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ABSTRACT:

Morphological attribute profiles (APs) are among the most effective spatial-spectral methods to perform multilevel image descrip-

tion based on hierarchical tree-based representation. They have been widely applied to the processing and characterization of remote

sensing images, in particular to tackle classification task, in the literature. Recently, a novel extension of APs called FPs has been

proposed by replacing pixel gray-levels with some statistical and geometrical features when forming the output profiles. FPs have

been proved to be more efficient than the standard APs when generated from both inclusion and partition trees. The motivation

of this article is to conduct a comparative study of APs and FPs using different attributes including some novel ones that have not

been used in the literature. We also present our developed library called Broceliande, which proposes efficient implementation

of APs and FPs to perform remote sensing image classification, with various choices of tree structures as well as attributes. We

perform our experiments on two high resolution optical image data sets and provide comparative results of APs and FPs, showing

and confirming their effectiveness to describe and classify remote sensing images.

1. INTRODUCTION

Earth observation has become essential for activities connec-

ted with the environment, whether to understand it or to pre-

serve it. One of the most efficient manners remains the use

of remote sensing imagery. However, due to the increasing

amount of data, we have to find both fastest processing and

relevant results. Among a great number of spatial-spectral

approaches in the literature, morphological attribute profiles

(APs) (Dalla Mura et al., 2010, Pham et al., 2018b) have been

widely used to process and describe remote sensing images in

the literature. The reason relies on their powerful multilevel

modeling of the image content and their efficient implement-

ation via tree representation. In fact, the core idea of APs is

to explore hierarchical information from a sequence of filtered

versions of an image. These images are obtained by the applic-

ation of different filter rules (called attributes) characterizing

the size and shape of objects present in the image. Recently,

a novel extension of APs called feature profiles (FPs) (Pham

et al., 2017a) has been proposed by replacing pixel gray-levels

with the attributes themselves when forming the output profiles.

FPs have been proved to be more efficient than the standard APs

and the authors showed that APs are indeed a part of the gen-

eral FPs, in case that the gray-level is used as attribute to form

the output profiles. A recent paper has investigated the per-

formance of APs and FPs generated from different kinds of tree

structures (min-tree, max-tree, tree of shapes and partition trees

such as α-tree or ω-tree) (Pham et al., 2018a). Another one has

studied the filtering rules (Das et al., 2020) during AP construc-

tion. Nevertheless, tree formation and pruning are not the only

factors that affect the performance of APs and FPs. The choice

of attributes is even more important in most cases since they

decide how the tree should be pruned as well as which output

profiles would be formed.

In this article, our motivation is to conduct a comparative study

of APs and FPs using different attributes to tackle the classi-

fication of optical remote sensing images. Our analysis could

help future AP and FP users to have good selection of attrib-

utes in order to to perform their multilevel characterization and

processing of remote sensing images. In the remainder of this

paper, Section 2 briefly summarizes some backgrounds of hier-

archical representation using APs and FPs; then presents our

developed libraries including TRISKELE and Broceliande as

well as the efficient implementation of some promising attrib-

utes proposed by our libraries. In section 3, we present our

experimental study to perform and compare the performance of

APs and FPs using different types of attributes on two remote

sensing data sets including one panchromatic image acquired

by the IKONOS satellite at 1-m resolution, and one large-scale

multispectral image acquired by the Pleiades sensor at 2-m res-

olution. Section 4 finally concludes the paper and discusses

some future works.

2. METHOD

2.1 Hierarchical representation with APs and FPs

Component trees are structured multilevel representations of

the components/regions of an image. They are usually divided

into two categories that are both explored in this research: inclu-

sion trees and partition trees. Among the inclusion trees, we use

the well-established max-tree and min-tree, and the newly pro-

posed median-tree, which aims to approximate a tree-of-shapes

through a linear time complexity algorithm. Hierarchical rep-

resentation is particularly suited for handling remote sensing

images, as attested by the vast research on this field. For in-

stance, component trees are the basis for computing the mor-

phological attribute profiles (APs), which have been success-

fully applied to the classification of high resolution remote sens-

ing images (Dalla Mura et al., 2010, Pham et al., 2018b). For a

reminder, APs are multilevel image description tools obtained

by successively applying a set of morphological attribute filters

(AFs). Given a grayscale image X : E → Z, E ⊆ Z
2, the



standard generation of APs on X is achieved by applying a se-

quence of AFs {φk}
K
k=1 based on a tree model (which could be

a min-tree, max-tree, tree of shapes, median-tree or other parti-

tion trees). The AP descriptor of each pixel p in the definition

domain of X is written as:

AP (p) =
{

X(p),
[

φ1(X)
]

(p),
[

φ2(X)
]

(p) . . . ,
[

φK(X)
]

(p)
}

(1)

where φk(X) is the filtered image obtained by applying the at-

tribute filtering φ with regard to the threshold k.

Pruning a tree to take the node value rather than the pixels it

refers to provides an AP. When we perform the same recon-

struction, not with level depending on the structure of the tree,

but with another attribute value we form a feature profile (FP)

(Pham et al., 2017a). Specifically, for each pixel p, AP of p

obtained by an arbitrary AF φk is the gray value X ′(p), where

X ′ = φk(X) is the image reconstructed from the filtered tree

(cf. Eq (1)). Now, let Γp(X) be the connected component (CC)

of X containing p and let f be a feature or an attribute, i.e. a

function admitting a CC and outputting a real value, to be ex-

tracted. The FP of p will be f [Γp(X
′)]. More formally, the

generation of FPs are defined as follows:

FPf (p) =
{

X(p), f
[

Γp(φ1(X))
]

, . . . , f
[

Γp(φK(X))
]

}

(2)

Unlike in AP technique where only one profile is produced from

a pruned tree, several features can be simultaneously extracted

and stacked to form the final FP. For more information about

the extraction of APs and FPs, readers are invited to read their

related papers (Dalla Mura et al., 2010, Pham et al., 2017a).

2.2 Developed tools

We have developed tools to enable the hierarchical and multi-

level image representation and processing: TRISKELE1 (Mer-

ciol, al., 2017) for tree building and pruning, Broceliande2

(Merciol, al., 2018) using TRISKELE and Shark Random

Forest (Igel et al., 2008) for image classification. The afore-

mentioned component trees are efficiently implemented in

TRISKELE and can be used to build real-time user interfaces.

All attributes managed by Broceliande can be used both for tree

pruning and for image reconstruction from a pruned tree.

Since the first utilization of APs, the standard attributes ex-

ploited in the filtering step have been area, moment of inertia

and standard deviation (Dalla Mura et al., 2010, Pham et al.,

2017b, Pham et al., 2018b). Those attributes are suitable for

the processing of large-scale high resolution (HR) images since

they can be computed in one pass over the nodes of a compon-

ent tree. Keeping the software up-to-date requires adding the

attributes according to user requests. Therefore, some attrib-

utes including perimeter, compactness, and rectangularity have

been recently added to our library. All of these attributes are

computed in linear time on a component tree.

2.3 Efficient implementation

The added attributes are introduced with the TRISKELE con-

straints. To maintain an efficient implementation, all algorithms

1 https://gitlab.inria.fr/obelix/triskele/
2 https://gitlab.inria.fr/obelix/broceliande/

integrated into the software have linear or quasi-linear time

complexity. This subsection explains how we can achieve this

goal. It starts with a brief presentation of the hidden data struc-

ture with compact and linear information that help us to design

attribute algorithms. First, with the moment of inertia attribute,

we illustrate the bottom-up approach for each attribute process

in order to limit access by only one read and at most two writes

per element. Then, with the perimeter attribute, we explain how

to take advantage of the hierarchical structure to reduce time by

taking into account neighborhood pixels. Lastly, with the stand-

ard deviation attribute, we present another way to obtain faster

results close to the original definition.

2.3.1 Tree and attributes implementation First of all, we

use the fundamental properties of hierarchical data representa-

tion. Consider a gray scale image (left side of Figure 1). This

image is a matrix of pixels. We can build different types of trees

(min-tree, max-tree, . . . ) to manage the image. We choose to

build a max-tree (right side of figure 1).

This tree is a hierarchical representation. All pixels have parent.

These parents are called nodes. All nodes (except the root) also

have a parent node. This defines an inclusion tree. Because we

choose a max-tree, the nodes are organized from light gray (low

level of the tree) to dark gray (high level). All nodes can have

properties. We represent them with colored bullets in Figure 1.

image nodes

line1
line2

lineN
level1
level2

levelN
root

Figure 1. Hierarchical representation of image using a
max-tree

TRISKELE uses a compact representation of this data. The tree

is defined only with an array of parents (see Figure 2). All pixels

and nodes are associated with a unique index. The indexes un-

der “pixel cardinality” refer to the pixels from the first row to

the last row of the image. Indexes with higher “cardinality of

pixels”, refer to tree nodes. Thanks to this building process,

all nodes are sorted according to their level. So the light-gray

nodes are on the right and the darker-gray ones are on the left.

image nodes

line1 line2 lineN... level1 level2 levelN...

#pixels root

parents

attributes

0

Figure 2. Tree implemented with array

Attributes are only defined for nodes. The attributes can be

simple scalar (surface, perimeter, gray value) or multivalued

(centroid, bounding box), and they are also stored in another

array. The position of an attribute in an array gives the position

of the associated node. Here are our efficient calculations of

new attributes.

2.3.2 MoI computation The moment of inertia is a mor-

phological attribute. It depends on the centroid distance among

the nodes and the child nodes.



We first compute barycenter with

Gj =

∑

i
niXj,i

∑

ni

, i ∈ Children, j ∈ {1, 2} (3)

Then we computed the moment of inertia

MoIt =

√

∑

j

∑

i
ni(Gj,i −Gj, t)2

∑

ni

, i ∈ Children, j ∈ {1, 2}

(4)

The issue is that a strict application of this formula involves the

processing of nodes from the leaves to the root and, then, it goes

back each time to retrieve children values. The computation

time impact is significant. The key is therefore to consider each

item only once and store its contribution on the fly. The con-

sequence is only one read and only one write per item (pixels

and nodes). The complexity is to be O(n).

Because the moment of inertia is used with a random forest,

only trends are needed. So we can save time by forgetting the

square root step. In that case, the Algorithm 1 actually gives

MoI2.

Algorithm 1 Compute MoI2

for all c ∈ nodes do
MoIc ← 0

end for
for all c ∈ pixels do

p← parent(c)
d←

∑

j
(Gj,c −Gj, p)2

MoIp ←MoIp + d
end for
for all c ∈ nodes do

MoIc ←
MoIc
Area2

c

p← parent(c)
d←MoIp +

∑

j
(Gj,c −Gj, p)2Areac

end for

We assume that the average position of each node (centroid) is

mainly stored in G. All attribute algorithms in TRISKELE are

designed with the same approach (bottom up).

2.3.3 Perimeter computation The perimeter attribute is a

good example to see how to take into account the array data

structure to implement the tree structure. The perimeter is the

set of pixels that define the border of a node. It depends on the

connectivity. Figure 3 illustrates that the higher connectivity

(C8) increases the number of pixels involved in perimeter. Note

that, even if two areas share the same border, the perimeter de-

pends on their convex (or concave) sides. The perimeter of an

embedded node is always shorter than the enclosing node.

(a) C4 connectivity (b) C8 connectivity

Figure 3. Connectivity impact on perimeter

A simple approach to finding the perimeter could be to create a

parent map. In this case, we replace the gray level of each pixel

with the index value of its parent. We must consider in this

map all the pairs of neighbors (depending on the connectivity)

to be sure not to miss any pixel border. On the other hand, we

have to be sure not to consider a pixel twice to play this role.

This simple approach requires an additional map. Its size is

the same as the number of pixels in the original image. With

huge images (Giga pixels), an index of parent needs at least 32

bits. The complexity of such algorithm is also inappropriate for

handling huge images.

Our approach starts with morphological observations. Consider

a simple image (a) with only 3 nodes in Figure 4. We assume

it is a gray-scale image, but colored here to highlight the nodes.

We build an inclusion tree (e.g. max-tree). The orange pixels

have the max value, the green ones have the min values and the

blue ones in the middle. We also consider some no-data pixels.

(a) Image (b) Tree

Figure 4. Perimeter data structure

The hierarchical representation is depicted in (b) in the same

figure. Figure 5 represents the pixel borders with C4 connectiv-

ity. Pay attention on the fact when a pixel becomes a perimeter

pixel in a node, and when it loses this property in a parent

node. We now develop these different cases, represented by

6 numbered pixels from the figure:

1 is orange border with blue node but no longer in parent

nodes.

2 is orange border with blue node and blue border with

green node, but no longer in parent nodes.

3 is border everywhere with no-data.

4 is blue border with green node but no longer in parent

nodes.

5 is border with frame image or no-data everywhere

since it appear in blue node.

6 is border with frame image or no-data everywhere

since it appears in green node.

⑥

④

⑤

①
②③

Figure 5. Pixel borders with C4 connectivity

Each pixel joins the tree at a base node. At this moment, it

could be surrounded by the same value in flat area and never be

considered as a border. Or it may be close to another value. If



Algorithm 2 increasePerimeter (from, to)

for c← from to to do
perimeter(c)← perimeter(c) + 1
c← parent(c)

end for

the value belongs to an undernode (near the leaves), it should

simply wait to be joined by this neighbor and never be a border.

If the value belongs to a uppernode (close to the root), it will

play the role of border until it joins this node. So, the general

approach is for each pixel, we consider the higher ancestor of

all its neighbors. The algorithm 3 is quasi-linear. Time per pixel

depends on efficient way to find ancestor.

Algorithm 3 Compute perimeter

for all c ∈ nodes do
perimeter(c)← 0

end for
for all pi ∈ data− pixels do

if isFrameImage(pi) then
increasePerimeter(pp, root)

else
pp← parent(pi)
max← pp
npSet← ∅
for all n ∈ neighbors− C4(pi) do

if isNoData(n) then
max← root

else
npSet← npSet ∪ parent(n)

end if
if max = root then

increasePerimeter(pp, root)
else

sort(npSet)
for all np ∈ npSet do

max← ancestor(max, np)
end for
increasePerimeter(pp,max)

end if
end for

end if
end for

The properties of the array ‘parents’, described in the previous

section, help us to implement an efficient method to find ancest-

ors. We just have to compare the index as in Algorithm 4.

Algorithm 4 ancestor (a, b)

if a = root or b = root then
return root

else
loop

if a = b then
return root

end if
while a ≤ b do

a← parent(a)
end while
while b ≤ a do

b← parent(b)
end while

end loop
end if

The Table 1 gives execution time obtained with the remote sens-

ing image described in the next section. Except for the peri-

meter attribute, the 13 megapixels of the image are processed

in around 10 seconds (depending of attributes). So the through-

put is around 1 megapixel/ second. This table and the Figure 6

are produced with the command in our library:

channelGenerator src.tif dst.tif -b 3 -f

→֒ <FeatureProfileName > -t Med -a

→֒ Area --thresholds 10 ,100 ,5000 --

→֒ auto --time

2.3.4 Alternative SD To keep this efficiency we also pro-

pose alternative production of the standard deviation attribute.

For each node, the standard deviation depends on its mean gray

value (X).

sd
2 =

1

N

∑

(Xi −X)2 (5)

The computation of the mean gray values takes time (see Table

1). If we consider the weight of a node, it also depends on the

gray value of all pixels included in this node. The weight is

the maximum value (resp. minimum value) of all pixels in a

min-tree (resp. max-tree). If we consider median-tree with well

balanced values, the weight (distance to the median) could be

close to the average of gray values the one area. The attribute

becomes:

sdw
2 =

1

N

∑

(Xi −W )2 (6)

where W is the gray weight of the node accord the type of

tree. As you see with the visual representation in Figure 6, the

SDW results are close to the SD results. We have not yet com-

pared deeply these two approaches, but we suggest it as future

works. That is the reason why we implemented this alternative

algorithm, witch saves time and memory of mean gray value

evaluation.

AP Area

Rectangularity SD

SDW MoI

Perimeter Compactness

Figure 6. Featues profile with the Podgorica data Figure 8
using fake color (thresholds 10, 100, 5000 as RGB).

3. EXPERIMENTAL STUDY

3.1 Data sets

The first data set is a panchromatic image of size 628 × 700
pixels acquired by the IKONOS Earth imaging satellite with 1-

m resolution in Reykjavik, Iceland. This data consists of six



Table 1. Computation time according to the feature profiles with remote sensing image in Figure 8 (run on AMD Ryzen
Threadripper 1950X 16-Core Processor, 64GB ram).

build tree Area perimeter BoundingBox mean xyz mean gray the function filtering

Attribut Profile 8.73 s 0.53 s n/a 1.99 s
Area 8.73 s 0.53 s done 2.15 s

Rectangularity 8.73 s 0.53 s 1.70 s 0.06 s 2.16 s
SD 8.73 s 0.53 s 1.04 s 1.14 s 2.17 s

SDW 8.73 s 0.53 s 0.88 s 2.17 s
MoI 8.73 s 0.53 s 1.30 s 1.66 s 2.18 s

Perimeter 8.73 s 0.53 s 55.99 s done 2.14 s
Compactness 8.73 s 0.53 s 56.18 s 0.046 s 1.67 s

thematic classes including residential, soil, shadow, commer-

cial, highway and road. The image was provided with a train-

ing/test split including 22741 training samples and 98726 test

samples. The input image together with its thematic ground

truth map for testing and training sets are shown in Fig. 7.

Residential

Thematic classes:

Soil

Shadow

Commercial

Highway

Road

Figure 7. The Reykjavik data of size 628× 700 pixels (left to
right: panchromatic, thematic ground truth with 6 classes and

training set)

Figure 8. The Podgorica data of size 11948× 11007 pixels
represented in a false color composition: (Near infrered, Red

and Green) as RGB.

The second data set is a multispectral image composed of

107, 531, 923 pixels acquired by the Pleiades satellite in

Podgorica, Montenegro. It is composed of four spectral bands

(Blue, Green, Red and Near-Infrared) at 2-m spatial resolution.

This image has been partially annotated (Faucqueur et al., 2019)

and includes a single class of interest: the small wood features

(SWF). To perform classification on this data, a subset of back-

ground pixels, i.e. pixels that do not belong to the SWF class,

was selected automatically. In total, the ground truth is com-

posed of 417, 285 SWF sample pixels and 17, 211 background

pixels. Then, 16, 000 ground truth pixels were randomly se-

lected for training a random forest classifier and the remain-

ing pixels were used for testing. Figure 8 presents this image

in false color composition: (Near infrered, Red and Green) as

RGB.

3.2 Evaluation method

Recently, area attribute has been used for the classification of

small woody features (Merciol et al., 2019). In this study, we

will use a similar data, the high resolution Podgorica image,

plus the Reykjavik dataset to compare the different attributes

with the FPs. The evaluation on the Reykjavik data is based on

the common approach used in the literature: a FP is computed

on the data, the feature profiles of the training pixels are used to

train a random forest and, then, the classification is performed

on the entire ground truth. Regarding the classification of the

small woody features, here is our evaluation process:

• We start by checking the consistency of the classification

samples. The set of reference values is separated: (A)
for training and (B) for prediction. We eliminate negat-

ive predictions in (B). They are due to an imprecision of

the contours of the reference labeling. This provides us a

cleaned subset called (C).

• We compute the accuracy for the SWF class of each AP

and FP pair. The set (C) is randomly separated: (D) for

the training and (E) for prediction. The quality of predic-

tion corresponds to the accuracy between (E) predicted

and the reference.

• We use the same input pixels set (E) for all tests. Only the

attributes for the cut and for output FPs are different from

one test to another.

Thanks to the partnership (IRISA, SIRS-CLS), we drive our

study with the real industrial images. The result will be used

to improve actual production. Specific hardware requirement

is not necessary since the accuracy depends only on the choice

of attributes. We provide computation time only to validate the

real-time property of our approach.

3.3 Experimental setup

In this section, we explore APs and FPs for the classification

of the remote sensing data described in section 3.1. From each

image, we compute profiles using the following set of attributes:

A = {area, compactness (Li et al., 2013), moment of inertia (of

a region) (Li et al., 2013), rectangularity (Rosin, 2003), square

of the standard deviation of pixel gray levels (Kumar, Gupta,

2012), perimeter}.

For most pairs (A1, A2) of attributes in the set A, we computed

a FP using A1 as a filtering rule and A2 for projection. Our

goals are (a) to compare the overall accuracy of FPs and APs



in the classification of HR images and (b) to investigate the ad-

equacy of each pair of attributes in this context.

The threshold values adopted in the filtering stage were selected

manually. For the area filtering, we considered the same set of

threshold values used in the computation of FPs in (Pham et

al., 2017a) for the Pavia data, and the threshold values used in

(Merciol et al., 2019) for the Podgorica data:

λa,Rey = {25, 100, 500, 1000, 5000, 10000,

20000, 50000, 100000, 150000}

λa,Pod = {1000, 2500, 5000, 7500}

For the perimeter attribute, we adopted the same threshold val-

ues used for area. Then, for the scale invariant attributes (mo-

ment of inertia, standard deviation and compactness), we con-

sidered the following set of thresholds commonly used in the

literature:

λi = λs = λc = {0.2, 0.3, 0.4, 0.5}

The random forests trained on the Reykjavik and Podgorica

data are composed of 100 and 64 trees, respectively. The ex-

periments were performed on a machine with Intel Xeon Gold

6136 CPU, 3.00GHz and 263 GB of memory.

3.4 Results and discussion

Tables 2 and 3 present the classification scores and execution

times for the Reykjavik and the Podgorica data, respectively.

In Table 2, we present the overall accuracy (OA), the average

accuracy (AA) over all classes, and the kappa coefficient (κ)

of the classification of the Reyjavik data using random forests.

We also present the learning (train) and prediction times using

this approach. Our baseline is the classification based solely on

the panchromatic values (Pan) of this data. As mentioned pre-

viously, we evaluate the FPs based on different combinations

of attributes in the filtering and projection steps. We can see

that all tested APs and FPs outperform the baseline approach.

In most cases, except for the FPs based on the ‘moment of in-

ertia’ filtering, using other attributes for projection (instead of

gray values) provides significant improvements. This outcome

has already been discussed in (Pham et al., 2018a) with respect

to the attributes area, moment of inertia and standard deviation.

Here, we show that this is also the case for rectangularity, peri-

meter and compactness. For example, the FP computed using

the compactness attribute both for filtering and for projection

outperforms the compactness AP by 7.7%, 13.62% and 10.85%
in terms of OA, AA and κ, respectively.

Regarding our evaluation on the Podgorica data, our two

baselines are the classification based only on the spectral data

(composed of four spectral bands), and on the spectral inform-

ation concatenated to the NDVI channel and to the Sobel gradi-

ent of each band. For each method, we show in Table 3 the

precision and recall with respect to the SWF class. While that

including the NDVI and Sobel bands provides little improve-

ment in recall, using APs and FPs improves the recall by up to

4.66%. Similar to the Reykjavik data, the highest scores are

achieved using the FPs obtained with area and perimeter filter-

ing. On the other hand, FPs with ‘standard deviation’ filtering

does not give as good results on this data when compared to

Reykjavik. The later may be due to the choice of threshold val-

ues, which is left for future research.

Table 2. Scores and execution times of the classification of the
Reykjavik data using APs and FPs.

Projection OA (%) AA (%) κ Train Prediction

Pan 62.53 52.45 0.5143 1s 1.32s

FPs with area filtering (21 dimensions)

Gray values (AP) 80.68 76.5 0.7559 1.45s 1.87s
Area 84.54 80.2 0.8038 1.53s 1.79s
Rectangularity 82.33 79.25 0.777 1.54s 1.75s
Standard deviation 83.19 78.44 0.787 1.68s 1.94s
Moment of inertia 80.3 77.88 0.7524 1.52s 2.11s
Perimeter 82.22 78.9 0.7754 1.55s 1.86s
Compactness 82.69 78.9 0.7809 1.50s 1.84s

FPs with ‘moment of inertia’ filtering (9 dimensions)

Gray values (AP) 64.94 55.83 0.5481 0.75s 1.76s
Area 64.6 55.38 0.5435 0.67s 1.7s
Rectangularity 64.83 55.73 0.5466 0.74s 1.82s
Standard deviation 64.92 55.73 0.5474 0.78s 1.76s
Moment of inertia 64.67 55.55 0.5445 0.76s 1.72s
Perimeter 64.59 55.39 0.5436 0.84s 1.79s
Compactness 64.7 55.58 0.5451 1.31s 1.9s

FPs with ‘standard deviation’ filtering (9 dimensions)

Gray values (AP) 74.37 67.95 0.6725 0.92s 1.77s
Area 74.37 67.96 0.6726 0.95s 1.76s
Rectangularity 74.38 67.96 0.6726 0.95s 1.75s
Standard deviation 74.26 67.92 0.6712 0.96s 1.87s
Moment of inertia 74.33 68.03 0.6722 0.91s 1.80s
Perimeter 74.29 68.02 0.6717 0.91s 1.84s
Compactness 74.27 67.92 0.6715 0.96s 1.81s

FPs with perimeter filtering (21 dimensions)

Gray values (AP) 78.36 73.88 0.727 1.40s 2.02s
Area 79.19 76.42 0.7377 1.38s 1.91s
Rectangularity 81.48 78.25 0.7664 1.41s 2.02
Standard deviation 81.31 77.1 0.7641 1.35s 1.97
Moment of inertia 78.67 76.39 0.7323 1.38s 2.12
Perimeter 79.47 76.96 0.742 1.30s 1.93s
Compactness 80.07 77.24 0.7492 1.45s 1.96s

FPs with compactness filtering (9 dimensions)

Gray values (AP) 64.31 55.46 0.5407 1.29s 2.20s
Area 69.75 68.22 0.6231 1.66s 2.59s
Rectangularity 70.8 68.69 0.6355 1.83s 2.85s
Standard deviation 74.05 70.83 0.6742 1.73s 2.68s
Moment of inertia 73.37 69.92 0.6647 1.12s 2.98s
Perimeter 70.91 68.94 0.6373 1.57s 2.53s
Compactness 72.01 69.06 0.6492 1.6s 2.57s

4. CONCLUSION AND FUTURE WORKS

We have conducted a comparative study of attribute profiles and

features profiles using different attributes (from which some

new ones have been proposed) applied to remote sensing im-

age classification task. Results obtained on both 1-m panchro-

matic Reykjavik image (IKONOS sensor) and 2-m multispec-

tral Podgorica image (Pleiades sensor) have confirmed the ef-

fectiveness of both APs and in particular FPs in terms of classi-

fication performance as well as computation time. As a conclu-

sion, FPs are more flexible than APs with their several output

options. The choice of attribute for tree pruning plays a cru-

cial role in such an approach. Area attribute has been proved to

be the best one in our work as well as in several literature stud-

ies, while the newly proposed perimeter and compactness could

provide other alternative options. All experiments have been



Table 3. Scores and execution times of the SWF classification
of the Podgorica data using APs and FPs.

Projection Precision (%) Recall (%) Train Prediction

Spectral 99.93 87.94 0.95s 7’38s
Spectral + NDVI

99.93 88.47 1.32s 8’
+ Sobel

FPs with area filtering (30 dimensions)

Gray values (AP) 99.98 93.13 1.63s 7’17s
Area 99.98 92.65 1.91s 7’19s
Rectangularity 99.98 92.82 1.86s 7’17s
Standard deviation 99.99 92.54 2.13s 7’30s
Moment of inertia 99.98 92.01 1.85s 7’22s
Perimeter 99.98 92.47 1.79s 7’9s
Compactness 99.98 92.70 1.81s 6’52s

FPs with ‘moment of inertia’ filtering (30 dimensions)

Gray values (AP) 99.94 88.51 1s 10’3s
Area 99.94 88.15 1.61s 9’26s
Rectangularity 99.94 88.43 1.66s 9’16s
Standard deviation 99.94 88.38 0.99s 8’51s
Moment of inertia 99.94 88.51 0.87s 8’13s
Perimeter 99.94 88.18 1.09s 8’32s
Compactness 99.94 88.24 1.26s 8’34s

FPs with ‘standard deviation’ filtering (30 dimensions)

Gray values (AP) 99.94 88.35 1.4s 9’45s
Area 99.94 88.35 1.36s 9’19s
Rectangularity 99.94 88.35 0.97s 8’45s
Standard deviation 99.94 88.35 1.48s 10’7s
Moment of inertia 99.94 88.35 0.98s 9’20s
Perimeter 99.94 88.35 0.99s 8’23s
Compactness 99.94 88.35 1.62s 8’22s

FPs with perimeter filtering (30 dimensions)

Gray values (AP) 99.98 93.13 1.60s 6’46s
Area 99.99 92.78 2.02s 7’13s
Rectangularity 99.99 92.96 1.88s 7’54s
Standard deviation 99.99 92.57 1.87s 7’2s
Moment of inertia 99.98 92.21 1.76s 7’10s
Perimeter 99.98 92.25 1.92s 7’21s
Compactness 99.98 92.63 1.86s 6’53s

FPs with compactness filtering (30 dimensions)

Gray values (AP) 99.94 88.39 2.23s 7’57s
Area 99.95 88.52 2.09s 8’12s
Rectangularity 99.96 88.84 2.35s 8’12s
Standard deviation 99.95 88.87 2.51s 8’21s
Moment of inertia 99.94 88.31 2.34s 8’37s
Perimeter 99.96 89.5 2.17s 8’12s
Compactness 99.96 89.11 2.33s 8’16s

conducted using our two libraries, TRISKELE and Broceliande,

which are publicly available for the research community.

As mentioned in Section 2.3.4, our libraries include both SDW

and SD as options to compute the standard deviation. Since

the computation of SDW is much more efficient than SD, one

of our future works could be to conduct a deep comparative

study on their qualitative performance to determine if SDW

could permanently replace SD in future use of this attribute.

Another work is to integrate the APs and FPs without thresholds

(threshold-free) into the libraries as well as make them available

to other types of remote sensing data such as time series, Radar

and Lidar data.
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