η and v

(r
ε

)
= 1
}

and set

uε(t) :=


η for 0 ≤ t ≤ r∗ε,

vδ

(
t

ε

)
for r∗ε ≤ t ≤ r.
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Set ϑε(s) to be constant equal to m
ωd (εr∗)d

on the ball Bεr∗ and zero outside. Indeed, the couple (ϑε, uε(|x|))
belongs to Y ε,a(m, r). That is because uε is greater then η and attains value 1 at the border of Br and∫

Br

ϑε(x) dx =
m

ωd(εr∗)d
ωd(εr∗)

d = m.

Let us show that the couple (ϑε, uε) defined satisfy inequality (2.7). Taking advantage of the radial symmetry
of the functions we get

Eε,a(ϑε, uε) =

∫ r

εr∗

td−1

[
εp+d|u′ε|p +

(1− uε)
εd

]
dt +

(1− η)2

εd
ωd (εr∗)

d +
η

ε

(
m

ωd (εr∗)d

)2

ωd (εr∗)
d.

By simplifying the expression and considering the change of variable s = t
ε in the latter it holds

Eε,a(ϑε, uε) = (d− 1) ωd

∫ r
ε

r∗

sd−1 [|v′δ|p + (1− vδ)] ds+ (1− η)2 ωd r
d
δ +

η

εd+1

m2

ωd rd∗

≤ (d− 1) ωd q
d (η; (r∗, r/ε)) + (1− η)2 ωd r

d
∗ +

η

ε

m2

ωd rd∗
.

Then, by Lemma A.3 for ε sufficiently small we have

Eε,a(ϑε, uε) ≤
am2

ωd rd∗
+ ωd r

d
∗ + (d− 1) ωd q

d
∞(0, r∗) + (d− 1)ωd−1δ = fda (m) + Cδ,

which ends the proof of Proposition 2.5.

A.5 Proof of Proposition 2.6

Propositions 2.4, 2.5 and Lemma A.2 ensure that

fda (m) = lim
ε↓0

f
d

ε,a(m, r) = lim
ε↓0

fdε,a(m, r, r̃) (A.11)

independently of the choices for r and r̃ < r. For the sake of clarity we introduce

T (m, r) :=

{
am2

ωd rd
+ ωd r

d + (d− 1) ωd q
d
∞(0, r)

}
and recall that fda (m) = minr T (m, r) for m > 0 and fda (0) = 0, see (2.3).

Proof. Let us prove the continuity of fda on (0,+∞). For m1,m2 ∈ (0,+∞) and for i = 1, 2 let ri be such that
fda (mi) = T (mi, ri). On one hand comparing with r = 1 it holds

m2
i

ωd−1 rdi
≤ fda (mi) ≤ T (mi, 1) (A.12)

on the other hand analougusly we have

ωd−1 r
d
i ≤ fda (mi) ≤ T (mi, 1). (A.13)
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Consequently ωd−1 r
d
i belongs to the compact set [mi/T (mi, 1), T (mi, 1)]. Now remark that

fda (m1) ≤ T (m1, r2) = fda (m2) + T (m1, r2)− T (m2, r2)

thus

|fda (m1)− fda (m2)| ≤ |T (m1, r2)− T (m2, r2)| ≤ |m2
1 −m2

2|
ωd−1 min{rd1 .rd2}

and taking into account inequality (A.12) we have

|fda (m1)− fda (m2)| ≤ (m1 +m2) max

{
T (m1, 1)

m2
1

,
T (m2, 1)

m2
2

}
|m1 −m2|.

Observing that T (·, 1) is continuous we conclude that fda is continuous on (0,+∞).
Next, we see that fda is non decreasing. Let 0 < m1 < m2 and r > 0. Let (ϑ, u) ∈ Y ε,a(m2, r) such that

Eε,a (ϑ, u;Br) = f
d

ε,a(m2, r). Set ϑ = m1ϑ/m2 and remark that the couple (ϑ, u) belongs to Y ε,a(m1, r).
Therefore we have the following set of inequalities

f
d

ε,a(m1, r) ≤ Eε,a(ϑ, u;Br) = Eε,a

(
m1ϑ

m2
, u;Br

)
< Eε,a (ϑ, u;Br) = f

d

ε,a(m2, r).

Passing to the limit as ε ↓ 0 we obtain

fda (m1) ≤ fda (m2).

Let us now prove the sub-additivity. For a radius r consider the competitors (ϑj , uj) ∈ Y ε,a(mj , r) for j = 1, 2.
Consider the ball B2r+1 centered in the origin and two points x1, x2 such that the balls Br(x1), Br(x2) are
disjoint and contained in B2r+1. Set

ϑ(x) :=


ϑ1(x− x1), x ∈ Br(x1),

ϑ2(x− x2), x ∈ Br(x2),

0, otherwise,

and u(x) :=


u1(x− x1), x ∈ Br(x1),

u2(x− x2), x ∈ Br(x2),

1, otherwise,

and observe that the couple (ϑ, u) belongs to Y (m1 +m2, 2r + 1). Being the balls Br(xj) disjoint we have

f
d

ε,a(m1 +m2, r1 + r2) ≤ Eε,a(ϑ1(x− x1), u1(x− x1);Br(x1)) + Eε,a(ϑ2(x− x2), u2(x− x2);Br(x2))

= f
d

ε,a(m1, r) + fdε,a(m2, r).

Passing to the limit as ε ↓ 0, and recalling that it is independent of the choice of the radius, we get

fda (m1 +m2) ≤ fda (m1) + fda (m2).

We conclude the appendix by showing that
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Lemma A.4. For any sequence ai ↓ 0 it holds

fdai −→ κ1(0,∞)

pointwise.

Proof. We have already shown that fda (m) ≥ κ for m > 0. For m > 0 choose r̂ = (
√
am)1/d, then by definition

it holds

κ ≤ fda (m) ≤ (d− 1)ωd q
d
∞(0, (

√
am)1/d) + ωd

√
am+

√
am

ωd
.

Finally simply recall that (d− 1)ωd q
d
∞(0, 0) = κ and that qd∞(0, ·) is continuous.
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