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Abstract

Over the last few decades, Reduced Order Modeling (ROM) has slowly but surely inched to-
wards widespread acceptance in computational mechanics, as well as other simulation-based �elds.
Projection-based Reduced Order Modeling (PROM) relies on the construction of an appropriate
Reduced Basis (RB), which is typically a low-rank representation of a set of �observations� made us-
ing full-�eld simulations, usually obtained through truncated Singular Value Decomposition (SVD).
However, SVD encounters limitations when dealing with a large number of high-dimensional obser-
vations, requiring the development of alternatives such as the incremental SVD. The key advantages
of this approach are reduced computational complexity and memory requirement compared to a
regular �single pass� spectral decomposition. These are achieved by only using relevant observa-
tions to enrich the low-rank representation as and when available, to avoid having to store them.
In addition, the RB may be truncated 'on-the-�y' so as to reduce the size of the matrices involved
as much as possible and, by doing so, avoid the quadratic scale-up in computational e�ort with
the number of observations. In this paper, we present a new error estimator for the incremental
SVD, which is shown to be an upper bound for the approximation error, and propose an algorithm
to perform the incremental SVD truncation and observation selection 'on-the-�y', instead of us-
ing a prohibitively large number of frequently �hard to set� parameters. The performance of the
approach is discussed on the reduced-order Finite Element (FE) model simulation of impact on a
Taylor beam.

Key Words : Singular Value Decomposition, Principal Component Analysis, low-rank repre-
sentation, snapshot selection, Model Order Reduction, Proper Orthogonal Decomposition, vehicle
crash simulation

Introduction

Model Order Reduction (MOR) is nowadays extensively used to tackle prohibitive computational
times in numerical mechanics. Methods such as the Proper Orthogonal Decomposition (POD)
and the Dynamic Mode Decomposition (DMD), exploit information contained in large data sets
to understand and reduce the physics of a given problem [11, 26, 27], often invoking spectral
decomposition methods.

Projection-based Reduced Order Modeling (PROM) methods approximate the unknown �eld
variable as a linear combination of a set of domain-spanning Reduced Basis (RB) functions, that
replace a large number of local, element-based shape functions. The POD, often used in computing
the RB, traces its origins to statistical data analysis [22] and has found extensive application in
turbulent �ow modeling [6, 19, 20, 35] and various other �elds [15, 24, 25, 30, 31, 32, 33]. The
RB is built during the o�ine �training� phase through Singular Value Decomposition (SVD) of
previously collected solution vector observations, typically called snapshots. PROM applications
to highly nonlinear problems, such as complex structural dynamics involving nonlinear material
laws, geometrical nonlinearity, contact, and crack formation, remains a challenge. The projection
of internal variables may be approximated with the Discrete Empirical Interpolation Methods
(DEIM) [9, 12, 36] or Hyper-Reduction (HR) [14, 18, 34].

Since the ultimate goal is a reduction in overall computation time, we need to limit the "cost"
of the o�ine phase. SVD ends up either expensive or infeasible when applied to a large number
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of high-dimensional snapshots. To tackle this issue, alternatives such as the �randomized SVD�
[3, 4] and the �incremental SVD� [7] has recently emerged within the POD framework [28]. In
this method, originally developed for streaming data analysis, SVD is performed by subsequent
updates using a mathematical identity that we formally present in section 1. This avoids expensive
data manipulation since snapshots are used for the updating as and when available. Moreover,
incremental approaches enable online update of the Reduced Order Model (ROM), which is a weak
point of methods relying on spectral decompositions against other popular methods such as the
Proper Generalized Decomposition (PGD) [10, 16, 23, 37].

The highlights of the incremental SVD presented in [28] were: adaptive snapshot selection,
on-the-�y snapshot selection and on-the-�y truncation. Adaptive snapshot selection identi�es the
simulation times at which observations must be made for the �rst order di�erential equation. On-
the-�y snapshot selection pre-evaluates the (potential) contribution of a snapshot before actually
updating the RB, while on-the-�y truncation limits the size of the RB during subsequent enrich-
ments. These two features enable a reduction in computational e�ort by avoiding the treatment of
redundant observations, thus allowing the algorithm to work on smaller matrices, which is discussed
in detail in section 1.2.

Needless to say, the addition of these two features introduces new di�culties: �rstly, two
problem-dependent tolerances need to be set, and secondly, a loss of information in the SVD would
inhibit the computation of the singular value truncation error necessary for the POD. An error
bound for the incremental SVD has been developed in [13], where the authors proved that the
incremental SVD yields the exact SVD of an approximated data set. Furthermore, their proposed
error norm (calculated using a new weighted inner product) was the upper bound on the SVD
error with respect to the original data set. This error bound is incrementally computed by keeping
track of singular values missed due to 'on-the-�y' calculation of the RB.

In the current paper, the authors use the same incremented variables to build a new error
estimator that will serve as an upper bound on the singular value truncation error. The present
work was �rst presented by the author at the 6th European Conference on Computational Me-
chanics (ECCM6) in Glasgow, UK [29]. The originality of our approach consists in using this
incremented error estimator to monitor 'on-the-�y' truncation and snapshot selection, as opposed
to the problem-dependent tolerances in the traditional approach. The result is a relatively straight-
forward incremental SVD with nearly optimal 'on-the-�y' truncation and snapshot selection. This
version of incremental SVD is then implemented in the research branch of industry-level explicit
dynamics simulation code Altaire Radioss [2] and its performance is tested against that obtained
with standard SVD. Interestingly, the proposed approach, beyond limiting the number of param-
eters and displaying competitive performances in the o�ine training phase, performs well in the
online phase. The latter is discussed in terms of the relative weight of repetitive snapshots in the
produced RB.

The paper is organized in the following manner. In Section 1, we present a comprehensive
review of the state-of-the-art incremental SVD. Section 2 presents the error estimator developed
in this work. The algorithm is discussed in Section 3, and we then move on to validation of the
approach in Section 4 where a Taylor beam impact FE model is used to test the proposed method
against the traditional incremental SVD as well as single-pass SVD. To evaluate the e�cacy of our
approach, we compare computational time, RB performances during the online reduced-order run
of the legacy explicit dynamics industrial code Altair Radioss [2] as well as the e�ective precision
of the collected data approximation.

Notations

Throughout this paper, curly brackets designate vectors and square brackets designate matrices.
Following notations are sorted out in alphabetical order.

{0N} - column vector of size N with all coe�cients equal to zero

{1N} - column vector of size N with all coe�cients equal to one

{α} - reduced unknown displacement, α ∈ Rk

b - plasticity hardening coe�cient

(ci)i - training con�gurations, i ∈ J1, nsK
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E - Young's modulus

ε - strain tensor

εp - equivalent plastic strain

εest - error estimator in the proposed incremental SVD algorithm

εin - part of discarded snapshots represented by [Φk]

εint - work of internal forces approximation error

εorth - tolerance for reorthonormalization in the incremental SVD

εout - part of discarded snapshots non-represented by [Φk]

εrb - user-speci�ed threshold on the basis function selection criterion

εksv - singular value truncation error for a reduced basis of size k

εsvd - tolerance for snapshot selection in the state-of-the-art incremental SVD

{fext} - space discretized external forces, {fext} ∈ RN

{fint} - space discretized internal forces, {fint} ∈ RN

‖[•]‖F - Frobenius norm of a matrix, ‖[•]‖F = (
∑
i,j

[•]2i,j)
1
2

k - Reduced basis size

kmax - Maximum size for the reduced basis in the state-of-the-art incremental SVD

[M] - symmetric positive-de�nite mass matrix, [M] ∈ RN×N

[M̃] - reduced mass matrix, [M̃] = [Φ(B)]T [M][Φ(B)] ∈ Rk×k

m - number of singular vectors in the training data POD decomposition, m = min(N,ns)

N - number of degrees of freedom in the full-order FE space discretization

n - plasticity hardening exponent

np - number of parameters of the FE model

ns - number of snapshots in the training data set

ν - Poisson's ratio

(pi)i - parameters of the FE model, i ∈ J1, npK

[Φ] - left singular vectors of [S], [Φ] = [φ1, . . . , φns
] ∈ RN×m

[Φk] - reduced basis of size k

[Ψ] - right singular vectors of [S], [Ψ] = [ψ1, . . . , ψm] ∈ Rns×m

ρ - density

[S] - training data set, [S] = [{u(t1)}, . . . , {u(tns
)}] ∈ RN×ns

{s} - singular values of [S] in decreasing order, {s} = (s1, . . . , sm)T ∈ Rm

σ - stress tensor

σeq - equivalent stress

σY - plastic yield stress

T - �nal simulation time

{u} - space discretized unknown displacement �eld, {u} ∈ RN

{ũ} - displacement �eld approximation in the reduced model, ũ = [Φk]α ∈ RN

V0 - initial velocity

Wint - work of internal forces
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1 Incremental SVD

The Singular Value Decomposition (SVD) is a generalization of the eigenvalue decomposition for
non-square matrices. Given a matrix [S] ∈ RN×ns the SVD is given by

[S] = [Φ][Σ][Ψ]T (1)

In the 'regular' SVD [Φ] and [Ψ] are respectively N ×N and ns×ns square matrices and [Σ] is
a matrix of dimension N ×ns with non-negative values on the diagonal. In the 'thin' SVD, on the
other hand, [Σ] = [diag({s})] is square with size m = min(N,ns). From the ROM point of view,
both 'regular' and 'thin' decomposition are equivalent, the reason being that the dimension of the
space spanned by the RB may neither exceed the number of degrees of freedom in the Full Order
Model (FOM) nor the number of snapshots. Hence a 'regular' SVD may result in unnecessary
computations. In this paper, SVD refers to the �thin� SVD, [Φ] ∈ RN×m and [Ψ] ∈ Rns×m are
orthonormal matrices and {s} = (s1, s2, . . . , sm)T ∈ Rm is the vector of singular values in descend-
ing order.

In the POD framework, [S] is a matrix of observations represented by column vectors.

[S] = [{u1}, ..., {uns
}] ∈ RN×ns , (2)

and the RB [Φk] of size k is obtained by taking the �rst k columns of [Φ] interpreted as the main
features of [S] in decreasing order of importance. This RB, by construction, spans the vector space
of dimension k that best approximates the data, in the sense that it minimizes the projection error
given the desired precision εrb ∈ [0, 1],

k = argmin
l∈N

{εlsv ≤ εrb} (3)

εlsv =
|| [S]− [Φl][Φl]T [S] ||F

|| [S] ||F
=

√√√√√√√
m∑

i=l+1

s2
i

m∑
j=1

s2
j

(4)

with || [•] ||F=
√∑

i,j

[•]2ij being the Frobenius norm of a matrix.

When POD is applied to FE models, the snapshot matrix may become prohibitively large.
To avoid storing [S], the incremental SVD approach updates the RB 'on-the-�y', as and when a
new observation is available, which also avoids the need to store snapshots. In addition, truncation
could be performed in-between the updates, thus keeping the size of the RB reasonably small while
also making room for a reduction in the number of �oating point operations needed.

The following subsection 1.1 presents the mathematical identity that allows the incremental
computation of the SVD, while 'on-the-�y' snapshot selection and truncation are presented in
subsection 1.2.

1.1 Incremental enrichment

As mentioned in the previous section, the incremental SVD [8] computes the decomposition (1)
of [S] without storing the entire matrix, by updating the RB as and when a new observation is
available.

The snapshot matrix at the ith iteration is given by

[S(i)] = [{u1}, ..., {ui}] ∈ RN×i.

The same matrix at the following iteration with one more observation appended to it may be
written:

[S(i+1)] = [S(i), {ui+1}] ∈ RN×(i+1). (5)

The decomposition of [S(i)] is given by:

[S(i)] = [Φ(i)][diag({s(i)})][Ψ(i)]T (6)

with
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• [Φ(i)] ∈ RN×k an orthonormal matrix (i.e. [Φ(i)]T [Φ(i)] = [Id]k×k)

• [Ψ(i)] ∈ Ri×k an orthonormal matrix (i.e. [Ψ(i)]T [Ψ(i)] = [Id]k×k)

• {s(i)} = (s
(i)
1 , . . . , s

(i)
k )T ∈ Ri with s(i)

j 6= 0, ∀j ∈ J1, kK

At the (i+1)th iteration the SVD of [S(i)] is known as well as N and k. The projection of a new
observation {ui+1} ∈ RN on the current basis [Φ(i)] is given by {ũ} = [Φ(i)][Φ(i)]T {ui+1}. The in-
cremental SVD updates the decomposition of [S(i)] according to [S(i+1)] = [Φ(i+1)][diag({s(i+1)})][Ψ(i+1)]T .
Here the following identity [7] is used:

[
[S(i)], {ui+1}

]
=
[
[Φ(i)][diag({s(i)})][Ψ(i)]T , {ui+1}

]
=
[
[Φ(i)], {ξ}

] [[diag({s(i)})] [Φ(i)T ]{ui+1}
{0k}T α

]
︸ ︷︷ ︸

:= [Q]

[
[Ψ(i)] {0i}
{0k}T 1

]T
, (7)

where

• α = ‖{ui+1} − {ũi+1}‖2

• {ξ} = {ui+1}−{ũi+1}
α .

Note, that
[
[Φ(i)], {ξ}

]
and

[
[Ψ(i)] {0i}
{0k}T 1

]
are orthonormal matrices. The main advantage of

the incremental SVD lies in the economical diagonalization of the matrix [Q].

[Q] = [Φ′][diag({s′})][Ψ′]T (8)

yielding

[S(i+1)] = [Φ(i+1)][diag({s(i+1)})][Ψ(i+1)]T (9)

where

• [Φ(i+1)] =
[
[Φ(i)], {ξ}

]
[Φ′]

• {s(i+1)} = {s′}

• [Ψ(i+1)] =

[
[Ψ(i)] {0i}
{0k}T 1

]
[Ψ′]

[Φ(i+1)] ∈ RN×k and [Ψ(i+1)] ∈ R(i+1)×k are orthonormal matrices by construction, being
products of orthonormal matrices each. Thus, the newly formed decomposition of [S(i+1)] is in
fact its SVD.

Savings in computational resources (compared to the traditional SVD) occur during the diago-
nalization of [Q], where simpli�cations are possible due to its particular form. Note that [Q] ∈ Rk×k
is a small �half-arrowhead matrix�, meaning it is nearly diagonal except for its last column, which
renders the SVD of [Q], which is achieved by bi-diagonalization and the Golub-Kahan algorithm
[17], computationally inexpensive.

1.2 'On-the-�y' snapshot selection and truncation

The primary motivation for using the incremental SVD is to avoid the manipulation of a large
amount of possibly redundant data while building a low-rank approximation. The two parameters
εsvd and kmax of this method �rst detailed in [28] allow for these savings:

• At the beginning of the i+1th iteration, the new observation {ui+1}may be rejected, if already
well represented by the RB [Φ(i)], so as to avoid unnecessary computations on redundant data.
In the state-of-the-art algorithm [8], this is controlled by the parameter εsvd and the new
observation is skipped if α2 ≤ εsvd.
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• At the end of an iteration, [S(i+1)] decomposition (9) may be truncated to keep it as small as
possible, accelerating subsequent iterations. Routinely [28], the basis is truncated 'on-the-�y'
when its size exceeds a pre-determined value given by the parameter kmax.

Tuning εSV D and kmax enables signi�cant computational savings, compared with a single-
pass SVD. When the single-pass SVD is used in the POD framework to build an RB, the right
singular space [Ψ] is generally not used. Such an SVD of a matrix [S] ∈ RN×ns will need O(Nm2)
�oating point operations and O(2mN + m) memory. In the incremental SVD, if the RB's size
does not exceed k, the method would only require O(mNk) operations and O(Nk + k) memory.
In applications, the size k of the RB is very small in comparison with the FOM's size N and the
number of observations ns. The fundamental hypothesis of MOR is that the dimension of the
underlying manifold, where the discretized solution of a computational mechanics problem �lives�
and evolves, is small compared to the number of degrees of freedom. Therefore, incremental SVD
is very promising for MOR. Finally, 'on-the-�y' snapshot selection would prevent computation on
redundant data and thus limit the number of snapshots ns processed, reducing the complexity as
shown.

However, these two features also induce loss of information about the singular values rendering
the exact �nal approximation error (4) inaccessible. An estimator for this error is developed and
tested in the following section.

2 Error estimator

In the original incremental SVD, 'on-the-�y' snapshot rejection and basis truncation prevent the
computation of all singular values, meaning that it is impossible to compute the truncation er-
ror (4). The modi�ed version of the incremental SVD, proposed in this paper, tracks the lost
information (due to the missed singular values) using two variables, εin and εout.

Since the basis is truncated 'on-the-�y', the singular value associated with the truncated mode
is lost, therefore, εout is incremented by the square of the skipped singular value:

εout = εout + s2
i+1. (10)

If a snapshot {ui+1} has been rejected 'on-the-�y', we can no longer calculate changes in the
singular values, εin is incremented by the norm of projection of {ui+1} on [Φ(i)]:

εin = εin + ‖{ũi+1}‖22, (11)

and εout is then incremented by the error of projection of the skipped snapshot:

εout = εout + α2. (12)

These two variables are used to compensate for the unavailable singular values, yielding the
following expression for the error estimator :

εest =

√
εout

‖{s}‖22 + εin + εout
. (13)

An essential condition on the error estimator is that it must be larger than the actual error.
In the event that the new observation is used for enriching the RB, the error estimator does not
induce any error since the square of the exact singular value associated with truncated mode is
incremented in εout. On the other hand, if the new observation is not selected, then the error
estimator satis�es the following condition:

P(i) =

{
‖[S(i)]− [Φ(i)][Φ(i)]T [S(i)]‖2F

‖[S(i)]‖2F
≤ ε

(i)
out

‖{s(i)}‖22 + ε
(i)
in + ε

(i)
out

= (ε
(i)
est)

2

}
. (14)

This ensures that the estimator is an upper bound on the actual error. A straightforward recursive
proof of the above property is given below:

initialization: For the �rst iteration of the algorithm, i = 1, the error is null, εin = εout = 0 and
no information has been lost (yet) due to either rejection or truncation.
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induction: If we assume that P(i) is true and the new observation {ui+1} has been rejected,

then the RB is left unchanged ([Φ(i+1)] = [Φ(i)] and {s}(i+1) = {s}(i)), ε(i+1)
out = ε

(i)
out + α2 and

ε
(i+1)
in = ε

(i)
in + ‖[Φ][Φ(i)]T {ui}‖22. In which case, using identity (5):

‖[S(i+1)]− [Φ(i+1)][Φ(i+1)]T [S(i+1)]‖2F
‖[S(i+1)]‖2F

=
‖([Id]− [Φ(i+1)][Φ(i+1)]T )[S(i), {ui+1}]‖2F

‖[S(i), {ui+1}]‖2F
,

using the additivity of the Frobenius norm, the above expression is rewritten

=
‖([Id]− [Φ(i+1)][Φ(i+1)]T )[S(i)]‖2F + α2

‖[S(i)]‖2F + ‖{ui+1}‖22
,

=
‖([Id]− [Φ(i)][Φ(i)]T )[S(i)]‖2F + α2

‖[S(i)]‖2F + ‖{ui+1}‖22
,

and �nally, P(i) is used

≤ ε
(i)
out + α2

‖{s(i)}‖22 + ε
(i)
in + ε

(i)
out + ‖{ui+1}‖22

=
ε
(i+1)
out

‖{s(i+1)}‖22 + ε
(i+1)
in + ε

(i+1)
out

= ε
(i+1)
est ,

which proves P(i+1).

3 Proposed algorithm

Algorithm 1 incorporates the proposed incremented error estimator and both the corresponding
'on-the-�y' truncation and snapshot selection. εrb is the threshold on the singular value truncation
error and is the only input argument that the user needs to set in this version of the algorithm. All
other arguments are initialized from steps 2 to 6 and incremented during subsequent enrichments.

The main feature of the algorithm is the use of the proposed error estimator for the 'on-the-
�y' snapshot selection at steps 8 and 9 as well as 'on-the-�y' truncation at steps 17 to 23. The
philosophy behind the algorithm is speeding up computations by rejecting the maximal number of
snapshots and truncating the RB as soon as possible, in each enrichment, while still controlling the
overall singular value error of truncation and avoiding the necessity to set the problem-dependent
parameters εsvd and kmax.

One potential issue is the loss of orthonormality of the RB due to subsequent enrichments (line
13). While this does not change the range of the RB, it does, however, prevent a good projection
of the new observation as ‖{ui}‖22 = ‖[Φ][Φ]T {ui}‖22 +‖{ui}− [Φ][Φ]T {ui}‖22 is not necessarily true
if [Φ] is not orthonormal. This is why re-orthonormalization is performed (lines 23 to 26) when the
scalar product of the �rst and last columns of the current RB is larger than a threshold (εorth),
typically set to 10−14. This is performed using the highly parallelizable Modi�ed Gram Schmidt
(MGS) algorithm, but may also be implemented by QR factorization.

Another important remark concerns �centering� the data. In some POD applications [38], the
snapshot matrix is centered before the spectral approximation is computed, motivated, in part, by
the statistical point of view interpreting [S]T [S] as the covariance matrix of the data. In our appli-
cations, data points are not centered as simply applying a "lift" to the POD approximation (19)
will not improve the precision over adding a column to [Φ] That said, [7, 28] use 'a posteriori'
centering for the incremental SVD. To this end, the right subspace [Ψ] of the decomposition must
be computed and stored, the size of which scales up with the number of observations and cannot be
truncated 'on-the-�y'. In our experience, 'a posteriori' centering is not compatible with 'on-the-�y'
truncation. Truncated/selected basis vectors as well as rejected observations during the enrichment
steps would not be the same, had they been performed using snapshots that were centered from the
beginning. Moreover, 'on-the-�y' truncation would deteriorate the snapshot matrix reconstruction
and render the 'a posteriori' centering inaccurate. The centered POD is thus more straightforward
with the regular than the incremental SVD.

4 Numerical tests

In this section, we validate the proposed incremental SVD approach using a Taylor beam impact
model. We �rst give a short review of the POD method in section 4.2, followed by testing the

7



Algorithm 1: Proposed incremental SVD

Input: [Φ], {s}, {ui}, εin, εout, εrb
Output: [Φ], {s}, εin, εout

1 if (size([Φ], 2) == 0) then
2 if (‖{ui}‖2 > 0) then
3 {s} = ‖{ui}‖2
4 [Φ] = {ui}

‖{ui}‖2
5 εin = εout = 0

6 end

7 else

8 error =
εout+‖{ui}−[Φ][Φ]T {ui}‖22
εin+εout+‖{s}‖22+‖{ui}‖22

− ε2rb
9 if (error > 0) then
10 α = ‖{ui} − [Φ][Φ]T {ui}‖2

11 [Q] =

[
[diag({s})] [Φ]T {ui}

0 α

]
12 [[Φ′], {s′}, [Ψ′]] = SVD([Q])
13 % RB is expanded

14 [Φ] = [[Φ], {ui}−[Φ][Φ]T {ui}
‖{ui}−[Φ][Φ]T {ui}‖2 ][Φ′]

15 {s} = {s′}
16 % RB is truncated with new error estimator

17 error = εout+s(end)
εin+εout+‖{s}‖22

− ε2rb
18 while (error < 0) do
19 εout = εout + s(end) equation (10)
20 {s} = {s}(1 : (end− 1))
21 [Φ] = [Φ]:,1:(end−1)

22 error = error + s(end)
εin+εout+‖{s}‖22

23 end

24 if ([Φ]T:,1[Φ]:,end > εorth) then
25 % RB has lost numerical orthogonality and is re-orthonormalized
26 [Φ] = MGS([Φ])

27 end

28 else
29 εout = εout + ‖{ui} − [Φ][Φ]T {ui}‖22 equation (12)

30 εin = εin + ‖[Φ][Φ]T {ui}‖22 equation (11)

31 end

32 end
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approach for computation time and estimated training data approximation error in section 4.3.
The proposed incremental SVD is benchmarked against the state-of-the-art incremental SVD �rst
in section 4.4 in terms of computation time and o�ine training data approximation error and
then in section 4.5 in terms of work of internal forces approximation in the online reduction phase.
Finally, section 4.6 describes the scalability of the proposed incremental SVD with respect to the
dimensions of the snapshots matrix and targeted error of approximation.

NOTE: The Taylor beam impact test was performed with the proposed incremental SVD im-
plementation using the state-of-the-art crash simulation code Altair Radioss [2].

4.1 Taylor beam impact

The tests have been performed on a snapshot matrix [S] obtained from a Taylor beam impact
simulation, using the model shown in Figure 1. The beam is made of an elasto-plastic steel

Figure 1: Taylor beam test case

of density ρ = 8.93 ∗ 10−9 T.mm−3, Young's modulus E = 117000 MPa and Poisson's ratio
ν = 0.33. The hardening rule is described by the Johnson-Cook law (/MAT/PLAS_JOHNS in
Altair Radioss), neglecting temperature and strain rate e�ects

σeq = σY + b ∗ εnp , (16)

with σeq the equivalent stress and εp the equivalent plastic strain. Other parameters are plastic
yield stress σY = 400 MPa, plasticity hardening coe�cient b = 100 and plasticity hardening ex-
ponent n = 1. 8-node solid elements with one integration point are used to discretize the model
into N = 8514 dofs. The central di�erence method is used for time integration along with the
lumped mass approach, yielding a diagonal mass matrix.

ns = 236 incremental displacements snapshots have been taken every 50 time steps over the
total simulation time T = 8 ∗ 10−5 seconds.We begin with a brief review of the Galerkin PROM
in the next subsection, followed by evaluating the RB's performance during the online reduction
phase later in this section.

4.2 POD review

Full-order model

In nonlinear structural dynamics, the semi-discretized �nite element formulation takes on the
following form:

[M]{ü(t)}+ {fint}({u(t)}, t) = {fext(t)}, (17)

where {u(t)} ∈ RN is the vector of nodal displacements ( for all nodes and along three direc-
tions) unknown at time t. NOTE: In general, {u(t)} may also contain shell rotations, however,
that is not the primary focus of this paper. N denotes the number of degrees of freedom (dofs),
the size of the FOM. [M] ∈ RN×N is a symmetric, real, positive de�nite mass matrix.
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The FOM may depend on np parameters (pi)1≤i≤np which are generally shell thicknesses and
material properties in vehicle crash simulations. The �rst step consists of extracting observations,
or snapshots, at various simulation times and for di�erent parameter value sets. For convenience,
the observations time t and observation parameter values (p1, p2, . . . , pnp

)T are placed together in
a vector {c} = (t, p1, p2, . . . , pnp

)T , that we refer to as the training con�guration.

Reduced basis

The FOM solutions of training con�gurations ({ci})1≤i≤ns
are collected in the snapshot matrix

[S] ∈ RN×ns

[S] = [{u({c1})}, {u({c2})}, . . . , {u({cns})}].

(18)

In the second step, we compute a basis for the vector space of minimal dimension k that is
capable of approximating the data in [S] to a user-de�ned precision εrb. This new vector space of
dimension k is spanned by the columns of [Φ] ∈ RN×k

[Φ] = [{φ1}, {φ2}, . . . , {φk}] ∈ RN×k.

The POD approximation is then written as:

{u(t)} ≈ {ũ(t)} =

k∑
i=1

αi(t){φi} = [Φ]{α(t)} (19)

{α(t)} = (α1(t), α2(t), . . . , αk(t))T ∈ Rk is the vector of ROM unknowns.

[Φ] is obtained by computing a low-rank representation of the snapshot matrix [S]. The RB
size k is given by the desired precision εrb of the low-rank representation of [S].

Reduced model

The ROM is constructed by injecting the approximation (19) into (17) and projecting the
resulting equations on [Φ]T .

[M̃]{α̈(t)}+ [Φ]T {fint([Φ]{α(t)}, t)} = [Φ]T {fext(t)} (20)

We introduce the following notation: [M̃] = [Φ]T [M][Φ] ∈ Rk×k. The size of the reduced
model (20) is k, which is much smaller than the size N of the original full order model (17).
However, the use of POD for the reduction of explicit structural dynamics models induces com-
putational overhead during the online phase due to the Galerkin projection used to build the
PROM. Solution information at each node is mandatory in order to compute internal variables
in each element. The reduced unknown {α} does not provide information explicitly at each node
and the full-scale approximation needs to be computed. In order to map reduced unknowns {α}
to the full-scale approximation {ũ}, de�ned in equation (19), supplementary matrix vector mul-
tiplications are performed at each time step, which negatively a�ects the online speedup. Thus,
we require additional reduction methods to obtain a computational speedup during the online
reduction phase in explicit nonlinear POD applications. These methods attempt to approximate
the projected nonlinear internal variables operator [Φ]T {fint([Φ]•, t)}. The most popular methods
to achieve this approximation are hyper-reduction ([14, 18, 34]) and the DEIM ([9, 12, 36]).In this
work, we opted for the ECSW hyper-reduction method ([14]).

Another important feature of the ROM (20) is that the stability condition for optimal time step
is also projected. In the event that the nodal time step is used, the projection of the CFL condition
on [Φ] leads to a larger time step, some theoretical developments on this subject may be found in [5].

4.3 Proposed incremental SVD tests

In this section, we present some preliminary tests to validate the proposed algorithm, wherein
we compare the error estimator (13) with the 'actual' error of approximation (4) (which requires
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storage of the snapshot matrix). Computation times using di�erent values of user-de�ned error
εrb are also compared with those for the single-pass SVD from the Fortran Intel MKL package.
Next, we present a comparison of the performance of these RBs in the online reduction phase of
the Taylor beam impact.

For these tests, we employ the matrix [S] ∈ R8514×236 of incremental displacements snapshots
obtained using the full-order Taylor beam model runs. The snapshot selection and 'on-the-�y' trun-
cation are now driven by keeping the error estimator (13) below the single target error εrb, in place
of εsvd and kmax, for the state-of-the-art incremental SVD. We test the method for εrb ∈ [10−8, 1].

Figure 2 shows the RB's training data reconstruction error (4) and associated error estima-
tor (13) values as a function of εrb (estimated errors in gray, real errors in black). Computation
times of those RBs are compared with that of the single-pass SVD on Figure 3. The single-pass
SVD used here is the DGESVD from the Intel MKL library provided with Intel FORTRAN com-
pilers (version 12.1.3.300) and is used to compute only the �rst m = min(ns, N) = 236 left singular
vectors and associated singular values which correspond to the �ags JOBU = 'S' and JOBVT =
'N' (c.f. DGESVD Documentation [1]).

Figure 2: Incremental SVD error estimator εest in function of the target error εrb for the Taylor
beam impact. Compared to the measured error εksv and the target error.
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Figure 3: Incremental SVD computation time in function of the target for Taylor beam impact.
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Figure 2 clearly shows that the error estimator εest is always lower than the target εrb and
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higher than the actual approximation error εksv. The smaller is the desired εrb, the more precise is
the error estimator (13) and the 'actual' RB approximation error (4).

The computation times reported in Figure 3 show that our algorithm is faster than the single-
pass SVD up to a precision of εrb = 10−4. However, the incremental SVD is not designed for
a single-pass SVD since the computation times tends to skyrocket with very low εrb. It is also
important to note that given a targeted precision εrb, the incremental SVD may build a larger RB
than that obtained using the single-pass SVD, since the error is only estimated and, in reality, may
well be lower than the target error.

4.4 Comparison with state-of-the-art incremental SVD

Comparing the state-of-the-art with the proposed incremental SVD is not a straightforward task
as the methods do not involve the same parameters. In particular, as explained in section 1.2,
the state-of-the-art incremental SVD [28] has various tolerances that have to be set to appropriate
values.

We use the same snapshot matrix [S] ∈ R8514×236 within this section. The algorithm is tested
in the following manner: First, the RB (of size k = 3) is computed using the proposed algorithm
with a user speci�ed error εrb = 10−2. In the second phase, state-of-the-art incremental SVD runs
are performed for kmax = 3 and hundred di�erent values of εsvd logarithmically spaced between
10−7 and 102. The re-orthonormalization parameter is set to εorth = 10−14 in both algorithms.
The resulting computation times are given in Figure 5 and approximation errors in Figure 4.

Figure 4: Proposed and state-of-the-art incremental SVDs approximation errors for reduced basis
of size k = 3 on snapshots from the Taylor beam impact simulations
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In this example, both the proposed and state-of-the-art incremental SVD outperform the single-
pass SVD from the Fortran Intel MKL package. This is because the data of 236 vectors may be
approximated with a precision of εrb = 10−2 with only k = 3 basis vectors. This �very low-
dimensional� approximation works in favor of the two incremental methods.

Using properly-chosen parameters within the state-of-the-art SVD (kmax = 3 and εsvd = 2),
the incremental methods' performances are both comparable. However, it is not clear how to set
these two parameters in practice, since they depend on the data dimensionality and magnitude as
well as the target precision. kmax has been set to the minimal value allowing an error of approxi-
mation smaller than 10−2. The results in Figure 4 show that if εsvd is too large, then the desired
error cannot be attained. On the other hand, if its value is too small, we see from Figure 5 that
computation time would be signi�cantly higher than that of the proposed version. Moreover, the
state-of-the-art SVD approximation errors given in Figure 4 have been computed a posteriori, by
storing all the data in memory, which is not desirable in practice.
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Figure 5: Proposed and state-of-the-art incremental SVDs computation times for reduced basis of
size k = 3 on snapshots from the Taylor beam impact simulations
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In this example, the proposed incremental SVD shows better performance in terms of precision
and computation time without having to set any other parameter than the targeted singular value
approximation error (13).

4.5 Online comparison

We now compare the performance of the RBs during the online reduction phase. For this, we
consider 5 RBs of size k = 6, the �rst being obtained with the truncated single-pass SVD, the next
three using the state-of-the-art incremental SVD with parameters εsvd ∈ {10−14, 10−6, 10−4} and
kmax = 6 and the last RB corresponding to our proposed incremental SVD with εrb = 2 ∗ 10−3.

Online performances are evaluated in terms of work of internal forces reconstruction. Internal
work at a given time is de�ned by

Wint(t) =

∫
Ω

ε : σdV (21)

with ε the strain tensor and σ the stress tensor. Denoting Wint and W̃int the work of internal
forces in the FOM and in the online reduction phase, respectively, the error εint considered here is

εint =

∫ T
0
|Wint(t)− W̃int(t) | dt∫ T

0
Wint(t)dt

. (22)

Figure 6 plots the variation of the work of internal forces during the reduction phase for all 5
RBs as well as for the FOM.

Even though the single-pass SVD is optimal as far as the singular value truncation error dur-
ing the o�ine training phase is concerned, it is clearly not optimal for work of internal forces
reconstruction during the online POD reduction phase. When snapshots are uniformly sampled
from the simulation, SVD tends to preferentially emphasize those corresponding to later simulation
times since they are generally larger in magnitude and redundant. On the other hand, snapshots
taken at earlier simulation times tend to be smaller in magnitude and unique, therefore, they are
given less importance in the SVD. As a consequence, POD approximation error is often larger
during the early stages of the simulation, as seen on this example. This behavior is seen to a lesser
degree in the incremental SVD as 'on-the-�y' selection avoids the stacking of redundant, larger
magnitude observations by only selecting snapshots that introduce new information. In Figure 6,
RBs obtained with the state-of-the-art incremental SVD yield a better approximation of the work
of internal forces at the beginning of the reduced simulation. The RBs obtained with εsvd ≤ 10−6

are identical. Increasing εsvd from 10−6 to 10−4 results in an even better approximation. However,
for εsvd > 10−4, it is not possible to build RBs of size k = 6 as the number of snapshots selected
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Figure 6: Comparison of the work of internal forces reconstruction in the online reduction phase
on the Taylor beam test case. RBs of size k = 6 computed with the proposed incremental SVD,
the state-of-the-art SVD and the single-pass SVD are used.

'on-the-�y' is insu�cient. So εsvd = 10−4 is the optimal value for this particular example. But
this value is problem-dependent, and increasing the number of degrees of freedom N , the maximal
size of the RB kmax, the number of snapshots ns or switching unit system will change the optimal
value for εsvd. Although the state-of-the-art incremental SVD with optimal value of εsvd yields the
best RB in this example, the actual value itself is unknown in practice. The proposed incremental
SVD involves a nearly optimal 'on-the-�y' selection criterion that only depends on the target ap-
proximation error, which is easier to use and not problem-dependent. The RB obtained with the
proposed method approximates the work of internal forces almost as well as the state-of-the-art
incremental SVD with εsvd = 10−4.

We mentioned that, the singular value approximation error being only approximated in the
proposed method, the RB's size may be larger than necessary. However, this is not an issue as
results within this section show that the singular value approximation error does not guarantee
the error incurred within the online reduction phase. As a matter of fact, RB computed with the
proposed method performs better in the online reduction phase that the one computed using the
single-pass SVD even though it produces a larger training data singular value approximation error.
Finally, the test during the online POD phase shows a satisfactory performance. RB computed
with the proposed method performs well in comparison with RBs of same sized obtained with
state-of-the-art SVD and single-pass SVD using the same training data set.
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4.6 Proposed incremental SVD scalability

In this subsection, we test the computation time for algorithm 1 against the single-pass SVD
DGESVD from the Intel MKL FORTRAN library using snapshots matrices obtained from two
di�erent Taylor beam models. In Figure 7, the computation times are plotted for [S] ∈ R4752×ns

and for ns ∈ J100, 1000K. A larger model of the Taylor beam impact has been used for Figure 8
in which [S] ∈ R18810×ns and ns ∈ J500, 8000K. The snapshots in this �gure have been uniformly
sampled from the simulation time interval for all values of ns. No binary �le manipulation times
are taken into consideration here.

Figure 7: Taylor beam impact, Scalability of incremental vs. single-pass SVD, N = 4752
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Figure 8: Taylor beam impact, Scalability of incremental vs. single-pass SVD, N = 18810
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The complexity of the single-pass SVD (DGESVD) scales up according to m = min(N,ns) and
thus its computation time plateaus when there are more snapshots than degrees of freedom (ns >
N). However, the computation time of the DGESVD grows quadratically with the number ns of
snapshots until ns = N . On the other hand, the incremental SVD's complexity scales up according
to the dimensionality of the approximating vectorial space, hence, the computational time stabilizes
very fast. In fact, for a given target precision εrb, the incremental SVD computation time grows
quadratically with the number of snapshots until ns = k, where k is given by equation (3). This
means that for an insu�cient number of snapshots ns and a high target precision εsvd, the proposed
incremental SVD presents a poorer performance than the DGESVD, until we reach the minimum
number of snapshots given by equation (3) after which the proposed approach shows superior
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performance. In �gure 8, the incremental SVD is seen to perform better than the single-pass
SVD for precision up to 10−4, independently of the number of snapshots ns. For higher precision
10−5, the curves are seen to intersect at ns = 3800, with the incremental SVD outperforming
the single-pass SVD afterwards. Note, that in the latter case, the incremental SVD's CPU time
remain relatively steady after ns ≈ 2000, as opposed to the single-pass version. This behavior
may be explained by the limited number of relevant basis vectors governing the physical system,
con�rming the fundamental hypothesis of reduced order modeling, as well as providing excellent
scalability to our method.

5 Conclusion

This paper proposes an approach reducing memory usage and �oating point operations, compared
to the regular Singular Value Decomposition (SVD), by proceeding in an incremental fashion. By
treating snapshots one after the other, it permits 'on-the-�y' selection for enriching and truncating
the RB. By doing so, the method avoids computations on possibly redundant data, as well as
unnecessary computations on data that will only be truncated later. The memory usage is minimal
as only a truncated representation of the data and a single new observation need to be stored at
any given time. As a result, this method is particularly e�cient in approximating extensive data
sets that have low underlying dimensionality, as is usually the case in computational structural
dynamics.

The method is only driven by the desired singular value truncation error, avoiding parameters
that depend on the nature and dimension of the data. Moreover, the use of this error estimator
allows for improved snapshot selection and the 'on-the-�y' RB truncation, ultimately enhancing
performance.

The only remaining parameter in our algorithm is the re-orthonormalization parameter, which
has been set here to εorth = 10−14. The aim of the re-orthonormalization step between subsequent
enrichments is to avoid incurring a signi�cant error while computing [Φ][Φ]T {ui}. This means
that the optimal value for εorth depends on the actual dimensions of the RB. Further work on
optimizing this parameter should conceivably enable additional computational savings.

In the present work, results are given for a sequential algorithm. It goes without saying that a
parallel implementation of the incremental SVD is possible following the lines proposed by [21].

Equipped with error estimator presented in this work, the proposed incremental SVD turns
out to be more e�cient and less problem-dependent than the traditional version. Using this error
estimator in place of the usual tolerances makes the proposed method easy to use, and nearly
optimal for training RBs for MOR. Within the POD framework, the proposed algorithm has been
shown to outperform the original state-of-the-art incremental SVD as well as the single-pass SVD
both in the o�ine training phase as well as the online reduction phase, for the presented Taylor
beam impact test case.
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