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Abstract—Variable renewable energy has a growing impact
on electricity markets and power systems in many regions of
the world. In this context, the 17th International Conference
on the European Energy Market EEM20 set up a competition
to develop probabilistic forecasting tools of wind production
at a regional level. This paper proposes an adaptive approach
for regional wind power forecasting. A physics-oriented pre-
processing of the data delivers analog weather patterns and wind-
power-related variables, then a k-means clustering of wind farms
further reduces the dimension of the problem. The generated
representative features feed a Quantile Regression Forests model
that produces sharp and reliable predictions. As a result, our
model won the competition with a relative improvement of the
average pinball loss of 6.7% and 14.7%, compared to the teams
ranked second and third respectively.

Index Terms—Analog, Competition, Forecasting, Smart grid,
Wind energy.

I. INTRODUCTION

In recent years, the share of wind power in Sweden’s total
energy production has grown: the installed capacity increased
from 1.5 GW up to 9 GW between 2009 and 2019 [1].
Sweden has reaffirmed its commitment by aiming to meet
100% of its electricity needs from Renewable Energy Sources
(RES) by 2040 [2]. To address this challenge, the International
Renewable Energy Agency, and the Swedish Energy Agency
have proposed different innovative solutions, which include
paying special attention to RES production forecasting [2].

It is known that the variability of wind power and the
uncertainty associated with forecasting wind production have
an influence on electricity spot prices and on power producers’
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(CNR), France’s leading 100% RES producer, for their supports in financing
the PhDs of V. Mahler and K. Bellinguer respectively. The models of the
paper were based on research work carried out by MINES ParisTech in the
frame of the Horizon2020 project Smart4RES, which received funding from
the European Union’s Horizon 2020 Framework Programme for Research
and Innovation under grant agreement No 864337. The sole responsibility for
the content lies with the authors. It does not necessarily reflect the opinion
of the Innovation and Networks Executive Agency (INEA) or the European
Commission (EC). INEA, the EC, ADEME and CNR are not responsible for
any use that may be made of the information it contains.

revenue [3]. In both grid management and market applications,
wind production forecasting at short-term horizons is crucial,
particularly at day-ahead horizons (12h-48h horizon). At such
horizons, Numerical Weather Predictions (NWPs) are known
to be essential explanatory variables for the prediction of
renewable power production [4].

Deriving forecasts for regional or national RES production
is challenging due to the high dimensionality of the problem
(e.g. if deciding to upscale forecasts at the level of individual
plants) and the possible redundancy of weather information for
neighbouring sites. Direct forecasting of the total production
is appealing because it removes the need to have access to
production time series at each plant [5]. An intermediate
approach consists in deriving forecasts on clusters of wind
farms and then summing these middle-level forecasts to obtain
regional forecasts [6].

In many applications for grid management or market bid-
ding, a probabilistic forecast is needed to characterize the
uncertainty associated with predictions, and probabilistic para-
metric approaches have been proposed in the context of
regional RES production forecasting [5], [7]. The probabilistic
approach developed in this work contributes to the scope of
the Horizon2020 Project Smart4RES, which proposes next-
generation solutions for renewable energy forecasting over a
large range of scales, from the wind turbine level to large
region-wide aggregations [8].

This paper presents the approach and the choices made by
the authors during the EEM20 competition. The goal was to
generate day-ahead quantile forecasts of the aggregated wind
power production for the four Swedish bidding areas (Fig.
1(a)). The challenge started on March 4th 2020 and lasted
six weeks. For each task, i.e. each week, the participating
teams submitted hourly day-ahead probabilistic forecasts of
wind production (10% to 90% quantiles) covering a period of 2
months. In total a year of forecasts was delivered. A particular
challenge of the competition was that power production obser-
vations were only provided at the price region scale. The rules
and results of the competition are given in [9], [10]. Over the
course of the competition, our team incrementally upgraded
the model to improve forecasting performances which enabled978-1-5386-5541-2/18/$31.00 ©2020 IEEE



us to rank first [9]. For simplicity’s sake, this paper presents
only the last version of the model as it was used for the last
step (see also [11]).

Considering the state of the art in day-ahead regional wind
power forecasting and existing works in related forecasting
competitions, the approach proposed is based on several orig-
inal contributions that are going to be detailed in a forthcoming
journal paper. Among them we can highlight the following:
• A physics-oriented machine learning model for day-

ahead direct forecasting of regional wind production is
proposed: a QRF model learns from a combination of
wind-power-driven variables, analog weather conditions
and wind farms clustering.

• The adaptivity and robustness of the approach is validated
by having won a challenging forecasting competition.

The approach is qualified as physics-oriented because it cap-
tures weather patterns at a regional scale, and because it
extracts information on the power generation of multiple wind
farms by means of physics-inspired models (e.g. wind speed
vertical profiles and wind-to-power conversion). The paper is
organized as follows. Section II describes the data used for
competition. Then section III presents the forecasting approach
and details the methodology. IV discusses the outcomes.
Finally, section V draws the conclusions of this study.

II. AVAILABLE DATA

A. Overview and Timeline

The datasets considered throughout this study are composed
of regional wind power production observations and NWP at
an hourly resolution. In addition, standing and technical data
on wind energy converters (WEC) are also provided. At the
beginning of the competition, a one-year long training dataset
was provided (thereafter, this year is referred to as the year
2000). Then, new sets of NWP data corresponding to the next
two months were successively provided on a weekly basis, in
order for the participants to submit production forecasts. After
each submission, the aggregated wind power observations,
provided for validation purposes, were added to the training
data set. At the end, the available data ranges from 2000-01-01
to 2001-12-31.

B. Wind Power Generation and Wind Turbines

The aggregated wind power production over the four
Swedish price regions SE1, SE2, SE3 and SE4 were provided
(cf. Fig. 1(a)). By the end of 2001, 4004 WEC constituting
8640 MW of installed capacity, had been put into service
according to the dataset. However, the competition organizers
mentioned that the Swedish Wind Power Association listed
4099 WEC, with a total installed capacity of 8984 MW.

We computed the installed capacity by price region from
the technical data set. This data set gives WEC characteristics
(e.g. rotor diameter, hub height), spatial position and com-
missioning dates. We observed some discrepancies between
the installed capacity and the wind power production. For
example, in November 2000, the observed wind production is
higher than the installed capacity in SE1. A similar situation

is described in [12], the authors decided to excluded the
concerned data. Here, we assumed that the commissioning
dates were just approximations, therefore we chose another
approach to mitigate the uncertainty regarding the validity of
data, as detailed in section III-B.

(a) WEC distribution for the four
price regions

(b) Distribution of the installed ca-
pacity in SE3

Fig. 1. Spatial distribution of WEC

C. Numerical Weather Predictions
As explanatory variables, we consider NWPs from the

Norwegian Meteorological Institute (MET Norway). No in-
formation regarding the NWP model specifications were com-
municated to the competitors. The inputs are made up of 10
ensembles and of the following variables: surface temperature,
zonal and meridional 10 meter winds, wind gust, mean sea
level pressure, relative humidity and total cloud cover. The
NWPs covers the entire Swedish territory with a 10km×10km
spatial resolution. These specifications induce a dimensionality
burden that is tackled in Section III-C. It is worth mentioning
that a few WECs are located outside the area covered by the
NWPs provided. Rather than extrapolating the NWPs at these
locations, we implemented a clustering approach assuming that
close WECs are influenced by similar weather conditions.

III. METHODOLOGY

A. Overview of the Approach
Instead of investigating a model able to perform a regression

in the large dimension of the complete original data set, we
chose to focus on the creation of a relatively small set of
information-rich features used as input into a machine learning
algorithm, namely Quantile Regression Forests (QRF), which
has proven its skills in probabilistic forecasting of aggregated
renewable production [13]. Creating and selecting a few inputs
has the advantage of shortening the computation time, thus
giving us the possibility to try multiple models and combi-
nations of inputs, and to better scale the influencing factors
with the observed response. Due to the differences between
prices regions (dominant weather patterns, characteristics of
the installed capacity, etc.), we trained one model by price
region (same approach, but different data points) without
considering data from other regions, or spatio-temporal cor-
relations between regions.



The first challenge for this forecasting objective is related
to the evolution of the installed capacity and its uncertainty.
In response, Section III-B presents the target engineering
employed, involving a normalization of the total regional pro-
duction. The next step involves crafting adequate model inputs.
Data processing starts with the reduction of dimensionality
in weather predictions and wind production sites (cf. Section
III-C), which enables us to engineer features as presented in
Section III-D. Finally, we explain why we chose the QRF
model in Section III-E. The method is summarized in Fig. 2.

Fig. 2. Overview of the method

B. Target Engineering

The installed wind capacity increases over the training and
forecasting periods in all four regions at various rates (cf. Fig.
3). For this reason, we did not directly forecast the regional
productions with the QRF model, but rather a normalized
regional production also called load factor thereafter. This
approach has the advantage of taking into account the temporal
evolution of the WEC erections but does not reflect the
evolution of the WECs’ spatial distribution over time.

Fig. 3. Evolution of installed capacity

The most intuitive load factor would have been the ratio be-
tween the production (yt) and the installed capacity (Pinst,t).
However, to mitigate the uncertainty regarding the data quality
of the wind turbines data set mentioned in the previous section,
we considered a more robust denominator. For each price

region, we created a new time series (Pmaxobs,t ) so that for any
time t, its value is equal to the maximum production observed
during the time period [0; t] (for the first six months, we simply
assigned the maximum observed value over the period to avoid
initialization issues). We then defined the load factor (y∗t ) as:

y∗t =
yt

mean(Pinst,t, Pmaxobs,t )
(1)

C. Dimensionality Reduction
Considering the spatial extent of NWP as well as the number

of ensembles and variables, nearly 840000 data points are
available for each timestamp. To obtain a reasonable running
time and to avoid using too much redundant or irrelevant data,
we reduced the number of inputs in two dimensions, i.e. (1)
the number of NWP ensembles, which contains potentially
interesting information but dramatically increases the size of
the problem; (2) the spatial extent of NWP points, in order
to obtain a compact representation of weather conditions that
has a level of detail appropriate for the aggregated regional
production. On the other hand, a special focus was given to
the relevance of weather variables. We chose to exclude the
total cloud cover, but we processed other variables to create
wind power related features.

1) NWP Ensembles: Although information can be retrieved
from NWP ensembles (see [3], [14]), the study by [15]
highlighted that production forecasts based on NWP ensem-
bles have similar performances both when all ensembles are
considered individually and when only the mean is used as
input. Thus, we chose to reduce the data set by a factor of 10
by focusing on the mean of ensemble for each NWP variable.

2) Spatial Extent: Reducing the spatial extent not only
decreases the computation time, but it also removes low-
relevance NWP variables that take values in sites located
far from WECs. Since we used different approaches for the
feature engineering presented in the next subsection, we had
to develop two methods in parallel to reduce the spatial extent
and exploit the spatial distribution of WECs (cf. Fig. 1):
• Price region areas: we defined each price region as an

area corresponding to a convex hull around its turbines
using [16]. We then only considered the NWPs grid points
within this area as shown in Fig. 4.

• Key locations: we selected a few key locations by clus-
tering wind turbines. Inspired by [17], the key locations
are the centroids (c) of clusters (C) defined with a
weighted k-means approach, where weights depend on
WEC installed capacity (a WEC belongs to Ci when ci
is the nearest centroid). A formulation of the weighted
k-means clustering on a spherical surface adapted from
[18] and [19] for this application is proposed in Eq. 2.

argmin
c

∑
i∈[1..k]

∑
x∈Ci

w(x) · dg(x, ci)2 (2)

Where: x = turbines coordinates
w(x) = Pinst(x)

Pinst,Ci
weight of WECs in x within Ci

dg = geodesic distance, e.g. Haversine [20]



Fig. 4. Selection of NWP grid points by price region

The number of clusters was empirically determined (i.e.
between 20 and 25, which appears high enough to define
representative clusters and low enough for our dimen-
sionality reduction goal). An example of the obtained
clusters is shown in Fig. 5. During the competition, we
only considered the final distribution of WEC as of 2001-
12-31, even though the installation of WECs over time
was likely to marginally impact the shape of the price
region areas and the distribution of clusters.

Fig. 5. Wind turbines clustering for the price region SE4

D. Feature Engineering

We combined three kinds of features used as inputs for the
QRF, i.e. (1) features created thanks to the analog-based ap-
proach aimed at using past observed productions, (2) features
related to wind power physics aimed at exploiting drivers of
wind power production and (3) features related to operational
constraints aimed at inferring the impact of additional power
modulations by using proxies.

1) Analog-Based Production Level: A ranking of past
weather patterns which are the most similar to the predicted
weather conditions may be used to identify analog production
levels. This is appealing in regional forecasting where syn-
thetic regional indicators are needed. This idea of generating

analogs from a similarity ranking has proved to be efficient
in wind forecasting [21] and solar forecasting [22], [23]. In
this paper, we adapt an analog-based approach considering
spatially distributed data [24] to estimate the future regional
wind production. As a predictor variable for the analogy we
focused on wind amplitude at hub height, but it could be
relevant to add extra physical variables such as temperature
or wind direction to capture wind production dependencies
over weather. Then, we looked for similar spatial patterns
over the price region areas defined in Section III-C. To do so,
we applied a Principal Component Analysis on the analogy
variable which generates a set of Principal Components (PC)
representing the main patterns of wind amplitude. These PCs
constitute a new coordinate system in which an Euclidean
distance is used to measure similarity between situations and
to rank them. Finally, the load factors corresponding to the
n most analog weather patterns were averaged to provide
an estimation of the future wind production (after empirical
evaluation on the training set, we chose n = 200).

2) Features Related to Wind Power Physics: To account for
the wind energy conversion process, we defined new variables
such as wind magnitude at hub height, air density and wind
orientation. We also used some NWP variables directly (e.g.
temperature, wind gust speed and relative humidity), since
these factors could influence the efficiency of the conversion
during extreme meteorological conditions.
• Wind magnitude: Wind speed is the most relevant vari-

able for wind power generation. Wind speed is vertically
interpolated (from NWP altitude zref to hub height z)
using the following wind shear model (or power law):

Uwind(z) = Uwind(zref ) ·
(

z

zref

)α
(3)

Uwind Horizontal wind speed,
α Wind shear coefficient (or Hellman exponent).

For flat terrains, the one-seventh power law (i.e. α = 1/7)
is usually used [25]. As a simplification, we considered
a unique hub height (i.e. z = 100m).

• Wind direction: Despite the rotation of the nacelle
towards the wind direction to optimize wind production,
we assumed that wind production is dependent on topo-
graphic characteristics and wake effects from neighboring
WECs which are not represented by the NWPs model.
As a result, the wind orientation was included in the
forecasting model.

• Air density: Moist air density (ρair) was estimated from
temperature, pressure and relative humidity.

• Wind power density: We used the wind power density
(WPD) as an indicator of the maximum recoverable
power [26].

WPD(z) =
1

2
· ρair · Uwind(z)3 (4)

• Aggregated wind production: For WECs the relation
between wind speed and output power production
is usually represented by S-shaped power curves of



wind turbines with a cut-in speed, a rated speed and
a cut-out speed. As detailed WEC characteristics were
not available, we considered a single wind power curve
using typical values to process the wind magnitude.
Then, we used the sum of installed capacity by cluster
to calculate a weighted average in order to estimate
aggregated wind production.

In addition to features corresponding to the time t to
forecast, we also considered time-shifted features that had a
positive impact on the model performance (i.e. t−1 and t+1).

Finally, in order to avoid adding too much noise to the most
important information, we empirically differentiated features
(e.g. wind power density was deemed as more relevant than
relative humidity). For the main features, we kept the values
for all key locations defined in Section III-C, whereas we
selected a subset of the key locations for the other variables
using the minimum Redundancy Maximum Relevance feature
selection algorithm (mRMR) [27].

3) Features Related to Operational Constraints: Opera-
tional constraints can also impact wind power production (e.g.
maintenance, curtailment). We had no information about such
aspects for the competition, so we chose to add the hour of
the day and day of week as inputs, considering that they
can be proxies for such constraints (e.g. working hours for
maintenance, very low demand in the middle of the night).
Notably, [14] suggests that time-related information (e.g. time
of day) is beneficial to forecasting performances.

E. Regression Model

We selected the Quantile Regression Forests model (QRF)
[28], [29] given its training speed, its robustness (i.e. good
performance without advanced hyperparameter tuning), its
capacity to account for non-linear interactions between fea-
tures, its intrinsic ability to generate probabilistic forecasts
for the desired quantiles and the proven track record of the
random forests approach in other data science competitions
(e.g. [14]). Also, since the QRF estimates variable importance,
we chose to create multiple non-redundant features deemed
as relevant for our forecasting application and leveraged the
fact that, to some extent, the QRF can automatically select
the most useful ones. Nevertheless, the feature selection was
not only guided by this characteristic, but also by assessing the
model performance on out-of-sample tests when incrementally
adding new features.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The method is implemented using R language [30]. An
example of the forecasts obtained is displayed in Fig. 6. The
different production regimes appear to be correctly anticipated
in the four price regions, and forecasts are characterized by a
high level of sharpness.

Forecasts are evaluated via a summary performance score
based on the pinball loss function averaged over the price
regions. The northern price region exhibits the highest fore-
casting error when considering normalized quantities. This

Fig. 6. Example of obtained forecasts for all four price regions

Fig. 7. Forecasting scores based on the pinball loss function [9]

assessment is in line with [12] who consider that this phe-
nomenon results from a low installed capacity, a complex
terrain and icing losses. The last version developed during the
competition was applied on the different tasks for backtesting:
the results in Fig. 7 indicate that the continuous development
of the approach leads to improvements compared to previous
versions of the approach on Tasks 1 to 4, where pre-processing
steps were less developed and not all hyperparameters were
not adjusted.

V. CONCLUSION

This paper proposes a probabilistic forecasting model for
regional wind production at a day-ahead horizon, developed
in the context of the EEM20 forecasting competition. The
approach is based on a physics-oriented pre-processing of
regional data, which captures analog weather patterns and
reduces the dimensionality of wind production sites by means
of a k-means clustering. The features obtained are augmented
with a selection of variables including wind-power-driven
quantities and temporal lags, and then fed into a Quantile
Regression Forests model to obtain probabilistic forecasts
for each price region. Our team incrementally improved its
approach throughout the contest, with the result that we ranked
in the top 2 teams for all 6 tasks, and ultimately won the
forecasting competition.

Perspectives for future work include a further development
of physics-oriented features (e.g. modelling the ageing effects
of WECs), integration of spatio-temporal correlations, and the
consideration of other analog predictors. Lastly, the approach
based on an optimal combination of forecasting models pro-
posed by [31], which ranked second in the competition, could
benefit from the sharp predictions generated by the present
model.
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