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Rémy Dendievel
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Abstract

The fatigue properties of lattice structures produced by S-EBM are investigated. Fatigue failure is shown

to be gradual, fostering the concept of grace period, defined as the number of cycles lived by the lattice

structure after the failure of the first strut. A numerical framework based on the cascading failure of struts

is proposed, relying on a damage accumulation law. Each strut is assigned a radius as well as an S-N curve,

which both depend on the manufacturing conditions. Through statistical analyses, we demonstrate that the

model can correctly predict the grace period and the fatigue life of experimental specimens.

Keywords: Lattice structures, S-N curves, cumulative damage, simulation (numerical, experimental),

additive manufacturing

1. Introduction

Architectured materials such as lattice structures have received a great interest over the last few years,

in particular with the emergence of additive manufacturing (AM) [1, 2, 3]. These materials exhibit inter-

esting properties, e.g. large strength-to-weight ratio that can be a key driver for biomedical or aerospace

applications. Properties of lattice structures can be tailored by changing the topology or varying the rela-

tive density. However, important challenges are still to be overcome. For instance, materials produced by

powder-bed fusion technologies such as laser beam melting (LBM) and electron beam melting (EBM) still

suffer from the presence of defects inherited from the process, in particular from the rough surface. It is

particularly true in the case of fatigue, where this poor surface quality leads to a significant knock-down of

the fatigue performances of as-built parts in comparison with machined ones (see e.g. [4, 5, 6, 7, 8]). However,

most studies on materials produced by additive manufacturing have investigated the fatigue performances

of machined samples (e.g., [9, 10]). Their results cannot be directly used for lattice structures as the latter

cannot be machined.

Studies on lattice structures focus primarily on which parameters (e.g., relative density, the topology of

the unit cell, strut diameter ...) must be tuned to give the best or most suited effective properties. In the
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case of static (e.g., [11, 12, 13]) or fatigue behavior (e.g., [14, 15, 16]) of metal parts made by LBM or EBM,

studies dedicated to lattice structures investigate the effects of topologies or relative density [17, 18]. Authors

usually evaluate experimentally the effect of lattice parameters on mechanical properties (stiffness, strength,

energy absorption ...) and select between stretching and bending-dominated structures for the desired set

of requirements. As far as fatigue is concerned, most studies investigate the compression - compression

mode. Performing tensile fatigue tests is more difficult because it requires some geometrical adjustments

to clamp specimens, to limit stress concentration near junctions and also to allow failure localization in a

gauge length. Only a few topologies have been manufactured so far [19, 20, 21], mainly by LBM. Recently,

Lietaert et al. [22] published the first comprehensive study on the fatigue behavior of a Ti-6Al-4V lattice

structures made by LBM with different stress ratios : R = −1 (tension-compression), R = 10 (compression-

compression) and R = 0.1 (tension-tension). Most of the time, authors study the final failure of lattice

structures, without drawing a particular interest to the cascading failure of single struts. The objective is to

determine the effective fatigue properties (number of cycles to final failure) as a function of relative density,

topology, and constitutive materials. Such a strategy often requires trial-and-error. Thus, there is a need

to be able to design an optimized lattice structure for a given application, by limiting these time-consuming

trial-and-errors. Numerical methods are thus required to predict the fatigue life of these structures.

From the modeling point of view, authors generally perform a straightforward discretization of lattice

structures into beam elements. Two strategies arise from the literature. Some authors [23, 22] use the beam

theory to calculate local stress in struts according to the applied macroscopic stress on the lattice structure.

Then, they derive an S-N curve for the single struts of which lattices are made of. Conversely, another

strategy consists of using the S-N curve of single struts to predict the fatigue life as well as the chronology

of local failure events occurring in lattice structures. This implies to take into account the progressive stress

redistribution occurring in unbroken struts. This also requires to quantify the local damage in each strut

during the whole cyclic process. Taking into account this damage accumulation is challenging. A few authors

have attempted to do so (see e.g., [24, 25, 26, 27]). They relied on a damage accumulation law based on

the Miner’s rule [28], consisting in adding up the damage of struts at the different stress levels they were

submitted to. A unique S-N curve of the constitutive material was considered for the fatigue behavior at

the scale of individual struts. This means that every strut had exactly the same fatigue properties, although

experimental fatigue results on single struts are usually scattered [4, 29, 30, 10, 7].

The present work focuses on the sensitivity of fatigue life predictions for lattice structures to two inde-

pendent sources of variability: (i) radius size distribution and (ii) scattered S-N curves. To that end, we will

use two kinds of experimental results obtained on EBM. Previous results obtained at the scale of single struts

[7, 31] will be introduced as input data of the model. New experimental results at the scale of the lattice

structure will be used for validating the predictions at the macro-scale. The different sources of variability will

be explicitly taken into account and their effects on fatigue life and cascading failure event will be discussed.

In section 2, our cascading failure-based model used for fatigue life predictions is described in details.

Section 3 proposes specific case studies for which experimental results and numerical predictions will be
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compared. A first application of the model will concern precisely the as-built experimental case. Extensions

will be presented, taking into account different kinds of variability (geometry and/or single strut S-N curve).

In section 4, limits, and assumptions of the model are discussed.

2. Cascading failure-based model

In this section, we provide a detailed description of the developed cascading failure-based model which

aims at predicting the fatigue life of lattice structures, based on the fatigue performances determined exper-

imentally from the constitutive single struts.

2.1. Inputs

To demonstrate the versatility of our approach, we give hereafter an overview of the various inputs that

are required by the model.

• INPUT 1: lattice unit cell. A lattice structure is defined as an assembly of nodes connected by struts.

Two examples of lattice unit cells are given in Fig. 1a but any lattice structure can be used as input.

Several types of struts (here types A, B, and C) can be defined.

• INPUT 2: struts radius size distribution for each type of strut (here A, B, and C). As illustrated in

Fig. 1a-b, it means that a given strut can have a given radius. This is justified by a previous study

[7], that showed that struts having different orientations with respect to the building direction exhibit

different geometrical characteristics: radius, roughness, morphology.

• INPUT 3: a set of S-N curves allowing to assign a given S-N curve to a given strut (see Fig. 1c). This

offers the opportunity to have struts with varying fatigue properties. This is motivated by the fact

that experimental S-N curves are often scattered, in particular when dealing with AM parts with poor

surface quality. In practice, it consists of a distribution of N-values at fixed stress for each type of

struts (here A, B, and C). The S-N curves are then provided by a classical Basquin law (detailed in

section 3.3.2).

2.2. Algorithm

In the following, the stress will always refer to the maximum stress of a cycle denoted σmax, which is the

one used in the S-N curve of single struts. Local stresses in a strut are calculated by classical finite element

calculations using Timoshenko beam elements with isotropic elasticity.

The model simulates the successive fatigue failure of individual struts constituting the lattice structure.

It strongly relies on the concept of damage. As illustrated in Fig. 2a, the damage D occurring at given stress

is defined as the ratio of the number of cycles undergone N over the number of cycles to failure Nmax:

D =
N

Nmax
= 1− nr

Nmax
, (1)
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Figure 1: Overview of the different inputs of the model. (a) Examples of lattice unit cells cubic and octet-truss with varying

strut radii. The proposed algorithm is independent of the chosen unit cell. (b) Size distributions for radius R for types A, B,

and C. This means every strut can have a given radius. (c) S-N curves for three different types of struts A, B, and C from

(a). Dots stand for the mid-range fatigue curve (failure probability of 50%). A different S-N curve, i.e. fatigue behavior can be

assigned to every strut within the lattice leading to a distribution of N for every type of strut at a given stress.
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Figure 2: Schematic of S-N curves. (a) Iso-damage curve (dashed line) using the definition of the damage (Eq. 1) as the ratio

of number of cycles N undergone at stress σ over the maximum number of cycles possible Nmax (i.e. the fatigue life, red line).

nr is defined as the remaining life. (b) Concept of damage accumulation illustrated for two stress levels σ(1) and σ(2) (Eq. 2).

N(1 → 2) is the equivalent number of cycles at stress σ(2) which corresponds to the damage D(1) =
N(1)

Nmax(1)
experienced at

stress σ(1).

where nr is the remaining life of the strut at this given stress. Thus the S-N curve can be used to define

for any stress value, an equivalent number of cycles sustained by the strut corresponding to this degree of

damage, see Fig. 2a and the representation of the so-called ”iso-damage” curve. If a strut experiences various

stress levels throughout its lifetime, the Miner’s rule [28] is applied and damage, calculated at each of these

stress levels, can be summed. Eq. 2 is a generalization of Eq. 1 for a strut submitted to i levels of stress :

D =

i∑
k=1

N(k)

Nmax(k)
. (2)

Fig. 2b is a schematic that aims at clarifying this rule in the case of a strut experiencing first a stress

level σ(1) during N(1) cycles, followed by a stress level σ(2) during N(2) cycles. Conditions to break a strut

under cyclic loading are met once D = 1.

In the present case, an iterative procedure is performed. An iteration (a step) consists in :

(i) deriving the stress distribution in every strut, using a finite element calculation based on Timoshenko

beams;

(ii) identifying the strut to break (i.e. the one with the smallest remaining life).

Note that, in such a frame, constant stress is used during the FE calculations. The value of this stress is the

maximum value of the cyclic loading. We do not take into account the effect of an initiating and propagating

crack at the level of a single strut. As a result, the damaging of struts is a discontinuous process that is only

updated once a strut has failed, i.e. has reached its fatigue life for a given maximum stress. The developed

algorithm relies on the same idea proposed by Demiray et al. and Zargarian et al. in [24, 26, 27], whereas
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Hedayati et al. [25] suggested a more continuous damaging process by running simulations after an increment

of cycles (∆N) that evolves depending on failure events.

Let us introduce the following notations with index i referring to step i and index j referring to strut

j. σj(i) is the stress in strut j at step i. Nj(i) is the number of cycles undergone by strut j at step i,

and Nmax
j (i) its fatigue life, i.e. the maximum number of cycles that strut j could sustain at stress σj(i).

According to Eq. 1, the damage undergone in strut j during step i can be calculated as follows :

Dj(i) =
Nj(i)

Nmax
j (i)

. (3)

Thus at step i any unbroken strut j meets the following conditions:

Dj =

i∑
k=1

Dj(k) ≤ 1, (4)

where Dj is the cumulative damage in strut j. Using these definitions, the algorithm can be summarized as

follows for a step i.

1. Run finite element simulation for step i that provides the stress distribution in struts within the lattice

structure.

2. The number of cycles undergone by every strut is calculated using the Miner’s rule based on the

accumulated damage (eq. 3 and see Fig. 2b extrapolated to steps i− 1 and i):

Dj(i− 1) =
Nj(i− 1)

Nmax
j (i− 1)

=
Nj(i− 1→ i)

Nmax
j (i)

(5)

For strut j, the equivalent fatigue life Nj(i− 1→ i) is thus:

Nj(i− 1→ i) = Dj(i− 1)Nmax
j (i). (6)

3. The remaining life denoted nrj(i) is therefore calculated for each strut as follows:

nrj(i) = Nmax
j (i)

(
1−

i−1∑
k=1

Dj(k)

)
(7)

Note that for step i = 1, damage is equal to zero for all struts, thus nrj(1) = Nmax
j (1) (see Fig. 2b).

4. The duration of step i is defined as the number of cycles between the failure of the (i − 1)-th strut

and the i-th strut. It is the strut with the smallest remaining life nrj(i) at step i which is removed for

the subsequent computations. Therefore, the number of cycles n(i) sustained by every strut within the

lattice structure during step i has no reason to be constant. This number is equal to:

n(i) = min
j
{nrj(i)}. (8)

5. Damage of every strut is updated according to the additional number of cycles n(i) they have lived and

the total number of cycles undergone by the lattice structure can be written as follows :

N =

i∑
k=1

n(k). (9)
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6. The condition to stop the simulation can be arbitrarily chosen. It can be defined by an important

increase of strain, a given percentage of failed struts, or when the fatigue life is converging as in the

case of the present work, i.e. removing new struts barely changes the predicted fatigue life. If the

chosen condition is not fulfilled, then the iterative process is repeated. In case the condition is met,

then the iterative process is stopped and the predicted fatigue life is N .

2.3. Stress calculation

In the previous procedure, one has to define local stresses at the scale of the struts, as well as the

macroscopic stress at the scale of the lattice. A stretching-dominated lattice structure is used. Therefore,

in a first approximation, the local stress in each strut is the normal force divided by the cross-section of the

strut. In fact, for strut j at step i, the stress is computed as written in Eq. 10 :

σj(i) = λ
Fj(i)

Sj
(10)

with Fj(i) the normal force, Sj the cross-section of strut j and λ a corrective coefficient. This coefficient

aims at bypassing a full 3D-FEM calculation. The introduction of such a corrective coefficient allows different

effects to be taken into account: the section variability inherited from the AM process AM process (see for

example [32, 33]), the presence of rigid nodes instead of pin joints, and the presence of bending moments

near nodes. It was decided to give λ a unique value for a given condition over the calculations (as-built

or chemically etched). This unique value was identified so that the numerical predicted fatigue life of the

first strut to fail into the lattice structure, matches the experimental fatigue life given by the Basquin law

for single struts (see Eq. 12). In fact, the previously mentioned parameters (i.e., section variability, stress

concentration factors, bending moments) are different whether as-built or etched struts are considered. In

particular, etching significantly modifies the local surface aspect near nodes, thus the intensity of stress

raisers. As a result, two different values of the corrective coefficient λ were used: a first one set to 1.47 for

as-built specimens, and a second one set to 1.62 for etched specimens.

The macroscopic stress σ applied on the lattice structure is defined by the ratio of the applied macroscopic

force Fmacro over the section of the numerical lattice structure Slattice : σ = Fmacro

Slattice
as illustrated in Fig. 3b.

2.4. Outputs

Numerous outputs can be extracted from this model such as the macroscopic stress tensor or the stress

distribution within the lattice structure. Since this work is focused on the fatigue life prediction, we can also

introduce the ”grace period” (GP) as the number of cycles lived by the lattice structure after the failure of

the first strut. The ”grace ratio” (GR) is defined as the ratio of this grace period over the fatigue life of the

whole structure (expressed as a percentage). Combining equations 8 and 9, the grace ratio (GR) is defined

by :

GR(%) =
N − n(1)

N
=
GP

N
(11)

7



3. Case study

3.1. Specimen design

Experimental studies on the tensile fatigue life of lattice metallic parts are relatively scarce. Early attempts

showed the importance of having a gradient of porosity from dense parts (heads of specimens) to the middle

of the structure [34] or to add fillets [35, 36], in order to avoid failure near dense parts [37] or at nodes [38].

One of the most cutting-edge designs for tensile lattice specimen was proposed by Lietaert et al. [22]. After

several iterations, they achieved small scaffolds made by LBM exhibiting a linear increase of porosity from

the end of the structure (0 % porosity, fully dense) to the middle (80 % porosity) to ensure that fatigue

failure occurred in the region of interest.

In this work, the lattice structure of interest, shown in Fig. 3a, consists of a column of four octet-truss

unit cells stacked on top of each other. The two unit cells in the middle can be considered as the gauge length

of the fatigue specimen (see Fig. 3b). The corresponding struts have a length of 10 mm and a diameter of

2 mm (Fig. 3a). Such a diameter corresponds to previous studies performed on single struts. It allows us

to rely on the S-N curve determined for example in [7]. The top and bottom unit cells are used to smooth

transitions with the specimen heads. Fillets were added to avoid failure at the interface between the heads

and the lattice. Conical struts in which diameter decreases from 3 to 2 mm were also located at the interface

between bulk parts and lattice structure giving a gradient of relative density to the structure. The purpose

was to localize the failure in the two central unit cells (gauge length) that are free of fillets. These choices

led to a lattice structure with a bounding box 17.3 mm wide and 65 mm high.

The chosen unit cell is the octet-truss because it is a stretching-dominated lattice structure. For that

reason, we can conveniently use tensile fatigue results of as-built single struts with a stress ratio of R = 0.1.

Lattice samples are manufactured vertically so that no struts are built vertically. This was motivated by our

previous work [7] where it was shown that vertically produced single struts exhibit the worst tensile fatigue

properties compared to tilted and horizontally produced single struts. Consequently, when the structure is

loaded under tension, all struts manufactured at 45° are submitted to tensile stress, while struts manufactured

at 0° (horizontally) are loaded in compression.

Using a column of octet-trusses has several benefits. As we aim at monitoring the failure of struts, it is

convenient to be able to visually detect which strut fails and when. Note that displacement data recorded

during tests confirmed their occurrence. In particular, this makes easier the experimental determination of

the grace period (GP). Moreover, it also enables us to fully characterize the structure after failure with a

relatively good spatial resolution, using X-ray tomography or by characterizing a given strut fracture surface.
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Figure 3: (a) Geometry and characteristic dimensions of the lattice specimens built by EBM and used in the present work. The

specimen consists of 4 stacked octet-truss unit cells with a gradient of radius to ensure failure localization in the central gauge

part. Note that there are no fillets in the gauge part. (b) Definition of the bounding box allowing to reveal the section used

to compute the macroscopic stress (σmacro = Fmacro/Slattice) applied to the lattice structure based on a 3D characterization

performed by X-ray microtomography.
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3.2. Materials and experimental procedures

3.2.1. EBM processing conditions

The designed lattice specimens were manufactured vertically, i.e. with their tensile axes aligned with

the building direction, using an A1 EBM machine from ARCAM. A Ti-6Al-4V ELI powder whose chemical

composition is given in Table 1 was used. Standard scanning strategies of ARCAM were used with a layer

thickness of 50 µm. In this study, it is important to point out that lattice structures are fabricated with the

same material on the same EBM machine and with the same scanning strategies than for single struts studied

in Persenot et al. [7]. Seven lattice specimens were studied in their as-built conditions. Four additional

specimens were characterized after chemical etching to evaluate the impact on the fatigue performances. To

comply with [32], these specimens were dipped in a solution consisting of 48 mL HF (48 %), 160 mL HNO3

and 1200 mL H2O at room temperature for 30 minutes under magnetic stirring.

3.2.2. Fatigue testing of lattice structures

Uniaxial fatigue tests were performed in tension-tension with a constant stress amplitude (∆σ), and a

stress ratio R = 0.1. Sinusoidal cyclic tests were applied at a frequency f = 5 Hz. They were performed at

room temperature using a servo-hydraulic INSTRON 8516 equipped with a 100 kN load cell. The maximum

applied stresses were smaller than half the yield stress of the lattice structure preliminary determined (σY0.2%
≈

52 MPa). The chosen applied stress uses the unit cell section, i.e. the square section Slattice bounded by the

octet-truss vertices (center of nodes), and not the manufactured section (see Fig. 3b).

3.2.3. X-ray tomography

X-ray tomography was performed on a few samples to have a closer look at strut failure localization and

to characterize in 3D the lattice structure. Helical scans were performed so as to characterize the lattice

specimens in their full height while still having a good resolution (voxel size lower than 20 µm). Acquisition

parameters were a 150 kV acceleration voltage with a target current of 66 µA. Beam hardening was significant,

but the use of a 0.5 mm Cu filter and a beam hardening correction enabled contrasted volume images that

could be thresholded easily using the Fiji software [39]. With this method, the relative density of the gauge of

the lattice specimens is on average 16.8 % in the as-built condition and 11.0 % once chemically etched. The

radius size of struts inside the lattice specimen can also be estimated using image analysis. Here the radius

size is determined as follows: we first calculated the mean radius along every single strut having the same

orientation, and then we worked out the mean and standard deviation of all these mean radii (as suggested

in [7]). This was performed for the 45° as-built struts and gives a radius size of 0.86 ± 0.02 mm, which is

close to the ones obtained in the study of the fatigue behavior of single struts (0.880± 0.015 mm [7]). This

Elements Al V C Fe O N H Ti

wt.% 6.47 3.93 0.01 0.22 0.09 0.01 0.001 Bal.

Table 1: Initial chemical composition of the Ti-6Al-4V ELI powder batch used in this work.
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justifies, in the numerical simulation, the use of results from Persenot et al. [7] for mean radii and standard

deviations for the different strut orientations.

3.3. Inputs of the model

As mentioned just above, the results of [7] for radius distributions and S-N curves can be directly used as

inputs for our model. The FEM software used to calculate the stress distribution inside the lattice structure

is Cast3M [40] with Timoshenko beam elements (TIMO) using linear elasticity assumptions. The mesh size

is 1 mm for struts of 11 mm. The bottom surface nodes of the lattice structures are rigidly connected to the

building and a positive force is applied on the top surface nodes.

3.3.1. Strut properties

Regarding the gauge part, a gaussian distribution is attributed to the beam sections to introduce the

experimental scatter between all strut sections produced by EBM as determined in [7]. The mean section of

struts also depends on the manufacturing orientations as shown by previous works [33, 7]. Struts produced

horizontally have a larger mean section than those produced vertically or at 45°. Thanks to X-ray tomography,

these authors also exhibited a rather large variability of the section along a strut. Other models (e.g., [26])

slice these struts in several parts with different sections to account for this variability. Here, for the sake of

simplicity and computing purposes, we assign only one radius to a given strut. The constitutive material

of struts being identical, a single Young modulus and Poisson coefficient are chosen (108 GPa and 0.33

respectively [32]).

3.3.2. Extrapolation of S-N results with a Basquin law

The numerical simulation also requires references for the S-N curves. We also take advantage of the

results of Persenot et al. [7] that give the trend of the S-N curve for vertically produced single struts (90°)

(Fig. 4). Each strut is assigned a specific S-N curve that is consistent with the scattering of those fatigue

results. Using a Basquin law [41], experimental results (see blue line in Fig. 4) are fitted with the following

equation :

N × (σMAX)k = B (12)

with k = 4.43 and B = 1015.56. In order to extrapolate the blue solid line in Fig. 4 to other orientations (45°

and 0° struts), it is assumed that k is the same for all orientations. It is also assumed that this law is valid

in the area (1) (N < 104 cycles) and (3) (N > 106 cycles) as depicted by the green dashed line in Fig. 4. In

this work, simulated stresses are never as low as to reach 106 cycles (area (3) in Fig. 4). Moreover, if local

stresses in struts are close or larger than the yield stress (area (1) in Fig. 4), the number of cycles undergone

are much too low to have an impact on the final fatigue life. Finally, the only struts loaded in tension are

the 45° struts, therefore they are the only struts that are likely to fail during a fatigue test. Coefficients of

the Basquin law for the S-N curve of the 45° struts are k = 4.43 and B = 1016.1.
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Figure 4: S-N curves of as-built single struts (adapted from [7]). Circles stand for experimental fatigue results for three

orientations 0°, 45° and 90° with respect to the building direction. The blue solid line is a fit following Basquin law [41] on the

vertical single strut results (90°), while other solid lines show the extrapolation of the Basquin law for other orientations. Dashed

black lines divide the diagram into three areas. Area (1) corresponds to the low cycle fatigue regime, meaning the Basquin law

is hardly valid in this region as important plastic strain may be involved. Area (2) limits the proper use of the Basquin law in

the region 104 - 106 cycles. Area (3) is associated with the endurance limit, therefore a stress plateau is usually achieved.

3.4. Fatigue life and time period of grace predictions

3.4.1. As-built lattice structures

Results of experimental fatigue tests are shown as red squares in Fig. 5. Hollow squares represent the

number of cycles of the first strut that failed, as detected during experiments. Solid squares depict the fatigue

life of the lattice. Seven as-built samples were tested (three, two and two samples at 25 MPa, 21 MPa and

17 MPa respectively). The failure of the lattice is not instantaneous: struts fail one after the others, with a

certain delay between each event. The delay between the first strut failure event and the total failure of the

lattice can be viewed as a grace period, during which the structure progressively fails but still sustains the

macroscopic stress. It is interesting to note that, for all samples, the grace period has a mean value ranging

in the interval [one fifth - one quarter] of the fatigue life, whatever the stress level.

To predict the fatigue life, the grace period and the grace ratio of the lattice specimens, a first batch of

simulations was run. Results are shown in Fig. 6 for one level of stress (17 MPa). 3D X-ray characterization

on single struts [7] have shown that the radius size is normally distributed around 0.88 mm for 45° struts and

around 0.92 mm for 0° struts as illustrated in Fig. 6b (with standard deviations of 0.015 mm). To account for

this variability, five samples have been drawn taking into account this distribution (Fig. 6a-b). The effect of

the strut radius distribution is first studied in the case of a unique S-N curve (from Fig. 6c to e), i.e. all struts

have exactly the same fatigue behavior. The mean number of cycles to failure is 86 · 103, while minimum and

maximum values are 82 · 103 and 92 · 103 cycles respectively. Similarly, extreme values for these five samples

give a grace ratio of 23.7% (minimum) and 33.7% (maximum) meaning that there is a significant scatter.

The mean value is also reported in Fig. 6c: 28.2% which is close to the experimental range of values.
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Nb of cycles 

to failure (x103)

Grace Period

(𝑁 − 𝑛(1)) (x103)

Grace Ratio 
𝑁−𝑛(1)

𝑁
(%)

25 MPa 16.6 / 19.3 / 16.3 4.1 / 5.3 / 4.8 24.6 / 27.3 / 29.6

21 MPa 31.5 / 26.0 6.9 / 6.5 21.8 / 24.9

17 Mpa 97.8 / 93.0 17.9 / 22.6 18.3 / 24.3

Figure 5: Table summarizing experimental fatigue results for as-built lattice specimens and S-N results. Red squares stand for

experimental results and blue points stand for predictions (with a σ offset of -1 MPa for the sake of clarity). Hollow symbols

are associated with the failure of the first strut within the lattice while filled symbols correspond to the final failure of the

lattice specimen. This leads to 100 full simulations (from start to failure) for each of the three stress levels investigated. Errors

calculated based on the standard deviation of simulation results are not significant enough to be reported (≈ 4%) on this figure.

Errors were estimated using 5 draws of radius distribution and for every radius size distribution, 20 draws of the single strut

S-N curves.
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Figure 6: Sensitivity analysis on the fatigue life (c, f) and on the grace ratio (d, g) for various initial strut diameters and S-N

curves at macroscopic stress of 17 MPa. (a) Schematic giving a few examples of octet-truss unit cells with varying initial strut

diameters that exhibit a radius size distribution illustrated in (b). 45° struts have a mean diameter of 0.88 mm and 0° struts

(horizontal) have a mean diameter of 0.92 mm (±0.015 mm). Green squares on (c) and (d) give results in the case of a unique

S-N curve, i.e. with no scattering as shown in Fig. 4 and sketched in (e). All simulations reported in (f-g) use a different draw

of the S-N curve distribution (typical histogram of S-N curves is sketched in (h). 5 draws are performed for the strut radii, and

in those draws, 20 additional random draws of the S-N curves are made. Red dash-dot lines illustrate the results of the two

experimental specimens tested at 17 MPa.
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In a second step, the sensitivity of fatigue life and grace ratio to scatter in the S-N curves has been

investigated. Results are shown in Fig. 6f-g. For a given draw of a lattice structure, each of the 132 struts

of the lattice is randomly assigned an S-N curve. For each one of the five lattice samples previously created,

20 different samplings of S-N curves were generated using the same normal distribution as illustrated in

Fig. 6h. A random sampling of 5 × 20 = 100 different initial configurations is then achieved. These inputs

(distribution of S-N curves and strut radii) are chosen to agree with the as-built single strut study. Note that

the corrective factor λ introduced in Eq. 10 was fixed to a unique value λ = 1.47 in this section.

In this case of multiple S-N curves (Fig. 6h), results are reported using average values and standard

deviations as error bars in Fig. 6f-g. Using one distribution of S-N curves seems to lower the variability

for the fatigue life as well as for the grace ratio. The difference between the minimum and maximum of

the average values reaches 5 · 103 for the fatigue life and about 5% for the grace ratio. Average values are

relatively close to the case of a unique S-N curve (83.6 · 103 ± 4.4 · 103 for the fatigue life and 29.1%± 4.1 %

for the grace ratio).

Interestingly, using only one unique S-N curve and different draws of the radius distribution gives results

similar to those obtained with scattered S-N curves, at least for the particular distributions of strut radii and

S-N curves investigated here. In other words, radius distribution seems to account as a first-order parameter,

whereas S-N curve distribution accounts as a second-order one for both the prediction of grace ratio as well

as the fatigue life.

Numerical simulations were performed at different stress levels and the results are shown as blue circles and

dots in Fig. 5 with standard deviations represented by the size of dots. The comparison with experimental

results is risky considering the few numbers of tested specimens. Broadly speaking, fatigue life is under-

estimated for all stress levels. This underestimation must be related to the uncertainty in the local stress

values, i.e. to the coefficient λ. This point will be further discussed in section 4. The grace ratio, in turn,

is slightly over-estimated by simulations (mean value of 28.4%± 3.9%) as already observed in Fig. 6d and g,

and seems to be independent of the macroscopic stress.

3.4.2. Extending the variability

In section 3.4.1, we have only investigated the effect of several draws of a given radius size distribution

(see Fig. 6b), and the effect of several draws of S-N curves with a given variability (see Fig. 6h). These

inputs were chosen to match the experimental data obtained from as-built single struts. One of the main

advantages of performing numerical simulations is the possibility to explore deeper the configuration space.

Depending on the scanning strategies, the radius distribution could be more scattered, or surface defects

more heterogeneously spread. In this section, we aim at studying the effect of standard deviations for both

the size and the S-N behavior of single struts. Fig. 7 illustrates the sensitivity of the numerical predictions

to four different cases. Two different radius size distributions and two different S-N curve distributions are

investigated. In both cases, the mean values are the same. Only the standard deviation is varied.

The first case is the one used in section 3.4.1, with distributions of radii and of S-N curves that are the
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Strut orientation 0° 45°

Distribution Rm std Rm std

A 0.92 0.015 0.88 0.015

B 0.92 0.05 0.88 0.05

Table 2: Summary of strut radius distribution used. Rm is the mean radius and std the standard deviation to the mean.

Distribution 1st peak weight 2nd peak weight standard deviation

SN-1 - - δ

SN-2 - - 2δ

SN-3 2/3 1/3 δ

SN-4 1/3 2/3 δ

Table 3: Summary of the S-N curves characteristics used in this work. In the case of bi-modal distributions, columns 1 and 2

denote the proportion of S-N curves centered around the two peaks.

closest to the as-built single strut study. The corresponding distributions are denoted A (for the radius) and

SN-1 (for the fatigue curve). A second radius distribution (denoted B in Fig. 7a) is proposed to keep the

same mean values for 45° struts and 0° struts but a larger standard deviation of 0.05 mm instead of 0.015 mm

for the distribution A. Similarly, the sampling distribution of S-N curves for the distribution SN-2 exhibits

the same mean value as SN-1, but the standard deviation is doubled (see schematic in Fig. 7b). This leads

to four different configurations: A/SN-1, A/SN-2, B/SN-1, and B/SN-2. For each radius distribution, five

draws are performed, and for every one of them, 20 samples of S-N curves are generated.

Results are shown in Fig. 7c,d and e for the fatigue life, the grace period and the grace ratio respectively.

There is clear evidence of a strut size distribution effect for N and GR. The fatigue life significantly decreases

when the spread of radius distribution is larger, the mean value dropping from ≈ 82·103 (A/SN-1) to ≈ 65·103

(B/SN-1). The effect of the spread of distribution for S-N curves is much less pronounced. As already noticed

in the previous section, it seems, at least in the range of standard deviations studied here (see Table 3), that

the effect of radius size distribution is of the first order. The grace period being roughly the same for all

combinations (see A/SN-1, A/SN–2, B/SN-1, B/SN-2 in Fig. 7d), an early failure of the first strut can lead

to an early failure of the lattice structure (as observed for distribution B in Fig. 7c). In fact, a scattered

radius distribution suggests a larger stress contrast from one strut to another in the structure, leading to

early failure of the first strut. Consequently, the grace ratio increases for distribution B on average (Fig. 7e)

with the mean value increasing from ≈ 30% to nearly 45%.
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Figure 7: Sensitivity analysis of the model with (a) different radius size distribution and (b) different samples of S-N curves

(both distributions are centered around 157,000 cycles at 290 MPa). 5 draws of distributions A and B are used. For each of

these draws, 20 samples of 132 S-N curves are used for both distributions SN-1 and SN-2. (c) Fatigue life, (d) grace period and

(e) grace ratio predictions for an applied load of 4 kN. 100 simulations are performed to compute the standard deviations and

provide error bars.
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Figure 8: Sensitivity analysis of the model for a given radius size distribution (a), and (b) different samples of S-N curves using

two bi-modal distributions (SN-3 and SN-4) shown at 360 MPa. Peaks of distribution SN-3, and 4 are centered around 113,000

and 215,000 cycles at 360 MPa. Distribution characteristics are given in Table 3. (c) Predictions results for the number of cycles

to failure, grace period and grace ratio (mean and standard deviations are given).

3.4.3. Applications to etched lattice structures

The normal distributions used previously can be seen as an ideal and common case. More complex

distributions may arise, such as in the case of etched lattices presented in this section. Previous studies on

etched single struts [42, 32] have shown some interesting results: the surface quality is improved through

chemical etching but strongly depends on the etching time. For short etching time, a substantial number

of critical defects remain, leading to fatigue lives similar to those obtained for as-built specimens. Some

rare single struts exhibit larger fatigue life. On the contrary, for longer etching time, the majority of the

struts exhibit good fatigue life properties. Only a few of them still present severe critical defects. These two

situations can be respectively represented, in terms of S-N curves by the two bi-modal distributions SN-3 and

SN-4, as shown in Fig. 8. For the numerical application, only one distribution of radius size mimicking the

one determined on etched single struts [43] has been used (again with five different draws). Coefficients of

the Basquin’s law are modified accordingly for etched single struts (k = 4.43 and B = 1016.6). As previously

mentioned, the stress corrective coefficient λ is fixed at 1.62 in this case. The density of etched lattice

specimen being about 35% smaller than as-built ones, a reduced macroscopic stress of 12 MPa is applied

to target a fatigue life of approximately 105 cycles. The bi-modal distributions SN-3 and SN-4 are centered

around 113,000 cycles for the first peak and around 215,000 cycles for the second peak (see Table 3 for a

summary of all the S-N curve distribution characteristics).

The poor results of SN-3 are straightforward. Failed struts had most likely an S-N curve contained in
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the first peak of the distribution. SN-4 distribution markedly gives larger fatigue life, grace period and grace

ratio than the SN-3 distribution. In this case, the increase of grace period likely comes from the early failure

of a few struts with poor fatigue properties, and the likelihood to have most of the struts with good fatigue

properties that will fail afterward. Indeed, the mean value of n(1) is close between SN-3 and SN-4 (72 · 103

and 78.5 · 103 respectively), while the mean fatigue life of SN-4 is higher (20 · 103 more cycles) than for SN-3.

From an experimental point of view, a few lattice specimens were post-treated using chemical etching in

order to decrease the harmfulness of surface notch-like defects. Interestingly, the fatigue tests reported in

Fig. 9 for etched specimens gave a larger grace ratio in comparison with as-built lattice specimens indepen-

dently of the stress. A specific property of the lattice structure (stress normalized by the density) is exhibited

in Fig. 5c. In this scheme of presentation, the benefit of etching a lattice structure is clearly evidenced in

terms of N , GP , and GR.

As already observed in section 3.4.2, results on etched single struts [43] were scattered, with some struts

failing early during experiments. This means that despite a homogeneous etching, a few severe residual

notch-like defects may remain in some struts. In a lattice structure, this translates to an increase of the grace

period.

Finally, the etching time used to post-treat our lattice structures seems to be correctly described by the

SN-4 distribution: the number of cycles to failure is well predicted (125 · 103 ± 14 · 103 cycles at 12 MPa) as

well as the grace period and grace ratio (respectively 47 · 103 ± 11 · 103 cycles and 37%± 7%).
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Nb of cycles 

to failure (x103)

Grace Period

(𝑁 − 𝑛(1)) (x103)

Grace Ratio 
𝑁−𝑛(1)

𝑁
(%)

19 MPa 18.6 / 20.9 5.4 / 8.3 29.1 / 39.4

12 Mpa 129.6 / 141.4 54.6 / 43.4 42.1 / 30.7

(a)

(b) (c)

Figure 9: (a) Table summarizing experimental fatigue results for etched lattice specimens. (b) S-N results: Orange squares

stand for experimental results in the case of etched lattice structures. Hollow symbols are used for the failure of the first strut.

Blue points give the mean results for the SN-4 predictions (with a σ offset of -1 MPa for the sake of clarity). Error bars give

the standard deviation obtained using 5 different initial states (5 draws of radius distribution) and 20 samples of S-N curves for

the single struts, meaning 100 different simulations for each stress level (see Fig. 8 for details). (c) Maximum stress normalized

by the density as a function of the fatigue life for as-built (red) and etched (orange) lattice structures.
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4. Discussion

4.1. Chronology of the failure events

A further step consists in focusing on the chronology of failed struts. This was achieved experimentally.

As already detailed in section 3.1, lattice structures were specifically designed to be able to visually detect

the failure of struts. As tests are performed at constant macroscopic stress, the displacement data confirmed

the occurrence of a failure and gave the corresponding number of cycles during the test. Complete failure

scenarios were monitored. In other words, the successive failure of every strut was recorded during the tests.

This section aims to assess the ability of the presented model to predict correctly such a chronology. To

that end, beam element simulations were performed on configurations observed experimentally: at each step,

the beam corresponding to the observed broken strut was removed from the numerical lattice: the order

observed experimentally was then reproduced numerically. Four different experimental scenarios have been

reproduced. Some steps of the simulation performed on one of the experimental samples are displayed in

Fig. 10a. The failure of struts during this experiment leads to a redistribution of stresses which is evidenced

(see the color bar). For the sake of clarity, no radius distributions were used in the simulations. Radii of 45°

struts were set to 0.88 mm and radii of 0° struts to 0.92 mm.

At each step of the simulation, let us denote σstrut the stress value of the strut which actually failed

experimentally and σm the maximum stress among the remaining struts of the lattice. σm is recalculated

every step. If the numerically most loaded strut has experimentally failed, the ratio σstrut

σm
= 1.

In Fig. 10b, this ratio is represented as a function of the number of failed struts in lattice structures.

The different numerical results of experimental scenarios are depicted: two as-built and two etched lattice

specimens.

It appears that the strut that fails is rarely the one sustaining the maximum stress, but is usually not far

away from this maximum. From time to time, its stress level is very low (below 1
2σm). It means that stress

alone can not be used to predict the strut that fails. This supports the idea to use a damage accumulation

law. In the present paper, we focused on classical Miner’s rule. Its use can be questionable. Several other

damage laws exist as pointed out by Hwang and Han [44]. However, we relied on Miner’s rule broad use in

the fatigue community and took advantage of its relative simplicity.

For statistical purposes, a hundred simulations were performed, using the damage accumulation law with

both the SN-1 and SN-4 distributions (see Table 3), for as-built and etched lattices respectively. Correspond-

ing values are reported in Fig. 10b. For instance, simulations predict for as-built lattices that roughly 60 %

of failed struts have broken in the range σstrut = 80 − 100 % of σm. This value rises to about 79 % in the

case of etched lattices. It seems consistent with the fact that the fatigue behavior of etched struts is less

sensitive to critical defects, and more driven by the stress value.

In general, trends are correctly captured, with a good ability to predict the failure of struts, though they

do not sustain the maximum stress. This proves the efficiency of the damage accumulation model to predict

tendencies and global values, even if local events are not fully described.
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Figure 10: (a) Finite element simulation using Timoshenko beam elements of a given experimental scenario (applied macroscopic

stress σ = 12 MPa). As struts fail, stresses are redistributed. (b) Ratio of the normal stress calculated in struts (σstrut) just

before they fail over the maximum tensile stress within the lattice structure (σm), for four different experimental scenarios (2

as-built and 2 etched specimens). σm is re-calculated every step. Simulations on 1200 struts predict for as-built lattices that

failed struts are ≈ 60 % of the time in the range 80-100 %× σm, ≈ 39 % of time in the range 50-80 %× σm and almost never

below 1
2
σm (respectively ≈ 79 %, ≈ 20 % and ≈ 1 % for etched lattices).
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4.2. Considerations on stress estimation at the strut level

In the present model, a stress level per strut is defined. This value is chosen to be able to use the

experimental data contained in the S-N curves and thus to predict the failure of the corresponding strut. It

is interesting to locate the crack that leads to failure in a strut. Using X-ray tomography, Fig. 11a illustrates

in blue color the cracks observed in the lattice structure after a fatigue test. It is worth noting that all

cracks were located close to nodes in all our fatigue experiments. In the work of Latture et al. [38], the

compression behavior of octet-truss structures with and without fillets was compared. They observed that

failure occurs at nodes for the octet-truss without fillets and near nodes for filleted ones. Our observations

in tensile loading are consistent with the ones reported by Latture et al. [38]. However, under cyclic loading,

failure occurs close to but not at nodes (Fig. 11a). The full 3D finite element simulation proposed in Fig. 11b

shows large stress concentrated areas around nodes. In fact, strut failure results from combined effects of

stress concentration and surface notch-like defects, as recently discussed by Persenot et al. [7] or Romano et

al. [45].

X-ray microtomography showed that the nodes did not contain more or largest defects than anywhere

else in the structure. Only their presence and harmfulness in regions submitted to larger stresses makes them

the main initiators of fatigue cracks resulting in crack localization near nodes and not at nodes. Different

sources of stress concentration near nodes exist: geometrical singularities (e.g. absence of fillets) or bending

stresses. In particular, the second ones are present when nodes are rigid or when the lattice is no more a

stretching dominated one (in the present case, as soon as the first strut has failed). Portela et al. [46] have

already discussed the ambiguity of the bending and stretching dominated behavior classification commonly

reported in the literature [47], as they emphasize the importance of correctly modeling nodes. In any case,

from a numerical point of view, a full 3D finite element simulation should be required for a correct estimation

of the local stress levels.

In the present work, we assumed a stretching-dominated behavior, allowing us to rely on the definition

of stress given in Eq. 10. Moreover, we introduced the corrective coefficient λ that integrates into a single

value the contributions to the stress of bending moments, rigid nodes and geometrical singularities. Despite

this strong assumption and the lack of local description of stress, predictive results are in relatively good

agreement with experiments, and fast computing is possible and enables us to perform statistical analyses.
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(a) (b)

Stress localization areas

Figure 11: (a) 3D tomographic reconstruction of an as-built specimen after failure. Blue areas show strut failure locations

as-revealed by X-ray tomography. In a sake of clarity, note these cracks were dilated. (b) Full volume finite element calculation

results of the Von Mises equivalent stress when considering that 10 struts had already failed under a tension load of 3 kN (same

scenario than in Fig. 10a). Simulations are performed with ABAQUS/CAE Standard Explicit [48] with a linear elastic behavior

of the material.
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5. Conclusions

The main conclusions of the present work can be drawn as follows:

• From an experimental point of view, fatigue failure of lattice specimens was shown to be gradual,

leading to substantial stress redistribution.

• A numerical framework based on a cascading failure model to predict the fatigue life of lattice structures

has been proposed.

• Damage within the lattice is estimated thanks to the Miner’s rule.

• The grace ratio, a characteristic of the progressive failure of a lattice, was introduced. It is defined as

a percentage of fatigue life during which the structure holds in spite of being damaged.

• Properties of individual struts constituting the lattice can be chosen independently in our model. The

effect of two strut parameters on the fatigue properties of lattice specimens, namely the spread of the

radius distribution in the lattice, and the S-N curve distribution of single struts have been studied. An

increase of the spread of the radius size distribution, or an increase of the dispersion of the S-N curve

distribution, led to an increase of the grace ratio and a decrease of the fatigue life.

• Predictions of the fatigue life, grace period and grace ratio using our model are in relatively good agree-

ment with experimental results when using inputs, i.e. radius distribution and S-N curve distribution

determined experimentally on single struts.

• A few limits are still hindering the accuracy of our predictions, in particular stress concentrations near

nodes, a possible bending contribution to the stress, and radius variability along a given strut. To

overcome those limits, a corrective coefficient was introduced to estimate stresses in struts. A finer

determination of this corrective coefficient should require full finite volume element calculations all

along the cascading failure. Such a systematic procedure was out of the scope of this study.

The main conclusion is that there is an interplay between the desired fatigue properties and the chosen strut

parameters (radius, stiffness) to design lattice structures. Moreover, it could be interesting to determine if

the grace ratio is topologically driven. Thus, such a numerical tool can be considered as a first step towards

optimization of the lattice structure fatigue properties.
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[10] N. Hrabe, T. Gnäupel-Herold, T. Quinn, Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated

via electron beam melting (EBM): Effects of internal defects and residual stress, International Journal

of Fatigue 94 (2017) 202–210. doi:10.1016/j.ijfatigue.2016.04.022.

[11] S. J. Li, Q. S. Xu, Z. Wang, W. T. Hou, Y. L. Hao, R. Yang, L. E. Murr, Influence of cell shape on me-

chanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method, Acta Biomaterialia

10 (10) (2014) 4537–4547. doi:10.1016/j.actbio.2014.06.010.

[12] V. Crupi, E. Kara, G. Epasto, E. Guglielmino, H. Aykul, Static behavior of lattice structures produced

via direct metal laser sintering technology, Materials and Design 135 (2017) 246–256. doi:10.1016/j.

matdes.2017.09.003.

[13] S. Y. Choy, C. N. Sun, K. F. Leong, J. Wei, Compressive properties of functionally graded lattice

structures manufactured by selective laser melting, Materials and Design 131 (May) (2017) 112–120.

doi:10.1016/j.matdes.2017.06.006.

[14] N. W. Hrabe, P. Heinl, B. Flinn, C. Körner, R. K. Bordia, Compression-compression fatigue of selective

electron beam melted cellular titanium (Ti-6Al-4V), Journal of Biomedical Materials Research - Part B

Applied Biomaterials 99 B (2) (2011) 313–320. doi:10.1002/jbm.b.31901.

[15] S. J. Li, L. E. Murr, X. Y. Cheng, Z. B. Zhang, Y. L. Hao, R. Yang, F. Medina, R. B. Wicker, Compression

fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting, Acta Materialia 60 (3)

(2012) 793–802. doi:10.1016/j.actamat.2011.10.051.

[16] S. M. Ahmadi, R. Hedayati, Y. Li, K. Lietaert, N. Tümer, A. Fatemi, C. D. Rans, B. Pouran, H. Weinans,
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