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Sign sequences of log-atomic numbers

Vincent Bagayoko®, UMons, LIX

September 29, 2020

Log-atomic numbers are surreal numbers whose iterated logarithms are monomials, i.e. additively irreducible num-
bers. Presenting surreal numbers as sign sequences, we give the sign sequence formula for log-atomic numbers. In
doing so, we relate log-atomic numbers to fixed-points of certain surreal functions.

INTRODUCTION

The class No of surreal numbers of J. H. Conway [7] is an inductively defined ordered field
with additional structure. Conway uses the abstract notion of Dedekind inspired cut as a fun-
damental con$tructor to define numbers by well-founded induction.

Indeed, any number x € No is obtained from sets L, R of previously defined numbers, as the
“simple§t” number with L < x and x < R. This relation is denoted x = {L|R}. Conversely, any sets
of surreal numbers L, R with L <R give rise to a unique simple§t number {L|R}. Thus the def-
inition of No comes with several features: an inductively defined order <, an order-saturation
property, a corresponding ordinal rank called the birthday f(x) which represents the minimal
ordinal number of inductive §teps required to yield x. For instance 0:={®|@} has birthday 0
whereas 1:={{0}|@} has birthday 1 and 1/,:= {{0}|{1}} has birthday 2.

The versatility of this con$truction allowed Conway and several authors after him to define
a rich $tructure on No. In particular, he defined ring operations that are compatible with the
ordering and turn (No, +, x, <) into an ordered field extension of the reals, as well as an exten-
sion of the ordered semi-ring (On, ®, ®, €) of ordinal numbers under Hessenberg sum and
product.

Conway also discovered that No enjoys a natural structure of field of Hahn series as per [10].
Every surreal number can be expressed as a possibly transfinite sum of additively irreducible
numbers called monomials. Moreover, monomials can be parametrized by a morphism x+— &%,
called the w-map, for which Conway gave a an equation using the cut presentation of num-
bers. Whereas the latter presentation is useful to produce inductive definitions of functions,
by induction on the birthday for instance, the presentation of numbers as Hahn series is useful
to compute certain operations on No. In particular, it can be used to describe H. Gonshor's
exponential function [9], and A. Berarducci and V. Mantova's surreal derivation [5].

The sign sequence presentation of surreal numbers, invented and $tudied by H. Gonshor
in [9], is a way to give precise description of surreal numbers. In this picture, numbers are
sequences of signs +1, —1 indexed by ordinals, or equivalently, nodes in the binary tree {—
1, +1}<On. The birthdate measure then coincides with the domain, called length, of the sign
sequences. A natural relation of simplicity, which corresponds to the inclusion of sign sequences
in one another and is denoted C, emerges as a more precise measure of the complexity of num-
bers.

Sign sequences are by no means an optimal tool to describe surreal numbers in the context
of the ordered field, exponential ordered field, Hahn series field, or differential field §tructures.
For instance given numbers x, y with known sign sequences, computing the sign sequence of
x+ y, or even formulating the properties of that of xy in general are open problems. However,
sign sequences behave relatively well with respect to operations that preserve simplicity under
certain conditions. This includes the w-map, the transfinite summation which identifies num-
bers with Hahn series, and the exponentiation of monomials. In this context, sign sequences can
be useful tools to understand the behavior of length under the operations, as well as deriving
general properties of certain classes of numbers with respect to the relations < and C.

#. UMons, LIX, vincent.bagayoko@lilo.org
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Describing the sign sequences of elements in a class Y often requires a reference with respect
to which they can be given. One way to give such a reference is to find a parametrization of Y,
i.e. a bijection F: X —Y for a certain subclass X CNo, and then describe the sign sequence of
f(x) =y in terms of that of x for each x € X. This presumes that the behavior of function F on
sign sequences may be understood, suggesting that F should be compatible in a sense with the
relations < and C. There enters the notion of surreal substructure of [3]. Surreal substructures
are subclasses S of No that are isomorphic to (No, <,C) under the re§trictions of < and C to
S xS. The isomorphism =Zg:No — S then being unique, one may rely on it to relate the sign
sequence of Zg z € S with that of z.

Surreal substructures naturally appear when defining certain operations on No, see for instance
[3, Sections 6 and 7]. The $tudy of surreal substructure yields tools to express and compute
sign sequences. In particular, expressing a structure Eg using classes of fixed points for given
parametrizations yields a method to compute the sign sequence formula of Zg. Relying exten-
sively on [3], we will develop the relevant notions in Sections 1 and 2.

A surreal sub$tructure of particular interest is the class La of log-atomic numbers. Those are
numbers a such that the n-fold iteration of log°" a of the logarithm at a yields a monomial for
each ne N. This structure plays a crucial role in the definition of derivations on No that are
compatible with the exponential and the §tructure of field of series of No. It is also used in the
investigation of the properties of expansions of numbers as transseries. This class was char-
acterized by Berarducci and Mantova [5, Section 5] who defined such a derivation and proved
a fundamental §tructure property for No. Finally La plays a role in the definition of the fir§t
surreal hyperexponential function E, [4]. Our our goal in this article is to compute the sign
sequence formula for Zj,. This will in particular give the sign sequence for E,(a) for each
surreal number a> R whose length is §trictly below the fir§t e-number ¢y € On.

In this task, we are continuing work of S. Kuhlmann and M. Matusinski in [13]. Indeed, they
considered a surreal substructure K properly contained in La and determined its sign sequence
formula. The relation between K and La was subject to the conjecture

0
La= log°ZK [13, Conjecture 5.2],

which turned out to be false [5, Proposition 5.24]. The correct relation between La and K was
later found by Mantova and Matusinski [14]. We will rely on their sign sequence formula and
a presentation of La using classes of fixed points to derive our formula.

1 Numbers and sign sequences

1.1 Numbers as sign sequences

As Gonshor, we define numbers as sign sequences.

DEFINITION 1. A surreal number is a map x: 0(x) - {—1,1}; a » x[a], where €(x) € On is an
ordinal number. We call €(x) the length of x and the map x:¢(x) - {—1,1} the sign sequence
of x. We write No for the class of surreal numbers.

Given a surreal number x € No, we extend its sign sequence with x[a] =0 for all a > €(x).
Given x € No and @ € On, we also introduce the restriction y=x1a€No to « as being the initial
segment of x of length «, i.e. y[f]=x[f] for f<a and y[f]=0 for f> a.

The ordering < on No is lexicographical: given distinct elements x, y € No, there exists a
smalles$t ordinal « with x[a] # y[a] and we set x < y if and only if x[a] < y[a].

For x, y € No, we say that x is simpler than y, and write xC y, if x=y1€(x). The partially
ordered class (No, E) is well-founded. We write xC y if xC y and x# y. For x € No, we write

xc:={aeNo:aC x}
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for the set of numbers that are $trictly simpler than x. The set (xc, E) is well-ordered with order
type ot(x, E) = €(x). Moreover, xc is the union of the sets

x;={y€ENo:yCx,y<x} and xg:={yeNo:yCx,y>x}.

Every linearly ordered subset X of (No,E) has a supremum s=supc X in No. Indeed, we have
0(s)=sup€(Z), and s[a] = x[«a] for all x € X with a <€(x). Numbers x that are equal to supg x-
are called limit numbers; other numbers are called successor numbers. Limit numbers are exactly
the numbers whose length is a limit ordinal.

Notice that No is a proper class. For instance, the linearly ordered class (On, <) is embedded
into the partial order (No, C) through the map a — (1)3<4:On — No. We will thus identify
ordinals numbers as surreal numbers.

1.2 Monomials

Any non-archimedean ordered field K admits a non-trivial valuation called the natural valuation
[1, Section 3.5]. The natural valuation of x €K~ is related to its archimedean class, i.e. the class

¥[x]:={yeK>:3¢qeQ>, ¢ ' x<y<qx}.

In NBG, the corresponding valued ordered field can be embedded [11] into a field of generalized
Hahn series, as defined by Hahn [10]. The existence of such embeddings, called Kaplansky
embeddings, usually requires the axiom of choice.

Having defined the $tructure of ordered field, Conway noticed that for No, the intances
where choice is required could be circumvented by the use of the inductive nature of No. Indeed,
in No, each archimedean class 94[x] has a unique C-minimal element denoted b, and the class
Mo := {d5: x € N0~} is a subgroup of (No~, x) which can be used to carry the definition of
the Kaplansky embedding.

DEFINITION 2. A monomial is a number m which is simplest in the class 96[m], i.e. a number
of the form m = by for a certain x € No~.

Moreover, Conway defined a parametrization z +— @* of Mo. This is a §trictly increasing
morphism (No, +, <) — (Mo, x, <) which also preserves simplicity:

Vx,yENo0,xCy e 0" C .
The operation a — ®*: On — No coincides with the ordinal exponentiation with basis w.

1.3 Arithmetic on sign sequences

For ordinals «, , we will denote their ordinal sum, product, and exponentiation by a + f, a x 8
and ¢P. Here, we introduce the operations + and x of [3, Section 3.2] on No. Those are natural
extensions of ordinal arithmetic to No, which we will use in order to describe sign sequences.

For numbers x, y, we write x + y for the number whose sign sequence is the concatenation of
that of y at the end of that of x. So x + y is the number of length ¢(x + y) = €(x) + €(y), which
satisfies

(a<@(x))
(B<l(y)

I
al
&,

(x+y)la]
(x+y)[e(x) +p]

I
=
=

The operation + clearly extends ordinal sum. We have x+ 0=0+ x=x for all x € No.
We write x x y for the number of length €(x) x €(y) whose sign sequence is defined by

(xx y)[€(x)xa+p] = yla]x[p] (a<l(y),p<(x))
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The operation x extends ordinal product. Special cases can be described informally: given x €
No and a € On, the number x x « is the concatenation of x with itself to the right “e-many
times”, whereas « x x is the number obtained from x by replacing each sign by itself a-many
times. We have xx1=x and xx (—1) = —x for all x€ No.

The operations also enjoy the properties which extend that of their ordinal counterparts as is
illustrated hereafter. We refer to [3, Section 3.2] for more details.

LEMMA 3. [3, Lemma 3.1] For x, y, z€No, we have
a) x+(y+z)=(x+y)+z, x+0=0+x=x and x+ y=supc (x+ yc) if y is a limit.

b) xx(yxz)=(xxy)xz, xx(y+2z)=(xxy)+ (xx2), and x x y=supc (xxyc) if y is a limit.

1.4 Sign sequences formulas

If « is an ordinal and f is a function @ — No, then («, ) uniquely determines a surreal number
[a, f] defined inductively by the rules

o [0,f]=0,
o [y+Lf1(y+D]I=ly.f1y1+f(y) for f<a,
e [y.f1yl=supc{ly f1u]: <y} for limit ordinals y < a.

We say that («, f) is a sign sequence formula for [a, ], which we identify with the informal
expression

Dy W=FOFFQ) -+ f () +--

where y ranges in a. For inétance, the ordered pair (o, ((—1)") <) is a sign sequence formula
of yxw=1+4(=1)+ 1+ (=1) +---=2%/5. In general, we look for such formulas where f alternates
between On~ and —On~, that is, where f ranges in On” U —On~ and where, for each ordinal
B with f+1<a, we have f(f) f(f+1)<0. It is easy to see that every surreal number admits a
unique such alternating sign sequence formula. We refer to this formula as the sign sequence
formula of said number.

If F:No — No is a function, we may look for a function ¥ whose value at each number x is a
sign sequence formula of F(x). We then consider ¥ as a sign sequence formula for F.

As an example, we now §tate Gonshor's results regarding the sign sequences of monomials.
For ze No, we write 7, for the order type of (z,C), that is the order type 2_1[{1}] when z is

seen as a sign sequence, or equivalently the ordinal number of signs 1 in the sign sequence of z.
We have 7, =0 if and only if z€ —-On. Gonshor found the following sign sequence formula for
monomials:

PROPOSITION 4. [9, Theorem 5.11] Let z be a number. The sign sequence formula for &* is

. X T 1
P14 o (FIBIOT T,

For inStance, we have

Jo (2)1/2 = w+(-w?) and
logw = 0 = wt (—w?).
Let us also specify a consequence that we will use often in what follows.

LEMMA 5. Let x, y€No be such that the maximal ordinal a with a C y is a limit. We have Y=

o* o™,
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PROOF. Let @ be maximal with o C y and write y=a + z. Since y is strictly positive, we have a >
0, whence a > w. Let

m:= (Z[O] o rx+a+z11+1) + (Z[l] d)TTx4—a4-Z+1) ;o4 (Z[)/] ) Tx+a+(Z1(y+1))+1) Foeee

where y ranges in €(z). Proposition 4 yields @™ Y= o™ ¥@*Z= =+ 1 1y On the other hand,

x-i-y:

we have w ©* 4 n+ m where n is defined as the transfinite concatenation

n = (y[0] d)fx;1+1) Fee (_V[,B] a)ij’/”"'l) b,
where f§ ranges in a. For < a, we have y[f]=1and 7,; =75+ f, s0
no= oIl g o tfrl g
— d)Tx+a.
It follows that &7 = o* + o=+, ]

2 Surreal subStructures

2.1 Surreal sub$§tructures

DEFINITION 6. A surreal substructure is a subclass S of No such that (No,<,E) and (S,<,C)

are isomorphic. The isomorphism (No,<,C) — (S, C, <) is unique, denoted Eg and called the
parametrization of S.

Example 7. Here are examples of common surreal substructures and corresponding parame-
trizations.

o For xeNo, the class x + No=No=*:= {y€No: xC y} has parametrization z+— x + z. We
have

NoZ! = No”:={yeNo:y>0},
NoZ? = No™”:={yeNo:y>R},
NoZ? = No™<:={yeNo:0<y<R~}.
e For x€No~, the class xxNo:={x % z:z € No} has parametrization z+ x x z. We have
1xNo = No

wxNo

No,:={yeNo:suppy>1}.

o The class Mo of monomials has parametrization z — .

2.2 Convexity

Let S be a surreal substructure and let C be a convex subclass of S. This means that for x,y,z€S
with x < y<z, we have x,ye C= y e C. Then we have a simple criterion to decide whether C
is a surreal subS$tructure:

PROPOSITION 8. [3, Proposition 4.29] A convex subclass C of S is a surreal substructure if and
only if every subset of C has §trict upper and lower bounds in C.

In particular, non-empty open intervals (a, b) NS, where a,be S U {—oo, +o0}, are surreal
substructures. The following proposition gives a sign sequence formula for =, p) in certain
particular cases.

LEMMA 9. Let o be a non-zero ordinal. Let a, b and z be numbers.

a) Wehave E (g gig)2=a+1+zifztar,
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and Eg giqy(@+z)=a+a+(-1)+z

b) Wehave_.(;H_ b 2=b+(=1)+zifz¢~
and E(pi(—q),b)((—a) +2) =b+ (- )+1+z.

PROOF. Fir$t notice that we have a C z if and only if z> (ar) and (—«) C z if and only if
z < —(ar) so the given descriptions cover all cases. We will only derive the formulas for the
interval (a,a+ @), the other ones being symmetric. The number a+ 1 is the root of (a,a+ a) so
for zeNo, we have Z(; 44 4) 2= a+1+ u; for a certain number u;. The class No” % is convex in
No and for z€ No? %, we have a+ 1+ z¢€ (a,a+ a). The function z+> a+ 1+ z defined on No
defines a surreal isomorphism, so we have Z(, 44 4)z=a+1+zif z€ No”%. On the other hand,
we have

No\ No*% = NoZ%, and
(a,a+a)\ (a+1+No*%) = g+a+(-1)+No.
It follows that 24 44.4) 1N 02%= ”ﬁ 2at+at(-1), Which yields the other part of the description. O

2.3 Imbrication

Let U, V be two surreal substructures. Then there is a unique (<, E)-isomorphism
Ev:=EvEgiU—V

that we call the surreal isomorphism between S and T. The composition =y Ey is also an
embedding, so its image U<V := EyEy No is again a surreal substructure that we call the imbri-
cation of V into U. Given ne N, we write U™" for the n-fold imbrication of U into itself. We
have Ey<n=Eg).

Example 10. For x, y € No, it follows from Lemma 3 that we have

(x+No)<(y+No) = (x+y)+No,
(xxNo)<(yxNo) = (xxy)xNo, and
(xxNo)=<(y+No) = (xxy)+ (xxNo).

Less elementary results include the relation Mo<No~ = Nos. <Mo of [3, Proposition 7.3].

The relation of imbrication is related to the inclusion of surreal substructures in the following
way:

PROPOSITION 11. [3, Proposition 4.11] Given two surreal substructures U,V, we have UCV if
and only if there is a surreal substructure W with U=V <W.

2.4 Fixed points

DEFINITION 12. Let S be a surreal substructure. We say that a number z is S-fixed if Egz=z.
We write <% for the class of S-fixed numbers.

If U,V, W are surreal subStructures with U=V <W, then the class W*¢ is that of numbers z
with Eyz=Eyz.

PROPOSITION 13. [3, Proposition 5.2] If S is a surreal sub§tructure, then $<® = _xyS™".

Notice that S may not itself be a surreal substructure in general. We thus consider the fol-
lowing notion of closure:
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DEFINITION 14. We say that S is closed if we have =g supc Z = supg Eg Z for all non-empty set
Z cNo such that (Z,C) is linearly ordered.

LEMMA 15. [3, Lemma 5.12] If U and V are closed surreal sub$tructures, then so is U<V.

PROPOSITION 16. [3, Corollary 5.14] If S is closed, then S™® is a closed surreal substructure.

—

In general, when S is a surreal sub$tructure, we write Eg<o =: Z§.

Example 17. Here are some examples of structures of fixed points (see [3, Example 5.3]).
e For x eNo, the §tructure No= is closed, with (No=¥)<® = No2¥*®,

e For x €No~, the §tructure x x No is closed, with (x x No)*“ = x*° x No where x* :=
Supc {x, X X X, X X X X X}.

o The $tructure Mo is closed, and the parametrization Zj, of (Mo)~“ is usually denoted
Z+— g, since it extends the ordinal function ¢+ &; which parametrizes the fixed points

of {— .

e The $tructure 1+ Mo~ (where Mo~ =Mo N No~) is closed. Moreover, its §tructure of
fixed pomts (1+Mo~)™“ coincides with the class of fixed points of the function z +—
1+6° Tt , although this last one is not a surreal isomorphism. Informal expansions

=140 1/z+a) /Z‘HA'):’
of numbers in this class can be replaced by the formulation 3z € No, x =E{, po< 2. The
sign sequence of x can be computed in terms of that of z using Proposition 19 below.

2.5 Sign sequence formulas for closed Structures

Let S be a closed surreal substructure and let ¥g = (o, f7)zeNo denote its alternating sign
sequence formula. This formula is “continuous” or “closed” in the sense that for any limit
number z, we have a; =supc a;_ and f; = f;_. If for each surreal number u and for o €{-
1,1} we write ¢, , for the non-zero surreal number defined by (Eg u) + ¢u+a Eg(u+ o), we
then have

- —~ A4S . S . . .S
VzeNo,Egz=Eg0+ ¢z + o+ + ¢y pe1) +

where f ranges in €(z). Thus it is enough to compute the numbers ¢, to determine sign
sequences of element of S. In the case in Gonshor's formulas for the w-map and the e-map
and Kuhlmann-Matusinski's formula for the x-map, those numbers are ordinals or opposites of
ordinals. If S is not closed, then for every limit number a for which there will be an additional
term :(a) € No such that §(a) is not always zero, and that we have, for all z € No,

Hgz= SO+¢z11+¢z12+ +6(z1w) +¢z1(w+1 +- 5(21(a)>'<17))4'r---4'r¢z1(ﬁ+1)+

where wx < f<€(z). Such terms & (a) must then be computed independently. Thus it may be
a good first step towards computing a sign sequence formula for S to check whether it is closed
or not, and where closure defects occur.

Example 18. The parameters ¢, ; , for the w-map are

d)TZ+1

®%*2 for all zeNo.

and

¢z+( 1)
¢z+1
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By [9, Chapter 9], the sign sequence formula for e. is given by the parameters:

Mo™® _ .o
zi(-1) = —ér, and
~w
Mo™ = ¢,,,, forall zeNo.

Assume again that S is a closed surreal substructure and let z€ No. Our goal in this paragraph
is to compute E§ z provided we know =§ on z-. The identity $<“ =" _ E¢No suggests that
=¢ may be a form of limit of Z§ as n tends to infinity. Indeed, we claim that one can always find
az€No such that ESN az is a C-chain with supremum =§ z. More precisely, we have:

PROPOSITION 19. Let S is a closed surreal subStructure and let z€No. We have

E¢z = supE§zc ifzisalimit, and
C
—w N —w o .
2§z = supZEg (E§u+o) ofz=u+ o for certain ueNo,ce{-1,1}.

[

PROOF. Let Z = E§ zr, and set s, =supgc Z. Since S is closed, so is $*¢, which implies that s, is
S-fixed.

Assume that z is a limit number. Notice that s, is the simplest element of S™¢ with ¢ z <
sz <E§ zg, whereas z is the simplest number with z7 < z < zp. We deduce that s, ==¢ z.

Otherwise, there is a number u and a sign c €{-1,1} with z=u+ 0. Let

az:=(E§u) +o.

Since the sign of a,— (2§ u) is o, the sign of Zga, — Zg (E§ u) = Eg a; — (E§ u) is o as well,
S0 a; C =g az. It follows by induction that E§ a is a C-chain whose supremum y lies in each
Z¢S for n€ N by closure of those §tructures, so y € $*“. Since the sign of 2§z — E§' u is o, we
have a,C =§ z, whence yC =§'z. Now Z¢ z is the simplest S-fixed number such that the sign of
2§z —E§ uis o, whence y=2¢ z. O

3 Exponentiation

In this section, we define the exponential function of [9, Chapter 10] as well as the surreal
subs$tructures La and K.

3.1 Surreal exponentiation

Inductive equations Recall that by Conway's construction, or in Gonshor's setting by [9,
Theorem 2.1], given sets L, R of numbers with L <R, there is a unique E-minimal, or simplest,
number {L|R} with

L<{LIR}<R.
Let S be a surreal substructure. Carrying the previous property through the parametrization of

S, we obtain, given a surreal substructure S and subsets L, RCS with L <R, a unique E-minimal
element {L|R}g of S with

L<{LIR}s<R.

In order to write certain equations, we will write, for x €S, xg =Snxz and x}SQ :=xgNS. Notice
that we have x = {xflx}sq}s by definition. Thus if T is another surreal substructure, the surreal

isomorphism E% sends x onto

=S _ (=S S-S 8§
Erx={ETxL|ET xR} - (1)
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Surreal exponentiation Gonshor uses an inductive equation to define the exponential func-
tion. Given n€ N and x € No, set
xk
[x]n= ) 7

k<n

Let x € No be such that exp is defined on xc. Notice that for instance, for x’ € x; and ne N, we
should have

exp(x) =exp(x”) exp(x —x") >exp(x’) [x = x"]p,

whereas similar inequalities hold for x”” € xg. This led Gonshor to define

exp XR exp XL, }

eXPx:{O, [x_xL]Neprln [x—XR]2N+1eprR [x_xR]2N+l’ [XL—X]N .

Gonshor proved that this equation is warranted and that it does define a §trictly increasing
bijective morphism (No, +) — (No~, x). We write log for the reciprocal of exp.

The functions h and g The function exp interacts with the w-map in the following way:
exp(Mo”)=Mo~<Mo by [9, Chapter 10].
More precisely, for every $trictly positive number x and every number y, we have

exp(0¥) = ,
log(d)djy) _ d)h(y)’

where the §trictly increasing and bijective function g: No” — No and its reciprocal h have the
following equations in No~ and No [9, Theorems 10.11 and 10.12]:

Vz={LIR}eNo”,g(z) = {Epidzg(LNNo”)|g(R)}.
Vz={L|IR}€No,h(z) = {h(L)|h(R),R> *}No>.

The function g was entirely §tudied by Gonshor who gave formal results such as the character-
ization of its fixed points and as well as a somewhat informal description of the sign sequence
of g(z) for any §trictly positive number z given that of z. We will recover part of his results in
a different approach in Section 4.

3.2 Log-atomic numbers

The class La of log-atomic numbers is defined as the class of numbers m € Mo”™ with log"m €
Mo~ for all n€ N. In other words, we have the equality

La:= () exp"Mo”.
neN

The class La was first described by Berarducci and Mantova [5] in order to define a derivation
on No. We next describe the parametrization of La.

Consider, for re R~ and ne N the function
for=x—exp™(rlog"z):No™” —No™”.
Recall that the class of monomials is that of numbers m which are simplest in each class

Y[m]={xeNo”:3reR”, fy ,-1(m) <x< fo r(m)}.
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Similarly, Berarducci and Mantova proved that log-atomic numbers A are exactly the simplest
numbers of each class

&[A]:={xeNo”:3neN,IreR”,f, -1(m) <x< fyr(m)}.

Moreover, they derived [5, Definition 5.12 and Corollary 5.17] the following equation for the
parametrization A.:= =, of La:

YzeNo, 1,

(R, fv,R>(Azp) IfN R>(Azg) } (2)
{R,exp™(rlog" A, )lexp™(rlog™A,)},

where r,n,z’, 2"’ respectively range in R”, N, z; and zg.
Moreover, the following formula [2, Proposition 2.5] is know for A.:

VzeNo,A,+1=exp .. (3)

3.3 Surreal hyperexponentiation

In [4], we defined a §trictly increasing bijection E,:No~>” — No~” which satisfies the equation
VxeNo0™", E,(x+ 1) =exp(Ey(x)). (4)

Morever, this function is surreal-analytic at every point in the sense of [6, Definition 7.8] and
satisfies E,(x) > Ex(x) for all x € No~>”. This function can be seen as a surreal counterpart to
Kneser's transexponential function [12].

In order to define E,, we relied on a surreal substructure Tr of so-called truncated numbers.
They can be characterized as numbers ¢ € No~*” with supp ¢ > . The function E, is
defined on the class of truncated series by the equation:

Yo € Tr, Ey(9) = {EN(9), fv.R> (Eo(0l™)) Ifiv.R>(Eo(9R"))} €La

This equation realizes a §trictly increasing bijection Tr — La.

Now consider the set No (&) of surreal numbers x with length €(x) < &. By [8, Corollary 5.5],
the $tructure (No(¢), +, %, exp) is an elementary extension of the real exponential field. More-
over, for x eNo(g), there is ne€ N with x < E,(w). It follows that each element of No(eg)~” :=
No(g) NNo™” is truncated, and that for ¢ € No(g) N No™”, the sets Ex(¢) and Ay = {o,
exp(w),exp(exp(w)), ...} are mutually cofinal with respect to one another. Thus on No(g)~”,
the equation for E, becomes

Yo €No ()™, En(@) = {Ans fiv. R> (B (0L ")) R> (Eo(08")) ).

We claim that E,(¢) = A, for all 9 €No(g). We prove this by induction on (No(g)~”,C). Let
@ €No(g)”” such that the result holds on ¢-. Noticing that No(&) is C-initial in No, we get

Eo(p) = {An. fir,R>(Eul0L )| R>(Eo(9R")))
= {AN,fN,R>(/1(pLTr)|fN,R>(A¢Er)} by the inductive hypothesis.

{AN,fN,R>(A(p1L~10>’>)|fN,R>(A¢}1§0>,>)} because No(g)~*” CTr

1
LN Ew((l’)

>,>

{R, fN,R>(Ag) I fN,R>(Apg)}  because ¢p = 0> UN and gg=pR°
Ay by (2).
>

So E,, and A. coincide on No ()~

3.4 Kappa numbers

The structure K of x-numbers was introduced first and studied in detail by S. Kuhlmann and
M. Matusinski in [13]. It was designed as an intermediate subclass between fundamental mono-
mials and log-atomic numbers. The relation between K and La is given by the imbrication
K=La<No. of [14, p 21].
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Similarly to monomials and log-atomic numbers, K numbers can be characterized as simplest
elements in each convex class

&*[x]:={yeNo”™”:Ine N,log"x< y<exp"x}, for xe No™”.

The parametrization «.:= =ZKg:No — K of K is given by the equation

VzeNo, k;={R, expN KZLllogN Kzp)-

Moreover, by [3, Corollary 13 and Theorem 6.16], the $tructure K is closed.

In order to compute the sign sequence of k-numbers, Kuhlmann and Matusinski rely on an
intermediate surreal substructure denoted I. This surreal substructure is defined by the imbri-
cation relation: K =:Mo <2< Indeed, since KCLaC exp(Mo”™) = Mo~2, the §tructure I exists
and is unique.

For zeNo we let bz denote the number with z=1+bz if z>0 and bz=—c0 if 2<0. We also
extend the functions ¢ and 7 to —co with 7_«:= —0c0 and ¢_:=0. For z&eNo, we define ¢£+1 =
er,, and gb; +(—1) = —®. The parametrization .:=Ey of I admits the following sign sequence for-
mula

YzeNo, lz:Zﬁ<Q(z)¢g1(ﬁ+l) [13, Lemma 4.2].

4 Log-atomic numbers and fixed points

Our goal is to compute the sign sequence of =14 z = A, in terms of that of z, for all numbers z.
Recall that La CMo~%, so there is a surreal sub$tructure R with La = Mo “2<R. We write pPzi=
ER z for all z€ No. We have K=Mo?<I=La~<Nos, whence =R <No,. The computation

in [13] of sign sequences of numbers in La<(Noy + Z) = epo (La<Nos) = logZ K can thus be
used to derive part of the result.

For z=wxa+neNos + Z where acNo and n€ Z, we have A, =exp" Ayxq=exp” K, By
[13, Theorem 4.3], we have

. g+ n

Ay = o if n<0. (5)

- 10+ ENo(eny g+ 1)

Ay = 0 if n>0. (6)

Our goal is to extend this description to the sign sequences of numbers p, for all z € No, relying
on the known values py,x 4+ 5, for all ae No and n € Z. More precisely, we will compute p. on all
intervals

Ipni=(wxa—(n+1),oxa—n) where acNoand neZ.
Since No can be realized as the reunion
No = |_| Ipn|u{wxa+n:aeNo,ne N},
aeI}o
ne

this will cover all cases. The sign sequence of A; can then be computed using Proposition 4
twice. In order to compute the sign sequence for R, we first describe the action of h and g on
sign sequences in certain cases.

4.1 Computing s

Let a€No be fixed and write 0,;:= w x a.

LEMMA 20. We have ICNos, whence R <Nos CNo-..
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PROOF. The first result is a consequence of the identity Nos,. = wx No and [13, Lemma 4.2].
The second immediately follows. ]

Recall that we have k= @ so pg,= la- By [13, Lemma 4.2], we have 7,,= &,7,. We set

Ga = 7,€0n and
Sa = %l = %% weOn,

so g=wif 7,=0 and §;=¢,; x w if 7,>0. We will treat the cases 7; =0 and 7;> 0 in a uniform
way.

LEMMA 21. For n€ N, we have pg,_p,= pg,— n=pg,+ (-n)

wa(”)

PROOF. We have py, _,=log" pg =log" K, = 1) by [13, Theorem 4.3(1)]. By Lemma 20, we

9a Lofen . -
have 1;€Noy 50 13+ (=n) =15—n,50 0~ =pg_p=o . Since pg, = 0, we have py _,=

pg, — n. It follows that pg — n=pg, + (—n). |

We now fix n€ N and we set Jg n:= h(I5 ). By the previous lemma, we can write the interval
I, as the surreal substructure

Ion = (Pg—n-1-P0,~n)

(P@a— n-— 1ap9a_ T’l)
= No2u 1"

Thus Fy, , is ﬁraightforward to compute in terms of sign sequences.
We have h(pg,—n) = %"~ Land h(pg,—n-1) = %"~ 22 ¢P% 11 (=8,). Thus the interval

Ja.n is subject to the computation given in Lemma 9(b). That is, we have.
LEMMA 22. For z€No, we have
a) By, z=% "1 (-1 +zifz¢ -
b) 2y,,((=8) +2) = Pln2i 14z,

P11 ex; and % "l e xg. This implies that &%~

h(pg,—n—1) € h(x1) and that (bpg“_n_l = h(pg,—n) € h(xg). Since with R~ &* > WP 2, we

deduce the following equation for h on I ,:

{(A‘)pﬂa_n_z ( Ian)|h( Ian)’a‘)pga—n—l}
Ian Ia,

{h(xL )'h(xR )}JM'

We see that h 11, is the surreal isomorphism I, — J4, so h1ly=Ej, o Efal.

Moreover, for xel,; ,, we have w

Vxelg p, h(x)

PROPOSITION 23. For z€No, we have
a) h(pg-n-1+1+2)=a %14 (1) +zifz¢-
b) h(pga_,,_lirlir(—5a)+z)=(2)p“’a*”*2+1+z.

r—~Ia n

PROOF. This is a direct consequence of the previous lemma and the identity h1l, ,= gy, O

LEMMA 24. For z€l, p, if the number h(z) is a monomial, then there is u€ No with §,C u and
z=pg—pn-1+1+(=8a) +u.
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PROOF. Assume z=pgy _,_1+ 1+ u where u<+ —(8,)1. Since h(z)= Gl 11 (1) fuisa
monomial with 7,, | =g, by Proposition 4, the sign sequence of u must start with (-J,),
which contradicts the hypothesis on u. We deduce that there is a number u with z=pg _,_; +
14 (=68,) + u. Since h(z) = &% "2+ 1+ u is a monomial and by the same argument, the sign
sequence of u must Start with at least §; many signs 1, that is, we must have §,C u. ]

4.2 Computing g

For ne N, we set
Ka,n’: (d)pﬂaﬂz—l, d)p9a+n)

and
Ha,n = g(Ka,n) = (P9a+ n’p9a+n+l)-

Recall that if n>0, we have pg 4= pg, + EpMo(ca+ 1), s0 EK,, is subject to the computations of
Lemma 9(a). We have pg,_1=pg,+ (1), so EK,, is subject to the computations of Lemma 9(b),
whence

LEMMA 25. For z€No, and n>0, we have
6) BK,, 2= " 1z if 2% (SRio (sa+ 1)y
b) EK“(:HO (ga+1)+2)= paﬂ*”%(—l)irzifz>0.
¢) Bk, 2= 4 (-1 +zifz¢ -
d) EK,,((=8) +2)= Pl 11142 ifz<0.
LEMMA 26. For zeNo and n€ N we have
a) EH,,Z2=pg+n-1+1+2if 2% (Epolsa+ 1)L
b) EH, (&% "1 Efo(Ga+ 1) +2) = pgan+ (1) + 2 if 2>0.
PROOF. Again, this is a direct consequence of Lemma 9(b). |

LEMMA 27. We have g 1Kg n= ”E“:

PROOF. Let z € (& %*n-1, (P%+n) We have d,< &%+ so Ei/llobz<pga+n:g(d)p9“*"’l). We now
compute

g(z) = gzl d)p9a+n—1|2§ Py,
- {EM by g (@Prn1), g Kan) ( “n), g (@)
- (& Mobz, (Parn=1y ),8( Kan) ( ), g paa+n)}.
= {g<w"9“*“ 8( K“”)lg(ZR ") po,+ 5a}
= (el g (K
It follows that g 1K, n—Hi(I“” a

PROPOSITION 28. For z€ No, and n>0, we have
a) g/ 1414 2) = pgant 142 if 2% (ERo (Ga+ 1))y,
b) g( LB e+ 1) ¥ 2) = pgins1+ (—1) +z if 2<0.
) g%+ (-1)+2)=pg+1+zifz¢—(8)L.
d) g(a%+ (=8) +2) =pg,+zif 2>0.
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PROOF. This follows from the three previous lemmas. |

4.3 The characterization theorem

Piecing the descriptions of Propositions 23 and 28 together, one obtains a full description of the
sign sequence of h(z) for z€ No. We will only require part of those descriptions to reach our
goal of describing sign sequences in R. For n€ Z, we set Ry , =ER 1, n. We will characterize
R, » using fixed points of the surreal substructure

Va = 5a";‘ (_(Sa;( CL)>‘< 5(1) -‘;-MO.

Notice that this §tructure depends only on 7. Both Mo and No=%* (-8%©*&) are closed so V,
is closed by Lemma 15, so the class V;¥ is also closed.

THEOREM 29. For n€ N, we have

a)
Ra.n=po,— (n+1) F14(=80) + V2.

b) Foru=pg,_(nt+1)+ 1+ (=6;) +v where veV;? and ke N, we have

LU . POa—(n+k+1)F1H+(=0a) +v
logk &®" = 6@

Ry, —(n+1) =P9a+n+v&<w-

d) Foru=pg,_(n+1)+1+(=3a) +v where veV;“ and ke N~, we have

LU . ‘P6a+k—(n+1)‘5"’
expk®" = @

PROOF. We firét prove by induction on k that we have
Vne N,RynCpg,— (ne1)+ 1+ (=82) + VK.

First assume that k=0. For ne N and ue€ R, p, the number h(u) is a monomial, which implies
by Lemma 24 that u has the form pg,_ (,+1) + 1+ (=84) + z with §,C z. This implies in particular
that u€ pg,_(p+1)+ 1+ (=dq) +No.

Let k€ N such that the result holds at k and consider n€ N and up R, . Thereisa v e V;k
with up = pg,— (n+1) + 1+ (=0a) + vk. Since up € Ry, we have h(ug) € oRant1l Now h(up) =
%= (42 11 4y = % "+ § by Proposition 23(b). Let u; € Ry 41 with h(ug) ="', We have
h(u1) € Mo, so by Lemma 24, there is a number vi1 with u1=pg,_ (p12) + 1+ (=6q) + V41 and

82 € Vk+1- Thus h(ug) = (ot (e T1F (=0 + v By Proposition 4 and Lemma 5, we have

h(ug) = &P+ 1§, + (=8, % wx 8,) + ST+ Vi
We identify
Vi = OaF (=% wx ) + @St T vk
= Gt (=Gaxwx8) + @1 since §g=¢q+ 1+ 5T viiq
= BV, Vk+1-
The inductive hypothesis applied at (u, n+ 1) yields vg, 1 € Vg k so VeV, (k+1) We thus have

RonC () P, (ne1) + 1+ (=02) + Va* = pg,_ (na1) + 14+ (=8a) + V.
keN
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We next prove b). Since it implies that logN " C Mo, this will yield a). We prove b) by
induction on k. Note that the result is immediate for k=0. Let k € N be such that the formula
holds at k, let ve V; and consider u=pg,_ (p11)+ 1+ (—=8) + v. Our inductive hypothesis is

L u Pl (n+k+1)T1H(=8a) +v
logka®" = &

Thus

LU . POa—(n+k+1)F1F(=8a) v
loghk*1 6@ = log ™™

— (A‘)h(PH,l—(nJrkH)‘i‘l'i' (=da) +v)

. (bp()ﬂ—(mkﬂ)_;_l_;_v

=w by Proposition 23(b)

. PO —(n+k+2) 3
wa) +v

= M (Sdk0k )+ Gince ve V,“ and V' =Fixy,
= OIS Sk exa) FOUTTY e a=6a+1+8CVvkyq
_ d)(bp()a—(n+k+2)‘i'14’(—5a)_i_ébga3rljrv by Proposition 4

= cb‘bper(ﬁk”)“ﬂ_&a)” by Lemma 5.

This are the desired results. The formula follows by induction.
We next prove d). Let u=pg,_1+ 1+ (=8) + v where v e V;*“, so that u is a generic element
of Ry 0. By the same computations as above, we have

g(wu) _ g(woga,l-i-l-i-(—éa)-i-V)

= g(PU 11 8+ (=8 % wx 8z) + @“F1+Y) by Proposition 4 and Lemma 5
= g(d)peﬁ(—l) + 8+ (—Gaxwx8a) + @) since fu=gu+1+8,Ev

= g((b’ueﬁ(_l) +v) since veV;

= g(& %+ (=8;)+v) by Proposition 4

= pg,+1+v by Proposition 28(d)

= pg,+v.

This proves the formula for n=0. Now let n€ N be such that the formula holds at n. Let u=

pg,+n+ v with ve V;“ be a generic element of Ry — (n+1). We have v<&;so v# (Eﬁfol(% +1));,

thus Proposition 28(a) yields
g(o") = g(d)pga+n+11)
g(@paﬁﬁlw)

= POrn+1tV

By induction, the formula for g is true for all ne N. ]

4.4 Application to the closure of La

COROLLARY 30. For n€ 7, the Structure R, j, is closed.

PROOF. Since both No2%(=0:%@%d) 354 Mo are closed and by Lemma 15, the surreal sub-
structure V, is closed. Therefore V;“ is closed. By the previous theorem, the §tructure R, n can
be expressed as No2?<V;“ for a certain number b depending on a and n. So by Lemma 15, it
is closed. ]

PROPOSITION 31. The structure La is closed.
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PROOF. Let C be a non-empty chain in La. We want to prove that supc C is log-atomic. We
may assume that C has no C-maximum.

If the set K of x-numbers k, with 3c€ C, k. C c is E-cofinal in C, then supc C =supcK €K by
closure of K, so supc C €La.

Assume that K is not C-cofinal in C. Let ¢y € C be C-minimal with KT ¢y. Let Cy={ce C:
co C ¢} and notice that supc C =supg Cy. Let ae No with k; =supc K € K. For c € Cp, the number
Kq is C-maximal in K with x,C c. By [3, Corollary 7.13 and Theorem 6.16], we have c€ &*[x,]
for all ¢ € Cy, whence Co C €*[k,] = €*[Ag,]. The set logZ Ag, is cofinal and coinitial in &*[Ag,]
for the order <. So for each element ¢ E Cop there is a unique integer nc € Z with ce La<I, p,.. The
equations (5) and (6) imply that if c, ¢’ are elements of Cy with cC ¢’, then we must have n.C n,.
It follows that v:=supgc ng, exists in Z U {-w, }. If v=0w where o € {-1,1}, then supc C=
Ag,;,ELa. If v€Z, then for ¢; € Cp with ne;=vand Cy={c€ C: ¢ C c}, we have supc C =supc
and C;CLa<I, ,= Mo*2<Ra, ». The §tructure Mo~2 is closed, so by Corollary 30 and Lemma 15,
the §tructure Mo“?<Ry, is closed. So supc C € Mo~?<Ry , is log-atomic. ]

5 The sign sequence formula

We apply the results of the previous sections to give the sign sequence formula for R.

PROPOSITION 32. Let V(a) =supc E\l\/{l 0. We have V (a) = :%’/a 0, which is the transfinite concate-
nation
V(a) = oSt i (pstetatly +Z EModa 1 o) (ZkooEModa) F 14 qat2H gab 1
neN ’

As a consequence, we have Ty (q) = &1,,, € Mo <.

PROOF. The identity V (a) =supc E%{l 0 is a direct consequence of the closure of V,. The com-
putation of this supremum is left to the reader. ]

PROPOSITION 33. For z € No deﬁne Pri1= Ebrairinsr aNd Pyi(_1)=—87 ., Let ®° be the
function defined on No by ®%(z Zﬁ<€(z Pa1( (f+1)- We have

VzeNo,Zy z=V(a) + ®%(2).

PROOF. Since Vj is closed, we may rely on Proposition 19. We need only prove that for zeNo
and o € {-1,1}, we have By z + ¢7; , = supc E%{;(EC‘O’a z+ o). We prove this by induction on
(No, ) along with the claim that Yz € No, 2§ 2= Brginia

Note that the functions 7, &,, z+ a+ 1+ z and 2y, preserve non-empty suprema. Moreover,
the identity T2g 2= bty is valid for z=0. So by the previous lemma, we need only prove the
claim at successors cases. Let ze€ No, set =0, and define

Brs1i= &P 1T gl ne N,

We have supc N = &1,;,:,:1 = P55 1- Let n€ N with By (B¢ z+1) = 5§ z + 1+ f, (this is triv-
ially the case for n=0). We have

= 1 . — —_ . .
BV (BY,z+1) = By, By z+1+ )
o i
= Out (—Oaxwk &) + o
292 . o 14
= Sat (—=Gaxwx 8g) + 0™V + o= 1P by Lemma 5
+14pn

= EVaE%}az-;—(;)nga%l-&-z
—0 .

= :Vaz+ﬁn+1
— . .

= ;Vaz+1+/3n+1.



Sign sequences of log-atomic numbers 17

It follows that supc E\l\/{l (By,z+1) =8y, z+supcfn =By, z + ¢7; 1. The second claim is valid
since we have 72§ (241) = TE%Z-E- P 1= Eryyint Eryigiasy = 1aiii.0. L€t yo=1,and for ne
N define yn+1= 65,514, X @* yn. We have supc (-yn) = —&7,,,,, = $z4(-1)- Let n€ N with
E{’;a(E%’zaz +1) =8y, z + (—yn) (this is trivially the case for n=0). We have

—
—
—

VlEg z+1) = Ev(EY 2+ (-1)

= St (=S, % wx 8y) + Va2 (1)
= O+ (=Ogxwxdy) + @E%’az + (—a)TE%Z“Ll xyn) Proposition 4
= By, E%}a(z F (—0Pmiizx X yy))
= By, 2+ (=805, X©@X ¥n)
= By, z+ (= ¥n+1)-
It follows that supc E\Nza (Ey,z+1) =Ey,z+ ¢7;(~1)- The second claim is valid since we have
T2Q (24(-1) = 2.2 = BTai1iz =™ Slatiizi1) This concludes the proof. |

Our work on sign sequences is summed up in the following table where we distinguish the
cases 7, >0 and 7,=0.

If a¢-On If a¢-On
Og=wxa 0,€ -On 04¢ —On
Ta=ot(ay,C) -a Tq>0
sa=Eht, 0 Sa€&0n
SQZQG"H ® Ca X ®
\7 & Mo HSHF(=8d) 1 Mo
Via)=24 0 P 5 wE&owJ;(_w(ZZ:OE&ow)H) @e 1+ ¢ 5 waﬁdozsu(_wzgzoaﬁdozsawaz)
pEN peEN
b2i1 er.i1 EbTaitizil
¢?#(*1) —£%, _‘é‘;ﬂ‘ta;uz
%(z) > ¢?1([3+1) Y g
B<L(z) B<l(z)
Pli Ehr,
oL —o
PO, 0a Zy<@<a)¢clz1<y+l)
Po,—n pe,+(-n)
PO n+1 Po, + Ehi 1 Po,+ Effo (Sa+1)
Ran Po,—n—1+Vg" Po,—n—1+Vg®
Ra,—(n+1) P9a+n+vaw Peam*Vaw
P O—n-Y)+z Po,—n—1+V(0)+0() Po,—n—1+Via)+2%z)
08, +n+1) 4z P ntV(0)+80() PO +nt V(@) +0%2)

Sign sequence formulas for R where a¢No and z¢No and neN.

In order to obtain the formula for A,, one need only use the relation A, = & and apply

Proposition 4 twice.
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