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Abstract—This paper faces the problem of denoising com-
pressed images, obtained through a quantization in a known ba-
sis. The denoising is formulated as a variational inverse problem
regularized by total variation, the emphasis being placed on the
data-fidelity term which measures the distance between the noisy
observation and the reconstruction. The paper introduces two
new loss functions to jointly denoise and dequantize the corrupted
image, which fully exploit the knowledge about the compression
process, i.e., the transform and the quantization steps. Several
numerical experiments demonstrate the effectiveness of the pro-
posed loss functions and compare their performance with two
more classical ones.

Index Terms—Image denoising, Image decompression, Com-
pression artifacts, Bayesian denoising

I. INTRODUCTION

Denoising is an ubiquitous problem in image processing,

for which many effective and computationnally efficient al-

gorithms have been proposed in the last decades. Current

state-of-the-art denoising methods [1], [2] produce impressive

results for white Gaussian noise, both quantitatively and per-

ceptively.

Yet, most of the corrupted images from the real world have

been compressed during the acquisition process, changing the

nature of the “noise”. For instance, a satellite image needs

to be compressed on-board due to transmission constraints,

while the denoising can only be done on the ground after

the compression. In another context, a posteriori denoising

of compressed JPEG photographs or medical images is a

common problem in computational photography or medical

imaging.

While many recent works considered potentially non-

Gaussian noise [3], [4], [5], [6], denoising compressed images

has received little interest in the literature. One should mention

several works aiming to reduce the compression artifacts [7],

[8], [9], but those techniques were more focused on the

compression distortion than on the noise. In this paper instead,

we investigate a technique to jointly denoise and uncompress

an image, i.e., try to reduce both the compression artifacts and

the effect of random noise.

We choose the generic formulation of inverse problems,

which consists in minimizing a data-fidelity term defined

by some loss function, and a regularization term which in-

corporates some a priori information about the image. The

contribution is two-fold: first, we present two new data-fitting

functionals specifically tailored to this problem, one being the

maximum likelihood already used in a compressed sensing

problem in [10], [11]. Second, we compare their denoising

performance with two other data-fitting terms: least-square

and ℓ1-norm [3]. For the regularizer, we choose the classical

smoothed total variation (TV) [12], [13]. Even though we are

aware this is not state of the art anymore [14], [15], it will

allows us to compare the different loss functions in an easy

and well controlled setting.

The generic formulation is presented in Section II, the

four methods are exposed in Section III and the algorithmic

details are gathered in Section IV. Numerical experiments on

synthetic noisy images simulating real JPEG and JPEG2000

compression are finally presented in Section V, comparing the

different techniques under different noise levels and compres-

sion rates.

II. PROBLEM FORMULATION

We will focus here on compressed images, obtained by

quantizing the coefficients in some known basis. This includes

the two very popular JPEG and JPEG2000 standards, corre-

sponding respectively to the block discrete cosine transform

(DCT) and the discrete wavelet transform (DWT). Denote by

W such an orthonormal transformation, and WT = W−1 its

inverse. Denote by Qτ a scalar quantizer: Qτ (u) = τ
[
u
τ

]
,

which can be extended to a full image with varying quantiza-

tion step.

We will consider here the following model of degradation:

the image is first corrupted by a zero-mean, white Gaussian

noise with variance σ2, and then compressed. The observed

corrupted image y can thus be expressed as a function of the

original image x0 by:

y = WTQ(W (x0 + b)), (1)

where b represents the noise.
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We will adopt the highly classical framework of TV denois-

ing, by means of the smoothed total variation defined by

TVµ(x) =
∑

p

φµ(‖(Dx)p‖), (2)

where p denotes a given pixel, D is a finite difference operator,

‖.‖ denotes the Euclidean norm in R
2, µ > 0 is some fixed

parameter and φµ is the Huber function:

φµ(t) =

{

|t| − µ
2

if |t| ≥ µ,
t2

2µ otherwise.

Let f denote our data-fidelity term (which will be defined

later), the denoising problem writes:

x∗ = argmin
x

f(x) + λTVµ(x), (3)

where λ > 0 controls the strength of the regularization.

III. DATA-FIDELITY TERMS

We will consider four different data-fidelity terms.

A. Maximum likelihood

The most standard way of measuring the data-fidelity is

to use the negative log-likelihood, which is available in our

setting as remarked by Zymnis et al. [10]. Indeed, let us first

remark that the model can be rewritten

Wy = Qτ (Wx0 + c), (4)

where c = Wb is also a white Gaussian noise with variance
σ2 (W is orthonormal). Then, the conditional probability of
any observed coefficient (Wy)i writes

p((Wy)i|(Wx0)i)

= p
(

(Wx0)i + ci ∈
[

(Wy)i −
τ

2
, (Wy)i +

τ

2

])

= φ

(

(Wy)i − (Wx0)i + τ/2

σ

)

− φ

(

(Wy)i − (Wx0)i − τ/2

σ

)

where φ is the cumulative distribution function of the normal-

ized Gaussian N (0, 1). Our data-fidelity term finally writes

fml(x) = −
∑

i

log p((Wy)i|(Wx)i). (5)

B. Squared ℓ2-norm

The most naive approach neglects the compression steps,

and only assumes Gaussian noise, leading to a squared ℓ2-

norm. To be able to efficiently compare the different data-fit

terms, we will use the same trick as in [10]: we assume that

the total error caused by noise and quantization is Gaussian

with variance σ̃2 = σ2 + τ2/12, which leads to

fls(x) =
1

2σ̃2
‖x− y‖2

2
. (6)

C. ℓ1-norm

Another popular approach takes into account the compres-

sion, and the fact that this step removes most of the noise.

Indeed, after compression, only few coefficients have been

moved by the noise, which can be seen as sparse “outliers”.

Exploiting this sparsity can be done through a ℓ1 data-fidelity

term as in [16]. Again, adopting a Bayesian perspective

amounts to defining a constant, which guarantees that the data

fit will be approximately of the same order of magnitude

than the others. The constant proposed below ensures that

the variance of the corresponding Laplace prior equals the

variance σ̃2 of the least-square term fls:

fℓ1(x) =

√
2

σ̃
‖Wx−Wy‖

1
. (7)

D. Soft-thresholding

A similar but slightly refined technique consists in using

the same sparsity prior, while at the same time allowing

non-outlier coefficients to move freely inside the quantization

interval as in [7], [8]. More precisely, let us rewrite the total

error in the transformed domain as an “outlier” term caused

by the noise and a “residue” caused by the compression:

E = Wy −Wx0 = Wy −Q(Wx0)
︸ ︷︷ ︸

outlier

+Q(Wx0)−Wx0
︸ ︷︷ ︸

residue

.

We propose to minimize the ℓ1-norm of the “outlier” term,

while constraining the residue to lie inside the quantization

interval [−τ/2, τ/2]. This is exactly equivalent to minimizing

the following problem:

fst(x) = C
∥
∥ST τ

2
(Wx−Wy)

∥
∥
1
, (8)

where STγ(t) = sign(t)(|t| − γ)+ denotes the (possibly

component-wise) soft-thresholding operator. To keep the same

order of magnitude as before, constant C should be chosen

so that fst is (up to an additive constant) the negative log-

likelihood of the corresponding probability distribution with

the same variance σ̃2 as for fls. Here the corresponding prior

distribution is a “clipped Laplace” distribution with density:

fγ,b(x) =
1

2(γ + b)
e−

(x−γ)+
b . (9)

Its variance is:

varγ,b =
2b3 + 2γb2 + γ2b+ γ3/3

γ + b
. (10)

We easily check that var0,b = 2b2 (Laplace distribution) and

varγ,0 = γ2/3 (uniform distribution). Imposing varγ,b = σ̃2

as before would require solving a third-order polynomial

equation. We propose instead to keep the same constant as

for fℓ1: C =
√
2

σ̃ .

IV. OPTIMIZATION

A. A proximal gradient algorithm

We will solve Problem (3) with a forward-backward algo-

rithm [17], also known as the iterative shrinkage-thresholding

algorithm (ISTA) [18]. To this end, we only need the gradient



of the smooth term (based on TV), and the proximity operator

of the non-smooth one, defined for any convex function f by

proxf x = argmin
u

1

2
‖x− u‖2 + f(u). (11)

We will use a constant step-size, controlled by an upper bound

on the Lipschitz constant of the smooth term gradient.

Note that several alternatives are available to accelerate this

scheme, e.g., by using acceleration a la Nesterov [19], or

adapted line-search strategies. But the aim of the paper is

primarily to compare different functionals, thus using a basic

but monotonically decreasing algorithm will help us to achieve

fair comparisons.

Deriving the gradient or proximal operator of most of the

functionals is straightforward, we simply detail the computa-

tions for fml and fst in the following subsections.

B. Gradient of fml

The gradient of fml is given by ∇fml(x) = W−1g(Wx −
Wy), with the function g given by [10]:

g(z)i =

exp

(

− (zi + τ/2)2

2

)

− exp

(

− (zi − τ/2)2

2

)

σ

∫ zi+τ/2

zi−τ/2

e
−t2

2 dt

.

(12)

The corresponding Lipschitz constant equals 1 [10].

C. Proximal operator of the soft-thresholding

Since W is an orthonormal basis, we have

proxµfst
(x) = y +W−1 proxµ‖.‖1◦ST τ

2

(Wx−Wy).

We thus only need the proximal operator of the l1-norm of

the soft-thresholding. Since it is separable, we only need to

compute it in dimension 1. We easily get for any t ∈ R (see

for instance [20]):

proxµ‖.‖1◦ST τ
2

(t) =






t if |t| ≤ τ
2

sign(t) τ
2

if τ
2
≤ |t| ≤ µ+ τ

2

sign(t)(|x| − µ) if |t| ≥ µ+ τ
2

(13)

V. NUMERICAL EXPERIMENTS

We will compare the performance of the four data-fidelity

terms on real gray-scale images coded on 8 bits, from which

we simulated the noise and the compression according to (1).

To measure the quality of the restoration we will compare the

noise-free and the denoised images using the signal-to-noise

ratio (SNR) and the structural similarity index (SSIM) [21],

which are common quality metrics in image processing. Since

the optimal value for λ may vary with the data fit, we will

take the best performance over a wide range of λ. We stop

the iterations as soon as the relative decrease of the objective

function goes below 10−4. For the sake of reproducibility, the

Matlab code implementing the different techniques presented

in this paper can be downloaded from http://oberlin.perso.

enseeiht.fr/files/denoise_decompress_eusipco2019.zip.

A. Wavelet-based compression

Quantization in a wavelet basis is the core of the standard

JPEG2000, and it is widely used for high compression rates. It

is also the base of the CCSDS standard for lossy satellite image

compression [22]. We choose here the orthogonal wavelet

transform computed with the Daubechies 4 wavelet with

maximum level 5.

The following Figure 1 shows the performance of the differ-

ent methods in terms of SNR and SSIM, for the input image

Cameraman as a function of the regularization parameter λ.

The parameters used for this simulation are τ = 40 and

σ = 10, which produces 7.4% of real outliers in the noisy

compressed image. We check that each method achieves an

optimal denoising for a given value of λ. Interestingly, the

optimal SNR (and thus the mean squared error) is comparable

for the three methods ML, LS and L1, while the ST data fit

exhibits a lower SNR. In terms of SSIM, the L1 data fit seems

to outperform the other methods. Note the specificity of ST,

for which even a small value of λ leads to an acceptable result,

since even with a very low regularization the soft-thresholding

data-fit manages to dequantize the image.

A zoom of the corresponding denoised images is also

displayed on Figure 1, where the optimal λ (in SSIM) has been

selected for each method. We clearly see on the noisy images

some compression artifacts, caused by both the quantization

(near the edges) and the noise (inside the smooth areas).

Visually the methods LS, ML and ST seem to give satisfactory

results; L1 instead removes most of the outliers caused by the

noise but not the compression artifacts near the edges, which

is not visually satisfactory.

The results of other simulations on the input images Cam-

eraman, Barbara, Lena and Boats are given in Table I. In

terms of SSIM, the results are always better for ML (which is

very close to LS) when the noise is low; but for higher noise

levels corresponding to about 7% of outliers, L1 seems to give

the best results.

B. DCT-based compression

We now simulate noisy compressed images obtained with

the JPEG compression standard, i.e., when W is the block-

DCT. The quantization table for each 8 × 8 block is twice

the usual one described in [23], and we choose σ = 8 which

produces 7.4% of outliers. The results shown in Figure 2 are

comparable with the wavelet (JPEG2000) setting, except that

σ Outliers In LS ML L1 ST

Lena 1.31% 0.85 0.87 0.87 0.86 0.86

6 Barb 2.94% 0.85 0.87 0.87 0.86 0.83

Cam 1.20% 0.89 0.91 0.91 0.90 0.90

Boats 1.48% 0.88 0.90 0.90 0.89 0.89

Lena 6.66% 0.58 0.81 0.81 0.84 0.81

12 Barb 9.29% 0.65 0.78 0.78 0.81 0.76

Cam 6.11% 0.57 0.86 0.85 0.88 0.85

Boats 6.58% 0.60 0.84 0.84 0.86 0.83

Table I: SSIM for different images and methods.
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Figure 1: JPEG2000 simulations on the Cameraman image.

the LS data fit is in this case clearly outperformed by ML

and ST. Again, the L1 loss function effectively removes the

“outliers”, i.e., the artifacts caused by the noise, but seems to

be less effective for reducing the compression artefacts around

the edges of the image.
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Figure 2: JPEG simulations on the Cameraman image.

VI. CONCLUSION

This paper presented a generic variational formulation for

denoising quantized or compressed images. We introduced

two new data-fidelity terms accounting for the transform

and quantization used during compression. The two methods



were compared with more standard techniques on numerical

experiments in the JPEG and JPEG2000 setting.

When the compression rate is strong whith respect to the

noise level (few outliers), which corresponds to the setting

encountered in satellite image on-board compression, the two

introduced loss functions seem to produce better results than

the least-square or the L1 data-fidelity terms, both quantita-

tively and visually.

Future works should extend those findings by consider-

ing larger image datasets, and more efficient regularizations.

Besides, it would be of interest to investigate whether the

observed differences bewteen the loss functions still hold when

one considers different statistical estimators, e.g., the minimum

mean square error (MMSE) estimator instead of the MAP.
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