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A reduced strain gradient crystal plasticity theory which involves the gradient of a single scalar field is presented. Rate-dependent and rate-independent crystal plasticity settings are considered.

The theory is then reformulated following first the micromorphic approach and second a Lagrange multiplier approach. The finite element implementation of the latter is detailed. Computational efficiency of the Lagrange multiplier approach is highlighted in an example involving regularization of strain localization. The numerical performance improvement is shown to reach up to two orders of magnitude in computation time speedup. Then, size effects predicted by micromorphic and Lagrange multiplier based formulations of strain gradient plasticity are assessed. First of all numerical comparisons are performed on single crystal wires in torsion. Saturation of the size effects induced by the micromorphic approach and absence of saturation with the Lagrange multiplier approach when sample size is decreased are demonstrated. The Lagrange multiplier based formulation is finally applied to characterize size effects predicted for the ductile growth of porous unit-cells at imposed stress triaxiality. Excellent agreement with micromorphic results is obtained.

Introduction

The anisotropic elasto-plastic deformation of crystalline aggregates including shape change, crystallographic texture, and strain hardening can be predicted by classical continuum crystal plasticity [START_REF] Cailletaud | Some elements of microstructural mechanics[END_REF][START_REF] Roters | Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finiteelement modeling: Theory, experiments, applications[END_REF]. The classical continuum crystal plasticity formulation can be enhanced in order to predict experimentally observed size effects such as precipitate or grain size effects, for instance based on the introduction of the dislocation density tensor and associated constitutive length scales [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Forest | Modeling slip, kink and shear banding in classical and generalized single crystal plasticity[END_REF][START_REF] Gurtin | On the plasticity of single crystals: free energy, microforces, plastic-strain gradients[END_REF].

Experimental evidence of size effects can be found in different mechanical tests such as microtorsion [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Gao | Taylor-based nonlocal theory of plasticity[END_REF][START_REF] Liu | Size effects in the torsion of microscale copper wires: Experiment and analysis[END_REF][START_REF] Guo | Individual strain gradient effect on torsional strength of electropolished microscale copper wires[END_REF], microcompression [START_REF] Uchic | Sample dimensions influence strength and crystal plasticity[END_REF][START_REF] Greer | Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients[END_REF], micro-bending [START_REF] Stölken | A microbend test method for measuring the plasticity length scale[END_REF][START_REF] Gao | Taylor-based nonlocal theory of plasticity[END_REF][START_REF] Haque | Strain gradient effect in nanoscale thin films[END_REF] and micro-indentation [START_REF] Nix | Indentation size effects in crystalline materials: A law for strain gradient plasticity[END_REF][START_REF] Gao | Taylor-based nonlocal theory of plasticity[END_REF][START_REF] Liu | Depth dependence of hardness in copper single crystals measured by nanoindentation[END_REF] of crystalline materials. Size-dependent crystal plasticity modeling is required when the specimen or grain size becomes comparable to the intrinsic lengths of the underlying plastic deformation mechanisms [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Kocks | Physics and phenomenology of strain hardening: the FCC case[END_REF]. The gradient of shear strain results in the development of the dislocation density tensor which can be described in terms of the storage of geometrically necessary dislocations (GND) [START_REF] Ashby | The deformation of plastically non-homogeneous materials[END_REF][START_REF] Acharya | Lattice incompatibility and a gradient theory of crystal plasticity[END_REF][START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF][START_REF] Bardella | A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations[END_REF]Cordero et al., 2012a). The GND density controls the material strain hardening together with the usual scalar dislocation densities, also called statistically stored dislocations (SSD).

The strain gradient plasticity approach can also be used to regularize the simulation of shear band formation in crystalline solids. Strain softening results in a narrow band of intense shearing.

The possible loss of ellipticity of partial differential equations in strain softening materials results in an ill-posed boundary value problem and classically shows dependency on mesh size or density.

The shear band dependency on the mesh size or density can be overcome by introducing intrinsic material length scale in conventional plasticity [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Voyiadjis | Gradient plasticity theory with a variable length scale parameter[END_REF][START_REF] Anand | A large-deformation gradient theory for elastic-plastic materials: Strain softening and regularization of shear bands[END_REF][START_REF] Peerlings | Localisation issues in local and nonlocal continuum approaches to fracture[END_REF][START_REF] Vignjevic | Modelling of strain softening materials based on equivalent damage force[END_REF]Kaiser and Menzel, 2019b) and in crystal plasticity [START_REF] Petryk | A minimal gradient-enhancement of the classical continuum theory of crystal plasticity. part i: The hardening law[END_REF][START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF]Kaiser and Menzel, 2019a). Furthermore, the difficulties in assessment of active slip systems within the crystal plasticity framework can be overcome by rate-dependent [START_REF] Busso | On the selection of active slip systems in crystal plasticity[END_REF] or rate-independent [START_REF] Forest | A rate-independent crystal plasticity model with a smooth elastic-plastic transition and no slip indeterminacy[END_REF]Kaiser and Menzel, 2019a) formulations.

Implementation of strain gradient crystal plasticity in a finite element code is a challenging task that has been performed for example by [START_REF] Shu | Scale-dependent deformation of porous single crystals[END_REF]; Borg et al. (2008a); [START_REF] Yalcinkaya | Non-convex rate dependent strain gradient crystal plasticity and deformation patterning[END_REF]; [START_REF] Bardella | Latent hardening size effect in small-scale plasticity[END_REF]; [START_REF] Nellemann | An incremental flow theory for crystal plasticity incorporating strain gradient effects[END_REF][START_REF] Nellemann | Hardening and strengthening behavior in rateindependent strain gradient crystal plasticity[END_REF]; [START_REF] Panteghini | On the finite element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility[END_REF] at small strains and by [START_REF] Niordson | Computational strain gradient crystal plasticity[END_REF]; [START_REF] Lewandowski | Size effects in wedge indentation predicted by a gradientenhanced crystal-plasticity model[END_REF]; [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF]; Kaiser and Menzel (2019a) at finite deformations. An efficient method to implement strain gradient plasticity models is to resort to the micromorphic approach proposed by [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] at small strains and [START_REF] Forest | Nonlinear regularisation operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF] at finite deformation, as demonstrated by [START_REF] Anand | A large-deformation gradient theory for elastic-plastic materials: Strain softening and regularization of shear bands[END_REF]; [START_REF] Brepols | Gradient-extended two-surface damage-plasticity: Micromorphic formulation and numerical aspects[END_REF] for conventional plasticity and by [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF]; [START_REF] Aslan | Micromorphic approach to single crystal plasticity and damage[END_REF]; [START_REF] Ryś | A micromorphic crystal plasticity model with the gradientenhanced incremental hardening law[END_REF] for crystal plasticity based on the dislocation density tensor. According to this approach, additional plastic microdeformation degrees of freedom, in the sense of [START_REF] Eringen | Nonlinear theory of simple microelastic solids[END_REF], are introduced at each node and the curl part of the microdeformation tensor is assumed to expend work with a conjugate couple stress tensor. A penalty parameter, which can be interpreted as a higher order elasticity modulus, is used to constrain the plastic microdeformation to be as close as possible to the usual plastic deformation. As a consequence, the curl of the microdeformation tensor almost coincides with the dislocation density tensor.

The computational cost of finite element simulation based on strain gradient or micromorphic crystal plasticity is rather high due to the number of additional degrees of freedom and the strong nonlinearities of the problem. A reduced micromorphic crystal plasticity model was proposed by [START_REF] Wulfinghoff | Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics[END_REF][START_REF] Wulfinghoff | A gradient plasticity grain boundary yield theory[END_REF][START_REF] Erdle | A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip[END_REF][START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF][START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF]. It is limited to a single scalar additional degree of freedom, called microslip variable which is bounded to remain close to the cumulative plastic slip by means of the penalty parameter. The gradient of the microslip is then assumed to be an argument of the Helmholtz free energy density function. This approach can be compared to the relaxation of the strain gradient plasticity model by a Lagrange multiplier based formulation recently proposed by [START_REF] Zhang | Ductile damage modelling with locking-free regularised GTN model[END_REF] for isotropic materials. As in the micromorphic approach, one hardening variable is duplicated in two separate instances. One instance of the variable is dedicated to nonlocality and the other to nonlinearity, see [START_REF] Zhang | Ductile damage modelling with locking-free regularised GTN model[END_REF]. The equivalence between both variables is weakly enforced by a Lagrange multiplier, instead of a penalty term. The Lagrange term is added to the free energy function and treated as an additional field variable. This strong coupling scheme was shown to reduce the computational cost drastically compared to previous algorithms. Details of finite element implementation of micromorphic strain gradient rate-dependent crystal plasticity based on Newton-Raphson method to integrate the differential equations can be found in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF]. The numerical implementation of a Lagrange multiplier based strain gradient isotropic plasticity model was presented in [START_REF] Zhang | Ductile damage modelling with locking-free regularised GTN model[END_REF].

The objective of the present work is to compare the computational performance and predictions of reduced micromorphic crystal plasticity and a new Lagrange multiplier based implementation of strain gradient plasticity. The novelty of the work lies, first, in this new formulation of strain gradient plasticity with a Lagrangian function and, second, in the comparison of the predictions of the two models. The computational performance and physical relevance of both models are also assessed.

Three distinct physical situations are considered. First, regularization of strain localization in a periodic bar undergoing strain-softening is investigated. Then, the size and orientation dependent torsion of FCC single crystal wires is investigated showing that both models coincide at intermediate wire diameters but differ in their asymptotic behaviour. Further, the numerically efficient Lagrange multiplier based constitutive framework is used to study the ductile growth and coalescence of voids in porous unit-cells. The results are compared to data obtained with the micromorphic approach that are already available in the literature.

The outline of the paper is as follows. In section 2, a thermodynamically consistent formulation of reduced strain gradient crystal plasticity is presented in the rate-dependent and rate-independent cases. In section 3 the constitutive framework of reduced micromorphic and Lagrange multiplier approaches are described. The numerical implementation of the latter is presented in section 4.

Numerical examples of a sheared periodic bar, a cylinder in torsion and a porous unit-cell under axisymmetric triaxial loading are provided in section 5. Concluding remarks follow in section 6.

The notations used in the paper are as follows. Underlined bold a and under-wave bold A ∼ stand respectively for first and second rank tensors. The transpose, inverse, transpose of inverse and time derivative are denoted by A ∼ T , A ∼ -1 , A ∼ -T and Ȧ ∼ respectively. The single and double contractions are written as A ∼ .b = A ij b j e i and A ≈ : B ∼ = A ijkl B kl e i ⊗ e j respectively. The following tensor products are used:

a ⊗ b = a i b j e i ⊗ e j , A ∼ ⊗ B ∼ = A ij B kl e i ⊗ e j ⊗ e k ⊗ e l , A ∼ ⊗B ∼ = A ik B jl e i ⊗ e j ⊗ e k ⊗ e l and A ∼ ⊗B ∼ = A il B jk e i ⊗ e j ⊗ e k ⊗ e l
, where e i refers to an orthonormal base vector.

A reduced strain gradient crystal plasticity theory

Thermodynamical formulation

A reduced strain gradient crystal plasticity theory is adopted in which only the gradient of a scalar effective quantity is considered in keeping with [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF]. Based on the work by [START_REF] Wulfinghoff | Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics[END_REF] the cumulated plastic slip γ cum , defined as

γ cum = t 0 N s=1 | γs | dt (1)
is chosen to be the thermodynamic variable carrying gradient effects. γs denotes the plastic slip rate on the s-th slip system. In the finite strain setting, the deformation gradient F ∼ , with components

F ij = ∂x i /∂X j , is multiplicatively split into an elastic part E ∼ and a plastic part P ∼ such that F ∼ = E ∼ .P ∼ .
The plastic velocity gradient L ∼ p is related to the slip rates on each slip system by

L ∼ p = Ṗ ∼ .P ∼ -1 = N s=1 γs (m s ⊗ n s ) with L ∼ = Ḟ ∼ .F ∼ -1 = Ė ∼ .E ∼ -1 + E ∼ .L ∼ p .E ∼ -1 (2) 
where m s and n s refer to the gliding direction and direction normal to the slip plane respectively.

In the reference configuration, upon neglecting body forces, following [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Gurtin | Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization[END_REF] the principle of virtual power, for all material subsets D 0 of the body, can be written as

D0 S ∼ : Ḟ ∼ + S γcum + M . K dV 0 = ∂D0 (T . u + M γcum ) dS 0 ∀ u , ∀ γcum , ∀D 0 (3)
where S ∼ is the Boussinesq (or nominal 1-st Piola-Kirchhoff) stress tensor related to the Cauchy stress tensor σ ∼ by S ∼ = (ρ 0 /ρ)σ ∼ .F ∼ -T with ρ 0 (respect. ρ) the volumetric mass density in the reference configuration (respect. current configuration). Vector T is the traction vector and u is an arbitrary velocity field. S and M are higher order stresses and M a higher order traction scalar. K is the Lagrangian gradient of the cumulated plastic slip, K = Grad γ cum . From Eq. (3) it can be derived that, within any subset D 0 of the body, the stresses satisfy the equilibrium relations

Div S ∼ = 0 ∀X ∈ D 0 (4) Div M -S = 0 ∀X ∈ D 0 (5)
in the absence of body forces and in the static case. As a result of Eq. (3), on the surface of the subset ∂D 0 the stresses S ∼ and M are in equilibrium with the traction vector T and scalar M according to

T = S ∼ .n 0 ∀X ∈ ∂D 0 , (6) 
M = M .n 0 ∀X ∈ ∂D 0 (7)
where n 0 refers to the outward unit surface normal. In order to formulate a complete thermodynamic theory of reduced strain gradient crystal plasticity a free energy potential ψ needs to be defined. The specific free energy potential ψ is chosen to depend on the elastic Green-Lagrange strain measure

E ∼ e GL = (1/2) E ∼
T .E ∼ -1 ∼ , the cumulated plastic slip γ cum , its Lagrangian gradient K and hardening variables r s left to be defined.

ψ E ∼ e GL , γ cum , r s , K = 1 2ρ E ∼ e GL : C ≈ : E ∼ e GL + ψ h (r s , γ cum ) + A 2ρ 0 K .K (8) 
where ρ refers to the volumetric mass density in the intermediate configuration (i.e. the configuration resulting from the transport of the reference configuration by P ∼ ). The contribution of the cumulated plastic slip gradient is weighed by the strictly positive material parameter, so called higher order modulus, A. The Clausius-Duhem inequality (isothermal case) resulting from 1-st and 2-nd principles of thermodynamics enforces

S ∼ ρ 0 : Ḟ ∼ + S ρ 0 γcum + M ρ 0 . K -ψ ≥ 0 (9)
The first term on left-hand side of Eq. ( 9) can be decomposed into an elastic contribution and a plastic contribution

S ∼ ρ 0 : Ḟ ∼ = Π ∼ e ρ : Ė ∼ e GL + Π ∼ M ρ : Ṗ ∼ .P ∼ -1 (10) 
where Π ∼ e is the second Piola-Kirchhoff stress tensor defined by

Π ∼ e = (ρ /ρ)E ∼ -1 .σ ∼ .E ∼ -T = (ρ /ρ 0 )E ∼ -1 .S ∼ .P ∼
T with respect to the intermediate configuration and Π ∼ M is the Mandel stress tensor defined by

Π ∼ M = E ∼ T .E ∼ .Π ∼ e .
The residual dissipation in Eq. ( 9) then writes

Π ∼ e ρ - ∂ψ ∂E ∼ e GL : Ė ∼ e GL + Π ∼ M ρ : Ṗ ∼ .P ∼ -1 + S ρ 0 - ∂ψ h ∂γ cum γcum + M ρ 0 - A ρ 0 K . K - N s=1 ∂ψ h ∂r s ṙs ≥ 0 (11)
Here we assume that the higher order stress S has a dissipative part which will be denoted -H, while

M is assumed to be non-dissipative. As discussed by [START_REF] Forest | Formulations of strain gradient plasticity[END_REF] it is the most simple assumption to derive Aifantis' model. We then postulate the state laws

Π ∼ e = ρ ∂ψ ∂E ∼ e GL = C ≈ : E ∼ e GL (12) 
S = ρ 0 ∂ψ h ∂γ cum -H (13) M = ρ 0 ∂ψ ∂K = AK (14)
Finally the residual dissipation reduces to

Π ∼ M ρ : Ṗ ∼ .P ∼ -1 - H ρ 0 γcum - N s=1 ∂ψ h ∂r s ṙs ≥ 0 (15)
The resolved shear stress τ s is the energetic counterpart of γs and from Eq. ( 2) it can be deduced

that it is related to Mandel stress Π ∼ M by τ s = Π ∼ M : N ∼ s where N ∼ s = m s ⊗ n s is the Schmid tensor.
Assuming that the rate of hardening variable r s is proportional to the slip rate γs (e.g. ṙs = g s (r s )| γs |) leads to the following expression of the residual dissipation

N s=1 |τ s | - ρ ρ 0 H -ρ ∂ψ h ∂r s g s (r s ) | γs | ≥ 0 (16)
where it has been assumed that sign (τ s ) = sign ( γs ). Eq. ( 16) motivates the introduction of the yield function of each system defined by

f s = |τ s | -τ s 0 + ρ ρ 0 H + ρ ∂ψ h ∂r s g s (r s ) = |τ s | -τ s c - ρ ρ 0 S ( 17 
)
where τ s 0 is the initial critical resolved shear stress of s-th system. We here introduce the critical resolved shear stress τ s c = τ s 0 + ρ ∂ψ h /∂r s g s (r s ) + ρ ∂ψ h /∂γ cum . By combining Eq. ( 5) and Eq. ( 14) one obtains

S = Div M = Div (AK ) (18) 
As it can be seen from yield criterion Eq. ( 17), the divergence term induces a coupling between constitutive nonlinearity and spatial nonlocality. Therefore pointwise integration of the differential equation governing the material behaviour over a given domain is precluded. Two different relaxation approaches to deal with this coupling are presented in section 3 and compared in terms of computational performance and physical predictions in section 5.

Rate-dependent and rate-independent formulations

A rate-dependent (viscoplastic) and a rate-independent formulation of crystal plasticity are presented here and used in the next sections.

Rate-dependent crystal plasticity

As emphasized in [START_REF] Busso | On the selection of active slip systems in crystal plasticity[END_REF] (and references therein) most rate-independent crystal plasticity theories lead to an ill-conditioned problem regarding the selection of active slip systems. Different methods exist to ensure uniqueness, but their numerical implementation may also play a crucial role in the active slip system selection. One possible way to overcome these issues is to work within a rate-dependent setting. In this framework the slip rates are no longer defined by a rate-independent yield surface, but are governed by a rate-dependent potential surface. Smoothness of viscous potential functions allows one to obtain the direction of the strain increment by the normality rule. Evolution of the plastic slip variables γ s can for example be obtained by considering Norton-type flow rules:

γs = γ0 f s τ s 0 n sign (τ s ) = γ0 Φ s RD (f s )sign (τ s ) (19)
where γ0 and n are material parameters which control the rate sensitivity of the material response.

Macauley brackets of a scalar x, written x , denote the positive part of x and Φ s RD denotes the rate-dependent flow function. High values of the power exponent n and of the reference rate γ0 lead to a low strain rate sensitivity in a given strain rate range.

Rate-independent crystal plasticity

Another possible way to select the active slip systems is to use the rate-independent formulation proposed by [START_REF] Forest | A rate-independent crystal plasticity model with a smooth elastic-plastic transition and no slip indeterminacy[END_REF] and intensively used by [START_REF] Farooq | Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: Global and local analyses[END_REF] (later referred to as RubiX formulation). It is characterized by a smooth elastic-plastic transition with no slip indeterminacy. It is based on a strictly rate-independent overstress allowing to remove ill-conditioning of the selection of activated slip systems. The main idea consists in replacing Eq. ( 19) by: γs = εeq

f s R sign (τ s ) = εeq Φ s RI (f s )sign (τ s ) ( 20 
)
where εeq is a non-negative homogeneous function of degree one in the total velocity gradient L ∼ . The rate-independent flow function is noted Φ s RI and εeq is taken here as the total equivalent distortional strain rate:

εeq = 2 3 D ∼ : D ∼ D ∼ = 1 2 L ∼ + L ∼ T - 1 3 (trace L ∼ )1 ∼ (21)
R is a positive constant having the unit of a stress and which controls the amplitude of the rateindependent overstress. As this work proceeds Γ (resp. Φ s ) will be used indistinguishably to represent either γ0 or εeq (resp. Φ s RD or Φ s RI ).

Summary of constitutive equations

Equilibrium equations, state laws and evolution equations are summarized in Table 1. equilibrium equations state laws evolution equations

Div S ∼ = 0 ∀X ∈ D 0 Π ∼ e = C ≈ : E ∼ e GL Ė ∼ = Ḟ ∼ .F ∼ -1 .E ∼ -E ∼ . N s=1 γs N ∼ s Div M -S = 0 ∀X ∈ D 0 M = AK γs = ΓΦ s |τ s | -τ s c - ρ ρ 0 S sign (τ s ) T = S ∼ .n 0 ∀X ∈ ∂D 0 S = ρ 0 ∂ψ h ∂γ cum -H ṙs = g s (r s )| γs | M = M .n 0 ∀X ∈ ∂D 0 γcum = N s=1 | γs |
3. Relaxations of strain gradient plasticity theory

Micromorphic approach

Wulfinghoff and Böhlke (2012) and [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF] used the micromorphic approach [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] to tackle the issue of nonlocality and nonlinearity coupling. Their approach is based on the introduction of an additional degree of freedom, denoted γ χ , enriching the kinematic description of the material behaviour. γ χ is the micromorphic (nonlocal) counterpart of γ cum , and, therefore it bears the same physical interpretation. However γ cum and γ χ are treated independently in the resolution of the equations governing the material behaviour. In this context the principle of virtual power Eq.

(3) is extended to higher order contributions:

D0 S ∼ : Ḟ ∼ + S γχ + M .Grad γχ dV 0 = ∂D0 (T . u + M γχ ) dS 0 ∀ u , ∀ γχ , ∀D 0 (22) 
Using the divergence theorem one can again derive the balance laws in the reference configuration , namely Eq. ( 4) and ( 5), while on the surface ∂D 0 stresses are in equilibrium with the traction vector and scalar as in Eq. ( 6) and ( 7). In order to ensure quasi-equality between γ cum and γ χ , a penalty term is introduced in the free energy potential penalizing their difference γ cumγ χ , where H χ is a penalty modulus which is usually taken large enough so that the results obtained with the model do not depend on the chosen value (typically H χ ∼ 10 4 -10 5 MPa). With this method the specific free energy density Eq. ( 8) now writes

ψ E ∼ e GL , r s , γ cum , γ χ , K χ = 1 2ρ E ∼ e GL : C ≈ : E ∼ e GL + ψ h (r s , γ cum ) + A 2ρ 0 K χ .K χ + H χ 2ρ 0 (γ cum -γ χ ) 2 (23) 
where K χ = Grad γ χ . The 1-st and 2-nd principles of thermodynamics now enforce

S ∼ ρ 0 : Ḟ ∼ + S ρ 0 γχ + M ρ 0 . K χ -ψ ≥ 0 (24) 
The mechanical dissipation therefore becomes

Π ∼ e ρ - ∂ψ ∂E ∼ e GL : Ė ∼ e GL + Π ∼ M ρ : Ṗ ∼ .P ∼ -1 + S ρ 0 - ∂ψ ∂γ χ γχ - ∂ψ ∂γ cum γcum + M ρ 0 - A ρ 0 K χ . K χ - N s=1 ∂ψ h ∂r s ṙs ≥ 0 (25)
After selecting non-dissipative contributions, the following state laws are adopted

Π ∼ e = ρ ∂ψ ∂E ∼ e GL (26) S = ρ 0 ∂ψ ∂γ χ = -H χ (γ cum -γ χ ) (27) M = ρ 0 ∂ψ ∂K χ = AK χ (28) 
In contrast to the previous section, the constitutive assumption that S is non-dissipative is made here.

Therefore the energy dissipated with γχ vanishes. Yet, a term involving the higher order stress S and conjugate to γcum remains. The residual dissipation now writes

Π ∼ M ρ : Ṗ ∼ .P ∼ -1 - N s=1 ∂ψ h ∂r s ṙs - H χ ρ 0 (γ cum -γ χ ) + ∂ψ h ∂γ cum γcum ≥ 0 (29)
which can also be written

N s=1 |τ s | - ρ ρ 0 H χ (γ cum -γ χ ) -ρ ∂ψ h ∂γ cum -ρ ∂ψ h ∂r s g s (r s ) | γs | ≥ 0 (30)
By combining state law Eq. ( 27), equilibrium equation Eq. ( 5) and state law Eq. ( 28) it comes S = -H χ (γ cumγ χ ) = Div M = Div (AK χ ). Therefore the micromorphic approach is a relaxation 1 of the strict strain gradient formulation from section 2 in the sense that no spatial derivatives are explicitly involved for the non-local contribution in Eq. ( 30). The plastic slip rates now are

γs = ΓΦ s |τ s | -τ s c + ρ ρ0 H χ (γ cum -γ χ ) sign (τ s ) (31)
The main drawback of this method, in the context of viscoplasticity, lies in the necessity of taking a large value for H χ in order to assure quasi-equality between γ χ and γ cum . In the limit case of almost rate insensitivity the viscoplastic parameters n and γ0 are such that the nonlinear system of equation governing activation of slip systems is very stiff and thus extremely sensitive to the errors that are made during the iterative process (typically an Euler-backward scheme) used to solve them.

As a consequence small time steps are necessary in order to achieve convergence. One possible way to tackle this issue and allow the use of large time steps with the micromorphic approach is to use a rate-independent crystal plasticity setting such as the one proposed by [START_REF] Forest | A rate-independent crystal plasticity model with a smooth elastic-plastic transition and no slip indeterminacy[END_REF] and presented in section 2.2.2.

Lagrange multiplier approach

Alternatively, the Lagrange multiplier method proposed by [START_REF] Fortin | Chapter III on decomposition-coordination methods using an augmented lagrangian[END_REF] and successfully applied in [START_REF] Zhang | Ductile damage modelling with locking-free regularised GTN model[END_REF]) can be used. This approach is described here for relaxing the theory presented in section 2.1. The main ideas of the method are first to duplicate the variable upon which the nonlinear-nonlocal coupling is acting and second to enforce equality between both variables through a Lagrangian function. In the context of the model presented in section 2.1 the nonlocal instance of the coupling variable will be denoted γ χ while its local instance is γ cum . Similarly to the micromorphic approach, K χ = Grad γ χ is regarded as a state variable. Enforcing equality between γ χ and γ cum is achieved using a Lagrange multiplier λ. It turns out that the previous free energy density in Eq. ( 8) becomes a Lagrangian function

L E ∼ e GL , γ cum , r s , γ χ , K χ , λ = 1 2ρ E ∼ e GL : C ≈ : E ∼ e GL + ψ h (r s , γ cum ) + A 2ρ 0 K χ .K χ + λ ρ 0 (γ χ -γ cum ) + µ χ 2ρ 0 (γ χ -γ cum ) 2 (32)
where µ χ is a Lagrangian penalization modulus. The 1-st and 2-nd principles of thermodynamics still require to verify Eq. ( 24), where ψ is now replaced by L, and the mechanical dissipation is written as

1 Relaxation is meant here in a sense different from [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF], where this terminology was used to describe a "linear micromorphic model with symmetric Cauchy force stresses" which is put in contrast to "the classical Mindlin-Eringen model for micromorphic media with intrinsically non-symmetric force stresses".

in Eq. ( 25). The postulated state laws are now

Π ∼ e = ρ ∂ψ ∂E ∼ e GL (33) 
S = ρ 0 ∂ψ ∂γ χ = λ + µ χ (γ χ -γ cum ) = ∆ χ -µ χ γ cum (34) M = ρ 0 ∂ψ ∂K χ = AK χ (35)
Similarly to the micromorphic approach, the constitutive assumption that S is non-dissipative is made.

Therefore the energy dissipated with γχ vanishes. Yet, a term involving the higher order stress S and conjugate to γcum remains. For convenience we introduce the scalar stress ∆ χ = λ + µ χ γ χ . By definition ∂L/∂λ must vanish when the constraint γ cum = γ χ is met

∂L ∂λ λ = (γ χ -γ cum ) λ ρ 0 = 0 (36)
and therefore the residual mechanical dissipation becomes

Π ∼ M ρ : Ṗ ∼ P ∼ -1 - N s=1 ∂ψ h ∂r s ṙs - µ χ γ cum -∆ χ ρ 0 + ∂ψ h ∂γ cum γcum ≥ 0 (37)
which can also be written

N s=1 |τ s | - ρ ρ 0 (µ χ γ cum -∆ χ ) -ρ ∂ψ h ∂γ cum -ρ ∂ψ h ∂r s g s (r s ) | γs | ≥ 0 (38) 
By combining state law Eq. ( 34), equilibrium Eq. ( 5) and state law Eq. ( 35) it comes S = ∆ χµ χ γ cum = Div M = Div (AK χ ). Therefore the Lagrange multiplier approach is a relaxation of the strict strain gradient formulation from section 2 in the sense that no spatial derivative is explicitly involved in the non-local contribution in Eq. ( 38). The plastic slip rates now are

γs = ΓΦ s |τ s | -τ s c + ρ ρ 0 (µ χ γ cum -∆ χ ) sign (τ s ) (39)

Numerical implementation

The numerical implementation in a finite element setting of the Lagrange multiplier approach is described. Details on the implementation of the micromorphic formulation can be found in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF].

Integration of constitutive equations

The sets of degrees of freedom (DOF), input variables (IN), output variables (OUT) and integration variables (INT) are:

DOF: {u , γ χ , λ} IN: {F ∼ , ∆ χ } OUT: {S ∼ , γ M } INT: {E ∼ , γ s , r s , γ cum } (40)
where γ M is merely a copy of γ cum obtained at the end of the constitutive integration. Integrating the constitutive equations consists, for known values of all variables at a given time step n, in computing the evolution of the output and internal variables at next time step n + 1 knowing the evolution laws of the input variables. At the global level the output variables need to satisfy the weak form of the balance equations Eqs. ( 4), ( 5), ( 6) and Eq. ( 7). It can be noted that

S ∼ = Jσ ∼ .F ∼ -T = 1 2 J J e E ∼ . C ≈ : E ∼ T .E ∼ -1 ∼ .E ∼ T .F ∼ -T (41) 
where state law Eq. ( 26) has been used along with the elastic free energy used in Eq. ( 32) and J = det F ∼ and J e = det E ∼ . The evolution of S ∼ depends on evolutions of E ∼ and F ∼ . Within the Lagrange multiplier approach the set of equations to be solved at the local level are similar to evolution equations in Table 1 and can be reformulated incrementally as the problem of finding the solution of the following system of equations R(∆E ∼ , ∆γ s , ∆r s , ∆γ cum ):

R =                              R E ∼ = ∆E ∼ -∆F ∼ .F ∼ -1 .E ∼ -E ∼ . N s=1 ∆γ s N ∼ s = 0 R γ s = ∆γ s -∆ΓΦ s |τ s | -τ s c - ρ ρ 0 (∆ χ -µ χ γ cum ) sign (τ s ) = 0 R r s = ∆r s -g s (r s )|∆γ s | = 0 R γcum = ∆γ cum - N s=1 |∆γ s | = 0 ( 42 
)
where ∆Γ = ∆ε eq in the rate-independent formulation and ∆Γ = γ0 ∆t in the rate-dependent formulation. Note that it may happen that

τ s c -(ρ /ρ 0 ) (∆ χ -µ χ γ cum ) < 0.
In that case this value is replaced by 0 in the computation. Note also that Eq. ( 42) does not guarantee that plastic incompressibility is satisfied. In order to fulfill this condition, the tensor E ∼ is corrected at the beginning of each iteration of the Newton algorithm used to solve Eq. ( 42). This correction amounts to replace E ∼ by (J/J e ) 1/3 E ∼ . As a result, the corrected tensor P ∼ verifies det P ∼ = 1, which corresponds to the plastic incompressibility condition. Solving R(∆E ∼ , ∆γ s , ∆r s , ∆γ cum ) = 0 is performed using a Newton algorithm with an Euler backward (implicit) scheme which requires computation of the Jacobian matrix J = ∂R/∂∆v int (or some approximation of it). The analytical Jacobian matrix for the resolution of Eq. ( 42) is given in Appendix A.

Finite element formulation

The model is implemented in the finite element software Z-set using a 3D total Lagrangian formulation following [START_REF] Besson | Object-oriented programming applied to the finite element method part I. general concepts[END_REF]Z-set package, 2020). The principle of virtual power in the context of the Lagrange multiplier method combines Eqs. ( 4), ( 5), ( 6), ( 7), and in addition Eq.

(36) must be satisfied

                   ∀ u D0 S ∼ : Ḟ ∼ dV 0 = ∂D0 T . u dS 0 ∀ γχ D0 AK χ . K χ + (∆ χ -µ χ γ M ) γχ dV 0 = ∂D0 M γχ dS 0 ∀ λ D0 (γ χ -γ M ) λdV 0 = 0 (43) (44) (45) 
The finite element problem is solved by a monolithic iterative method. The material body occupies the domain D 0 in its reference configuration, the decomposition of this body in n finite elements raises

                       ∀ u n e=1 D e 0 S ∼ : Ḟ ∼ dV e 0 = n S e=1 ∂D e 0 T . u dS e 0 ∀ γχ n e=1 D e 0 AK χ . K χ + (∆ χ -µ χ γ M ) γχ dV e 0 = n S e=1 ∂D e 0 M γχ dS e 0 ∀ λ n e=1 D e 0 (γ χ -γ M ) λdV e 0 = 0 (46) (47) (48) 
The boundary ∂D 0 is discretized into n S surface elements ∂D e 0 for the application of surface tractions. As this section proceeds tensors are written with index notations. Within the volume of each element the degrees of freedom u i , γ χ and λ are interpolated by their values at p nodes for the displacements (ũ a i for a ∈ [1; p]) and q nodes for Lagrange multiplier λ and the microslip γ χ ( λ b and γb

χ for b ∈ [1; q]) u i = p a=1 u N a u a i γ χ = q b=1 χ N b γ b χ λ = q b=1 χ N b λ b thus ∆ χ = q b=1 χ N b λ b + µ χ γ b χ ( 49 
)
where u N a and χ N b are shape functions, the superscripts denoting the element node number. The deformation gradient F ij and the Lagrangian gradient of microslip K i are given by

F ij = p a=1 u B a j u a i K χi = q b=1 χ B b i γ b χ (50) with u B a j = ∂ u N a /∂X j and χ B b i = ∂ χ N b /∂X i .
Using these relations in Eqs. ( 46), ( 47) and ( 48) leads to

                                   n e=1 D e 0 S ij p a=1 u B a j ua i dV e 0 = n S e=1 ∂D e 0 T i p a=1 u N a ua i dS e 0 n e=1 D e 0 A q b=1 χ B b i γ b χ q b=1 χ B b i γb χ + q b=1 χ N b λ b + µ χ γ b χ -µ χ γ M q b=1 χ N b γb χ dV e 0 = n S e=1 ∂D e 0 M q b=1 χ N b γb χ dS e 0 n e=1 D e 0 q b=1 χ N b γ b χ -γ M q b=1 χ N b ˙ λ b dV e 0 = 0 (51) (52) (53) 
which can be reformulated as

                                     n e=1 p a=1 D e 0 S ij u B a j dV e 0 ua i = n S e=1 p a=1 ∂D e 0 T i u N a dS e 0 ua i n e=1 q b=1 D e 0 A q k=1 χ B k i γ k χ χ B b i + q k=1 χ N k λ k + µ χ γ k χ -µ χ γ M χ N b dV e 0 γb χ = n S e=1 q b=1 ∂D e 0 M χ N b dS e 0 γb χ n e=1 q b=1 D e 0 q k=1 χ N k γ b χ -γ M χ N b dV e 0 ˙ λ b = 0 (54) (55) (56) 
According to Eqs. ( 54), ( 55), ( 56) an internal reaction is associated with each degree-of-freedom. We thus refer to R a int(ui,e) as the internal reaction related to u i on node a of element e 

B k i γ k χ χ B b i + q k=1 χ N k λ k + µ χ γ k χ -µ χ γ M χ N b dV e 0 (58) R b int(λ,e) = D e 0 q k=1 χ N k γ b χ -γ M χ N b dV e 0 ( 59 
)
Analogously, an external reaction is associated to each degree of freedom. We refer to R a ext(ui,e) , R b ext(γχ,e) , R b ext(λ,e) as the external reactions related to u i on node a, γ χ and λ on node b of element e

R a ext(ui,e) = ∂D e 0 T i u N a dS e 0 R b ext(γχ,e) = ∂D e 0 M χ N b dS e 0 R b ext(λ,e) = 0 (60) 
With these expressions Eqs. ( 54), ( 55), ( 56) write

                         n e=1 p a=1 R a int(ui,e) ua i = n S e=1 p a=1 R a ext(ui,e) ua i n e=1 q b=1 R b int(γχ,e) γb χ = n S e=1 q b=1 R b ext(γχ,e) γb χ n e=1 q b=1 R b int(λ,e) ˙ λ b = n S e=1 q b=1 R b ext(λ,e) ˙ λ b (61) (62) 
(63)

This system of equations is solved using Newton's method. The details of the numerical implementation are given in Appendix B and Appendix C. As this work proceeds, quadratic (resp. linear) interpolation functions are used for the displacement (resp. microslip and Lagrange multiplier) degrees of freedom.

Numerical examples

1D localization band formation

Validation of the Lagrange multiplier implementation

Validation of the implementation is done by solving the problem of a periodic bar of length L along X 2 (see Figure 1a) in simple shear with a single slip system and a linear softening behavior (H < 0)

τ c (γ) = τ 0 + Hγ (64)
Such a hardening behaviour corresponds to a hardening free energy potential ψ h = Hγ 2 /2. In the reference configuration, the gliding direction m is aligned with X 1 , the normal to the slip plane n is aligned with X 2 . A macroscopic shear deformation

F ∼ = 1 ∼ + F 12 m ⊗ n is imposed such that the displacement field is given by u = (F ∼ -1 ∼ ).X + v (X )
. Periodic boundary conditions are imposed on the displacement fluctuation v , micro-slip variable γ χ and Lagrange multiplier λ. As discussed in [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF] the analytical solution to this problem, in terms of plastic slip, is a localization band following a sine shape within the [-λ 0 /2; λ 0 /2] region and no slip elsewhere

γ(X 2 , F 12 ) =        |τ | -τ 0 H cos 2π X 2 λ 0 + 1 if X 2 ∈ - λ 0 2 ; λ 0 2 0 if X 2 ∈ - L 2 ; - λ 0 2 ∪ λ 0 2 ; L 2 (65)
with the wavelength λ 0 = 2π A/|H|, where H is the slope of linear softening and A the higher order modulus. It is important to notice that in the context of the Lagrange multiplier approach, when the penalty factor µ χ = 0, the Lagrange multiplier λ, which is a degree of freedom, coincides with the Laplacian of γ in this elementary problem. Yet, it can be noted from Eq. ( 65) that the Laplacian of

γ takes the form ∆γ(X 2 , F 12 ) =          - 2π λ 0 2 |τ | -τ 0 H cos 2π X 2 λ 0 if X 2 ∈ - λ 0 2 ; λ 0 2 0 if X 2 ∈ - L 2 ; - λ 0 2 ∪ λ 0 2 ; L 2 (66)
which is discontinuous in ±λ 0 /2. Therefore solving numerically this problem by finite elements with standard continuous shape functions might lead to difficulties. due to poor approximations of the Lagrange multiplier degree of freedom at the discontinuity. This issue can be solved by using the Lagrangian penalization term in Eq. ( 32). The additional penalty term is very similar to the micromorphic penalization, but it bears a completely different meaning.

While in the micromorphic approach H χ has to be large in order to ensure quasi-equality between γ cum and γ χ , in the Lagrange multiplier approach µ χ only helps to provide additional coercivity and can take much lower values in practice. Figure 1d and 1e show the finite element solution of the periodic bar in simple shear when µ χ = 50 MPa for n = 51 and n = 201. It can be observed that the oscillations almost vanish everywhere, except at ±λ 0 /2 where their amplitude is much lower and that a smooth solution coinciding with the analytical solution is obtained everywhere else. Another possible alternative to properly account for the discontinuity of the Lagrange multiplier could be to use a discontinuous Galerkin finite element formulation [START_REF] Hughes | A multiscale discontinuous galerkin method with the computational structure of a continuous galerkin method[END_REF][START_REF] Cockburn | Discontinuous Galerkin methods: theory[END_REF].

Another observation can be made on the interdependence between mesh density and the value of be seen that if the value of µ χ is not large enough, oscillations of ∆ χ are still observed even if µ χ = 0.

γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L
γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L numerical analytical ( 
γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L numerical analytical ( 
γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L γ cum ∆ χ X 2 /L numerical analytical ( 
∆ χ X 2 /L ∆ χ X 2 /L ∆ χ X 2 /L ∆ χ X 2 /L ∆ χ X 2 /L µ χ = 0 µ χ = 5 µ χ = 10 µ χ = 50 ( 
∆ χ X 2 /L ∆ χ X 2 /L ∆ χ X 2 /L ∆ χ X 2 /L ∆ χ X 2 /L µ χ = 0 µ χ = 5 µ χ = 10 µ χ = 50 (b) n = 201
Increasing the value of µ χ tends to smooth out the profile of ∆ χ . In this example, no clear evolution of the profile can be observed for values of µ χ greater than or equal to 10 MPa. The results obtained with µ χ = 5 MPa suggest that at a given value of µ χ , a finer mesh leads to a smoother profile of the Laplacian term ∆ χ . In other words, increasing the discretization reduces the value of µ χ required to obtain a smooth profile of ∆ χ .

Computational efficiency

The computational efficiency of both relaxed formulations for the rate-independent and viscous settings are compared in this section. The four possible variants (micromorphic or Lagrange multiplier approach and rate-dependent or rate-independent formulation) are used to solve the localization problem presented above. It can be shown that the shear stress τ is uniform. In order for the results to be comparable in terms of computational efficiency, the viscous stress τ vs = τ 0 ( γ/ γ0 ) 1/n , for the rate-dependent setting, and the overstress τ os = R( γ/ εeq ), for the rate-independent setting, need to be calibrated in order for the numerical solution to be close to the rate-independent solution without overstress with a given precision. The macroscopic shear strain rate is chosen to be Ḟ 12 = 10 -2 s -1 .

From the analytical expression of τ = (F 12 + τ 0 /Z e )/(1/C 44 + 1/Z e ) with 1/Z e = λ 0 /HL derived in [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF] it follows that the maximum viscous stress is

τ max vs = τ 0   2 Ḟ 12 γ0 H 1 C44 + 1 Ze   1/n (67)
while the rate-independent overstress is uniform and given by First, despite the slightly larger number of degrees of freedom, the computational cost reduction obtained with the Lagrange multiplier based formulation, as compared to the micromorphic approach, is striking. In the rate-dependent setting this speedup ranges from 30 up to almost 200. In the rate-independent setting this speedup ranges between 1.5 and 70. Regarding the micromorphic implementation only, the speedup obtained with the rate-independent setting, as compared to the viscous setting, ranges from more than 2.5 to about 17 as the ratio λ 0 /L increases. Furthermore, regarding the Lagrange multiplier formulation only, the rate-dependent and rate-independent settings have very similar computational performances. The rate-independent setting is slightly more efficient for the lowest λ 0 /L ratios, while on the contrary the rate-dependent formulation performs better at

τ os = √ 3R H 1 C44 + 1 Ze (68)
λ 0 /L = 1.
The rate of convergence in the local integration scheme was checked for the micromorphic and Lagrange multiplier approaches. Both methods display a very similar rate of convergence that is very close to the quadratic bound of a Newton scheme. The gap of performances between the two implementations is in fact attributed to the poor conditioning of the local Jacobian matrix when the penalization modulus H χ is taken large. Pre-conditioning techniques could be applied in order to enhance the performances of the micromophic approach.

As this work proceeds, the rate-dependent setting is adopted and results obtained with micromorphic and Lagrange multiplier approaches are compared. As already discussed by [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF] micromorphic and strict strain gradient formulations, such as the Lagrange multiplier based formulation, are indeed not always strictly equivalent. Therefore the choice of the appropriate formulation should not only be motivated by the computational efficiency but also by the desired scaling law.

Size effects in torsion tests

The torsion of single and polycrystal wires has been the subject of intensive experimental and computational research. [START_REF] Nouailhas | Tension-torsion behavior of single-crystal superalloys -Experiment and finite-element analysis[END_REF] discovered that the torsion of a single crystal bar or tube is characterized by two types of strain gradients: a radial gradient from the center to the outer surface due to the loading, but also a gradient along the outer circumference due to the anisotropic activation of slip systems. This was observed experimentally by means of strain gauges placed along the circumference [START_REF] Forest | The elastic/plastic deformation behaviour of various oriented SC16 single crystals under combined tension/torsion fatigue loading[END_REF]. The transition from single to polycrystals for microwires of increasing diameters was computed using finite element crystal plasticity in [START_REF] Quilici | On size effects in torsion of multi-and polycrystalline specimens[END_REF] and more recently in [START_REF] Bayerschen | Single-crystal gradient plasticity with an accumulated plastic slip: Theory and applications[END_REF]. The size-dependent torsion of FCC single crystal bars is investigated below by means of the proposed micromorphic and strain gradient plasticity models.

Problem setup

Simulations are performed with a single crystal cylindrical microwire of diameter D = 2R 0 meshed with elements that are quadratic for displacements degrees of freedom and linear for γ χ and λ.

Quadratic shape function are used for displacements degrees of freedom because they are known to provide better interpolation accuracy than linear shape functions. Furthermore, quadratic elements are also known to be less subject to locking issues. However linear shape functions are used for γ χ and λ in order to limit the number of degrees of freedom. It is in fact assumed that plastic deformations vary less rapidly than displacements, in such a way that linear shape functions give sufficient precision to interpolate accumulated plastic slip. With the formalism developed in this work quadratic shape function for γ χ and λ could also have been used. As reduced integration involves a lesser number of integration points than full integration, 20-node brick elements with reduced integration possessing 8 Gauss points (instead of 27 for full integration) are used. Reducing the number of integration points clearly decreases the accuracy of the integration, but it also reduces the computational cost.

Furthermore, reduced integrated elements are known to be less stiff than fully integrated elements.

Therefore, reduced integration is often recommended in order to avoid the problem of locking and possible oscillations. Yet, reduced integration can lead to hourglassing issues when the element stiffness matrix is zero. Several ways to address hourglassing have been proposed in literature [START_REF] Belytschko | Hourglass control in linear and nonlinear problems[END_REF]: inserting an artificial stiffness to the hourglass deformation modes, inserting an artificial viscosity, refining the mesh, etc. In this work methods to prevent hourglass were not used because no significant hourglass modes could be observed in the simulations which are presented below.

The bottom face of the microwire is clamped while the top surface undergoes a rigid body rotation around the wire axis. The lateral faces are kept traction free, which means that T = 0 and M = 0 from Eq. ( 6) and ( 7). Two orientations of the single crystal are considered: <001> and <111> aligned with the microwire axis. The geometry and the boundary conditions are as shown in Figure 4. The Cartesian coordinate system is chosen for the two microwire single crystals (later respectively denoted <001> and <111>) such that

X 1 = [110] X 2 = [1 10] X 3 = [001] (69) 
and

X 1 = [ 11 2] X 2 = [1 10] X 3 = [111] (70) 
respectively.

Face-centered cubic (FCC) single crystal microwires are simulated. The hardening laws per slip system are based on the evolution of usual scalar dislocation densities. The hardening term accounts for lattice friction and dislocation interactions [START_REF] Kubin | Modeling dislocation storage rates and mean free paths in face-centered cubic crystals[END_REF]. The critical resolved shear stress (CRSS) is taken as: 

τ s c = τ 0 + µ 12 u=1 a su r u ( 
ṙs = | γs |       12 u=1 b su r u κ -G c r s       (72) 
accounts for multiplication and annihilation of dislocations. The parameter κ is proportional to the number of obstacles crossed by a dislocation before being immobilized, G c is the critical distance controlling the annihilation of dislocations with opposite signs, and b su describes the interactions between dislocations. The structures of the matrices a su and b su are given in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF] for FCC crystals. Cubic elasticity is considered. The wrought Inconel 718 material parameters at room temperature used for the numerical simulation are given in Table 3. r s 0 denotes the initial value of the adimensional dislocation density, which is assumed to be the same for all slip systems. The various intrinsic length scale to diameter ratios ( /2R 0 ) considered in the simulations are given in Table 4. /2R 0 <001> 0.03 0.07 0.10 0.31 0.44 0.54 /2R 0 <111> 0.03 0.08 0.11 0.35 0.50 0.61

Results and discussion

Figure 5 and 6 show the accumulated plastic strain fields in the deformed configuration for FCC single crystals with wire axis parallel to <001> and <111> respectively. A cross section of each sample is illustrated in Figure 5 and6. The radial and circumferential plastic strain gradients are clearly visible. A four-fold pattern is observed for the <001> specimen with maximum plastic strain values along <100> directions. A six-fold pattern is observed for the <111> specimen with maximum plastic strain values along <11 2> directions. The overall curves are presented using normalized torque T /R 3 0 as a function of surface strain γ R defined as

γ R = kR 0 ( 73 
)
where k is the applied twist per unit length (θ/L). They are given in Figure 7 for the two single crystal orientations <001> and <111> using classical crystal plasticity. The <001> crystal orientation is found to be significantly stronger than the <111> wire. The orientation of the crystal to the loading direction causes different slip activity and results in different mechanical responses. The twist angle at the cross-section of the microwire is calculated as θ h = θh/L, where h is the height from the bottom end. The initial material line for <001> and <111> crystal orientation is shown in Figure 4b. The rotation of material line with increasing surface strain is as shown in Figure 5 and 6. The response of the micromorphic wire is also provided in Figure 7 for comparison for a given internal length value.

In the micromorphic approach, the penalty parameter H χ is chosen sufficiently large for γ cum and γ χ to almost coincide. The chosen value of H χ in the simulation is 10 4 MPa. The intrinsic length scale ( ) considered in the simulation is defined as = A/|H| as proposed in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF], where H is the initial equivalent linear hardening modulus. H is estimated by performing uniaxial tensile test on one element as proposed in [START_REF] Ling | Modeling the intragranular ductile fracture of irradiated steels. Effects of crystal anisotropy and strain gradient[END_REF]. Its value is given by the ratio of τ s and γ s for one The effect of different ratios /2R 0 on the size effects in torsion microwires has been studied

for the two models considered in this work, namely the micromorphic and strain gradient plasticity formulations. The torque vs surface strain curves of the micromorphic model are compared with micromorphic response for the two largest /2R 0 values whereas distinct curves are obtained with the Lagrange multiplier approach, see Figure 10b and11b. This saturation of size effects predicted by a micromorphic formulation has already been demonstrated analytically for the microcurl theory by [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF] in the case of periodic shearing of a laminate at small strains and small rotations. The present new results show that this feature also exists at large strains for torsion. These observations apply to both orientations <001> and <111>. The strongest additional hardening effect is obtained when the internal length takes values comparable to the wire diameter, as expected.

γ R = 6% , θ h = 23 • γ R = 10% , θ h = 37 • γ R = 14% , θ h = 52 •
γ R = 6% , θ h = 23 • γ R = 10% , θ h = 37 • γ R = 14% , θ h = 52 •
The predictions of the Lagrange multiplier based formulation can be considered in fact as the limit case when the penalty modulus H χ goes to infinity in the micromorphic formulation. The predictions obtained with the micromorphic formulation for several values of H χ are plotted in Figure 12. As H χ rises the prediction of the micromorphic formulation goes closer to the prediction obtained with the Lagrange multiplier based formulation. However increasing H χ builds up drastically the computation time since the penalization becomes very stiff. In practice, one could use the penalty term H χ in the micromorphic formulation as a parameter to fit the scaling law measured in experiments. This possibility was discussed for micromorphic and Cosserat models in [START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF]. Such a parametrization is however not possible with the Lagrange multiplier based formulation. Nevertheless saturation of the scaling law can also be achieved, with both formulations, by using a more elaborate free energy potential associated to gradient terms. The rather simple quadratic form used in this study can indeed be modified in order to obtain more physically relevant scaling laws. 

Problem setup

An initially spherical void of radius R 0 is placed at the center of a cube of size L 0 as presented in Figure 13a. The matrix material surrounding the void is a FCC single crystal (later denoted <100>) such that

X 1 = [100] X 2 = [010] X 3 = [001] (74) 
Therefore, for symmetry reasons only one eighth of the porous unit-cell is considered. Figure 13b shows the corresponding finite element mesh for a void volume fraction f 0 = (4/3)π(R 0 /L 0 ) 3 = 1%.

Quadratic (resp. linear) shape functions are used for the displacement (resp. micro-slip γ χ and Lagrange multiplier λ) degrees of freedom. Elements with reduced integration are used. A triaxial axisymmetric loading is applied by prescribing displacement boundary conditions on the inner faces of the cube at X 1 = 0, X 2 = 0, X 3 = 0 and outer faces at

X 1 = L 0 /2, X 2 = L 0 /2, X 3 = L 0 /2 U 1 (X 1 = 0, X 2 , X 3 ) = 0 U 1 (X 1 = L 0 /2, X 2 , X 3 ) = U 1 (t) (75) U 2 (X 1 , X 2 = 0, X 3 ) = 0 U 2 (X 1 , X 2 = L 0 /2, X 3 ) = U 2 (t) (76) U 3 (X 1 , X 2 , X 3 = 0) = 0 U 3 (X 1 , X 2 , X 3 = L 0 /2) = U 3 (t) (77) 
External forces F 1 , F 2 and F 3 are respectively associated to U 1 , U 2 and U 3 . The macroscopic Cauchy stress components Σ 11 , Σ 22 and Σ 33 are defined by

Σ 11 = 4F 1 (L 0 + 2U 2 )(L 0 + 2U 3 ) Σ 22 = 4F 2 (L 0 + 2U 1 )(L 0 + 2U 3 ) Σ 33 = 4F 3 (L 0 + 2U 1 )(L 0 + 2U 2 ) (78) 
A macroscopic strain rate Ḟ 11 = 10 -4 s -1 is imposed along the X 1 direction. Displacements U 2 and U 3 are adjusted following the procedure described in [START_REF] Ling | An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations[END_REF] in order to enforce a constant stress triaxiality T where with the relations Σ 22 = η 2 Σ 11 and Σ 33 = η 3 Σ 11 . For the applied axisymmetric loading considered in this Section, the values η 2 = η 3 = 0.625 were chosen, corresponding to a triaxiality of 2.

T = Σ m Σ eq = 1 + η 2 + η 3 3 1 -η 2 -η 3 -η 2 η 3 + η 2 2 + η 2 3 ( 79 
)
The same dislocation density based hardening laws Eq. ( 71) and evolution equations Eq. ( 72) are used. Different material parameters are however considered and listed in Table 5 in order to match the material parameters used in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF]. Several values of A are used in order to investigate size effects. As discussed in previous section and by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF] the intrinsic length scale = A/H can be considered, where H denotes the linear hardening modulus at initiation of plastic slip in a uniaxial tensile test. The ratio /L 0 then governs the predicted size effects. For the material parameters presented in Table 5 one obtains H = 2777 MPa for the <100> crystal orientation. The numerical values of /L 0 used for the simulation of porous unit-cells are: 0, 1/300, 1/90, 1/30 and 1/3. Several values of the penalization modulus µ χ are also considered in order to measure its impact on the macroscopic stress-strain behaviour.

Results and discussion

The void volume fraction f is postprocessed from the unit-cell simulations by computing the volume contained in the mesh V mesh (excluding the void) and the total volume contained in the cube 

V tot = (L 0 + 2U 1 )(L 0 + 2U 2 )(L 0 + 2U 3 ) (including the void) f = 1 - V mesh V tot (80) 
Figure 14 plots the evolution of f with the macroscopic deformation E 11 = 2U 1 /L 0 for the different /L 0 ratios considered. The results obtained with the novel Lagrange multiplier based formulation are plotted aside the results presented in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF] which were obtained with the micromorphic formulation with the same material parameters, but where the entire unit-cells were computed. It can be noted that when /L 0 vanishes, both formulations predict almost exactly the same result.

Nevertheless some discrepancies become visible as /L 0 increases. This observation can be put in parallel to the discussion made in previous section. The Lagrange multiplier approach corresponds indeed to the limit case of the micromorphic formulation as H χ approaches infinity. However in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF] for numerical efficiency reasons H χ was taken equal to 5 × 10 4 MPa. Size effects obtained with both formulations are therefore in good qualitative agreement, but turn out to be more pronounced with the Lagrange multiplier setting. These effects are as follows.

With the applied loading the void volume fraction is a monotonically increasing function of E 11 .

In absence of size effects (i.e. /L 0 = 0) evolution of the void volume fraction does not depend on the cell size. However as /L 0 increases void volume fraction evolution becomes size-dependent. The larger the /L 0 ratio is, the slower the void volume fraction rises with macroscopic deformation. This first size effect is due to a more diffuse plastic deformation field when the intrinsic length gets closer to L 0 . For the three lowest values of the ratio considered, the void volume fraction evolution displays two distinct regimes, while for the two largest ratios only one regime is visible. This two-regime evolution is characteristic of void growth and void coalescence. During the first regime, voids grow rather slowly because of overall yielding of the matrix surrounding them. At some point necking of the ligament separating voids is reached, which leads to a sudden steepening of void growth evolution.

This acceleration is due to intense localization of plastic deformation inside the ligament. Onset of void coalescence by intervoid ligament necking is characterized by a transition from a triaxial to a uniaxial straining mode [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF]. This transition can therefore be detected by computing over time the ratio |∆U 2 |/|∆U 1 |. Coalescence can be considered to set on as soon as this ratio becomes lower than an arbitrary small critical value, say 5%. Hollow squares are plotted in Figure 14 in order to depict the macroscopic strain and void volume fraction at which coalescence begins. For the sake of clarity, coalescence onsets are only displayed for the results obtained by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF]. For a given characteristic length, the micromorphic and Lagrange multiplier formulations predict almost identical strain and void volume fractions at onset of coalescence. The second size effect which appears is that void growth to void coalescence transition is postponed when /L 0 is increased. This delay is due to the weaker void volume increase during the growth regime. For the two largest value of /L 0 a very flat void growth regime is observed. the void volume fraction at coalescence when the intrinsic length increases. This additional effect is due to the fact that size effects prevent intense localization of plastic deformation. Therefore void coalescence which occurs by localization of plastic slip in the intervoid ligament requires a larger void volume fraction in order to happen. The macroscopic stress-strain curves obtained with the Lagrange multiplier formulation are plotted in Figure 15 aside to the results obtained with the micromorphic formulation presented in [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF]. As previously noted for void volume fraction in Figure 14, both formulations are also equivalent in terms of stress-strain behaviour when size effects are absent. However the discrepancies between both formulations observed in presence of size effects on void volume fraction evolution are also visible on the stress-strain behaviour. The void volume fraction plays indeed a detrimental role on the macroscopic stress. With low and intermediate intrinsic length scales, voids grow significantly and the material displays a two-regime stress-strain behaviour.

During the first regime hardening of the matrix material dominates over softening induced by void growth. This regime is therefore characterized by an increase of the macroscopic stress despite the augmentation of f . In the second regime, softening induced by void growth overcomes the hardening capacity of the matrix leading to a macroscopic softening behaviour. However, for the largest intrinsic length, softening induced by void growth does not overcome hardening of the matrix material, thus the second stress softening regime is not observed. Hollow squares are also plotted on the stress-strain curves in order to depict onset of void coalescence. As discussed earlier, strong size effects postpone the onset of void coalescence, because of impeded void growth. As a collateral effect, it can be noted that /L 0 = 0 1/30 1/90 1/300 1/3 Fig. 15: Macroscopic stress-strain behaviour for different intrinsic length to cell size ratios /L 0 obtained with the micromorphic formulation (dots) by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF] and the Lagrange multiplier formulation (dashed lines) in porous unit-cell simulations with f 0 = 0.01 and material parameters presented in Table 5. Hollow squares denote onsets of void coalescence.

the macroscopic stress at coalescence increases notably with /L 0 . The influence of the penalization modulus µ χ in the Lagrange multiplier formulation is visible in Figure 14 and 15. For the smallest characteristic length µ χ has a rather weak impact on the void volume fraction evolution and stress behaviour. As the characteristic length increases, the importance of µ χ rises. It can be observed that greater values of µ χ induce a slightly slower void growth and a harder stress-strain behaviour. These effects become more visible at large strains.

The cumulated plastic strain field obtained with the Lagrange multiplier formulation with µ χ = 10 4 MPa are displayed in Figure 16 at a macroscopic strain E 11 = 0.3 for several values of the ratio /L 0 . These fields are quantitatively in excellent agreement with the results obtained by [START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF] with the micromorphic approach. According to conventional crystal plasticity, plastic strains are predominantly localized in the vicinity of the void, in particular where the cross-section area orthogonal to the main tensile direction is minimum. Plastic anisotropy causes the presence of several soft zones, where γ cum is maximum and which correspond to regions with highest Schmid factors. As the ratio /L 0 is increased the cumulated plastic slip tends to become more homogeneous across the porous unit-cell. Therefore, the maximum local value of γ cum drops. In addition, the number of local maxima decreases. Three intense maxima were indeed visible with conventional crystal plasticity, while only two much less intense maxima can be observed when /L 0 = 30. 

Conclusions

The major outcomes of this study can be stated as follows:

1. A Lagrange multiplier approach accounting for the nonlinearity and nonlocality coupling inherent to strain gradient plasticity was presented. It was compared to the micromorphic approach in the context of crystal plasticity. The main idea of the Lagrange multiplier approach is to enforce weakly equality between local and nonlocal variables through a Lagrange multiplier.

2. The finite element implementation of the Lagrange multiplier method was detailed. In particular tangent and Jacobian matrices were derived.

3. The computational efficiencies of the micromorphic and Lagrange multiplier formulations were compared. Rate-dependent and rate-independent crystal plasticity settings were used. A significant speedup, reaching a computational time reduction of up to a factor 200, is obtained with the Lagrange multiplier based and rate-dependent formulation compared to the micromorphic and rate-dependent formulation. Important benefits are also displayed with the rate-independent setting as compared to the viscoplastic flow rule, in particular when the micromorphic approach is considered.

4. The prediction of size effects with the micromorphic and Lagrange multiplier approaches were compared for single crystals torsion tests. It was shown that both models provide similar results

for small and intermediate internal length scales. However, for larger internal length scales, the hardening due to strain gradients saturates according to the micromorphic approach. A similar saturation effect was observed on the grain size effect on the yield stress in polycrystals using the microcurl model at small strains in (Cordero et al., 2012b). The scaling law is different for the Lagrange multiplier formulation since such a saturation is not observed.

5. Advantage of the Lagrange multiplier numerical efficiency has been taken in order to perform simulations of void growth in porous unit-cells up to void coalescence. Comparison to simulations made previously with the micromorphic formulation displays a very good agreement between both formulations.

Although this model remains computationally rather expensive, the results obtained in this work suggest that simulation of structures, such as real specimens, are now within reach in more reasonable computation times. The work initiated in [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF] on the evolution of voids in a softening matrix material will be pursued by performing 3D porous unit-cell simulations by taking advantage of the enhanced computational performance of the Lagrange multiplier formulation. The advances obtained in this paper will also be coupled in a future work to recent extensions of standard crystal plasticity to ductile failure [START_REF] Ling | An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations[END_REF] and damage [START_REF] Lindroos | Micromechanical modeling of short crack nucleation and growth in high cycle fatigue of martensitic microstructures[END_REF].
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Thus, shape functions u N a i and χ N b can be written as

[ u N] =         u N 1 0 0 • • • u N p 0 0 0 u N 1 0 • • • 0 u N p 0 0 0 u N 1 • • • 0 0 u N p         (B.3) and [ χ N] = χ N 1 χ N 2 χ N 3 • • • χ N q . (B.4)
Accordingly, u B a ij and χ B a i can also be written in matrix form denoted by [ u B] and [ χ B]:

[ u B] =                                    ∂ u N 1 ∂X 1 0 0 • • • ∂ u N p ∂X 1 0 0 0 ∂ u N 1 ∂X 2 0 • • • 0 ∂ u N p ∂X 2 0 0 0 ∂ u N 1 ∂X 3 • • • 0 0 ∂ u N p ∂X 3 ∂ u N 1 ∂X 2 0 0 • • • ∂ u N p ∂X2 0 0 0 ∂ u N 1 ∂X 3 0 • • • 0 ∂ u N p ∂X 3 0 0 0 ∂ u N 1 ∂X 1 • • • 0 0 ∂ u N p ∂X 1 0 ∂ u N 1 ∂X 1 0 • • • 0 ∂ u N p ∂X 1 0 0 0 ∂ u N 1 ∂X 2 • • • 0 0 ∂ u N p ∂X 2 ∂ u N 1 ∂X 3 0 0 • • • ∂ u N p ∂X 3 0 0                                    (B.5)
and

[ χ B] =          ∂ χ N 1 ∂X 1 ∂ χ N 2 ∂X 1 ∂ χ N 3 ∂X 1 • • • ∂ χ N q ∂X 1 ∂ χ N 1 ∂X 2 ∂ χ N 2 ∂X 2 ∂ χ N 3 ∂X 2 • • • ∂ χ N q ∂X 2 ∂ χ N 1 ∂X 3 ∂ χ N 2 ∂X 3 ∂ χ N 3 ∂X 3 • • • ∂ χ N q ∂X 3          (B.6)
The interpolation of increment of the displacements ui , microslip γχ and Lagrange multiplier λ in one With stress and strain variables expressed with Voigt's notation, Eqs. ( 57), ( 58), ( 59) and ( 60 The reader is referred to [START_REF] Besson | Non-linear mechanics of materials[END_REF] for the description of the assembly procedure. Thus, the global finite element set of equations Eqs. ( 61), ( 62) and ( 63) to be solved can be written as

         {R int(u) } {R int(γχ) } {R int(λ) }          .          { ˙ u} { ˙ γ χ } { ˙ λ}          =          {R ext(u) } {R ext(γχ) } {R ext(λ) }          .          { ˙ u} { ˙ γ χ } { ˙ λ}          (B.18)
Since the system is nonlinear, it can be solved by Newton's method which requires the calculation of the Jacobian matrix with respect to the internal reactions [START_REF] Besson | Non-linear mechanics of materials[END_REF]. The Jacobian matrix of an individual element, split into nine blocks, writes In the element stiffness matrix, one can find four derivatives which will be evaluated by consistent tangent matrix {J * } in the next section. The consistent tangent matrix {J * } is defined as: 
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  b int(γχ,e) (resp. R b int(λ,e) ) as the internal reaction related to γ χ (resp. λ) on node b of element e

  Figure 1b and 1c show the finite element solutions to this problem in case µ χ = 0, for discretizations of respectively n = 51 and n = 201 elements along the X 2 direction of the bar and a wavelength λ 0 = L/2. It is observed that strong oscillations of plastic slip (solid red line) occur around the analytical solution (dashed black line) for both finite element discretizations. These oscillations are caused by abnormal fluctuations of the Lagrange multiplier (solid blue line) also plotted on the same figures. Fluctuations are probably

  µ χ which yields a smooth profile of ∆ χ . The profiles of ∆ χ in a reduced region of the bar for several values of µ χ and the two different mesh densities n = 51 and n = 201 are plotted in Figure 2. It can

  c) n = 201 and µχ =

  d) n = 51 and µχ = 50 MPa

  Fig. 1: (a) Geometry of the periodic bar. (b-e) Analytical (dashed black lines) and numerical (solid blue and red lines) solutions of cumulated plastic slip γχ (red) and Laplacian term ∆χ (blue) along a periodic strip in simple shear for a linear softening behaviour (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper).

Fig. 2 :

 2 Fig. 2: Numerical solutions of the Laplacian term ∆χ profile along a periodic strip in simple shear for several values of µχ. The discretization is n = 51 elements in (a) and n = 201 elements in (b).

Fig. 3 :

 3 Fig. 3: Computation times for the finite element resolution of the periodic strip in simple shear and single slip for four different λ 0 /L ratios and four different formulations.

Fig. 4 :

 4 Fig. 4: Microwire torsion (a) boundary conditions (b) example mesh from the top side in which the black line represents an initial material line. For the <001> crystal orientation the black line is oriented along a <110> direction. For the <111> crystal orientation it is oriented along a <11 2> direction.

  Figure 7 exhibits a linear hardening of the wire in contrast to the saturated classical crystal plasticity response. The magnitude of the slope depends on the value of the internal length as demonstrated in the following.

Fig. 5 :

 5 Fig. 5: Cumulative plastic strain (γcum) field in FCC single crystal for <001> crystal orientation in classical crystal plasticity with respect to deformed configuration. The rotation of material line shown in Fig. 4b with increasing surface strain is shown by a black line on the cross-section.

Fig. 6 :Fig. 7 :Fig. 8 :

 678 Fig. 6: Cumulative plastic strain (γcum) field in FCC single crystal for <111> crystal orientation in classical crystal plasticity with respect to deformed configuration. The material line shown in Figure 4b and its rotation with increasing surface strain are shown by a black line on the cross-section.

Fig. 9 :Fig. 10 :

 910 Fig. 9: Cumulative plastic strain distribution in FCC single crystal for <111> crystal orientation for different values of ratio /2R 0 using (a) micromorphic (b) Lagrange multiplier models at surface strain of 0.08 (fields reported on the reference configuration).

Fig. 11 :Fig. 12 :

 1112 Fig. 11: Normalized torque vs surface strain curves for FCC <111> crystal orientation for different values of ratio /2R 0 using (a) micromorphic (b) Lagrange multiplier models.

  Fig. 13: (a) Geometry of a cubic porous unit-cell. (b) 1/8-th of the finite element mesh for f 0 = 1%. Total number of degrees of freedom is n DOF = 2767.

Fig. 14 :

 14 Fig.14: Void volume fraction f evolution with respect to macroscopic deformation E 11 for different intrinsic length to cell size ratios /L 0 obtained with the micromorphic (solid lines) and the Lagrange multiplier (dashed lines) formulations in porous unit-cell simulations with f 0 = 0.01 and material parameters presented in Table5. Hollow squares denote onsets of void coalescence.

Fig. 16 :

 16 Fig. 16: Cumulated plastic strain fields in porous unit-cells at E 11 = 0.3 obtained with the Lagrange multiplier formulation with µχ = 10 4 MPa.
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  λ} = [ χ N].{ ˙ λ e } thus { ∆χ } = [ χ N]. { ˙ λ e } + µ χ { ˙ γ e χ } (B.8)and therefore it follows that{ Ḟ ∼ } = [ u B].{ ˙ u e } { K χ } = [ χ B].{ ˙ γ e χ }.(B.9)

(

  B] T .[ χ B].{γ χ } + [ χ N] T . ({∆ χ }µ χ {γ M γ M γ M }) dV e 0 B]T is the transpose of the matrix [ u B] and the same notation is used for other matrices. In practice the integrals are approximated in each element by a Gaussian quadrature rule. The global finite element set of equations is obtained by applying an assembly operator A on internal reactions and external reactions:{R int(u) } = A({R e int(u) }) {R int(γχ) } = A({R e int(γχ) }) {R int(λ) } = A({R e int(λ) }) (B.16) {R ext(u) } = A({R e ext(u) }) {R ext(γχ) } = A({R e ext(γχ) }){R ext(λ) } = A({R e ext(λ) }) (B.17

  )

[((([([(

  operation A, one can calculate the global Jacobian matrix[(uu) ] [K e (ug) ] [K e (ul) ] [K e (gu) ] [K e (gg) ] [K e (gl) ] [K e (lu) ] [K e (lg) ] [K e(ll) ] blocks for an individual element and obtains the so-called element stiffness matrix:u B] T . ∂{S ∼ } ∂{γ χ } .[ χ N] + µ χ [ u B] T . ∂{S ∼ } ∂{λ} .[ χ N] dV e 0 χ [ χ N] T . ∂{γ M } ∂{F ∼ } .[ u B] dV e 0 B] T .[ χ B]. ∂{γ χ } ∂{ γ e χ } + µ χ [ χ N] T . ∂{γ χ } ∂{ γ e χ } µ χ [ χ N] T . ∂{γ M } ∂{∆ χ B] T .[ χ B].[ χ N] + µ χ [ χ N] T .[ χ N]µ 2 χ [ χ N] T . ∂{γ M } ∂{∆ χ } .[ χ N] dV e 0 χ N] T .[ χ N]µ χ [ χ N] T . ∂{γ M } ∂{∆ χ } .[ χ N] dV e 0 χ N] T .[ χ N]µ χ [ χ N] T . ∂{γ M } ∂{∆ χ } .[ χ N] dV e 0

Table 1 :

 1 Summary of equilibrium equations, state laws and evolutions equations.

Table 2 :

 2 Numerical values of material parameters for the comparison of computational efficiencies. MPa 5 × 10 4 MPa 50 MPa 15 10 30 s -1 0.1 MPa

	C 44	τ 0	H	H χ	µ χ	n	γ0	R
	105 GPa 100 MPa -10					

Table 3 :

 3 Numerical values of material parameters for the simulation of microwires in torsion.

	C 11	C 12	C 44	τ 0	n	γ0	µ	G c	κ
	259.6 GPa	179 GPa 109.6 GPa 320 MPa	20	10 33 s -1 77.2 GPa 10.4 42.8
	r s 0	a su	b su (s = u)	b uu	H χ	µ χ			
	5.38 × 10 -11	0.124	1	0	10 4 MPa 10 3 MPa			
	equation for the adimensional dislocation density r s					

Table 4 :

 4 Numerical values of /2R 0 ratios for the simulation of microwires in torsion.

Table 5 :

 5 Numerical values of material parameters for the simulation of porous unit-cells.

	C 11	C 12	C 44	τ 0	n	γ0	µ	G c	κ
	200 GPa	136 GPa 105 GPa 88 MPa	15	10 29 s -1	65.6 GPa 10.4	42.8
	r s 0	a 1 , a 2	a 3	a 4	a 5	a 6	b ij (i = j)	b ii	µ χ
	5.38 × 10 -11	0.124	0.07	0.625	0.137	0.122	1	0	10 2 , 10 3 , 10 4 MPa

  The quasi-absence of void growth explains why coalescence does not occur in the range of applied deformations. Necking of the intervoid ligament would indeed require larger stresses to be applied. A third size effect which can be observed is a slight increase of
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  Appendix C. Details on the consistent tangent matrix It is shown in[START_REF] Ling | A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals[END_REF] that the consistent tangent matrix is which involves the inverse of the (local) Jacobian matrix J = ∂R/∂v INT .

	J * =	∂∆v OUT ∂∆v INT	-		∂R ∂∆v INT	-1 ∂R ∂∆v IN	+	∂∆v OUT ∂∆v IN	(C.1)
	• ∂∆vOUT ∂∆vINT								
	∂∆S ∼ ∂∆E ∼		=	∂S ∼ ∂E ∼	=	∂S ∼ ∂σ ∼	:	∂σ ∼ ∂E ∼	(C.2)
				∂S ∼ ∂σ ∼	= J1 ∼ ⊗F ∼	-1	(C.3)
				∂σ ∼ ∂E ∼	= -	1 J e	(E ∼ .Π ∼ e .E ∼	T ) ⊗ E ∼	-T +	1 J e	1 ∼ ⊗(Π ∼ e .E ∼	T ) T
					+	1 J e	(E ∼ ⊗E ∼ ) :	∂Π ∼ e ∂E ∼	+	1 J e	(E ∼ .Π ∼ e )⊗1 ∼ : (1 ∼ ⊗1 ∼ )	(C.4)
			∂Π ∼ ∂E ∼ e	=	∂Π ∼ e ∂E ∼ e GL	:	e GL ∂E ∼ ∂E ∼	(C.5)
		e GL ∂Π ∼ ∂E ∼ e	= C ≈			(C.6)
		∂E ∼ ∂E ∼ e GL	=	1 2	(1 ∼ ⊗E ∼	T + E ∼	T ⊗1 ∼ )	(C.7)
				∂∆S ∼ ∂∆γ s = 0					∂∆S ∼ ∂∆r s = 0	∂∆S ∼ ∂∆γ cum	= 0	(C.8)
	∂∆γ M ∂∆E ∼	= 0	∂∆γ M ∂∆γ s = 0	∂∆γ M ∂∆r s = 0	∂∆γ M ∂∆γ cum	= 1	(C.9)
										δ∆v OUT δ∆v IN	(B.30)
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Appendices

Appendix A. Jacobian matrix ∂R/∂v int

The Jacobian matrix is needed to integrate the constitutive equations at the Gauss point level.

The block form of the Jacobian matrix writes

Appendix B. Details on the finite element implementation

In order to facilitate the numerical implementation in finite element code, the previous equations are written in vector and matrix form. The rates of nodal degrees of freedom ˙ u a , ˙ γ b χ and ˙ λ b are arranged in vector form as

Here, we drop the superscripts a and b used for summation over the nodes of one element and add a superscript label e, in order to indicate that the vector is for one individual element and to distinguish it from vectors for the entire finite element mesh. Recall that p is the number of nodes possessing displacement degrees of freedom and q is that for ∆ χ and microslip γ χ . Voigt's notation is used for writing tensors in the form of vectors and matrices. Especially, the second-order non-symmetric tensor F ∼ is arranged in the form: