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Abstract

A reduced strain gradient crystal plasticity theory which involves the gradient of a single scalar

field is presented. Rate-dependent and rate-independent crystal plasticity settings are considered.

The theory is then reformulated following first the micromorphic approach and second a Lagrange

multiplier approach. The finite element implementation of the latter is detailed. Computational ef-

ficiency of the Lagrange multiplier approach is highlighted in an example involving regularization of

strain localization. The numerical performance improvement is shown to reach up to two orders of

magnitude in computation time speedup. Then, size effects predicted by micromorphic and Lagrange

multiplier based formulations of strain gradient plasticity are assessed. First of all numerical com-

parisons are performed on single crystal wires in torsion. Saturation of the size effects induced by

the micromorphic approach and absence of saturation with the Lagrange multiplier approach when

sample size is decreased are demonstrated. The Lagrange multiplier based formulation is finally ap-

plied to characterize size effects predicted for the ductile growth of porous unit-cells at imposed stress

triaxiality. Excellent agreement with micromorphic results is obtained.

Keywords: Strain gradient plasticity, Micromorphic approach, Lagrange multiplier approach,

Crystal plasticity, Finite elements

1. Introduction

The anisotropic elasto-plastic deformation of crystalline aggregates including shape change, crys-

tallographic texture, and strain hardening can be predicted by classical continuum crystal plasticity

(Cailletaud et al., 2003; Roters et al., 2010). The classical continuum crystal plasticity formulation

can be enhanced in order to predict experimentally observed size effects such as precipitate or grain

size effects, for instance based on the introduction of the dislocation density tensor and associated

constitutive length scales (Fleck and Hutchinson, 1997; Forest, 1998; Gurtin, 2000).

Experimental evidence of size effects can be found in different mechanical tests such as micro-

torsion (Fleck and Hutchinson, 1997; Gao and Huang, 2001; Liu et al., 2012; Guo et al., 2017), micro-

compression (Uchic et al., 2004; Greer et al., 2005), micro-bending (Stölken and Evans, 1998; Gao and
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Huang, 2001; Haque and Saif, 2003) and micro-indentation (Nix and Gao, 1998; Gao and Huang, 2001;

Liu and Ngan, 2001) of crystalline materials. Size–dependent crystal plasticity modeling is required

when the specimen or grain size becomes comparable to the intrinsic lengths of the underlying plastic

deformation mechanisms (Fleck and Hutchinson, 1997; Kocks and Mecking, 2003). The gradient

of shear strain results in the development of the dislocation density tensor which can be described

in terms of the storage of geometrically necessary dislocations (GND) (Ashby, 1970; Acharya and

Bassani, 2000; Gurtin, 2002; Bardella, 2006; Cordero et al., 2012a). The GND density controls the

material strain hardening together with the usual scalar dislocation densities, also called statistically

stored dislocations (SSD).

The strain gradient plasticity approach can also be used to regularize the simulation of shear

band formation in crystalline solids. Strain softening results in a narrow band of intense shearing.

The possible loss of ellipticity of partial differential equations in strain softening materials results

in an ill-posed boundary value problem and classically shows dependency on mesh size or density.

The shear band dependency on the mesh size or density can be overcome by introducing intrinsic

material length scale in conventional plasticity (Needleman, 1988; Voyiadjis and Al-Rub, 2005; Anand

et al., 2012; Peerlings et al., 2002; Vignjevic et al., 2018; Kaiser and Menzel, 2019b) and in crystal

plasticity (Petryk and Stupkiewicz, 2016; Ling et al., 2018; Kaiser and Menzel, 2019a). Furthermore,

the difficulties in assessment of active slip systems within the crystal plasticity framework can be

overcome by rate-dependent (Busso and Cailletaud, 2005) or rate-independent (Forest and Rubin,

2016; Kaiser and Menzel, 2019a) formulations.

Implementation of strain gradient crystal plasticity in a finite element code is a challenging task

that has been performed for example by Shu (1998); Borg et al. (2008a); Yalcinkaya et al. (2012);

Bardella et al. (2013); Nellemann et al. (2017, 2018); Panteghini and Bardella (2016) at small strains

and by Niordson and Kysar (2014); Lewandowski and Stupkiewicz (2018); Ling et al. (2018); Kaiser

and Menzel (2019a) at finite deformations. An efficient method to implement strain gradient plasticity

models is to resort to the micromorphic approach proposed by Forest (2009) at small strains and

Forest (2016) at finite deformation, as demonstrated by Anand et al. (2012); Brepols et al. (2017) for

conventional plasticity and by Cordero et al. (2010); Aslan et al. (2011); Ryś et al. (2020) for crystal

plasticity based on the dislocation density tensor. According to this approach, additional plastic

microdeformation degrees of freedom, in the sense of Eringen and Suhubi (1964), are introduced

at each node and the curl part of the microdeformation tensor is assumed to expend work with a

conjugate couple stress tensor. A penalty parameter, which can be interpreted as a higher order

elasticity modulus, is used to constrain the plastic microdeformation to be as close as possible to the

usual plastic deformation. As a consequence, the curl of the microdeformation tensor almost coincides

with the dislocation density tensor.

The computational cost of finite element simulation based on strain gradient or micromorphic

crystal plasticity is rather high due to the number of additional degrees of freedom and the strong

nonlinearities of the problem. A reduced micromorphic crystal plasticity model was proposed by
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(Wulfinghoff and Böhlke, 2012; Wulfinghoff et al., 2013; Erdle and Böhlke, 2017; Ling et al., 2018;

Scherer et al., 2019). It is limited to a single scalar additional degree of freedom, called microslip

variable which is bounded to remain close to the cumulative plastic slip by means of the penalty

parameter. The gradient of the microslip is then assumed to be an argument of the Helmholtz free

energy density function. This approach can be compared to the relaxation of the strain gradient

plasticity model by a Lagrange multiplier based formulation recently proposed by (Zhang et al., 2018)

for isotropic materials. As in the micromorphic approach, one hardening variable is duplicated in

two separate instances. One instance of the variable is dedicated to nonlocality and the other to

nonlinearity, see (Zhang et al., 2018). The equivalence between both variables is weakly enforced by

a Lagrange multiplier, instead of a penalty term. The Lagrange term is added to the free energy

function and treated as an additional field variable. This strong coupling scheme was shown to

reduce the computational cost drastically compared to previous algorithms. Details of finite element

implementation of micromorphic strain gradient rate-dependent crystal plasticity based on Newton-

Raphson method to integrate the differential equations can be found in (Ling et al., 2018). The

numerical implementation of a Lagrange multiplier based strain gradient isotropic plasticity model

was presented in (Zhang et al., 2018).

The objective of the present work is to compare the computational performance and predictions

of reduced micromorphic crystal plasticity and a new Lagrange multiplier based implementation of

strain gradient plasticity. The novelty of the work lies, first, in this new formulation of strain gradient

plasticity with a Lagrangian function and, second, in the comparison of the predictions of the two

models. The computational performance and physical relevance of both models are also assessed.

Three distinct physical situations are considered. First, regularization of strain localization in a

periodic bar undergoing strain-softening is investigated. Then, the size and orientation dependent

torsion of FCC single crystal wires is investigated showing that both models coincide at intermediate

wire diameters but differ in their asymptotic behaviour. Further, the numerically efficient Lagrange

multiplier based constitutive framework is used to study the ductile growth and coalescence of voids

in porous unit-cells. The results are compared to data obtained with the micromorphic approach that

are already available in the literature.

The outline of the paper is as follows. In section 2, a thermodynamically consistent formulation

of reduced strain gradient crystal plasticity is presented in the rate-dependent and rate-independent

cases. In section 3 the constitutive framework of reduced micromorphic and Lagrange multiplier

approaches are described. The numerical implementation of the latter is presented in section 4.

Numerical examples of a sheared periodic bar, a cylinder in torsion and a porous unit-cell under

axisymmetric triaxial loading are provided in section 5. Concluding remarks follow in section 6.

The notations used in the paper are as follows. Underlined bold a and under-wave bold A∼ stand

respectively for first and second rank tensors. The transpose, inverse, transpose of inverse and time

derivative are denoted by A∼
T , A∼

−1, A∼
−T and Ȧ∼ respectively. The single and double contractions are

written as A∼ .b = Aijbje i and A
≈

: B∼ = AijklBkle i ⊗ e j respectively. The following tensor products
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are used: a ⊗ b = aibje i⊗ e j , A∼ ⊗B∼ = AijBkle i⊗ e j ⊗ e k ⊗ e l, A∼⊗B∼ = AikBjle i⊗ e j ⊗ e k ⊗ e l
and A∼⊗B∼ = AilBjke i ⊗ e j ⊗ e k ⊗ e l, where e i refers to an orthonormal base vector.

2. A reduced strain gradient crystal plasticity theory

2.1. Thermodynamical formulation

A reduced strain gradient crystal plasticity theory is adopted in which only the gradient of a scalar

effective quantity is considered in keeping with (Aifantis, 1984). Based on the work by Wulfinghoff

and Böhlke (2012) the cumulated plastic slip γcum, defined as

γcum =

∫ t

0

N∑
s=1

|γ̇s|dt (1)

is chosen to be the thermodynamic variable carrying gradient effects. γ̇s denotes the plastic slip rate

on the s−th slip system. In the finite strain setting, the deformation gradient F∼ , with components

Fij = ∂xi/∂Xj , is multiplicatively split into an elastic partE∼ and a plastic part P∼ such that F∼ = E∼ .P∼ .

The plastic velocity gradient L∼
p is related to the slip rates on each slip system by

L∼
p = Ṗ∼ .P∼

−1 =

N∑
s=1

γ̇s(m s ⊗ n s) with L∼ = Ḟ∼ .F∼
−1 = Ė∼ .E∼

−1 +E∼ .L∼
p.E∼

−1 (2)

where m s and n s refer to the gliding direction and direction normal to the slip plane respectively.

In the reference configuration, upon neglecting body forces, following (Fleck and Hutchinson, 1997;

Gurtin and Anand, 2009) the principle of virtual power, for all material subsets D0 of the body, can

be written as∫
D0

(
S∼ : Ḟ∼ + Sγ̇cum +M .K̇

)
dV0 =

∫
∂D0

(T .u̇ +Mγ̇cum) dS0 ∀u̇ , ∀γ̇cum, ∀D0 (3)

where S∼ is the Boussinesq (or nominal 1-st Piola-Kirchhoff) stress tensor related to the Cauchy stress

tensor σ∼ by S∼ = (ρ0/ρ)σ∼ .F∼
−T with ρ0 (respect. ρ) the volumetric mass density in the reference

configuration (respect. current configuration). Vector T is the traction vector and u̇ is an arbitrary

velocity field. S and M are higher order stresses and M a higher order traction scalar. K is the

Lagrangian gradient of the cumulated plastic slip, K = Grad γcum. From Eq. (3) it can be derived

that, within any subset D0 of the body, the stresses satisfy the equilibrium relations

DivS∼ = 0 ∀X ∈ D0 (4)

DivM − S = 0 ∀X ∈ D0 (5)

in the absence of body forces and in the static case. As a result of Eq. (3), on the surface of the subset

∂D0 the stresses S∼ and M are in equilibrium with the traction vector T and scalar M according to

T = S∼ .n 0 ∀X ∈ ∂D0, (6)

M = M .n 0 ∀X ∈ ∂D0 (7)
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where n 0 refers to the outward unit surface normal. In order to formulate a complete thermodynamic

theory of reduced strain gradient crystal plasticity a free energy potential ψ needs to be defined. The

specific free energy potential ψ is chosen to depend on the elastic Green-Lagrange strain measure

E∼
e
GL

= (1/2)
(
E∼
T .E∼ − 1∼

)
, the cumulated plastic slip γcum, its Lagrangian gradient K and hardening

variables rs left to be defined.

ψ
(
E∼
e
GL
, γcum, r

s,K
)

=
1

2ρ]
E∼
e
GL

: C
≈

: E∼
e
GL

+ ψh(rs, γcum) +
A

2ρ0
K .K (8)

where ρ] refers to the volumetric mass density in the intermediate configuration (i.e. the configuration

resulting from the transport of the reference configuration by P∼ ). The contribution of the cumulated

plastic slip gradient is weighed by the strictly positive material parameter, so called higher order

modulus, A. The Clausius-Duhem inequality (isothermal case) resulting from 1-st and 2-nd principles

of thermodynamics enforces

S∼
ρ0

: Ḟ∼ +
S

ρ0
γ̇cum +

M

ρ0
.K̇ − ψ̇ ≥ 0 (9)

The first term on left-hand side of Eq. (9) can be decomposed into an elastic contribution and a

plastic contribution

S∼
ρ0

: Ḟ∼ =
Π∼
e

ρ]
: Ė∼

e

GL
+

Π∼
M

ρ]
:
(
Ṗ∼ .P∼

−1
)

(10)

where Π∼
e is the second Piola-Kirchhoff stress tensor defined by Π∼

e = (ρ]/ρ)E∼
−1.σ∼ .E∼

−T =

(ρ]/ρ0)E∼
−1.S∼ .P∼

T with respect to the intermediate configuration and Π∼
M is the Mandel stress tensor

defined by Π∼
M = E∼

T .E∼ .Π∼
e. The residual dissipation in Eq. (9) then writes(

Π∼
e

ρ]
− ∂ψ

∂E∼
e
GL

)
: Ė∼

e

GL
+

Π∼
M

ρ]
:
(
Ṗ∼ .P∼

−1
)

+

(
S

ρ0
− ∂ψh
∂γcum

)
γ̇cum

+

(
M

ρ0
− A

ρ0
K

)
.K̇ −

N∑
s=1

∂ψh
∂rs

ṙs ≥ 0

(11)

Here we assume that the higher order stress S has a dissipative part which will be denoted −H, while

M is assumed to be non-dissipative. As discussed by Forest and Bertram (2011) it is the most simple

assumption to derive Aifantis’ model. We then postulate the state laws

Π∼
e = ρ]

∂ψ

∂E∼
e
GL

= C
≈

: E∼
e
GL

(12)

S = ρ0
∂ψh
∂γcum

−H (13)

M = ρ0
∂ψ

∂K
= AK (14)

Finally the residual dissipation reduces to

Π∼
M

ρ]
:
(
Ṗ∼ .P∼

−1
)
− H

ρ0
γ̇cum −

N∑
s=1

∂ψh
∂rs

ṙs ≥ 0 (15)

The resolved shear stress τs is the energetic counterpart of γ̇s and from Eq. (2) it can be deduced

that it is related to Mandel stress Π∼
M by τs = Π∼

M : N∼
s where N∼

s = m s⊗n s is the Schmid tensor.
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Assuming that the rate of hardening variable rs is proportional to the slip rate γ̇s (e.g. ṙs = gs(rs)|γ̇s|)
leads to the following expression of the residual dissipation

N∑
s=1

[
|τs| − ρ]

ρ0
H − ρ]

∂ψh
∂rs

gs(rs)

]
|γ̇s| ≥ 0 (16)

where it has been assumed that sign (τs) = sign (γ̇s). Eq. (16) motivates the introduction of the yield

function of each system defined by

fs = |τs| −
(
τs0 +

ρ]
ρ0
H + ρ]

∂ψh
∂rs

gs(rs)

)
= |τs| −

(
τsc −

ρ]
ρ0
S

)
(17)

where τs0 is the initial critical resolved shear stress of s-th system. We here introduce the critical

resolved shear stress τsc = τs0 + ρ]∂ψh/∂r
sgs(rs) + ρ]∂ψh/∂γcum. By combining Eq. (5) and Eq. (14)

one obtains

S = DivM = Div (AK ) (18)

As it can be seen from yield criterion Eq. (17), the divergence term induces a coupling between

constitutive nonlinearity and spatial nonlocality. Therefore pointwise integration of the differential

equation governing the material behaviour over a given domain is precluded. Two different relax-

ation approaches to deal with this coupling are presented in section 3 and compared in terms of

computational performance and physical predictions in section 5.

2.2. Rate-dependent and rate-independent formulations

A rate-dependent (viscoplastic) and a rate-independent formulation of crystal plasticity are pre-

sented here and used in the next sections.

2.2.1. Rate-dependent crystal plasticity

As emphasized in (Busso and Cailletaud, 2005) (and references therein) most rate-independent

crystal plasticity theories lead to an ill-conditioned problem regarding the selection of active slip

systems. Different methods exist to ensure uniqueness, but their numerical implementation may also

play a crucial role in the active slip system selection. One possible way to overcome these issues is

to work within a rate-dependent setting. In this framework the slip rates are no longer defined by a

rate-independent yield surface, but are governed by a rate-dependent potential surface. Smoothness of

viscous potential functions allows one to obtain the direction of the strain increment by the normality

rule. Evolution of the plastic slip variables γs can for example be obtained by considering Norton-type

flow rules:

γ̇s = γ̇0

〈
fs

τs0

〉n
sign (τs) = γ̇0ΦsRD(fs)sign (τs) (19)

where γ̇0 and n are material parameters which control the rate sensitivity of the material response.

Macauley brackets of a scalar x, written 〈x〉, denote the positive part of x and ΦsRD denotes the

rate-dependent flow function. High values of the power exponent n and of the reference rate γ̇0 lead

to a low strain rate sensitivity in a given strain rate range.
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2.2.2. Rate-independent crystal plasticity

Another possible way to select the active slip systems is to use the rate-independent formulation

proposed by Forest and Rubin (2016) and intensively used by Farooq et al. (2020) (later referred

to as RubiX formulation). It is characterized by a smooth elastic-plastic transition with no slip

indeterminacy. It is based on a strictly rate-independent overstress allowing to remove ill-conditioning

of the selection of activated slip systems. The main idea consists in replacing Eq. (19) by:

γ̇s = ε̇eq

〈
fs

R

〉
sign (τs) = ε̇eqΦ

s
RI(f

s)sign (τs) (20)

where ε̇eq is a non-negative homogeneous function of degree one in the total velocity gradient L∼ . The

rate–independent flow function is noted ΦsRI and ε̇eq is taken here as the total equivalent distortional

strain rate:

ε̇eq =

√
2

3
D∼
′ : D∼

′ D∼
′ =

1

2

(
L∼ +L∼

T
)
− 1

3
(traceL∼)1∼ (21)

R is a positive constant having the unit of a stress and which controls the amplitude of the rate-

independent overstress. As this work proceeds Γ̇ (resp. Φs) will be used indistinguishably to represent

either γ̇0 or ε̇eq (resp. ΦsRD or ΦsRI).

2.3. Summary of constitutive equations

Equilibrium equations, state laws and evolution equations are summarized in Table 1.

Table 1: Summary of equilibrium equations, state laws and evolutions equations.

equilibrium equations state laws evolution equations

DivS∼ = 0 ∀X ∈ D0 Π∼
e = C

≈
: E∼

e
GL

Ė∼ = Ḟ∼ .F∼
−1.E∼ −E∼ .

(
N∑
s=1

γ̇sN∼
s

)

DivM − S = 0 ∀X ∈ D0 M = AK γ̇s = Γ̇Φs
(
|τs| −

(
τsc −

ρ]
ρ0
S

))
sign (τs)

T = S∼ .n 0 ∀X ∈ ∂D0 S = ρ0
∂ψh
∂γcum

−H ṙs = gs(rs)|γ̇s|

M = M .n 0 ∀X ∈ ∂D0 γ̇cum =

N∑
s=1

|γ̇s|

3. Relaxations of strain gradient plasticity theory

3.1. Micromorphic approach

Wulfinghoff and Böhlke (2012) and Ling et al. (2018) used the micromorphic approach (Forest,

2009) to tackle the issue of nonlocality and nonlinearity coupling. Their approach is based on the
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introduction of an additional degree of freedom, denoted γχ, enriching the kinematic description of

the material behaviour. γχ is the micromorphic (nonlocal) counterpart of γcum, and, therefore it bears

the same physical interpretation. However γcum and γχ are treated independently in the resolution

of the equations governing the material behaviour. In this context the principle of virtual power Eq.

(3) is extended to higher order contributions:∫
D0

(
S∼ : Ḟ∼ + Sγ̇χ +M .Grad γ̇χ

)
dV0 =

∫
∂D0

(T .u̇ +Mγ̇χ) dS0 ∀u̇ , ∀γ̇χ, ∀D0 (22)

Using the divergence theorem one can again derive the balance laws in the reference configuration ,

namely Eq. (4) and (5), while on the surface ∂D0 stresses are in equilibrium with the traction vector

and scalar as in Eq. (6) and (7). In order to ensure quasi-equality between γcum and γχ, a penalty

term is introduced in the free energy potential penalizing their difference γcum − γχ, where Hχ is a

penalty modulus which is usually taken large enough so that the results obtained with the model do

not depend on the chosen value (typically Hχ ∼ 104 − 105 MPa). With this method the specific free

energy density Eq. (8) now writes

ψ
(
E∼
e
GL
, rs, γcum, γχ,K χ

)
=

1

2ρ]
E∼
e
GL

: C
≈

: E∼
e
GL

+ ψh(rs, γcum)

+
A

2ρ0
K χ.K χ +

Hχ

2ρ0
(γcum − γχ)2

(23)

where K χ = Grad γχ. The 1-st and 2-nd principles of thermodynamics now enforce

S∼
ρ0

: Ḟ∼ +
S

ρ0
γ̇χ +

M

ρ0
.K̇ χ − ψ̇ ≥ 0 (24)

The mechanical dissipation therefore becomes(
Π∼
e

ρ]
− ∂ψ

∂E∼
e
GL

)
: Ė∼

e

GL
+

Π∼
M

ρ]
:
(
Ṗ∼ .P∼

−1
)

+

(
S

ρ0
− ∂ψ

∂γχ

)
γ̇χ −

∂ψ

∂γcum
γ̇cum

+

(
M

ρ0
− A

ρ0
K χ

)
.K̇ χ −

N∑
s=1

∂ψh
∂rs

ṙs ≥ 0

(25)

After selecting non–dissipative contributions, the following state laws are adopted

Π∼
e = ρ]

∂ψ

∂E∼
e
GL

(26)

S = ρ0
∂ψ

∂γχ
= −Hχ(γcum − γχ) (27)

M = ρ0
∂ψ

∂K χ

= AK χ (28)

In contrast to the previous section, the constitutive assumption that S is non-dissipative is made here.

Therefore the energy dissipated with γ̇χ vanishes. Yet, a term involving the higher order stress S and

conjugate to γ̇cum remains. The residual dissipation now writes

Π∼
M

ρ]
:
(
Ṗ∼ .P∼

−1
)
−

N∑
s=1

∂ψh
∂rs

ṙs −
(
Hχ

ρ0
(γcum − γχ) +

∂ψh
∂γcum

)
γ̇cum ≥ 0 (29)

which can also be written

N∑
s=1

[
|τs| − ρ]

ρ0
Hχ(γcum − γχ)− ρ]

∂ψh
∂γcum

− ρ]
∂ψh
∂rs

gs(rs)

]
|γ̇s| ≥ 0 (30)
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By combining state law Eq. (27), equilibrium equation Eq. (5) and state law Eq. (28) it comes

S = −Hχ(γcum−γχ) = DivM = Div (AK χ). Therefore the micromorphic approach is a relaxation1

of the strict strain gradient formulation from section 2 in the sense that no spatial derivatives are

explicitly involved for the non-local contribution in Eq. (30). The plastic slip rates now are

γ̇s = Γ̇Φs
(
|τs| −

(
τsc +

ρ]
ρ0
Hχ(γcum − γχ)

))
sign (τs) (31)

The main drawback of this method, in the context of viscoplasticity, lies in the necessity of taking

a large value for Hχ in order to assure quasi-equality between γχ and γcum. In the limit case of

almost rate insensitivity the viscoplastic parameters n and γ̇0 are such that the nonlinear system of

equation governing activation of slip systems is very stiff and thus extremely sensitive to the errors

that are made during the iterative process (typically an Euler-backward scheme) used to solve them.

As a consequence small time steps are necessary in order to achieve convergence. One possible way

to tackle this issue and allow the use of large time steps with the micromorphic approach is to use a

rate-independent crystal plasticity setting such as the one proposed by Forest and Rubin (2016) and

presented in section 2.2.2.

3.2. Lagrange multiplier approach

Alternatively, the Lagrange multiplier method proposed by Fortin and Glowinski (1983) and suc-

cessfully applied in (Zhang et al., 2018) can be used. This approach is described here for relaxing the

theory presented in section 2.1. The main ideas of the method are first to duplicate the variable upon

which the nonlinear-nonlocal coupling is acting and second to enforce equality between both variables

through a Lagrangian function. In the context of the model presented in section 2.1 the nonlocal

instance of the coupling variable will be denoted γχ while its local instance is γcum. Similarly to the

micromorphic approach, K χ = Grad γχ is regarded as a state variable. Enforcing equality between

γχ and γcum is achieved using a Lagrange multiplier λ. It turns out that the previous free energy

density in Eq. (8) becomes a Lagrangian function

L
(
E∼
e
GL
, γcum, r

s, γχ,K χ, λ
)

=
1

2ρ]
E∼
e
GL

: C
≈

: E∼
e
GL

+ ψh(rs, γcum)

+
A

2ρ0
K χ.K χ +

λ

ρ0
(γχ − γcum) +

µχ
2ρ0

(γχ − γcum)2

(32)

where µχ is a Lagrangian penalization modulus. The 1-st and 2-nd principles of thermodynamics still

require to verify Eq. (24), where ψ̇ is now replaced by L̇, and the mechanical dissipation is written as

1Relaxation is meant here in a sense different from Neff et al. (2014), where this terminology was used to describe a

”linear micromorphic model with symmetric Cauchy force stresses” which is put in contrast to ”the classical Mindlin-

Eringen model for micromorphic media with intrinsically non-symmetric force stresses”.
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in Eq. (25). The postulated state laws are now

Π∼
e = ρ]

∂ψ

∂E∼
e
GL

(33)

S = ρ0
∂ψ

∂γχ
= λ+ µχ(γχ − γcum) = ∆χ − µχγcum (34)

M = ρ0
∂ψ

∂K χ

= AK χ (35)

Similarly to the micromorphic approach, the constitutive assumption that S is non-dissipative is made.

Therefore the energy dissipated with γ̇χ vanishes. Yet, a term involving the higher order stress S and

conjugate to γ̇cum remains. For convenience we introduce the scalar stress ∆χ = λ + µχγχ. By

definition ∂L/∂λ must vanish when the constraint γcum = γχ is met

∂L
∂λ

λ̇ = (γχ − γcum)
λ̇

ρ0
= 0 (36)

and therefore the residual mechanical dissipation becomes

Π∼
M

ρ]
:
(
Ṗ∼P∼

−1
)
−

N∑
s=1

∂ψh
∂rs

ṙs −
(
µχγcum −∆χ

ρ0
+

∂ψh
∂γcum

)
γ̇cum ≥ 0 (37)

which can also be written

N∑
s=1

[
|τs| − ρ]

ρ0
(µχγcum −∆χ)− ρ]

∂ψh
∂γcum

− ρ]
∂ψh
∂rs

gs(rs)

]
|γ̇s| ≥ 0 (38)

By combining state law Eq. (34), equilibrium Eq. (5) and state law Eq. (35) it comes S = ∆χ −
µχγcum = DivM = Div (AK χ). Therefore the Lagrange multiplier approach is a relaxation of the

strict strain gradient formulation from section 2 in the sense that no spatial derivative is explicitly

involved in the non-local contribution in Eq. (38). The plastic slip rates now are

γ̇s = Γ̇Φs
(
|τs| −

(
τsc +

ρ]
ρ0

(µχγcum −∆χ)

))
sign (τs) (39)

4. Numerical implementation

The numerical implementation in a finite element setting of the Lagrange multiplier approach is

described. Details on the implementation of the micromorphic formulation can be found in (Ling

et al., 2018).

4.1. Integration of constitutive equations

The sets of degrees of freedom (DOF), input variables (IN), output variables (OUT) and integration

variables (INT) are:

DOF: {u , γχ, λ} IN: {F∼ ,∆χ} OUT: {S∼ , γM} INT: {E∼ , γs, rs, γcum} (40)

where γM is merely a copy of γcum obtained at the end of the constitutive integration. Integrating the

constitutive equations consists, for known values of all variables at a given time step n, in computing

10



the evolution of the output and internal variables at next time step n+ 1 knowing the evolution laws

of the input variables. At the global level the output variables need to satisfy the weak form of the

balance equations Eqs. (4), (5), (6) and Eq. (7). It can be noted that

S∼ = Jσ∼ .F∼
−T =

1

2

J

Je
E∼ .
(
C
≈

:
(
E∼
T .E∼ − 1∼

))
.E∼

T .F∼
−T (41)

where state law Eq. (26) has been used along with the elastic free energy used in Eq. (32) and

J = det
(
F∼
)

and Je = det
(
E∼
)
. The evolution of S∼ depends on evolutions of E∼ and F∼ . Within

the Lagrange multiplier approach the set of equations to be solved at the local level are similar to

evolution equations in Table 1 and can be reformulated incrementally as the problem of finding the

solution of the following system of equations R(∆E∼ ,∆γ
s,∆rs,∆γcum):

R =



RE∼ = ∆E∼ −∆F∼ .F∼
−1.E∼ −E∼ .

(
N∑
s=1

∆γsN∼
s

)
= 0

Rγs = ∆γs −∆ΓΦs
(
|τs| −

〈
τsc −

ρ]
ρ0

(∆χ − µχγcum)

〉)
sign (τs) = 0

Rrs = ∆rs − gs(rs)|∆γs| = 0

Rγcum = ∆γcum −
N∑
s=1

|∆γs| = 0

(42)

where ∆Γ = ∆εeq in the rate-independent formulation and ∆Γ = γ̇0∆t in the rate-dependent for-

mulation. Note that it may happen that τsc − (ρ]/ρ0) (∆χ − µχγcum) < 0. In that case this value is

replaced by 0 in the computation. Note also that Eq. (42) does not guarantee that plastic incompress-

ibility is satisfied. In order to fulfill this condition, the tensor E∼ is corrected at the beginning of each

iteration of the Newton algorithm used to solve Eq. (42). This correction amounts to replace E∼ by

(J/Je)
1/3E∼ . As a result, the corrected tensor P∼ verifies det

(
P∼
)

= 1, which corresponds to the plastic

incompressibility condition. Solving R(∆E∼ ,∆γ
s,∆rs,∆γcum) = 0 is performed using a Newton algo-

rithm with an Euler backward (implicit) scheme which requires computation of the Jacobian matrix

J = ∂R/∂∆vint (or some approximation of it). The analytical Jacobian matrix for the resolution of

Eq. (42) is given in Appendix A.

4.2. Finite element formulation

The model is implemented in the finite element software Z-set using a 3D total Lagrangian

formulation following (Besson and Foerch, 1998; Z–set package, 2020). The principle of virtual power

in the context of the Lagrange multiplier method combines Eqs. (4), (5), (6), (7), and in addition Eq.

(36) must be satisfied

∀u̇
∫
D0

S∼ : Ḟ∼dV0 =

∫
∂D0

T .u̇dS0

∀γ̇χ
∫
D0

AK χ.K̇ χ + (∆χ − µχγM )γ̇χdV0 =

∫
∂D0

Mγ̇χdS0

∀λ̇
∫
D0

(γχ − γM )λ̇dV0 = 0

(43)

(44)

(45)
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The finite element problem is solved by a monolithic iterative method. The material body occupies

the domain D0 in its reference configuration, the decomposition of this body in n finite elements raises

∀u̇
n∑
e=1

∫
De0

S∼ : Ḟ∼dV e0 =

nS∑
e=1

∫
∂De0

T .u̇ dSe0

∀γ̇χ
n∑
e=1

∫
De0

AK χ.K̇ χ + (∆χ − µχγM )γ̇χdV e0 =

nS∑
e=1

∫
∂De0

Mγ̇χdSe0

∀λ̇
n∑
e=1

∫
De0

(γχ − γM )λ̇dV e0 = 0

(46)

(47)

(48)

The boundary ∂D0 is discretized into nS surface elements ∂De
0 for the application of surface tractions.

As this section proceeds tensors are written with index notations. Within the volume of each element

the degrees of freedom ui, γχ and λ are interpolated by their values at p nodes for the displacements

(ũai for a ∈ [1; p]) and q nodes for Lagrange multiplier λ and the microslip γχ (λ̃b and γ̃bχ for b ∈ [1; q])

ui =

p∑
a=1

uNaũai γχ =

q∑
b=1

χN bγ̃bχ λ =

q∑
b=1

χN bλ̃b thus ∆χ =

q∑
b=1

χN b
(
λ̃b + µχγ̃

b
χ

)
(49)

where uNa and χN b are shape functions, the superscripts denoting the element node number. The

deformation gradient Fij and the Lagrangian gradient of microslip Ki are given by

Fij =

p∑
a=1

uBaj ũ
a
i Kχi =

q∑
b=1

χBbi γ̃
b
χ (50)

with uBaj = ∂uNa/∂Xj and χBbi = ∂χN b/∂Xi. Using these relations in Eqs. (46), (47) and (48) leads

to 

n∑
e=1

∫
De0

Sij

p∑
a=1

uBaj ˙̃uai dV e0 =

nS∑
e=1

∫
∂De0

Ti

p∑
a=1

uNa ˙̃uai dSe0

n∑
e=1

∫
De0

A

q∑
b=1

χBbi γ̃
b
χ

q∑
b=1

χBbi ˙̃γbχ +

(
q∑
b=1

χN b
(
λ̃b + µχγ̃

b
χ

)
− µχγM

)
q∑
b=1

χN b ˙̃γbχdV e0 =

nS∑
e=1

∫
∂De0

M

q∑
b=1

χN b ˙̃γbχdSe0

n∑
e=1

∫
De0

(
q∑
b=1

χN bγ̃bχ − γM
)

q∑
b=1

χN b ˙̃
λbdV e0 = 0

(51)

(52)

(53)

which can be reformulated as

n∑
e=1

p∑
a=1

[∫
De0

Sij
uBaj dV e0

]
˙̃uai =

nS∑
e=1

p∑
a=1

[∫
∂De0

Ti
uNadSe0

]
˙̃uai

n∑
e=1

q∑
b=1

[∫
De0

A

q∑
k=1

χBki γ̃
k
χ
χBbi +

(
q∑

k=1

χNk
(
λ̃k + µχγ̃

k
χ

)
− µχγM

)
χN bdV e0

]
˙̃γbχ =

nS∑
e=1

q∑
b=1

[∫
∂De0

MχN bdSe0

]
˙̃γbχ

n∑
e=1

q∑
b=1

[∫
De0

(
q∑

k=1

χNkγ̃bχ − γM
)
χN bdV e0

]
˙̃
λb = 0

(54)

(55)

(56)
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According to Eqs. (54), (55), (56) an internal reaction is associated with each degree-of-freedom. We

thus refer to Raint(ui,e)
as the internal reaction related to ui on node a of element e

Raint(ui,e)
=

∫
De0

Sij
uBaj dV e0 (57)

and to Rbint(γχ,e) (resp. Rbint(λ,e)) as the internal reaction related to γχ (resp. λ) on node b of element

e

Rbint(γχ,e) =

∫
De0

A

q∑
k=1

χBki γ̃
k
χ
χBbi +

(
q∑

k=1

χNk
(
λ̃k + µχγ̃

k
χ

)
− µχγM

)
χN bdV e0 (58)

Rbint(λ,e) =

∫
De0

(
q∑

k=1

χNkγ̃bχ − γM
)
χN bdV e0 (59)

Analogously, an external reaction is associated to each degree of freedom. We refer to Raext(ui,e)
,

Rbext(γχ,e)
, Rbext(λ,e) as the external reactions related to ui on node a, γχ and λ on node b of element e

Raext(ui,e)
=

∫
∂De0

Ti
uNadSe0 Rbext(γχ,e)

=

∫
∂De0

MχN bdSe0 Rbext(λ,e) = 0 (60)

With these expressions Eqs. (54), (55), (56) write

n∑
e=1

p∑
a=1

Raint(ui,e)
˙̃uai =

nS∑
e=1

p∑
a=1

Raext(ui,e)
˙̃uai

n∑
e=1

q∑
b=1

Rbint(γχ,e)
˙̃γbχ =

nS∑
e=1

q∑
b=1

Rbext(γχ,e)
˙̃γbχ

n∑
e=1

q∑
b=1

Rbint(λ,e)
˙̃
λb =

nS∑
e=1

q∑
b=1

Rbext(λ,e)
˙̃
λb

(61)

(62)

(63)

This system of equations is solved using Newton’s method. The details of the numerical implemen-

tation are given in Appendix B and Appendix C. As this work proceeds, quadratic (resp. linear)

interpolation functions are used for the displacement (resp. microslip and Lagrange multiplier) de-

grees of freedom.

5. Numerical examples

5.1. 1D localization band formation

5.1.1. Validation of the Lagrange multiplier implementation

Validation of the implementation is done by solving the problem of a periodic bar of length L along

X 2 (see Figure 1a) in simple shear with a single slip system and a linear softening behavior (H < 0)

τc(γ) = τ0 +Hγ (64)

Such a hardening behaviour corresponds to a hardening free energy potential ψh = Hγ2/2. In the

reference configuration, the gliding direction m is aligned with X 1, the normal to the slip plane n

is aligned with X 2. A macroscopic shear deformation F∼ = 1∼ + F 12m ⊗ n is imposed such that the
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displacement field is given by u = (F∼ − 1∼).X + v (X ). Periodic boundary conditions are imposed

on the displacement fluctuation v , micro-slip variable γχ and Lagrange multiplier λ. As discussed in

(Scherer et al., 2019) the analytical solution to this problem, in terms of plastic slip, is a localization

band following a sine shape within the [−λ0/2;λ0/2] region and no slip elsewhere

γ(X2, F 12) =


|τ | − τ0
H

(
cos

(
2π
X2

λ0

)
+ 1

)
if X2 ∈

[
−λ0

2
;
λ0

2

]
0 if X2 ∈

[
−L

2
;−λ0

2

]
∪
[
λ0

2
;
L

2

] (65)

with the wavelength λ0 = 2π
√
A/|H|, where H is the slope of linear softening and A the higher order

modulus. It is important to notice that in the context of the Lagrange multiplier approach, when the

penalty factor µχ = 0, the Lagrange multiplier λ, which is a degree of freedom, coincides with the

Laplacian of γ in this elementary problem. Yet, it can be noted from Eq. (65) that the Laplacian of

γ takes the form

∆γ(X2, F 12) =


−
(

2π

λ0

)2 |τ | − τ0
H

cos

(
2π
X2

λ0

)
if X2 ∈

[
−λ0

2
;
λ0

2

]
0 if X2 ∈

[
−L

2
;−λ0

2

]
∪
[
λ0

2
;
L

2

] (66)

which is discontinuous in ±λ0/2. Therefore solving numerically this problem by finite elements with

standard continuous shape functions might lead to difficulties. Figure 1b and 1c show the finite

element solutions to this problem in case µχ = 0, for discretizations of respectively n = 51 and

n = 201 elements along the X 2 direction of the bar and a wavelength λ0 = L/2. It is observed that

strong oscillations of plastic slip (solid red line) occur around the analytical solution (dashed black

line) for both finite element discretizations. These oscillations are caused by abnormal fluctuations of

the Lagrange multiplier (solid blue line) also plotted on the same figures. Fluctuations are probably

due to poor approximations of the Lagrange multiplier degree of freedom at the discontinuity. This

issue can be solved by using the Lagrangian penalization term in Eq. (32). The additional penalty

term is very similar to the micromorphic penalization, but it bears a completely different meaning.

While in the micromorphic approach Hχ has to be large in order to ensure quasi-equality between

γcum and γχ, in the Lagrange multiplier approach µχ only helps to provide additional coercivity and

can take much lower values in practice. Figure 1d and 1e show the finite element solution of the

periodic bar in simple shear when µχ = 50 MPa for n = 51 and n = 201. It can be observed that

the oscillations almost vanish everywhere, except at ±λ0/2 where their amplitude is much lower and

that a smooth solution coinciding with the analytical solution is obtained everywhere else. Another

possible alternative to properly account for the discontinuity of the Lagrange multiplier could be to

use a discontinuous Galerkin finite element formulation (Hughes et al., 2006; Cockburn et al., 2012).

Another observation can be made on the interdependence between mesh density and the value of

µχ which yields a smooth profile of ∆χ. The profiles of ∆χ in a reduced region of the bar for several

values of µχ and the two different mesh densities n = 51 and n = 201 are plotted in Figure 2. It can
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(b) n = 51 and µχ = 0 MPa
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(c) n = 201 and µχ = 0 MPa
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Fig. 1: (a) Geometry of the periodic bar. (b-e) Analytical (dashed black lines) and numerical (solid blue and red lines)

solutions of cumulated plastic slip γχ (red) and Laplacian term ∆χ (blue) along a periodic strip in simple shear for a

linear softening behaviour (For interpretation of the references to color in this figure caption, the reader is referred to

the web version of this paper).
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Fig. 2: Numerical solutions of the Laplacian term ∆χ profile along a periodic strip in simple shear for several values of

µχ. The discretization is n = 51 elements in (a) and n = 201 elements in (b).

be seen that if the value of µχ is not large enough, oscillations of ∆χ are still observed even if µχ 6= 0.

Increasing the value of µχ tends to smooth out the profile of ∆χ. In this example, no clear evolution

of the profile can be observed for values of µχ greater than or equal to 10 MPa. The results obtained

with µχ = 5 MPa suggest that at a given value of µχ, a finer mesh leads to a smoother profile of the

Laplacian term ∆χ. In other words, increasing the discretization reduces the value of µχ required to

obtain a smooth profile of ∆χ.

5.1.2. Computational efficiency

The computational efficiency of both relaxed formulations for the rate-independent and viscous

settings are compared in this section. The four possible variants (micromorphic or Lagrange multi-

plier approach and rate-dependent or rate-independent formulation) are used to solve the localization

problem presented above. It can be shown that the shear stress τ is uniform. In order for the results

to be comparable in terms of computational efficiency, the viscous stress τvs = τ0(γ̇/γ̇0)1/n, for the

rate-dependent setting, and the overstress τos = R(γ̇/ε̇eq), for the rate-independent setting, need to

be calibrated in order for the numerical solution to be close to the rate-independent solution without

overstress with a given precision. The macroscopic shear strain rate is chosen to be Ḟ 12 = 10−2 s−1.

From the analytical expression of τ = (F 12 + τ0/Ze)/(1/C44 + 1/Ze) with 1/Ze = λ0/HL derived in

(Scherer et al., 2019) it follows that the maximum viscous stress is

τmaxvs = τ0

 2Ḟ 12

γ̇0H
(

1
C44

+ 1
Ze

)
1/n

(67)

while the rate-independent overstress is uniform and given by

τos =

√
3R

H
(

1
C44

+ 1
Ze

) (68)

γ̇0, n and R are chosen such that τmaxvs and τos are less than 1% of τ0. The material parameter used are

summarized in Table 2. Four different values of A are chosen such that λ0/L = 2π
√
A/|H|/L takes
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Table 2: Numerical values of material parameters for the comparison of computational efficiencies.

C44 τ0 H Hχ µχ n γ̇0 R

105 GPa 100 MPa −10 MPa 5× 104 MPa 50 MPa 15 1030 s−1 0.1 MPa
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Fig. 3: Computation times for the finite element resolution of the periodic strip in simple shear and single slip for four

different λ0/L ratios and four different formulations.

the following values [0.25; 0.5; 0.75; 1]. The one-element thick bar is meshed with n = 201 quadratic

elements with reduced integration (C3D20R). In the micromorphic approach each node has three

displacement degrees of freedom and the linear nodes have one additional degree of freedom γχ. In

the Lagrange multiplier approach each node has three displacement degrees of freedom and the linear

nodes have two additional degrees of freedom γχ and λ. The number of degrees of freedom in the

micromorphic simulations is nDOF = 4077, while it is nDOF = 4485 with the Lagrange multiplier

based formulation. Results not shown here exhibit an overall discrepancy of less than 1% on the

predicted numerical γ field between the four formulations after a mean shear deformation gradient of

F 12 = 100%. All simulations are also in excellent agreement with the analytical solution. Simulations

were ran on a single Intel Core i7-7600U CPU. Reference computation time is Tref = 2316 s and

corresponds to the time needed for the viscous micromorphic formulation to reach F 12 = 100% with

λ0/L0 = 0.25. The relative computation times for the four different values of λ0/L and four different

formulations are displayed in Figure 3.

First, despite the slightly larger number of degrees of freedom, the computational cost reduc-

tion obtained with the Lagrange multiplier based formulation, as compared to the micromorphic
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approach, is striking. In the rate-dependent setting this speedup ranges from 30 up to almost 200. In

the rate-independent setting this speedup ranges between 1.5 and 70. Regarding the micromorphic

implementation only, the speedup obtained with the rate-independent setting, as compared to the

viscous setting, ranges from more than 2.5 to about 17 as the ratio λ0/L increases. Furthermore,

regarding the Lagrange multiplier formulation only, the rate-dependent and rate-independent settings

have very similar computational performances. The rate-independent setting is slightly more efficient

for the lowest λ0/L ratios, while on the contrary the rate-dependent formulation performs better at

λ0/L = 1.

The rate of convergence in the local integration scheme was checked for the micromorphic and

Lagrange multiplier approaches. Both methods display a very similar rate of convergence that is

very close to the quadratic bound of a Newton scheme. The gap of performances between the two

implementations is in fact attributed to the poor conditioning of the local Jacobian matrix when the

penalization modulus Hχ is taken large. Pre-conditioning techniques could be applied in order to

enhance the performances of the micromophic approach.

As this work proceeds, the rate-dependent setting is adopted and results obtained with micromor-

phic and Lagrange multiplier approaches are compared. As already discussed by (Cordero et al., 2010)

micromorphic and strict strain gradient formulations, such as the Lagrange multiplier based formu-

lation, are indeed not always strictly equivalent. Therefore the choice of the appropriate formulation

should not only be motivated by the computational efficiency but also by the desired scaling law.

5.2. Size effects in torsion tests

The torsion of single and polycrystal wires has been the subject of intensive experimental and

computational research. Nouailhas and Cailletaud (1995) discovered that the torsion of a single

crystal bar or tube is characterized by two types of strain gradients: a radial gradient from the center

to the outer surface due to the loading, but also a gradient along the outer circumference due to the

anisotropic activation of slip systems. This was observed experimentally by means of strain gauges

placed along the circumference (Forest et al., 1996). The transition from single to polycrystals for

microwires of increasing diameters was computed using finite element crystal plasticity in (Quilici et al.,

1998) and more recently in (Bayerschen, 2016). The size–dependent torsion of FCC single crystal bars

is investigated below by means of the proposed micromorphic and strain gradient plasticity models.

5.2.1. Problem setup

Simulations are performed with a single crystal cylindrical microwire of diameter D = 2R0 meshed

with elements that are quadratic for displacements degrees of freedom and linear for γχ and λ.

Quadratic shape function are used for displacements degrees of freedom because they are known to

provide better interpolation accuracy than linear shape functions. Furthermore, quadratic elements

are also known to be less subject to locking issues. However linear shape functions are used for γχ and

λ in order to limit the number of degrees of freedom. It is in fact assumed that plastic deformations

vary less rapidly than displacements, in such a way that linear shape functions give sufficient precision
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to interpolate accumulated plastic slip. With the formalism developed in this work quadratic shape

function for γχ and λ could also have been used. As reduced integration involves a lesser number

of integration points than full integration, 20-node brick elements with reduced integration possess-

ing 8 Gauss points (instead of 27 for full integration) are used. Reducing the number of integration

points clearly decreases the accuracy of the integration, but it also reduces the computational cost.

Furthermore, reduced integrated elements are known to be less stiff than fully integrated elements.

Therefore, reduced integration is often recommended in order to avoid the problem of locking and

possible oscillations. Yet, reduced integration can lead to hourglassing issues when the element stiff-

ness matrix is zero. Several ways to address hourglassing have been proposed in literature (Belytschko

et al., 1984): inserting an artificial stiffness to the hourglass deformation modes, inserting an artificial

viscosity, refining the mesh, etc. In this work methods to prevent hourglass were not used because no

significant hourglass modes could be observed in the simulations which are presented below.

The bottom face of the microwire is clamped while the top surface undergoes a rigid body rotation

around the wire axis. The lateral faces are kept traction free, which means that T = 0 and M = 0

from Eq. (6) and (7). Two orientations of the single crystal are considered: <001> and <111>

aligned with the microwire axis. The geometry and the boundary conditions are as shown in Figure

4. The Cartesian coordinate system is chosen for the two microwire single crystals (later respectively

denoted <001> and <111>) such that

X 1 = [110] X 2 = [11̄0] X 3 = [001] (69)

and

X 1 = [1̄1̄2] X 2 = [11̄0] X 3 = [111] (70)

respectively.

Face-centered cubic (FCC) single crystal microwires are simulated. The hardening laws per slip

system are based on the evolution of usual scalar dislocation densities. The hardening term accounts

for lattice friction and dislocation interactions (Kubin et al., 2008). The critical resolved shear stress

(CRSS) is taken as:

τsc = τ0 + µ

√√√√ 12∑
u=1

asuru (71)

where τ0 is the thermal component of the CRSS due to lattice friction, ru denotes adimensional

dislocation density (ru/b2 = ρu is the usual dislocation density, i.e. the length of dislocation lines

per unit volume, b is the norm of the dislocation Burgers vector b ), µ is the shear modulus, and asu

is a matrix describing interactions between dislocations. Such an hardening behaviour is standard in

the literature, but the link to a free energy potential ψh remains an open question. The evolution
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(a) (b)

Fig. 4: Microwire torsion (a) boundary conditions (b) example mesh from the top side in which the black line represents

an initial material line. For the <001> crystal orientation the black line is oriented along a <110> direction. For the

<111> crystal orientation it is oriented along a <112̄> direction.

Table 3: Numerical values of material parameters for the simulation of microwires in torsion.

C11 C12 C44 τ0 n γ̇0 µ Gc κ

259.6 GPa 179 GPa 109.6 GPa 320 MPa 20 1033 s−1 77.2 GPa 10.4 42.8

rs0 asu bsu (s 6= u) buu Hχ µχ

5.38× 10−11 0.124 1 0 104 MPa 103 MPa

equation for the adimensional dislocation density rs

ṙs = |γ̇s|


√

12∑
u=1

bsuru

κ
−Gcrs

 (72)

accounts for multiplication and annihilation of dislocations. The parameter κ is proportional to the

number of obstacles crossed by a dislocation before being immobilized, Gc is the critical distance

controlling the annihilation of dislocations with opposite signs, and bsu describes the interactions

between dislocations. The structures of the matrices asu and bsu are given in (Ling et al., 2018) for

FCC crystals. Cubic elasticity is considered. The wrought Inconel 718 material parameters at room

temperature used for the numerical simulation are given in Table 3. rs0 denotes the initial value of the

adimensional dislocation density, which is assumed to be the same for all slip systems. The various

intrinsic length scale to diameter ratios (`/2R0) considered in the simulations are given in Table 4.
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Table 4: Numerical values of `/2R0 ratios for the simulation of microwires in torsion.

`/2R0 <001> 0.03 0.07 0.10 0.31 0.44 0.54

`/2R0 <111> 0.03 0.08 0.11 0.35 0.50 0.61

5.2.2. Results and discussion

Figure 5 and 6 show the accumulated plastic strain fields in the deformed configuration for FCC

single crystals with wire axis parallel to <001> and <111> respectively. A cross section of each

sample is illustrated in Figure 5 and 6. The radial and circumferential plastic strain gradients are

clearly visible. A four-fold pattern is observed for the <001> specimen with maximum plastic strain

values along <100> directions. A six-fold pattern is observed for the <111> specimen with maximum

plastic strain values along <112̄> directions. The overall curves are presented using normalized torque

T/R3
0 as a function of surface strain γR defined as

γR = kR0 (73)

where k is the applied twist per unit length (θ/L). They are given in Figure 7 for the two single crystal

orientations <001> and <111> using classical crystal plasticity. The <001> crystal orientation is

found to be significantly stronger than the <111> wire. The orientation of the crystal to the loading

direction causes different slip activity and results in different mechanical responses. The twist angle at

the cross-section of the microwire is calculated as θh = θh/L, where h is the height from the bottom

end. The initial material line for <001> and <111> crystal orientation is shown in Figure 4b. The

rotation of material line with increasing surface strain is as shown in Figure 5 and 6. The response of

the micromorphic wire is also provided in Figure 7 for comparison for a given internal length value.

In the micromorphic approach, the penalty parameter Hχ is chosen sufficiently large for γcum and γχ

to almost coincide. The chosen value of Hχ in the simulation is 104 MPa. The intrinsic length scale

(`) considered in the simulation is defined as ` =
√
A/|H| as proposed in (Ling et al., 2018), where

H is the initial equivalent linear hardening modulus. H is estimated by performing uniaxial tensile

test on one element as proposed in (Ling, 2017). Its value is given by the ratio of τs and γs for one

activated slip system at the beginning of its activation. Thus the estimated H values for <001> and

<111> crystal orientation are 2500 MPa and 2000 MPa respectively. The intrinsic length scale can

be varied by varying the constitutive parameter A. The various values of A and of the intrinsic length

scale to diameter ratio (`/2R0) of microwire are given in the Table 4. The micromorphic response in

Figure 7 exhibits a linear hardening of the wire in contrast to the saturated classical crystal plasticity

response. The magnitude of the slope depends on the value of the internal length as demonstrated in

the following.

The effect of different ratios `/2R0 on the size effects in torsion microwires has been studied

for the two models considered in this work, namely the micromorphic and strain gradient plasticity

formulations. The torque vs surface strain curves of the micromorphic model are compared with
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γR = 6% , θh = 23◦ γR = 10% , θh = 37◦ γR = 14% , θh = 52◦

Fig. 5: Cumulative plastic strain (γcum) field in FCC single crystal for <001> crystal orientation in classical crystal

plasticity with respect to deformed configuration. The rotation of material line shown in Fig. 4b with increasing surface

strain is shown by a black line on the cross-section.
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γR = 6% , θh = 23◦ γR = 10% , θh = 37◦ γR = 14% , θh = 52◦

Fig. 6: Cumulative plastic strain (γcum) field in FCC single crystal for <111> crystal orientation in classical crystal

plasticity with respect to deformed configuration. The material line shown in Figure 4b and its rotation with increasing

surface strain are shown by a black line on the cross-section.
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Fig. 7: Shear stress vs surface strain in FCC single crystal wires for <001> and <111> crystal orientation using classical

crystal plasticity and micromorphic models.

the Lagrange multiplier based model. The cumulative plastic strain (γcum) fields for different `/2R0

of microwire (`/2R0 = 0.03, 0.07, 0.10 and 0.44 for <001> and `/2R0 = 0.03, 0.08, 0.11 and 0.50 for

<111> crystal orientation) obtained using both models are shown in Figure 8 and 9. It can be seen

that, for low and intermediate values of the ratio `/2R0, the two models predict the same accumulated

plastic slip fields. In contrast, for the larger value `/2R0 = 0.31, the circumferential gradient has

almost disappeared according to the Lagrange multiplier based model whereas it is still present in

the micromorphic simulation. Increasing the length scale for a fixed wire diameter leads to a strong

decrease of the plastic strain gradient. This can be attributed to the fact that the energetic cost of

plastic strain gradient increases with ` and the free energy of the sample is minimum for a limited

value of the gradient. These observations are valid for both orientations <001> and <111>. It is

remarkable that the four-fold and six-fold patterns disappear for large enough internal length scale

values.

The corresponding torque vs surface strain curves are provided in Figure 10 and 11. They clearly

show the size-dependent hardening effect for both models. For small and intermediate values of the

internal length, the micromorphic and Lagrange multiplier models are found to deliver the same overall

responses. This result is expected since the value of penalty parameter in the micromorphic model has

been chosen so as to ensure such a correspondence. However, keeping the same value of the penalty

parameter Hχ and increasing the internal length, or equivalently the value of the parameter A, leads

to a saturation of the torque-shear strain curve for the micromorphic model. In contrast, the Lagrange

multiplier based model predicts ever increasing hardening. Figure 10a and 11a show almost the same
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γcum

(a)

`/2R0 = 0.03 `/2R0 = 0.07 `/2R0 = 0.10 `/2R0 = 0.31

(b)

Fig. 8: Cumulative plastic strain distribution in FCC single crystal for <001> crystal orientation for different values

of ratio `/2R0 using (a) micromorphic (b) Lagrange multiplier models at surface strain of 0.08 (fields reported on the

reference configuration).
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γcum

(a)

`/2R0 = 0.03 `/2R0 = 0.08 `/2R0 = 0.11 `/2R0 = 0.50

(b)

Fig. 9: Cumulative plastic strain distribution in FCC single crystal for <111> crystal orientation for different values

of ratio `/2R0 using (a) micromorphic (b) Lagrange multiplier models at surface strain of 0.08 (fields reported on the

reference configuration).
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Fig. 10: Normalized torque vs surface strain curves for FCC <001> crystal orientation for different values of ratio `/2R0

using (a) micromorphic (b) Lagrange multiplier models.

micromorphic response for the two largest `/2R0 values whereas distinct curves are obtained with

the Lagrange multiplier approach, see Figure 10b and 11b. This saturation of size effects predicted

by a micromorphic formulation has already been demonstrated analytically for the microcurl theory

by Cordero et al. (2010) in the case of periodic shearing of a laminate at small strains and small

rotations. The present new results show that this feature also exists at large strains for torsion. These

observations apply to both orientations <001> and <111>. The strongest additional hardening effect

is obtained when the internal length takes values comparable to the wire diameter, as expected.

The predictions of the Lagrange multiplier based formulation can be considered in fact as the limit

case when the penalty modulus Hχ goes to infinity in the micromorphic formulation. The predictions

obtained with the micromorphic formulation for several values of Hχ are plotted in Figure 12. As Hχ

rises the prediction of the micromorphic formulation goes closer to the prediction obtained with the

Lagrange multiplier based formulation. However increasing Hχ builds up drastically the computation

time since the penalization becomes very stiff. In practice, one could use the penalty term Hχ in

the micromorphic formulation as a parameter to fit the scaling law measured in experiments. This

possibility was discussed for micromorphic and Cosserat models in (Cordero et al., 2010). Such a

parametrization is however not possible with the Lagrange multiplier based formulation. Nevertheless

saturation of the scaling law can also be achieved, with both formulations, by using a more elaborate

free energy potential associated to gradient terms. The rather simple quadratic form used in this

study can indeed be modified in order to obtain more physically relevant scaling laws.
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Fig. 11: Normalized torque vs surface strain curves for FCC <111> crystal orientation for different values of ratio `/2R0

using (a) micromorphic (b) Lagrange multiplier models.
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5.3. Size effects in ductile fracture: void growth and coalescence

Porous unit-cell simulations are commonly used to assess the mechanisms of void growth and void

coalescence which play a major role in the ductile failure of metallic materials. Voids can nucleate

at defects such as inclusions and precipitates by cracking or debonding of these defects. Voids may

also be induced by other mechanisms such as irradiation in nuclear materials. In all these cases

voids are sub-crystalline imperfections. Following the pioneering work of Hori and Nemat-Nasser

(1988a,b) recent numerical studies have considered voids embedded in FCC (Ling et al., 2016) and

HCP (Selvarajou et al., 2019) single crystals. In addition, Hussein et al. (2008); Borg et al. (2008b);

Zhao et al. (2009) have analyzed the size effects predicted by strain gradient plasticity, dislocations

dynamics and molecular dynamics respectively, in plates containing cylindrical holes. Recently Ling

et al. (2018) performed the first size-dependent 3D porous single crystal unit-cell simulations where

the micromorphic crystal plasticity formulation presented in Section 3.1 was used. Similar unit-cell

simulations are reproduced with the Lagrange multiplier based formulation presented in Section 3.2

and compared to the results obtained by Ling et al. (2018).

5.3.1. Problem setup

An initially spherical void of radius R0 is placed at the center of a cube of size L0 as presented in

Figure 13a. The matrix material surrounding the void is a FCC single crystal (later denoted <100>)

such that

X 1 = [100] X 2 = [010] X 3 = [001] (74)

Therefore, for symmetry reasons only one eighth of the porous unit-cell is considered. Figure 13b

shows the corresponding finite element mesh for a void volume fraction f0 = (4/3)π(R0/L0)3 = 1%.

Quadratic (resp. linear) shape functions are used for the displacement (resp. micro-slip γχ and

Lagrange multiplier λ) degrees of freedom. Elements with reduced integration are used. A triaxial

axisymmetric loading is applied by prescribing displacement boundary conditions on the inner faces

of the cube at X1 = 0, X2 = 0, X3 = 0 and outer faces at X1 = L0/2, X2 = L0/2, X3 = L0/2

U1(X1 = 0, X2, X3) = 0 U1(X1 = L0/2, X2, X3) = U1(t) (75)

U2(X1, X2 = 0, X3) = 0 U2(X1, X2 = L0/2, X3) = U2(t) (76)

U3(X1, X2, X3 = 0) = 0 U3(X1, X2, X3 = L0/2) = U3(t) (77)

External forces F1, F2 and F3 are respectively associated to U1, U2 and U3. The macroscopic Cauchy

stress components Σ11, Σ22 and Σ33 are defined by

Σ11 =
4F1

(L0 + 2U2)(L0 + 2U3)
Σ22 =

4F2

(L0 + 2U1)(L0 + 2U3)
Σ33 =

4F3

(L0 + 2U1)(L0 + 2U2)
(78)

A macroscopic strain rate Ḟ 11 = 10−4 s−1 is imposed along the X 1 direction. Displacements U2 and

U3 are adjusted following the procedure described in Ling et al. (2016) in order to enforce a constant

stress triaxiality T where

T =
Σm
Σeq

=
1 + η2 + η3

3
√

1− η2 − η3 − η2η3 + η2
2 + η2

3

(79)
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(a) (b)

Fig. 13: (a) Geometry of a cubic porous unit-cell. (b) 1/8-th of the finite element mesh for f0 = 1%. Total number of

degrees of freedom is nDOF = 2767.

with the relations Σ22 = η2Σ11 and Σ33 = η3Σ11. For the applied axisymmetric loading considered in

this Section, the values η2 = η3 = 0.625 were chosen, corresponding to a triaxiality of 2.

The same dislocation density based hardening laws Eq. (71) and evolution equations Eq. (72) are

used. Different material parameters are however considered and listed in Table 5 in order to match

the material parameters used in Ling et al. (2018). Several values of A are used in order to investigate

size effects. As discussed in previous section and by Ling et al. (2018) the intrinsic length scale

` =
√
A/H can be considered, where H denotes the linear hardening modulus at initiation of plastic

slip in a uniaxial tensile test. The ratio `/L0 then governs the predicted size effects. For the material

parameters presented in Table 5 one obtains H = 2777 MPa for the <100> crystal orientation. The

numerical values of `/L0 used for the simulation of porous unit-cells are: 0, 1/300, 1/90, 1/30 and

1/3. Several values of the penalization modulus µχ are also considered in order to measure its impact

on the macroscopic stress-strain behaviour.

5.3.2. Results and discussion

The void volume fraction f is postprocessed from the unit-cell simulations by computing the

volume contained in the mesh Vmesh (excluding the void) and the total volume contained in the cube

Table 5: Numerical values of material parameters for the simulation of porous unit-cells.

C11 C12 C44 τ0 n γ̇0 µ Gc κ

200 GPa 136 GPa 105 GPa 88 MPa 15 1029 s−1 65.6 GPa 10.4 42.8

rs0 a1, a2 a3 a4 a5 a6 bij (i 6= j) bii µχ

5.38× 10−11 0.124 0.07 0.625 0.137 0.122 1 0 102, 103, 104 MPa

30



Vtot = (L0 + 2U1)(L0 + 2U2)(L0 + 2U3) (including the void)

f = 1− Vmesh
Vtot

(80)

Figure 14 plots the evolution of f with the macroscopic deformation E11 = 2U1/L0 for the different

`/L0 ratios considered. The results obtained with the novel Lagrange multiplier based formulation are

plotted aside the results presented in (Ling et al., 2018) which were obtained with the micromorphic

formulation with the same material parameters, but where the entire unit-cells were computed. It

can be noted that when `/L0 vanishes, both formulations predict almost exactly the same result.

Nevertheless some discrepancies become visible as `/L0 increases. This observation can be put in

parallel to the discussion made in previous section. The Lagrange multiplier approach corresponds

indeed to the limit case of the micromorphic formulation as Hχ approaches infinity. However in

(Ling et al., 2018) for numerical efficiency reasons Hχ was taken equal to 5× 104 MPa. Size effects

obtained with both formulations are therefore in good qualitative agreement, but turn out to be more

pronounced with the Lagrange multiplier setting. These effects are as follows.

With the applied loading the void volume fraction is a monotonically increasing function of E11.

In absence of size effects (i.e. `/L0 = 0) evolution of the void volume fraction does not depend on

the cell size. However as `/L0 increases void volume fraction evolution becomes size-dependent. The

larger the `/L0 ratio is, the slower the void volume fraction rises with macroscopic deformation. This

first size effect is due to a more diffuse plastic deformation field when the intrinsic length ` gets closer

to L0. For the three lowest values of the ratio considered, the void volume fraction evolution displays

two distinct regimes, while for the two largest ratios only one regime is visible. This two-regime

evolution is characteristic of void growth and void coalescence. During the first regime, voids grow

rather slowly because of overall yielding of the matrix surrounding them. At some point necking of

the ligament separating voids is reached, which leads to a sudden steepening of void growth evolution.

This acceleration is due to intense localization of plastic deformation inside the ligament. Onset of void

coalescence by intervoid ligament necking is characterized by a transition from a triaxial to a uniaxial

straining mode (Koplik and Needleman, 1988). This transition can therefore be detected by computing

over time the ratio |∆U2|/|∆U1|. Coalescence can be considered to set on as soon as this ratio becomes

lower than an arbitrary small critical value, say 5%. Hollow squares are plotted in Figure 14 in order

to depict the macroscopic strain and void volume fraction at which coalescence begins. For the sake of

clarity, coalescence onsets are only displayed for the results obtained by Ling et al. (2018). For a given

characteristic length, the micromorphic and Lagrange multiplier formulations predict almost identical

strain and void volume fractions at onset of coalescence. The second size effect which appears is that

void growth to void coalescence transition is postponed when `/L0 is increased. This delay is due

to the weaker void volume increase during the growth regime. For the two largest value of `/L0 a

very flat void growth regime is observed. The quasi-absence of void growth explains why coalescence

does not occur in the range of applied deformations. Necking of the intervoid ligament would indeed

require larger stresses to be applied. A third size effect which can be observed is a slight increase of
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Conventional
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Fig. 14: Void volume fraction f evolution with respect to macroscopic deformation E11 for different intrinsic length to

cell size ratios `/L0 obtained with the micromorphic (solid lines) and the Lagrange multiplier (dashed lines) formulations

in porous unit-cell simulations with f0 = 0.01 and material parameters presented in Table 5. Hollow squares denote

onsets of void coalescence.

the void volume fraction at coalescence when the intrinsic length increases. This additional effect is

due to the fact that size effects prevent intense localization of plastic deformation. Therefore void

coalescence which occurs by localization of plastic slip in the intervoid ligament requires a larger void

volume fraction in order to happen. The macroscopic stress-strain curves obtained with the Lagrange

multiplier formulation are plotted in Figure 15 aside to the results obtained with the micromorphic

formulation presented in Ling et al. (2018). As previously noted for void volume fraction in Figure

14, both formulations are also equivalent in terms of stress-strain behaviour when size effects are

absent. However the discrepancies between both formulations observed in presence of size effects

on void volume fraction evolution are also visible on the stress-strain behaviour. The void volume

fraction plays indeed a detrimental role on the macroscopic stress. With low and intermediate intrinsic

length scales, voids grow significantly and the material displays a two-regime stress-strain behaviour.

During the first regime hardening of the matrix material dominates over softening induced by void

growth. This regime is therefore characterized by an increase of the macroscopic stress despite the

augmentation of f . In the second regime, softening induced by void growth overcomes the hardening

capacity of the matrix leading to a macroscopic softening behaviour. However, for the largest intrinsic

length, softening induced by void growth does not overcome hardening of the matrix material, thus

the second stress softening regime is not observed. Hollow squares are also plotted on the stress-strain

curves in order to depict onset of void coalescence. As discussed earlier, strong size effects postpone the

onset of void coalescence, because of impeded void growth. As a collateral effect, it can be noted that
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Fig. 15: Macroscopic stress-strain behaviour for different intrinsic length to cell size ratios `/L0 obtained with the

micromorphic formulation (dots) by Ling et al. (2018) and the Lagrange multiplier formulation (dashed lines) in porous

unit-cell simulations with f0 = 0.01 and material parameters presented in Table 5. Hollow squares denote onsets of void

coalescence.

the macroscopic stress at coalescence increases notably with `/L0. The influence of the penalization

modulus µχ in the Lagrange multiplier formulation is visible in Figure 14 and 15. For the smallest

characteristic length µχ has a rather weak impact on the void volume fraction evolution and stress

behaviour. As the characteristic length increases, the importance of µχ rises. It can be observed that

greater values of µχ induce a slightly slower void growth and a harder stress-strain behaviour. These

effects become more visible at large strains.

The cumulated plastic strain field obtained with the Lagrange multiplier formulation with µχ = 104

MPa are displayed in Figure 16 at a macroscopic strain E11 = 0.3 for several values of the ratio

`/L0. These fields are quantitatively in excellent agreement with the results obtained by Ling et al.

(2018) with the micromorphic approach. According to conventional crystal plasticity, plastic strains

are predominantly localized in the vicinity of the void, in particular where the cross-section area

orthogonal to the main tensile direction is minimum. Plastic anisotropy causes the presence of several

soft zones, where γcum is maximum and which correspond to regions with highest Schmid factors. As

the ratio `/L0 is increased the cumulated plastic slip tends to become more homogeneous across the

porous unit-cell. Therefore, the maximum local value of γcum drops. In addition, the number of local

maxima decreases. Three intense maxima were indeed visible with conventional crystal plasticity,

while only two much less intense maxima can be observed when `/L0 = 30.
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Fig. 16: Cumulated plastic strain fields in porous unit-cells at E11 = 0.3 obtained with the Lagrange multiplier

formulation with µχ = 104 MPa.

6. Conclusions

The major outcomes of this study can be stated as follows:

1. A Lagrange multiplier approach accounting for the nonlinearity and nonlocality coupling inher-

ent to strain gradient plasticity was presented. It was compared to the micromorphic approach

in the context of crystal plasticity. The main idea of the Lagrange multiplier approach is to

enforce weakly equality between local and nonlocal variables through a Lagrange multiplier.

2. The finite element implementation of the Lagrange multiplier method was detailed. In particular

tangent and Jacobian matrices were derived.

3. The computational efficiencies of the micromorphic and Lagrange multiplier formulations were

compared. Rate-dependent and rate-independent crystal plasticity settings were used. A signifi-

cant speedup, reaching a computational time reduction of up to a factor 200, is obtained with the

Lagrange multiplier based and rate-dependent formulation compared to the micromorphic and

rate-dependent formulation. Important benefits are also displayed with the rate-independent

setting as compared to the viscoplastic flow rule, in particular when the micromorphic approach

is considered.

4. The prediction of size effects with the micromorphic and Lagrange multiplier approaches were

compared for single crystals torsion tests. It was shown that both models provide similar results

for small and intermediate internal length scales. However, for larger internal length scales, the

hardening due to strain gradients saturates according to the micromorphic approach. A similar

saturation effect was observed on the grain size effect on the yield stress in polycrystals using

the microcurl model at small strains in (Cordero et al., 2012b). The scaling law is different for

the Lagrange multiplier formulation since such a saturation is not observed.

5. Advantage of the Lagrange multiplier numerical efficiency has been taken in order to perform

simulations of void growth in porous unit-cells up to void coalescence. Comparison to simulations

made previously with the micromorphic formulation displays a very good agreement between

both formulations.
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Although this model remains computationally rather expensive, the results obtained in this work

suggest that simulation of structures, such as real specimens, are now within reach in more reasonable

computation times. The work initiated in (Scherer et al., 2019) on the evolution of voids in a softening

matrix material will be pursued by performing 3D porous unit-cell simulations by taking advantage

of the enhanced computational performance of the Lagrange multiplier formulation. The advances

obtained in this paper will also be coupled in a future work to recent extensions of standard crystal

plasticity to ductile failure (Ling et al., 2016) and damage (Lindroos et al., 2019).
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7. Appendices

Appendix A. Jacobian matrix ∂R/∂vint

The Jacobian matrix is needed to integrate the constitutive equations at the Gauss point level.

The block form of the Jacobian matrix writes

J =
∂R

∂∆vint
=



∂RE∼
∂∆E∼

∂RE∼
∂∆γp

∂RE∼
∂∆rq

∂RE∼
∂∆γcum

∂Rγs
∂∆E∼

∂Rγs
∂∆γp

∂Rγs
∂∆rq

∂Rγs
∂∆γcum

∂Rrs
∂∆E∼

∂Rrs
∂∆γp

∂Rrs
∂∆rq

∂Rrs
∂∆γcum

∂Rγcum
∂∆E∼

∂Rγcum
∂∆γp

∂Rγcum
∂∆rq

∂Rγcum
∂∆γcum


(A.1)

• Derivatives of RE∼
RE∼ = ∆E∼ −∆F∼ .F∼

−1.E∼ +E∼ .

(
N∑
s=1

∆γsN∼
s

)
(A.2)

∂RE∼
∂∆E∼

= 1
≈
− (∆F∼ .F∼

−1)⊗1
≈

+ 1
≈
⊗
(

N∑
s=1

∆γsN∼
s

)T
(A.3)

∂RE∼
∂∆γp

= E∼ .N∼
p

∂RE∼
∂∆rq

= 0
∂RE∼

∂∆γcum
= 0 (A.4)
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• Derivatives of Rγs

Rγs = ∆γs −∆ΓΦs
(
|τs| −

〈
τsc − ρ]

ρ0
(∆χ − µχγcum)

〉)
sign (τs) (A.5)

∂Rγs
∂∆E∼

= −∆Γ
∂Φs

∂τs
∂τs

∂Π∼
M

:
∂Π∼

M

∂C∼
e :

∂C∼
e

∂E∼
:
∂E∼
∂∆E∼

sign (τs) C∼
e = E∼

T .E∼ (A.6)

with

∂Φs

∂τs
=
∂Φs

∂fs
∂fs

∂τs
= sign (τs) Φs

′
Φs
′

=


Φs
′

RD =
n

τn0

〈
fs

τ0

〉n−1

Φs
′

RI = 1/R

∂τs

∂Π∼
M

= N∼
s (A.7)

∂Π∼
M

∂C∼
e =

∂
[
C∼
e.
(
C
≈

: 1
2 (C∼

e − 1)
)]

∂C∼
e = (1∼⊗Π∼

eT ) +
1

2
(C∼

e⊗1∼) : C
≈

(A.8)

∂C∼
e

∂E∼
= 1∼⊗E∼ T +E∼

T⊗1∼
∂E∼
∂∆E∼

= 1
≈

(A.9)

∂Rγs
∂∆E∼

= −∆ΓΦs
′
N∼

s :

[
(1∼⊗Π∼

e) +
1

2
(C∼

e⊗1∼) : C
≈

]
: (1∼⊗E∼ T +E∼

T⊗1∼) (A.10)

∂Rγs
∂∆γp

= δsp (A.11)

∂Rγs
∂∆rq

= −∆Γ
∂Φs

∂fs
∂fs

∂τsc

∂τsc
∂∆rq

sign (τs) = sign (τs) ∆ΓΦs
′ 1

2
µ

(
N∑
u=1

asuru

)− 1
2

asq (A.12)

∂Rγs
∂∆γcum

= −∆Γ
∂Φs

∂fs
∂fs

∂γcum
sign (τs) = ∆ΓΦs

′
µχsign (τs) (A.13)

• Derivatives of Rrs

Rrs = ∆rs − |∆γs|


√

N∑
u=1

bsuru

κ
−Gcrs

 (A.14)

∂Rrs
∂∆E∼

= 0
∂Rrs
∂∆γp

= −sign (∆γs) δsp


√

N∑
u=1

bsuru

κ
−Gcrs

 (A.15)

∂Rrs
∂∆rq

= δsq − |∆γs|

1

2

(
N∑
u=1

bsuru
)− 1

2

bsq

κ
−Gcδsq

 ∂Rrs
∂∆γcum

= 0 (A.16)
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• Derivatives of Rγcum

Rγcum = ∆γcum −
N∑
s=1

|∆γs| (A.17)

∂Rγcum
∂∆E∼

= 0
∂Rγcum
∂∆γp

= −sign (∆γp)
∂Rγcum
∂∆rq

= 0
∂Rγcum
∂∆γcum

= 1 (A.18)

Appendix B. Details on the finite element implementation

In order to facilitate the numerical implementation in finite element code, the previous equations

are written in vector and matrix form. The rates of nodal degrees of freedom ˙̃ua, ˙̃γbχ and
˙̃
λb are

arranged in vector form as

{ ˙̃uai } = { ˙̃u
e} =



˙̃u1
1

˙̃u1
2

˙̃u1
3

...

˙̃up1

˙̃up2

˙̃up3



{ ˙̃γbχ} = { ˙̃γeχ} =



˙̃γ1
χ

˙̃γ2
χ

...

˙̃γqχ


{ ˙̃
λb} = { ˙̃

λe} =



˙̃
λ1

˙̃
λ2

...

˙̃
λq


(B.1)

Here, we drop the superscripts a and b used for summation over the nodes of one element and add a

superscript label e, in order to indicate that the vector is for one individual element and to distinguish

it from vectors for the entire finite element mesh. Recall that p is the number of nodes possessing

displacement degrees of freedom and q is that for ∆χ and microslip γχ. Voigt’s notation is used for

writing tensors in the form of vectors and matrices. Especially, the second-order non-symmetric tensor

F∼ is arranged in the form:

{F∼ } =



F11

F22

F33

F12

F23

F31

F21

F32

F13



(B.2)
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Thus, shape functions uNa
i and χN b can be written as

[uN] =


uN1 0 0 · · · uNp 0 0

0 uN1 0 · · · 0 uNp 0

0 0 uN1 · · · 0 0 uNp

 (B.3)

and

[χN] =
[
χN1 χN2 χN3 · · · χNq.

]
(B.4)

Accordingly, uBaij and χBai can also be written in matrix form denoted by [uB] and [χB]:

[uB] =



∂uN1

∂X1
0 0 · · · ∂uNp

∂X1
0 0

0
∂uN1

∂X2
0 · · · 0

∂uNp

∂X2
0

0 0
∂uN1

∂X3
· · · 0 0

∂uNp

∂X3

∂uN1

∂X2
0 0 · · · ∂uNp

∂X2
0 0

0
∂uN1

∂X3
0 · · · 0

∂uNp

∂X3
0

0 0
∂uN1

∂X1
· · · 0 0

∂uNp

∂X1

0
∂uN1

∂X1
0 · · · 0

∂uNp

∂X1
0

0 0
∂uN1

∂X2
· · · 0 0

∂uNp

∂X2

∂uN1

∂X3
0 0 · · · ∂uNp

∂X3
0 0



(B.5)

and

[χB] =



∂χN1

∂X1

∂χN2

∂X1

∂χN3

∂X1
· · · ∂χNq

∂X1

∂χN1

∂X2

∂χN2

∂X2

∂χN3

∂X2
· · · ∂χNq

∂X2

∂χN1

∂X3

∂χN2

∂X3

∂χN3

∂X3
· · · ∂χNq

∂X3


(B.6)

The interpolation of increment of the displacements u̇i, microslip γ̇χ and Lagrange multiplier λ̇ in one

element thus write

{u̇ } = [uN].{ ˙̃u
e} {γ̇χ} = [χN].{ ˙̃γeχ} (B.7)

{λ̇} = [χN].{ ˙̃
λe} thus {∆̇χ} = [χN].

[
{ ˙̃
λe}+ µχ{ ˙̃γeχ}

]
(B.8)

and therefore it follows that

{Ḟ∼ } = [uB].{ ˙̃u
e} {K̇ χ} = [χB].{ ˙̃γeχ}. (B.9)
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With stress and strain variables expressed with Voigt’s notation, Eqs. (57), (58), (59) and (60) follow

{Re
int(u)} =

∫
De0

[uB]T .{S∼}dV e0 (B.10)

{Re
int(γχ)} =

∫
De0

A[χB]T .[χB].{γχ}+ [χN]T . ({∆χ} − µχ{γMγMγM}) dV e0 (B.11)

{Re
int(λ)} =

∫
De0

[χN]T . ({γχ} − {γMγMγM}) dV e0 (B.12)

{Re
ext(u)} =

∫
∂De0

[uN]T .{T }dSe0 (B.13)

{Re
ext(γχ)} =

∫
∂De0

[χN]T .{M}dSe0 (B.14)

{Re
ext(λ)} = {000} (B.15)

where [uB]T is the transpose of the matrix [uB] and the same notation is used for other matrices. In

practice the integrals are approximated in each element by a Gaussian quadrature rule. The global

finite element set of equations is obtained by applying an assembly operator A on internal reactions

and external reactions:

{Rint(u)} = A({Re
int(u)}) {Rint(γχ)} = A({Re

int(γχ)}) {Rint(λ)} = A({Re
int(λ)}) (B.16)

{Rext(u)} = A({Re
ext(u)}) {Rext(γχ)} = A({Re

ext(γχ)}) {Rext(λ)} = A({Re
ext(λ)}) (B.17)

The reader is referred to (Besson et al., 2009) for the description of the assembly procedure. Thus,

the global finite element set of equations Eqs. (61), (62) and (63) to be solved can be written as
{Rint(u)}
{Rint(γχ)}
{Rint(λ)}

 .


{ ˙̃u}
{ ˙̃γχ}
{ ˙̃
λ}

 =


{Rext(u)}
{Rext(γχ)}
{Rext(λ)}

 .


{ ˙̃u}
{ ˙̃γχ}
{ ˙̃
λ}

 (B.18)

Since the system is nonlinear, it can be solved by Newton’s method which requires the calculation of

the Jacobian matrix with respect to the internal reactions (Besson et al., 2009). The Jacobian matrix

of an individual element, split into nine blocks, writes


[Ke

(uu)] [Ke
(ug)] [Ke

(ul)]

[Ke
(gu)] [Ke

(gg)] [Ke
(gl)]

[Ke
(lu)] [Ke

(lg)] [Ke
(ll)]

 =



[
∂{Re

int(u)}
∂{ũe}

] [
∂{Re

int(u)}
∂{γ̃eχ}

] [
∂{Re

int(u)}
∂{λ̃e}

]
[
∂{Re

int(γχ)}
∂{ũe}

] [
∂{Re

int(γχ)}
∂{γ̃eχ}

] [
∂{Re

int(γχ)}
∂{λ̃e}

]
[
∂{Re

int(λ)}
∂{ũe}

] [
∂{Re

int(λ)}
∂{γ̃eχ}

] [
∂{Re

int(λ)}
∂{λ̃e}

]


(B.19)

Using the assembly operation A, one can calculate the global Jacobian matrix [K]

[K] = A


[Ke

(uu)] [Ke
(ug)] [Ke

(ul)]

[Ke
(gu)] [Ke

(gg)] [Ke
(gl)]

[Ke
(lu)] [Ke

(lg)] [Ke
(ll)]

 (B.20)
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One calculates the blocks for an individual element and obtains the so-called element stiffness matrix:

[Ke
(uu)] =

∂{Re
int(u)}

∂{ũe} =

∫
De0

[uB]T .
∂{S∼}
∂{F∼ }

.
∂{F∼ }
∂{ũe} dV e0

=

∫
De0

[uB]T .
∂{S∼}
∂{F∼ }

.[uB] dV e0 (B.21)

[Ke
(ug)] =

∂{Re
int(u)}

∂{γ̃eχ}
=

∫
De0

(
[uB]T .

∂{S∼}
∂{γχ}

.
∂{γχ}
∂{γ̃eχ}

+ [uB]T .
∂{S∼}
∂{∆χ}

.
∂{∆χ}
∂{γ̃χ}

.
∂{γ̃χ}
∂{γ̃eχ}

)
dV e0

=

∫
De0

(
[uB]T .

∂{S∼}
∂{γχ}

.[χN] + µχ[uB]T .
∂{S∼}
∂{λ} .[

χN]

)
dV e0 (B.22)

[Ke
(ul)] =

∂{Re
int(u)}

∂{λ̃e}
=

∫
De0

(
[uB]T .

∂{S∼}
∂{∆χ}

.
∂{∆χ}
∂{λ} .

∂{λ}
∂{λ̃e}

)
dV e0

=

∫
De0

(
[uB]T .

∂{S∼}
∂{∆χ}

.[χN]

)
dV e0 (B.23)

[Ke
(gu)] =

∂{Re
int(γχ)}

∂{ũe} =

∫
De0

(
−µχ[χN]T .

∂{γM}
∂{F∼ }

.
∂{F∼ }
∂{ũe}

)
dV e0

=

∫
De0

(
−µχ[χN]T .

∂{γM}
∂{F∼ }

.[uB]

)
dV e0 (B.24)

[Ke
(gg)] =

∂{Re
int(γχ)}

∂{γ̃eχ}
=

∫
De0

(
A[χB]T .[χB].

∂{γχ}
∂{γ̃eχ}

+ µχ[χN]T .
∂{γχ}
∂{γ̃eχ}

− µχ[χN]T .
∂{γM}
∂{∆χ}

.
∂{∆χ}
∂{γ̃χ}

.
∂{γ̃χ}
∂{γ̃eχ}

)
dV e0

=

∫
De0

(
A[χB]T .[χB].[χN] + µχ[χN]T .[χN]− µ2

χ[χN]T .
∂{γM}
∂{∆χ}

.[χN]

)
dV e0 (B.25)

[Ke
(gl)] =

∂{Re
int(γχ)}

∂{λ̃e}
=

∫
De0

(
[χN]T .

∂{λ}
∂{λ̃e}

− µχ[χN]T .
∂{γM}
∂{∆χ}

.
∂{∆χ}
∂{λ}

∂{λ}
∂{λ̃e}

)
dV e0

=

∫
De0

(
[χN]T .[χN]− µχ[χN]T .

∂{γM}
∂{∆χ}

.[χN]

)
dV e0 (B.26)

[Ke
(lu)] =

∂{Re
int(λ)}

∂{ũe} =

∫
De0

(
−[χN]T .

∂{γM}
∂{F∼ }

.
∂{F∼ }
∂{ũe}

)
dV e0

=

∫
De0

(
−[χN]T .

∂{γM}
∂{F∼ }

.[uB]

)
dV e0 (B.27)

[Ke
(lg)] =

∂{Re
int(λ)}

∂{γ̃eχ}
=

∫
De0

(
[χN]T .

∂{γχ}
∂{γ̃eχ}

− [χN]T .
∂{γM}
∂{∆χ}

.
∂{∆χ}
∂{γχ}

.
∂{γχ}
∂{γ̃eχ}

)
dV e0

=

∫
De0

(
[χN]T .[χN]− µχ[χN]T .

∂{γM}
∂{∆χ}

.[χN]

)
dV e0 (B.28)

[Ke
(ll)] =

∂{Re
int(λ)}

∂{λ̃e}
=

∫
De0

(
−[χN]T .

∂{γM}
∂{∆χ}

.
∂{∆χ}
∂{λ} .

∂{λ}
∂{λ̃e}

)
dV e0

=

∫
De0

(
−[χN]T .

∂{γM}
∂{∆χ}

.[χN]

)
dV e0 (B.29)

In the element stiffness matrix, one can find four derivatives which will be evaluated by consistent

tangent matrix {J∗} in the next section. The consistent tangent matrix {J∗} is defined as:

J∗ =
δ∆vOUT

δ∆vIN
(B.30)
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Appendix C. Details on the consistent tangent matrix

It is shown in (Ling et al., 2018) that the consistent tangent matrix is

J∗ =

{
∂∆vOUT

∂∆vINT

[
−
(

∂R
∂∆vINT

)−1
∂R

∂∆vIN

]
+
∂∆vOUT

∂∆vIN

}
(C.1)

which involves the inverse of the (local) Jacobian matrix J = ∂R/∂vINT.

• ∂∆vOUT

∂∆vINT

∂∆S∼
∂∆E∼

=
∂S∼
∂E∼

=
∂S∼
∂σ∼

:
∂σ∼
∂E∼

(C.2)

∂S∼
∂σ∼

= J1∼⊗F∼−1 (C.3)

∂σ∼
∂E∼

= − 1

Je
(E∼ .Π∼

e.E∼
T )⊗E∼−T +

1

Je
1∼⊗(Π∼

e.E∼
T )T

+
1

Je
(E∼⊗E∼ ) :

∂Π∼
e

∂E∼
+

1

Je

[
(E∼ .Π∼

e)⊗1∼
]

: (1∼⊗1∼) (C.4)

∂Π∼
e

∂E∼
=

∂Π∼
e

∂E∼
e
GL

:
∂E∼

e
GL

∂E∼
(C.5)

∂Π∼
e

∂E∼
e
GL

= C
≈

(C.6)

∂E∼
e
GL

∂E∼
=

1

2
(1∼⊗E∼ T +E∼

T⊗1∼) (C.7)

∂∆S∼
∂∆γs

= 0
∂∆S∼
∂∆rs

= 0
∂∆S∼

∂∆γcum
= 0 (C.8)

∂∆γM
∂∆E∼

= 0
∂∆γM
∂∆γs

= 0
∂∆γM
∂∆rs

= 0
∂∆γM
∂∆γcum

= 1 (C.9)

• ∂R
∂∆vIN

∂RE∼
∂∆∆χ

= 0
∂RE∼
∂∆F∼

= −∂(∆F∼ .F∼
−1.E∼ )

∂∆F∼
(C.10)

= −1∼⊗
(
F∼
−1.E∼

)T − (∆F∼⊗E∼ T ) :
∂F∼
−1

∂F∼
:
∂F∼
∂∆F∼

(C.11)

= −1∼⊗
(
E∼
T .F∼

−T
)T
− (∆F∼⊗E∼ T ) : (−F∼−1⊗F∼−T ) : 1

≈
(C.12)

= −1∼⊗
(
E∼
T .F∼

−T
)

+ (∆F∼⊗E∼ T ) : (F∼
−1⊗F∼−T ) (C.13)

For the rate-dependent formulation
∂Rγs

∂∆F∼
= 0 (C.14)

For the rate-independent formulation

∂Rγs

∂∆F∼
= −sign (τs) Φs

∂∆εeq
∂∆F∼

(C.15)
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∂∆εeq
∂∆F∼

=
∂∆εeq
∂∆D∼

′ :
∂∆D∼

′

∂∆D∼
:
∂∆D∼
∂∆L∼

:
∂∆L∼
∂∆F∼

(C.16)

=
2

3

∆D∼
′

∆εeq
:
∂(∆F∼F∼

−1)

∂∆F∼
(C.17)

∂(∆F∼ .F∼
−1)

∂∆F∼
= 1∼⊗F∼−T + ∆F∼

∂F∼
−1

∂F∼
:
∂F∼
∂∆F∼

(C.18)

= 1∼⊗F∼−T + (∆F∼⊗1∼) : (−F∼−1⊗F∼−T ) : 1
≈

(C.19)

∂Rγs

∂∆∆χ
= −sign (τs) ∆Γ

∂Φs

∂fs
∂fs

∂∆∆χ
= −sign (τs) ∆ΓΦs

′ ρ]
ρ0

(C.20)

∂Rrs

∂∆F∼
= 0

∂Rrs

∂∆∆χ
= 0 (C.21)

∂Rγcum
∂∆F∼

= 0
∂Rγcum
∂∆∆χ

= 0 (C.22)

• ∂∆vOUT

∂∆vIN

∂∆S∼
∂∆F∼

=
∂S∼
∂F∼

= (σ∼ .F∼
−T )⊗ ∂J

∂F∼
+ J

∂σ∼ .F∼
−T

∂F∼
−T :

∂F∼
−T

∂F∼
(C.23)

= J(σ∼ .F∼
−T )⊗ F∼−T + J(σ∼⊗1∼) : (−F∼−T⊗F∼−1) (C.24)

∂∆S∼
∂∆∆χ

= 0
∂∆γM
∂∆F∼

= 0
∂∆γM
∂∆∆χ

= 0 (C.25)
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