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Abstract

We prove the existence of competitive equilibrium in the canonical optimal growth

model with elastic labor supply under general conditions. In this model, strong

conditions to rule out corner solutions are often not well justified. We show using

a separation argument that there exist Lagrange multipliers that can be viewed

as a system of competitive prices. Neither Inada conditions, nor strict concavity,

nor homogeneity, nor differentiability are required for existence of a competitive

equilibrium. Thus, we cover important specifications used in the macroeconomics

literature for which existence of a competitive equilibrium is not well understood.

We give examples to illustrate the violation of the conditions used in earlier existence

results but where a competitive equilibrium can be shown to exist following the

approach in this paper.
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1 Introduction

The optimal growth model is one of the main frameworks in macroeconomics. While

variations of the model with inelastic labor supply are used widely in growth theory, the

version with elastic labor supply is the canonical model in business cycle models, both

for exogenous and endogenous fluctuations.1 Despite the central place of the model in

dynamic general equilibrium models, existence of competitive equilibrium in general set-

tings has proved to be a challenge. Results of existence of equilibrium for this model use

strong conditions (see Coleman (1997), Datta, et al. (2002), Greenwood and Huffman

(1995), Le Van and Vailakis (2004), and Yano (1989, 1990, 1998)) which are often vio-

lated in models of special interest. This paper establishes existence of equilibrium under

very weak conditions: neither Inada conditions, nor strict concavity, nor differentiabil-

ity, nor constant returns to scale (or more generally, homogeneity), nor restrictions on

cross-partials of the utility functions, nor interiority assumptions. The recent paper by

Kamihigashi (2015) shows that even if we make all the above assumptions (but not Inada

or stronger assumptions) then there may be no interior optimal paths.2 Understanding

existence of both optimal and competitive equilibria in this model when we may not have

interior paths still remains an open issue. Our results show that existence of both optimal

and competitive paths can be established under very weak conditions, and whether the

path is interior or not, is not important.

The approach taken in this paper is a direct method based on existence of Lagrange

multipliers to the optimal problem and their representation as a summable sequence. The

price of the good is the multiplier on the resource constraint. Thus, we not only know

there exist equilibrium prices, but we can also calculate them in a given model. This is

important as we would like to be able to characterize the equilibrium prices especially

when we have non-interior equilibrium paths where existing methods do not apply. We

give three examples where we can calculate equilibrium prices where the results in the

literature are inapplicable.

The problem with inelastic labor supply was considered by Le Van and Saglam (2004).

This approach uses a separation argument where the multipliers are represented in the

dual space (`∞)′ of the space of bounded sequences `∞.3 The Le Van and Saglam (2004)

approach uses a separation argument but imposes restrictions on the asymptotic behavior

1See the recent papers Iwasa and Sorger (2018) and Sorger (2018).
2The cited paper does not study competitive equilibria.
3While one would like the multipliers and prices to lie in `1, it is not the dual space. In the previous

work on competitive equilibrium following Peleg and Yaari (1970), the representation theorems followed

separation arguments applied to arbitrary vector spaces (See Bewley (1972), Aliprantis, et al. (1997),

Dana and Le Van (1991)).
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of the objective functional and constraint functions which are easily shown to be satisfied

in standard models.4 There is a difficulty in going from the inelastic labor supply to

the elastic labor supply model: While one may be able to show that the optimal capital

stock is strictly positive, one cannot be sure that the optimal labor supply sequence

is strictly positive. Thus, the paper by Le Van and Vailakis (2004) which took the

approach of decentralizing the optimal solution via prices as marginal utilities had to

make additional strong conditions on the utility function (which fails in homogeneous

utility functions such as those of the Cobb-Douglas class) to ensure that the labor supply

sequence remains strictly positive. We extend Le Van and Saglam (2004) and show

the Lagrange multipliers to the social planners problem are a summable sequence and

one can directly use these to decentralize the optimal solution without having to make

strong assumptions to ensure interiority of the optimal plan.5 As the separation theorem

does not require strict concavity or differentiability, these strong assumptions on utility

functions can be dropped. This is of interest as an important specification of preferences

in applied macroeconomics models are quasi-linear utility with linear utility of leisure

where strict concavity and Inada conditions are violated. The linear specification also

results in the planners problem in models with indivisible labor (see Hansen (1985), and

Rogerson (1988)). Furthermore, for CES functions, Inada condition can be violated. In

calibrated models the competitive equilibria essentially result in an interior solution but

the the problem is more fundamental: While for some examples we can calculate the

equilibrium allocation, we still have to show that there always exist equilibrium prices

that are summable. We give the main result on existence of a competitive equilibrium by

showing that the price sequence constructed is an equilibrium one. Furthermore, there

is no need to make any assumption on cross-partial derivatives of the utility function.6

Thus, as one would expect, whether labor supply is backward bending or not, and whether

consumption is interior or not plays no role in existence of equilibrium. As only convexity

and not differentiability is required for the separation theorem we are also able to cover

Leontief and more generally linear activity analysis models that are not covered by the

existing results.

4This is related to Dechert (1982).
5Goenka, et al. (2012) in a model with heterogeneous agents also assume Inada conditions. While

there is an interior solution for aggregate variables, the consumption and leisure of the more impatient

consumers converge to zero as time tends to infinity.
6See Aiyagari, et al. (1992), Coleman (1997), Datta, et al. (2002), Greenwood and Huffman (1995),

and Le Van, et al. (2007). These papers essentially show the isomorphism of the dynamic problem with

endogenous leisure to one without endogenous leisure, and the assumptions are used to show monotonicity

of the optimal capital path which combined with the static labor-leisure choice gives existence in the

original problem. Making these assumptions rules out non-linear dynamics and thus, is overly restrictive

(see Iwasa and Sorger (2018) and Sorger (2018)).
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Yano (1984, 1990, 1998) also studies existence of competitive equilibrium with endoge-

nous labor under general conditions. There are both produced input/consumption goods

(i.e. capital) and non-produced input/consumption goods (which can be interpreted as

labor/leisure). While the conditions in these papers weaken the conditions used in Be-

wley (1982) they do not cover our existence result. Yano (1984) has the most general

specification and is the closest to our assumptions. It does not use differentiability (and

hence, Inada conditions). It also does not use interiority assumptions in Bewley (1982).

However, it makes assumptions A.14-A.17 that we do not have to make. In our results as

we are concerned only with the existence issue we allow for corner solutions. In particu-

lar, we give an example (Example 3) where the consumption of the produced good is zero

(except in the initial period where the initial output is consumed) and the investment in

capital is always zero. This is ruled out by A.14-A.17 in Yano (1984). Yano (1990) as-

sumes continuous differentiability of the production function (A.1), utility function (A.5),

and Inada conditions on the utility function (A.7). There is also an interiority condition

( p.37) that says that all countries (firms) produce a positive output in equilibrium. Our

paper does not use these conditions. In fact, in Example 4.2 we show under these condi-

tions it is possible in a competitive equilibrium while there is positive output it is entirely

consumed. Yano (1998) also assumes continuous differentiability and Inada conditions for

utility (Assumption 1) and production functions (Assumption 2), which are not assumed

in our paper.

There are other abstract proofs for existence of a competitive equilibrium in a neoclassical

growth model, such as Aliprantis, et al. (1997) which, in principle, could be adapted to

show existence in a model with endogenous labor-leisure choice. There are two difficulties

in using their approach for the model with endogenous labor-leisure. First, their approach

prices the consumption good but it does not directly the equilibrium wage sequence.

Second, they assume that the production function is strictly concave and satisfies the

Inada condition, f ′(0) = ∞ (p. 670). Their proof relies on showing that free disposal

trajectory lies in a compact set (in the appropriate topology) (Lemma 3, p. 672). We do

not rely on this argument, thus, we are able to dispense with both of their assumptions.

We give examples where there is a competitive equilibrium where the assumptions of this

paper are violated (see 4.1-4.3).

The organization of the paper is as follows. Section 2 describes the model. In section 3, we

provides the sufficient conditions on the objective function and the constraint functions

so that Lagrangean multipliers can be represented by an `1+ sequence of multipliers in

optimal growth model with leisure in the utility function and prove the main result on

existence of competitive equilibrium in a model with a representative agent by using

these multipliers as sequences of prices and wages. Section 4 gives examples with corner
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solutions to illustrate that a competitive equilibrium will still exist using the main result

of the paper. Section 5 concludes.

2 The model

We study the optimal growth model with an endogenous labor-leisure choice. Thus, it is

an economy where the representative consumer has preferences defined over processes of

consumption and leisure described by the utility function

∞∑
t=0

βtu(ct, lt).

In each period, the consumer faces two resource constraints given by

ct + kt+1 ≤ F (kt, Lt) + (1− δ)kt,
lt + Lt = 1, ∀t

where F is the production function, δ ∈ (0, 1) is the depreciation rate of capital stock, lt
is leisure and Lt is labor. These constraints restrict allocations of commodities and time

for the leisure.

Formally, the problem of the representative consumer is stated as follows:

max
∞∑
t=0

βtu(ct, lt)

s.t. ct + kt+1 ≤ F (kt, 1− lt) + (1− δ)kt, ∀t ≥ 0

ct ≥ 0, kt ≥ 0, lt ≥ 0, 1− lt ≥ 0, ∀t ≥ 0

k0 ≥ 0 is given.

We make a set of assumptions on preferences and the production technology. The as-

sumptions on the period utility function u : R2
+ → R are:

Assumption U1: u is continuous, concave, increasing on R2
+ and strictly increasing on

R2
++.

It is worth discussing this assumption. In the optimal growth model where there is no

labor-leisure choice, the conventional assumption on the one-period utility function is u is

strictly increasing in R+ (Aliprantis, et al (1997), p. 673, and Le Van and Saglam (2004),

Assumption 3, p. 400). This does not extend to our model and thus, we assume u to be
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increasing in R2
+
7.

Assumption U2: u(0, 0) = 0.

The assumptions on the production function F : R2
+ → R+ are as follows:

Assumption F1: F is continuous, concave, increasing on R2
+ and strictly increasing on

R2
++.

Assumption F2: F (0, 0) = 0, limk→0 Fk(k, 1) > δ, limk→+∞ Fk(k, 1) < δ.

Note there is an abuse of notation as by Fk we mean the subdifferential of F with respect

to k. In the rest of the paper, the notation for the partial should be interpreted as the

subdifferential as well.

The assumptions U1, U2, F1 are standard. Note we do not assume strict concavity,

differentiability or Inada conditions for the utility and production functions. Assumption

F2 is a weak assumption to ensure that there is a maximum sustainable capital stock,

and thus the sequence of capital is bounded.

We have relaxed some important assumptions in the literature. Bewley (1972) assumes

that the production set is a convex cone (Theorem 3). Bewley (1982) assumes the strictly

positiveness of derivatives of utility functions on RL
+ (strictly monotonicity assumption).

In our model, the utility functions may not be differentiable in R2
+.

8 Le Van, et al. (2007)

assumed the cross-partial derivative uicl has constant sign, uic(x, x) and uil(x, x) are non-

increasing in x, production function F is homogenous of degree α ≤ 1 and FkL ≥ 0

(Assumptions U4, F4, U5, F5). We also do not assume Inada conditions (see for example,

Goenka, et al. 2012), or limε→0
u(ε, ε)

ε
→ +∞ as in Le Van and Vailakis (2004). The

assumptions of Aliprantis, et al. (1997) are weakened. In particular, we do not assume

that production function is strictly concave and satisfy Inada condition, f ′(0) = ∞ (p.

670), and do not assume that u is strictly increasing everywhere. The assumptions of

Yano (1984) A.14-A.17 are dropped that require interior consumption, that consumption

can be decreased by a certain percentage, uniform bounds on marginal products, and

7Let x, y be two vectors of Rn. We write x ≤ y if xi ≤ yi for all i, and x < y if xi ≤ yi for all i and

xi < yi for at least one i.

A function u(x) is said to be increasing if u(x) ≤ u(y) for all x < y. It is said to be strictly increasing

if u(x) < u(y) for all x < y.

Consider the standard function of the Cobb-Douglas class: u(c, l) =
√
cl. Let x(c, l) = (1, 0), y(c, l) =

(2, 0). Obviously, x < y. However, u(x) = u(y) = 0. Thus u(c, l) =
√
cl is increasing on R2

+ and strictly

increasing on R2
++ but not strictly increasing on R2

+.
8Let F (k, L) = kαL1−α, α ∈ (0, 1). This function is not differentiable even in the extended real

numbers at (0, L) or (k, 0) for L ≥ 0,K ≥ 0. The assumptions in Bewley (1982) that uc >> 0, ul >> 0,

and D2u is negative definite on R2
+ are obviously violated.
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substitutability on inputs. The assumptions of Yano (1990, 1998) on continuous differen-

tiability of utility and production, Inada conditions and interiority of the allocation are

dropped. The restrictions on cross-partial derivatives in Aiyagari, et al. (1992), Coleman

(1997), Datta, et al. (2002), Greenwood and Huffman (1995) are also not necessary.

We say that a sequence {ct, kt, lt}t=0,1,...,∞ is feasible from k0 if it satisfies the constraints

ct + kt+1 ≤ F (kt, 1− lt) + (1− δ)kt, ∀t ≥ 0,

ct ≥ 0, kt ≥ 0, lt ≥, 1− lt ≥ 0, ∀t ≥ 0,

k0 > 0 is given.

It is easy to check that, for any initial condition k0 > 0, a sequence k = {kt}∞t=0 is feasible

iff 0 ≤ kt+1 ≤ F (kt, 1)+(1− δ)kt for all t. The class of feasible capital paths is denoted by

Π(k0). A pair of consumption-leisure sequences {c, l} = {ct, lt}∞t=0 is feasible from k0 > 0

if there exists a sequence k ∈ Π(k0) that satisfies 0 ≤ ct + kt+1 ≤ F (kt, 1− lt) + (1− δ)kt
and 0 ≤ lt ≤ 1 for all t.

Define f(kt, Lt) = F (kt, Lt) + (1− δ)kt. Assumption F2 implies that

fk(+∞, 1) = Fk(+∞, 1) + (1− δ) < 1

fk(0, 1) = Fk(0, 1) + (1− δ) > 1.

From above, it follows that there exists k > 0 such that: (i) f(k, 1) = k, (ii) k > k

implies f(k, 1) < k, (iii) k < k implies f(k, 1) > k. Therefore, for any k ∈ Π(k0), we have

0 ≤ kt ≤ max(k0, k). Thus, k ∈ `∞+ which in turn implies c ∈ `∞+ , if {c,k} is feasible from

k0.

3 Competitive equilibrium

The definition of a competitive equilibrium is standard.

Definition 1. A competitive equilibrium consists of an allocation {c∗, l∗,k∗,L∗} ∈ `∞+ ×
`∞+ ×`∞+ ×`∞+ , a price sequence p∗ ∈ `1+ for the consumption good, a wage sequence w∗ ∈ `1+
for labor and a price r > 0 for the initial capital stock k0 such that:

i) {c∗, l∗} is a solution to the problem

max
∞∑
t=0

βtu(ct, lt)

s.t. p∗c ≤ w∗L + π∗ + rk0
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where π∗ is the maximum profit of the firm.

ii) {k∗,L∗} is a solution to the firm’s problem

π∗ = max
∞∑
t=0

p∗t [f(kt, Lt)− kt+1]−
∞∑
t=0

w∗tLt − rk0

s.t. 0 ≤ kt+1 ≤ f(kt, Lt), Lt ≥ 0,∀t.

iii) Markets clear

c∗t + k∗t+1 = f(k∗t , L
∗
t ) ∀t

l∗t + L∗t = 1 ∀t
and k∗0 = k0

In the following, we show that under maintained assumptions, there exist multipliers of

the social planner problem that are summable. We then show that the appropriately

chosen multipliers constitute a system of competitive equilibrium prices. The results on

existence of a competitive equilibrium in the optimal growth model with inelastic labor

supply do not extend immediately to the case of endogenous labor-leisure choice. The

difficulty is that the previous results, e.g. Le Van and Vailakis (2004) rely on showing

that the allocation is interior as the price of the good is the discounted marginal utility of

consumption (See Remark 3 and Theorem 1 in that paper). As we show in the examples

in the next section, under our assumptions, a competitive equilibrium can exist even if

the capital stock is zero or if the consumption is zero so that the price system in Le Van

and Vailakis (2004) is not defined.

We first extend the result of Le Van and Saglam (2004) to the case of endogenous labor to

show existence of multipliers. As in that paper and Dechert (1982), we impose conditions

on the asymptotic properties on the constraint set that are weaker than Mackey continuity

(see conditions T1,T2 and the discussion in Appendix 1).

Proposition 1. If x∗ = (c∗,k∗, l∗) is a solution to the following problem9:

min−
∞∑
t=0

βtu(ct, lt) (Q)

9A solution exists following a standard argument which is sketched for completeness. Observe that

the feasible set is in a fixed ball of `∞ which is weak∗-(`∞, `1) compact. We show that the function∑∞
t=0 β

tu(ct, lt) is continuous in this topology on the feasible set. Since the weak∗ topology is metrizable

on any ball, we can take a feasible sequence (ct(n), lt(n))n converging to some (ct, lt) in the feasible set.

Since any feasible consumptions sequence is uniformly bounded by a number depending only on k0, for

any ε > 0 there exists T0 such that for any T ≥ T0, for any n, we have∑
t≥T

βtu(ct(n), lt(n)) ≤ ε,
∑
t≥T

βtu(ct, lt) ≤ ε
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s.t. ct + kt+1 − f(kt, 1− lt) ≤ 0,

−ct ≤ 0, −kt ≤ 0, 0 ≤ lt ≤ 1,

then there exists λ = (λ1, λ2, λ3, λ4, λ5) ∈ (`∞+ × `∞+ × `∞+ × `∞+ × `∞+ )′ ,(the dual space of

`∞+ × `∞+ × `∞+ × `∞+ × `∞+ ), λ 6= 0 such that: ∀x = (c,k, l) ∈ `∞+ × `∞+ × `∞+
∞∑
t=0

βtu(c∗t , l
∗
t )−

∞∑
t=0

λ1t (c
∗
t + k∗t+1 − f(k∗t , 1− l∗t ))

+
∞∑
t=0

λ2t c
∗
t +

∞∑
t=0

λ3tk
∗
t +

∞∑
t=0

λ4t l
∗
t +

∞∑
t=0

λ5t (1− l∗t )

≥
∞∑
t=0

βtu(ct, lt)−
∞∑
t=0

λ1t (ct + kt+1 − f(kt, 1− lt))

+
∞∑
t=0

λ2t ct

∞

+
∑
t=0

λ3tkt

∞

+
∑
t=0

λ4t lt +
∞∑
t=0

λ5t (1− lt) (1)

λ1t (c
∗
t + k∗t+1 − f(k∗t , 1− l∗t )) = 0, ∀t ≥ 0 (2)

λ2t c
∗
t = 0, ∀t ≥ 0 (3)

λ3tk
∗
t = 0, ∀t ≥ 0 (4)

λ4t l
∗
t = 0, ∀t ≥ 0 (5)

λ5t (1− l∗t ) = 0, ∀t ≥ 0 (6)

0 ∈ βt∂1u(c∗t , l
∗
t )− {λ1t}+ {λ2t}, ∀t ≥ 0 (7)

0 ∈ βt∂2u(c∗t , l
∗
t )− λ1t∂2f(k∗t , L

∗
t ) + {λ4t} − {λ5t}, ∀t ≥ 0 (8)

0 ∈ λ1t∂1f(k∗t , L
∗
t ) + {λ3t} − {λ1t−1}, ∀t ≥ 0 (9)

where ∂iu(c∗t , l
∗
t ), ∂if(k∗t , L

∗
t ) respectively denote the projection on the ith component of the

subdifferential of the function u at (c∗t , l
∗
t ) and the function f at (k∗t , L

∗
t ).

Moreover,λ1 ∈ `1+ \ {0}.

Proof. See Appendix.

Hence, ∣∣∣∣∣
+∞∑
t=0

βt[u(ct(n), lt(n))− u(ct, lt)]

∣∣∣∣∣ ≤
T−1∑
t=0

βt|u(ct(n), lt(n))− u(ct, lt)|+ 2ε.

Since weak∗ convergence implies pointwise convergence, the result is established.
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This result, thus, also shows whether an optimal path is interior or not is not important

for the existence of an optimal path (See Kamihigashi (2015)). Once we have the existence

of non-zero multipliers, we give the main result where we define the price system and show

that they are indeed competitive prices.

Theorem 1. Let {c∗,k∗, l∗} solve Problem (Q). Take

p∗t = λ1t for any t and r > 0.

There exists fL(k∗t , L
∗
t ) ∈ ∂2f(k∗t , L

∗
t ) such that {c∗,k∗,L∗,p∗,w∗, r} is a competitive equi-

librium with w∗t = λ1tfL(k∗t , L
∗
t ).

Proof. Consider λ = {λ1, λ2, λ3, λ4, λ5} of Proposition 1. Conditions (7), (8), (9) in

Proposition 1 show that ∂u(c∗t , l
∗
t ) and ∂f(k∗t , L

∗
t ) are nonempty and there exist uc(c

∗
t , l
∗
t ) ∈

∂1u(c∗t , l
∗
t ), ul(c

∗
t , l
∗
t ) ∈ ∂2u(c∗t , l

∗
t ), fk(k

∗
t , L

∗
t ) ∈ ∂1f(k∗t , L

∗
t ) and fL(k∗t , L

∗
t ) ∈ ∂2f(k∗t , L

∗
t )

such that ∀t
βtuc(c

∗
t , l
∗
t )− λ1t + λ2t = 0 (10)

βtul(c
∗
t , l
∗
t )− λ1tfL(k∗t , L

∗
t ) + λ4t − λ5t = 0 (11)

λ1tfk(k
∗
t , L

∗
t ) + λ3t − λ1t−1 = 0 (12)

Define w∗t = λ1tfL(k∗t , L
∗
t ) < +∞.

First, we claim that w∗ ∈ `1+.

We have

+∞ >
∞∑
t=0

βtu(c∗t , l
∗
t )−

∞∑
t=0

βtu(0, 0) ≥
∞∑
t=0

βtuc(c
∗
t , l
∗
t )c
∗
t +

∞∑
t=0

βtul(c
∗
t , l
∗
t )l
∗
t ,

which implies
∞∑
t=0

βtul(c
∗
t , l
∗
t )l
∗
t < +∞, (13)

and

+∞ >
∞∑
t=0

λ1tf(k∗t , L
∗
t )−

∞∑
t=0

λ1tf(0, 0) ≥
∞∑
t=0

λ1tfk(k
∗
t , L

∗
t )k
∗
t +

∞∑
t=0

λ1tfL(k∗t , L
∗
t )L

∗
t

which implies
∞∑
t=0

λ1tfL(k∗t , L
∗
t )L

∗
t < +∞. (14)
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Given T , we multiply (11) by L∗t and sum up from 0 to T . Observe that

∀T,
T∑
t=0

βtul(c
∗
t , l
∗
t )L

∗
t =

T∑
t=0

λ1tfL(k∗t , L
∗
t )L

∗
t +

T∑
t=0

λ5tL
∗
t −

T∑
t=0

λ4tL
∗
t . (15)

0 ≤
∞∑
t=0

λ5tL
∗
t ≤

∞∑
t=0

λ5t < +∞. (16)

0 ≤
∞∑
t=0

λ4tL
∗
t ≤

∞∑
t=0

λ4t < +∞. (17)

Thus, since L∗t = 1− l∗t , from (15), we get

T∑
t=0

βtul(c
∗
t , l
∗
t ) =

T∑
t=0

βtul(c
∗
t , l
∗
t )l
∗
t +

T∑
t=0

λ1tfL(k∗t , L
∗
t )L

∗
t

+
T∑
t=0

λ5tL
∗
t −

T∑
t=0

λ4tL
∗
t .

Using (13), (14), (16), (17) and letting T →∞, we obtain

0 ≤
∞∑
t=0

βtul(c
∗
t , l
∗
t ) =

∞∑
t=0

βtul(c
∗
t , l
∗
t )l
∗
t +

∞∑
t=0

λ1tfL(k∗t , L
∗
t )L

∗
t

+
∞∑
t=0

λ5tL
∗
t −

∞∑
t=0

λ4tL
∗
t < +∞.

Consequently, from (11),
∑∞

t=0 λ
1
tfL(k∗t , L

∗
t ) < +∞ i.e. w∗ ∈ `1+. So, we have {c∗, l∗,k∗,L∗} ∈

`∞+ × `∞+ × `∞+ × `∞+ , with p∗ ∈ `1+ and w∗ ∈ `1+.

We now show that (k∗,L∗) is solution to the firm’s problem.

Since p∗t = λ1t , w
∗
t = λ1tfL(k∗t , L

∗
t ), we have

π∗ =
∞∑
t=0

λ1t [f(k∗t , L
∗
t )− k∗t+1]−

∞∑
t=0

λ1tfL(k∗t , L
∗
t ) L

∗
t − rk0

Let :

∆T =
T∑
t=0

λ1t [f(k∗t , L
∗
t )− k∗t+1]−

T∑
t=0

λ1tfL(k∗t , L
∗
t ) L

∗
t − rk0

−

(
T∑
t=0

λ1t [f(kt, Lt)− kt+1]−
T∑
t=0

λ1tfL(kt, Lt) Lt − rk0

)
.
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From the concavity of f , we get

∆T ≥
T∑
t=1

λ1tfk(k
∗
t , L

∗
t )(k

∗
t − kt)−

T∑
t=0

λ1t (k
∗
t+1 − kt+1)

= [λ11fk(k
∗
1, L

∗
1)− λ10](k∗1 − k1) + . . .

+[λ1Tfk(k
∗
T , L

∗
T )− λ1T−1](k∗T − kT )− λ1T (k∗T+1 − kT+1).

By (4) and (12), we have: ∀t = 1, 2, . . . , T

[λ1tfk(k
∗
t , L

∗
t )− λ1t−1](k∗t − kt) = −λ3t (k∗t − kt) = λ3tkt ≥ 0.

Thus,

∆T ≥ −λ1T (k∗T+1 − kT+1) = −λ1Tk∗T+1 + λ1TkT+1 ≥ −λ1Tk∗T+1.

Since λ1 ∈ `1+, sup
T
k∗T+1 < +∞, we have

lim
T→+∞

∆T ≥ lim
T→+∞

− λ1Tk∗T+1 = 0.

We have proved that the sequences (k∗,L∗) maximize the profit of the firm. We now show

that c∗ solves the consumer’s problem.

Let {c,L} satisfy
∞∑
t=0

λ1t ct ≤
∞∑
t=0

w∗tLt + π∗ + rk0. (18)

By the concavity of u, we have:

∆ =
∞∑
t=0

βtu(c∗t , l
∗
t )−

∞∑
t=0

βtu(ct, lt)

≥
∞∑
t=0

βtuc(c
∗
t , l
∗
t )(c

∗
t − ct) +

∞∑
t=0

βtul(c
∗
t , l
∗
t ) (l∗t − lt).

Combining (3), (6), (10), (11) yields

∆ ≥
∞∑
t=0

(λ1t − λ2t )(c∗t − ct) +
∞∑
t=0

(λ1tfL(k∗t , 1− l∗t ) + λ5t − λ4t )(l∗t − lt)

=
∞∑
t=0

λ1t (c
∗
t − ct) +

∞∑
t=0

λ2t ct −
∞∑
t=0

λ2t c
∗
t +

∞∑
t=0

(w∗t + λ5t )(l
∗
t − lt)

−
∞∑
t=0

λ4t l
∗
t +

∞∑
t=0

λ4t lt

11



≥
∞∑
t=0

λ1t (c
∗
t − ct) +

∞∑
t=0

(w∗t + λ5t )(l
∗
t − lt) =

∞∑
t=0

λ1t (c
∗
t − ct) +

∞∑
t=0

w∗t (l
∗
t − lt) +

∞∑
t=0

λ5t (1− lt)

≥
∞∑
t=0

λ1t (c
∗
t − ct) +

∞∑
t=0

w∗t (Lt − L∗t ).

Since

π∗ =
∞∑
t=0

λ1t c
∗
t −

∞∑
t=0

w∗tL
∗
t − rk0,

it follows from (18) that

∆ ≥
∞∑
t=0

p∗t c
∗
t −

∞∑
t=0

w∗tL
∗
t − rk0 −

(
∞∑
t=0

p∗t ct −
∞∑
t=0

w∗tLt − rk0

)
≥ π∗ − π∗ = 0

Consequently, ∆ ≥ 0 that means c∗ solves the consumer’s problem.

Finally, the market clears at every period, since ∀t, c∗t + k∗t+1 = f(k∗t , L
∗
t ) and 1 − l∗t =

L∗t .

4 Examples

We give three parametric example illustrating generality of our result. In these examples

there are corner solutions that the literature makes assumptions to rule out. In each of the

examples the competitive equilibrium is calculated. They illustrate that the interiority of

an allocation is not necessary for existence of a competitive equilibrium.

In the first example, there is a competitive equilibrium with zero labor supply, the good

being produced through capital alone. As a consumer may choose to enjoy all available

time as leisure, imposing an Inada condition on productivity of labor is not well justified.

As we show in this case we still have existence of competitive equilibria.

In the second example, we show that a competitive equilibrium will exist even if kt =

0, ∀t ≥ 1. Thus, showing that the capital stock is positive is not necessary for existence.

In this example, the good is produced through labor alone, and consumption of both the

good and leisure is positive.

The third example, shows that it can be the case that kt = ct = Lt = 0, ∀t ≥ 1, that is the

consumer just consumes leisure. In this case, the price system as in Le Van and Saglam

12



(2004) and Le Van and Vailakis (2004) is not defined but we can still show existence of a

competitive equilibrium. The conditions of Aliprantis, et al. (1997) also do not apply.

4.1 Example 1: Competitive equilibrium with L∗t = 0, l∗t = 1

Consider an economy with a good that can either be consumed or invested as capital,

one firm and one consumer. The consumer has preferences defined over processes of

consumption and leisure described by the utility function

∞∑
t=0

βtu(ct, lt) =
∞∑
t=0

βt(ct +mlt),

The firm produces capital good by using capital kt and labor Lt = 1− lt. The production

function f(kt, Lt) = (kαt + Lt)
1/θ, 0 < α < θ, 0 < β < 1 < θ, f is concave and increasing.

Assume that m =
1

θ

(
βα

θ

)α(1− θ)
θ − α . As we see below, we need impose a condition on k0

which is kα0 + 1− (θm)
θ

1−θ ∈ [0, 1]10 to guarantee existence of solutions.

The planning problem is

max
∞∑
t=0

βt(ct +mlt)

s.t. ct + kt+1 ≤ (kαt + Lt)
1/θ, ∀t ≥ 0

Lt + lt = 1, ∀t ≥ 0

ct ≥ 0, kt ≥ 0, lt ≥ 0, 1− lt ≥ 0, ∀t ≥ 0

k0 ≥ 0 is given.

Inada conditions are not satisfied for both the utility and production functions.11 The

utility function is also not strictly concave. We will check both necessary and sufficient

conditions.

Necessary condition:

10Let us check, for example, α = 1, β = 1
2 , θ = 2 then m = 2 and kα0 + 1 − (θm)

θ
1−θ = k0 + 3

4 ∈ [0, 1]

for any 0 ≤ k0 ≤ 1
4 .

11Linearity of the utility function in consumption is not important for the two examples. This, however,

simplifies the calculations.
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Let λt = (λit)
5
i=1, λt 6= 0 denote the Lagrange multipliers. The Lagrangean is

H =
∞∑
t=0

βtu(ct, lt)−
∞∑
t=0

λ1t (ct + kt+1 − f(kt, 1− lt))

+
∞∑
t=0

λ2t ct

∞

+
∑
t=0

λ3tkt

∞

+
∑
t=0

λ4t lt +
∞∑
t=0

λ5t (1− lt)

It follows from Kuhn-Tucker necessary conditions that, ∀t ≥ 0

0 = βt − λ1t + λ2t

0 = βtm− 1

θ
λ1t (k

α
t + 1− lt)

1−θ
θ + λ4t − λ5t (19)

0 =
α

θ
λ1t+1k

α−1
t+1 (kαt+1 + 1− lt+1)

1−θ
θ + λ3t+1 − λ1t (20)

0 = λ1t (ct + kt+1 − (kαt + Lt)
1/θ)

λ2t ct = 0, λ3tkt = 0, λ4t lt = 0, λ5t (1− lt) = 0.

It is easy to check that, the above system of equation has a solution :

λ∗1t = βt, λ∗2t = λ∗3t = λ∗4t = λ∗5t = 0,

k∗0 = k0, k
∗
t = (

βα

θ
)

θ
θ−α := ks ∈ (0, 1)∀t ≥ 1,

c∗t = (ks)
α/θ − ks > 0,

l∗t = 1,

L∗t = 0.

At t = 0, we have

λ∗10 = 1, λ∗20 = λ∗30 = λ∗40 = λ∗50 = 0,

k∗0 = k0,

l∗0 = kα0 + 1− (θm)
θ

1−θ ∈ [0, 1]

L∗0 = 1− l∗0,
c∗0 = (kα0 + L∗0)

1/θ − ks > 0,

Sufficient condition:

The Euler equations (i.e, equations (19) and (20 )) imply

∂f(k∗t+1, L
∗
t+1)

∂kt
=

1

β
,
∂f(k∗t+1, L

∗
t+1)

∂Lt
= m.

14



Because f(kt, Lt) is concave, we have

f(k∗t , L
∗
t )− f(kt, Lt) ≥

∂f(k∗t+1, L
∗
t+1)

∂kt
(k∗t − kt) +

∂f(k∗t+1, L
∗
t+1)

∂Lt
(L∗t − Lt)

=
1

β
(k∗t − kt) +m(L∗t − Lt) =

1

β
(k∗t − kt)−m(1− lt).

Let us consider

∆T =
T∑
t=0

βt(c∗t +ml∗t )−
T∑
t=0

βt(ct +mlt)

=
T∑
t=0

βt[(c∗t − ct) +m(1− lt)]

≥
T∑
t=0

βt[f(k∗t , L
∗
t )− f(kt, Lt)− (k∗t+1 − kt+1) +m(1− lt)]

≥
T∑
t=0

βt[
∂f(k∗t+1, L

∗
t+1)

∂kt
(k∗t − kt) +

∂f(k∗t+1, L
∗
t+1)

∂Lt
(L∗t − Lt)− (k∗t+1 − kt+1) +m(1− lt)]

=
T∑
t=0

βt[
1

β
(k∗t − kt)− (k∗t+1 − kt+1)]

=
1

β
(k∗0 − k0) +

T∑
t=1

βt−1(k∗t − kt)−
T∑
t=0

βt[k∗t+1 − kt+1]

= −βT (k∗T+1 − kT+1) ≥ −βTk∗T+1 = −ksβT .

Therefore limT→∞∆T ≥ 0 and

∞∑
t=0

βt(c∗t +ml∗t ) ≥
∞∑
t=0

βt(ct +mlt).

As we show in section 3, if we define the sequence price p∗t = λ∗1t = βt for the consumption

good and w∗t ∈ λ∗1t ∂2f(k∗t , L
∗
t ) = λ∗1t fL(ks, 0) = βt 1

θ
k

α(1−θ)
θ

s then p∗t ∈ `1+, w∗t ∈ `1+ and

{c∗,k∗,L∗,p∗,w∗, r} is a competitive equilibrium.

4.2 Example 2: Competitive equilibrium with k∗t = 0, t ≥ 1

Now consider the production function f(kt, Lt) = (kt + Lαt )1/θ where 0 < α < θ, 0 < β <

1 < θ and the utility function

u(ct, lt) = ct +
1

θ

(
β

θ

) α−θ
α(θ−1)

lt
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We obtain the Kuhn-Tucker conditions, ∀t ≥ 0

0 = βt − λ1t + λ2t

0 =
1

θ
(
β

θ
)

α−θ
α(θ−1)βt − α

θ
λ1tLt

α−1(kt + Lαt )
1−θ
θ + λ4t − λ5t

0 =
1

θ
λ1t+1(kt+1 + Lαt+1)

1−θ
θ + λ3t+1 − λ1t

0 = λ1t (ct + kt+1 − (kt + Lαt )1/θ)

λ2t ct = 0, λ3tkt = 0, λ4t lt = 0, λ5t (1− lt) = 0.

The system of equation has solution ∀t ≥ 1,

λ∗1t = βt, λ∗2t = λ∗3t = λ∗4t = λ∗5t = 0

k∗t = 0

L∗t = (
β

θ
)

θ
α(θ−1) := Ls ∈ (0, 1)

c∗t = (Ls)
α/θ > 0

l∗t = 1− Ls.

At t = 0, solutions are determined by

λ∗10 = 1, λ∗20 = λ∗30 = λ∗40 = λ∗50 = 0

k∗0 = k0, c
∗
0 = (k0 + L∗α0 )1/θ,

l∗0 = 1− L∗0,

where L0 is determined by L∗0
α−1(k0 + L∗α0 )

1−θ
θ = 1

α
(β
θ
)

α−θ
α(θ−1) . 12

The argument for showing the sufficient condition is similar to Example 1.

4.3 Example 3: Competitive equilibrium with L∗t = c∗t = k∗t =

0, l∗t = 1, t ≥ 1

In this example, we relax assumption F2 and allow limk→∞ Fk(k, 1) > 1. Therefore, the

capital can be unbounded and hence, the free disposal feasible set as in Aliprantis, et

al. (1997) is not compact. We show that the Lagrange multipliers form an equilibrium

sequence of price and wages. Because our theoretical results have not addressed this case

in a general setting, we will prove directly that the sequence is an equilibrium in this

12We can choose appropriate parameters so that this equation has a solution. For example, let α =

1, β = 1
2 , θ = 2 then the equation has a solution L∗0 = 1

16 − k0 ∈ [0, 1] for any k0 ∈ [0, 1
16 ].
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simplified example. It highlights the methods of using Lagrange multipliers in this paper

can be employed for an extension of literature can potentially be in more general settings

than Aliprantis, et al. (1997).

Consider an economy with a good that can either be consumed or invested as capital,

one firm and one consumer. The consumer has preferences defined over processes of

consumption and leisure described by the utility function

∞∑
t=0

βtu(ct, lt) =
∞∑
t=0

βt(ct +mlt),

The firm produces capital good by using capital kt and labor Lt = 1− lt. The production

function f(kt, Lt) = 1
β
kt +mLt, 0 < β < 1, 0 < m. The planning problem is

max
∞∑
t=0

βt(ct +mlt)

s.t. ct + kt+1 ≤
1

β
kt +mLt, ∀t ≥ 0

Lt + lt = 1, ∀t ≥ 0

ct ≥ 0, kt ≥ 0, lt ≥ 0, 1− lt ≥ 0, ∀t ≥ 0

k0 ≥ 0 is given.

The utility and production functions are both linear and the Inada conditions do not hold.

Let λt = (λit)
5
i=1, λt 6= 0 denote the Lagrange multipliers. The Lagrangean is

H =
∞∑
t=0

βt(ct +mlt)−
∞∑
t=0

λ1t [ct + kt+1 −
1

β
kt −m(1− lt)]

+
∞∑
t=0

λ2t ct

∞

+
∑
t=0

λ3tkt

∞

+
∑
t=0

λ4t lt +
∞∑
t=0

λ5t (1− lt).

It follows from Kuhn-Tucker necessary conditions that, ∀t ≥ 0

0 = βt − λ1t + λ2t

0 = βtm− λ1tm+ λ4t − λ5t
0 =

1

β
λ1t+1 − λ1t + λ3t+1

0 = λ1t [ct + kt+1 −
1

β
kt −m(1− lt)]

λ2t ct = 0, λ3tkt = 0, λ4t lt = 0, λ5t (1− lt) = 0.

17



It is easy to check that, the above system of equation has a solution 13

λ∗1t = βt,∀t ≥ 0

λ∗2t = λ∗3t = λ∗4t = λ∗5t = 0,∀t ≥ 0

k∗0 = k0, c
∗
0 =

k0
β

c∗t = 0,∀t ≥ 1

k∗t = 0,∀t ≥ 1

L∗t = 0,∀t ≥ 0

l∗t = 1,∀t ≥ 0.

Let us define the sequence price p∗t = λ∗1t = βt for the consumption good and wage

w∗t = mβt . We will show that {c∗,k∗,L∗,p∗,w∗} is a competitive equilibrium. From

the solutions obtained above, π∗ = ( 1
β
− r)k0 so the budget constraint is satisfied as it

becomes k0
β
≤ ( 1

β
− r)k0 + rk0 = k0

β
.We show that {c∗, l∗} is solution of the consumer’s

problem.

Let us consider

∆T =
T∑
t=0

βt(c∗t +ml∗t )−
T∑
t=0

βt(ct +mlt)

=
T∑
t=0

βt[
1

β
(k∗t − kt)− (k∗t+1 − kt+1) +m(1− lt)]

≥
T∑
t=0

[βt−1(k∗t − kt)− βt(k∗t+1 − kt+1)]

= −βT (k∗T+1 − kT+1) = βTkT+1 ≥ 0.

13From the first order conditions, we may have another solution

λ1t = βt,

λ2t = λ3t = λ4t = λ5t = 0,

kt =
1

β
kt−1 =

(
1

β

)t
k0.

ct = 0,∀t ≥ 0

Lt = 0,∀t ≥ 0

lt = 1,∀t ≥ 0.

Clearly it is not a solution to the planning problem as (c∗t , k
∗
t , L

∗
t , l
∗
t ) gives higher utility. In this solution,

limt→∞ kt =∞ which violates boundedness of the capital stock (Assumption F2).
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As ∆T ≥ 0 for any T ≥ 0,
∑∞

t=0 β
t(c∗t+ml

∗
t ) ≥

∑∞
t=0 β

t(ct+mlt). This implies (c∗t , k
∗
t , L

∗
t , l
∗
t )

solves the max planning problem.

Similarly, it is easy to check that

∆T =
T∑
t=0

p∗t [f(k∗t , L
∗
t )− k∗t+1]−

T∑
t=0

w∗tL
∗
t − rk0

−[
T∑
t=0

p∗t [f(kt, Lt)− kt+1]−
infty∑
t=0

w∗tLt − rk0]

≥ βTkT+1 ≥ 0.

⇒ π∗ ≥
∞∑
t=0

p∗tf(kt, Lt)− kt+1]−
T∑
t=0

w∗tLt − rk0.

Therefore {k∗,L∗} is a solution to the firm’s problem. The markets clearing conditions

are also satisfied.

5 Discussion and Conclusion

This paper studies existence of equilibrium in the optimal growth model with elastic

labor supply. This model is the workhorse of dynamic general equilibrium theory for

both endogenous and real business cycles. The results on existence of equilibrium have

assumed strong conditions which are violated in some specifications of applied models.

This paper uses a separation argument to obtain Lagrange multipliers which lie in `1+.

As the separation argument relies on convexity, strict convexity can be relaxed; this

also means that assumptions on cross partials of utility functions are not needed (as in

Aiyagari, et al. (1992), Coleman (1997), Datta, et al. (2002), Greenwood and Huffman

(1995) and Le Van, et al. (2007)); and homogeneity of production is not needed. These

above papers assume normality of leisure (rule out backward bending labor supply curves)

to show that the capital path is monotonic but this is inessential to show existence of a

competitive equilibrium. The representation theorem involves assumptions on asymptotic

properties of the constraint set (which are weaker than Mackey continuity (see Bewley

(1972) and Dechert (1982)). The assumptions ensure that the either the optimal sequence

{ct, lt}∞t=0 is either always strictly interior or always equal to zero. Thus, one does not

have to impose strong conditions, either Inada conditions (see for example, Goenka, et

al. 2011), or limε→0
u(ε, ε)

ε
→ +∞ as in Le Van and Vailakis (2004) to ensure that the
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sequence of labor is strictly interior. This latter condition is not satisfied, for example,

in homogeneous period one utility functions. Assumptions that require compactness of

the set of feasible allocations, such as f ′(0) = ∞ as in Aliprantis, et al. (1997) are

not needed. The existence result also does not employ any differentiability assumptions.

Thus, it covers both Leontief utility and production functions Y = min(K/v, L/u) and

Y/L = (1/v)K/L. This implies that the intensive production function, y = f(k) where

y = Y/L and k = K/L is effectively a straight line with slope 1/v up to the capital-

labor ratio k∗ = K∗/L∗ and is horizontal thereafter. Another well known model where

differentiability is violated is the Intensive Activity Analysis Production Function but

existence follows from our results.

6 Appendix

Proof of Proposition 1

Denote x = {c,k, l} and F(x) = −
∞∑
t=0

βtu(ct, lt), Φ1
t (x) = ct+kt+1−f(kt, 1− lt), Φ2

t (x) =

−ct, Φ3
t (x) = −kt, Φ4

t (x) = −lt,Φ5
t (x) = lt − 1, ∀t,Φt = (Φ1

t ,Φ
2
t ,Φ

3
t+1,Φ

4
t ,Φ

5
t ), ∀t. The

planning problem can be written as:

minF(x) s.t. Φ(x) ≤ 0,x ∈ `∞+ × `∞+ × `∞+ (P )

where F : `∞+ × `∞+ × `∞+ → R ∪ {+∞}
Φ = (Φt)t=0,...,∞ : `∞+ × `∞+ × `∞+ × `∞+ × `∞+ → `∞+ × `∞+ × `∞+ × `∞+ × `∞+

Let C = dom(F) = {x ∈ `∞+ × `∞+ × `∞+ |F(x) < +∞}
Γ = dom(Φ) = {x ∈ `∞+ × `∞+ × `∞+ |Φt(x) < +∞, ∀t}.

The following Lemma is an extension of Le Van and Saglam (2004) to the case of the

optimal growth model with endogenous labor-leisure choice.

Lemma 1. Let x,y ∈ `∞+ × `∞+ × `∞+ , T ∈ N. Define

xTt (x,y) =

{
xt if t ≤ T

yt if t > T
.

Suppose that the two following assumptions are satisfied:
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T1: If x ∈ C, y ∈ `∞+ ×`∞+ ×`∞+ satisfy ∀T ≥ T0, xT (x,y) ∈ C, then F(xT (x,y))→ F(x)

when T →∞.

T2: If x ∈ Γ, y ∈ Γ and xT (x,y) ∈ Γ, ∀T ≥ T0, then

a) Φt(x
T (x,y))→ Φt(x) as T →∞

b) ∃M s.t. ∀T ≥ T0, ‖Φt(x
T (x,y))‖ ≤M

c) ∀N ≥ T0, lim
t→∞

[Φt(x
T (x,y))− Φt(y)] = 0.

Let x∗ be a solution to (P ) and x0 ∈ C satisfies the Slater condition:

sup
t

Φt(x
0) < 0.

Suppose xT (x∗,x0) ∈ C ∩ Γ. Then, there exists Λ ∈ `1+\{0} such that

F(x) + ΛΦ(x) ≥ F(x∗) + ΛΦ(x∗), ∀x ∈ (C ∩ Γ)

and ΛΦ(x∗) = 0.

Proof Lemma: It is easy to see that `∞+ × `∞+ × `∞+ is isomorphic with `∞+ , since, for

example, there exists an isomorphism

Π : `∞+ → `∞+ × `∞+ × `∞+ ,

Π(x) = ((x0, x3, x6, . . .)(x1, x4, x7, . . .), (x2, x5, x8, . . .))

and

Π−1(u,v, s) = (u0, v0, s0, u1, v1, s1, u2, v2, s2, . . .).

Thus, there exists an isomorphism Π
′

: (`∞+ × `∞+ × `∞+ )
′ → (`∞+ )

′
. It follows from

Theorem 1 in Le Van and Saglam (2004) that there exists Λ ∈ (`∞+ × `∞+ × `∞+ )
′
. Let

Λ = Π
′
(Λ) ∈ (`∞+ )

′
. Then, the results are derived by the analogous arguments where a

standard separation theorem used14 as in the Theorem 2 in Le Van and Saglam (2004).

Note that T1 holds when F is continuous in the product topology. T2c is satisfied if

there is asymptotically insensitivity, i.e. if x is changed only on a finitely many values

the constraint value for large t does not change that much (Dechert 1982). T2c is the

asymptotically non-anticipatory assumption and requires Φi, (i = 1, .., 5), to be weak-*

continuous (Dechert 1982). T2b holds when dom(Φi) = `∞ and Φi is continuous (see

14As the Remark 6.1.1 in Le Van and Dana (2003), assumption fk(0, 1) > 1 is equivalent to the

Adequacy Assumption in Bewley (1972) and this assumption is crucial to have equilibrium prices in `1+
since it implies that the production set has an interior point. Subsequently, it allows using a separation

theorem in the infinite dimensional space to obtain Lagrange multipliers.
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Le Van and Saglam (2004)). As each Φi is continuous, Φ is continuous in the product

topology.15

Now, we are in a position to prove Proposition 1. We first check that the Slater condition

holds. Indeed, since f ′k(0, 1) > 1, then for all k0 > 0, there exists some 0 < k̂ < k0 such

that: 0 < k̂ < f(k̂, 1) and 0 < k̂ < f(k0, 1). Thus, there exists two small positive numbers

ε, ε1 such that:

0 < k̂ + ε < f(k̂, 1− ε1) and 0 < k̂ + ε < f(k0, 1− ε1).

Denote x0 = (c0,k0, l0) such that c0 = (ε, ε, ...), k0 = (k0, k̂, k̂, ...), l0 = (ε1, ε1, ...). We

have

Φ1
0(x

0) = c0 + k1 − f(k0, 1− l0)
= ε+ k̂ − f(k0, 1− ε1) < 0

Φ1
1(x

0) = c1 + k2 − f(k1, 1− l1)
= ε+ k̂ − f(k̂, 1− ε1) < 0

Φ1
t (x

0) = ε+ k̂ − f(k̂, 1− ε1) < 0, ∀t ≥ 2

Φ2
t (x

0) = −ε < 0, ∀t ≥ 0, Φ3
0(x

0) = −k0 < 0

Φ3
t (x

0) = −k̂ < 0, ∀t ≥ 1, Φ4
t (x

0) = −ε1 < 0, ∀t ≥ 0

Φ5
t (x

0) = ε1 − 1 < 0, ∀t ≥ 0.

Therefore, the Slater condition is satisfied. Now, it is obvious that, ∀T, xT (x∗,x0) belongs

to `∞+ ×`∞+ ×`∞+ . As in Le Van and Saglam (2004), Assumption T2 of Lemma1 is satisfied.

We now check Assumption T1. For any x̃ ∈ C, ˜̃x ∈ `∞+ × `∞+ × `∞+ such that for any T ,

xT (x̃, ˜̃x) ∈ C we have

F(xT (x̃, ˜̃x)) = −
T∑
t=0

βtu(c̃t, l̃t)−
∞∑

t=T+1

βtu(˜̃ct, ˜̃lt).
As ˜̃x ∈ `∞+ × `∞+ × `∞+ , sup

t
|˜̃ct| < +∞ , there exists m > 0,∀t, |˜̃ct| ≤ m. Since β ∈ (0, 1) we

have
∞∑

t=T+1

βtu(m, 1) = u(m, 1)
∞∑

t=T+1

βt → 0 as T →∞.

Hence, F(xT (x̃, ˜̃x))→ F(x̃) when T →∞. Taking account of the Lemma, we get (1)-(6).

Finally, we obtain (7)-(9) from the Kuhn-Tucker first-order conditions.

15Indeed, if V = Π5
i=1V

i is basic open in `∞+ × `∞+ × `∞+ × `∞+ × `∞+ then Φ−1(V ) = ∩5i=1(Φi)−1(V i) is

open.
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