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Introduction

Monitoring faulty systems. In monitoring faulty systems, two central tasks consist in detecting a fault that has occurred, resp. will occur, i.e. the tasks of diagnosis and prediction, respectively, based on observations. However, such tasks may be defeasible due to ambiguity (i.e. observations associated with both correct and faulty runs). In this case, one may introduce a controller to restrict the behaviour in order to enforce diagnosis (resp. prediction) to be processed. Such a controller is called an active diagnoser (resp. active predictor ). Here we focus on the existence of an active predictor, a problem called active predictability. Diagnosis. In partially observed discrete-event systems, diagnosis was defined and studied in the seminal paper by Sampath et al [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] (see also [START_REF] Cassandras | Introduction to Discrete Event Systems -Second Edition[END_REF][START_REF] Cassez | Fault diagnosis with static and dynamic observers[END_REF]). That work builds a deterministic version of the original model, a so-called diagnoser, that tries to detect the occurrence of faults. A system is called diagnosable if the diagnoser can detect every fault occurrence, possibly after some delay. As an illustration, consider the system in Figure 1, which we shall use as a running example, sometimes with different values for Σ 1 and Σ 2 , where Σ 1 and Σ 2 are subsets of events in the system. Precisely, Σ 1 , Σ 2 ⊆ {a, b, c, d}, all of which are observable, while f represents a fault that is not directly observable. If, e.g., a is contained in both Σ 1 and Σ 2 , then the system is not diagnosable because any observation ada n may belong to a faulty run or a correct one.

The diagnosability problem is in PTIME [START_REF] Yoo | Polynomial-time verification of diagnosability of partially observed discrete-event systems[END_REF], via an approach called twin-plant construction. When the system is not diagnosable, it may have to be redesigned, e.g. by adding further sensors to enhance observability, or by forbidding some actions. Sampath et al [START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF] followed the last approach, called active diagnosis: one strives to synthesise a controller, based on partial observations, that forces the behaviour of the system to stay within a diagnosable subset of its behaviours. For instance, if the system in Figure 1 has Σ 1 = Σ 2 = {b} and the controller has the right to block a, then the system is actively diagnosable.

The algorithm for the active-diagnosability problem in [START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF] operates in doubly exponential time. In [START_REF] Haar | Optimal constructions for active diagnosis[END_REF], we revisited the problem using automata and game theory and established that in fact the active-diagnosability problem is EXPTIMEcomplete. Later on, we generalised the framework, e.g. allowing the controller to be aware of deadlocks [START_REF] Böhm | Active diagnosis with observable quiescence[END_REF]. We also studied active diagnosis for probabilistic systems [START_REF] Bertrand | Active diagnosis for probabilistic systems[END_REF].

In loosely related works. Chanthery and Pencolé [START_REF] Chanthery | Monitoring and active diagnosis for discrete-event systems[END_REF] proposed a planningbased approach that allows the verdict of the diagnoser to be ambiguous; the works in [START_REF] Cassez | Fault diagnosis with static and dynamic observers[END_REF][START_REF] Dallal | On most permissive observers in dynamic sensor activation problems[END_REF][START_REF] Yin | A general approach for optimizing dynamic sensor activation for discrete event systems[END_REF] studied the problem of dynamic sensor activation to ensure some observation properties. In work more closely related to ours [START_REF] Yin | A uniform approach for synthesizing property-enforcing supervisors for partially-observed discrete-event systems[END_REF], Yin and Lafortune proposed a uniform approach for synthesizing property-enforcing supervisor by mapping the considered property to a suitably-defined information state, which is applicable to a class of properties that can be expressed in terms of such information states, including safety, diagnosability, opacity and so on. Note that predictability cannot be formulated as an information state in that framework since it depends also on future behaviours of the system; its enforcement thus requires new methods. Fig. 1: Running example, with unobservable events indicated by dashed lines.

Prediction. Several works have studied the (passive) predictability problem, i.e. where no control is involved. For instance, if Σ 1 = {b} and Σ 2 = {c} in Figure 1, then upon first seeing c, an observer can predict that a fault will necessarily occur. In [START_REF] Genc | Predictability of event occurrences in partially-observed discrete-event systems[END_REF], Genc and Lafortune introduced a diagnoser construction to derive a necessary and sufficient condition for predictability in systems modeled by regular languages. Ye, Dague, and Nouioua [START_REF] Ye | Predictability Analysis of Distributed Discrete Event Systems[END_REF] proposed a polynomial time algorithm for predictability analysis in a centralized way and then extend it to a distributed framework. Brandan Briones and Madalinski [START_REF] Briones | Bounded predictability for faulty discrete event systems[END_REF] introduced and studied two variants of predictability by defining an additional requirement about either a lower bound or an upper bound on the number of events between the fault prediction and the fault occurrence. Then Yin and Li [START_REF] Yin | Decentralized fault prognosis of discrete event systems with guaranteed performance bound[END_REF] investigated the bounded predictability in the decentralized framework, and proposed a polynomial-time algorithm for its verification. Madalinski and Khomenko [START_REF] Madalinski | Predictability verification with parallel LTL-X model checking based on Petri net unfoldings[END_REF] reduce the predictability problem for a Petri net to LTL-X model checking. All these previous works focus on passive predictability.

Our contributions. First we refine the paradigm of prediction by allowing an observer to quantify its observations. Unlike [START_REF] Briones | Bounded predictability for faulty discrete event systems[END_REF] but similar to [START_REF] Yin | Decentralized fault prognosis of discrete event systems with guaranteed performance bound[END_REF], our predictors can at the same time provide both lower and upper bounds on the number of observations before a fault may (resp. must) occur. For instance, upon seeing c in the previous example, an observer can not only predict that a fault will eventually happen but that it will necessarily happen between the first and the second observable event after c. In practice, if a fault prediction is issued, the reaction procedure of the system should be triggered. As such interventions may require a certain amount of time to take effect, having both lower and upper bounds are relevant performance criteria for capture such timing issues.

We then turn to the case of active prediction, where a controller tries to restrict the system's behaviour so that faults can be reliably predicted. For instance, if Σ 1 = {a, b} and Σ 2 = {a, c} in Figure 1, then faults are unpredictable, but if a controller has the right to block a, it becomes actively predictable (with the aforementioned bounds). We formalize the idea of active predictability and then propose a class of controller, called active predictor. We then show that active predictability is equivalent to the existence of an active predictor.

Next, we focus on the decision and synthesis problems, i.e. to decide whether the system is actively predictable, and if so, how to build an active predictor. In active diagnosability [START_REF] Haar | Optimal constructions for active diagnosis[END_REF], the solution exploited the fact that whether a sequence of observations is ambiguous (i.e. corresponds to both faulty and correct runs) is independent of the control that was applied in the past. In prediction, by contrast, the eventuality of a fault occurence in the future depends on the control that is going to be applied. Thus solving the active-predictability problems requires new techniques.

We establish that the decision problem is EXPTIME-complete by reducing it to a turn-based game with a Büchi objective of exponential size. A memoryless winning strategy of this game provides the main ingredient to build an active predictor. Furthermore we show that instead of solving this Büchi game (which takes quadratic time), one can equivalently in linear time (1) solve a reachability game, (2) build a safety game that depends on the winning states of the reachability game, and (3) solve it and combine the winning strategies to get a winning strategy for the Büchi game when it exists (see [START_REF] Haar | Active Prediction for Discrete Event Systems[END_REF] for all details).

Finally we study the relation between the lower prediction bound k and the number of states n of the system. We establish that if k ≥ 2 n then a system is k-actively predictable if and only if it is actively safe. This bound is tight since we exhibit a family of systems of size O(n) such that the system is 2 n -actively predictable but not actively safe.

Organization. In Section 2, we introduce prediction in both the uncontrollable and controllable framework and establish a class of controller called active predictor. The existence of such a controller is equivalent to active predictability. The construction of an active predictor (if it exists) is carried out in Section 3, providing simultaneously the solutions to the decision and synthesis problems. Section 4 complements these results by a tight analysis of complexity bounds. We conclude and give some perspectives to this work in Section 5. The missing proofs are developed in [START_REF] Haar | Active Prediction for Discrete Event Systems[END_REF].

The Active Prediction Problem

As usual, for an alphabet Σ, we use Σ * and Σ ω , to denote the finite and infinite words over Σ, and Σ ∞ := Σ * ∪ Σ ω . The length of a word σ ∈ Σ * is denoted |σ|, and represents the prefix notation.

Labeled transition systems

When dealing with discrete event systems (DES), systems are often modeled using labeled transition systems (LTS). Definition 1. A labeled transition system is a tuple A = Q, q 0 , Σ, T where:

-Q is a set of states with q 0 ∈ Q the initial state; -Σ is a finite set of events; -T ⊆ Q × Σ × Q is a set of transitions.
We note q a -→ A q for (q, a, q ) ∈ T ; this transition is said to be enabled in q. A run over the infinite word σ = a 1 a 2 . . . ∈ Σ ω is a sequence of states (q i ) i≥0 with q i ai+1 ---→ A q i+1 for all i ≥ 0, and we write q 0 σ = ⇒ A if such a run exists. A finite run over σ ∈ Σ * is defined analogously, and we write q σ = ⇒ A q if it ends at state q . A state q is reachable if there exists a run q 0 σ = ⇒ A q for some σ. The index A in those relations will be omitted if unambiguous.

In order to formalize problems related to prediction, we partition Σ into two disjoint sets Σ o and Σ uo , the sets of observable and of unobservable events, respectively. Moreover, we distinguish a special fault event f ∈ Σ uo . We say σ is correct if σ ∈ (Σ \ {f }) * (we will denote Σ \ {f } with the short form Σ \f in the following), and that σ is faulty otherwise. For Σ ⊆ Σ, define its projection P Σ (σ) inductively by: P Σ (ε) = ε; P Σ (σa) = P Σ (σ)a when a ∈ Σ , and P Σ (σa) = P Σ (σ) otherwise. For the sake of simplicity, write P for P Σo , |σ| o for |P(σ)|, |σ| Σ for |P Σ (σ)|, and for a ∈ Σ, write |σ| a for |σ| {a} . When σ is an infinite word, its projection is the limit of the projections of its finite prefixes. This projection can be either finite or infinite. As usual the projection is extended to languages.

Definition 2 (Languages of an LTS). Let A = Q, q 0 , Σ, T be an LTS. The finite and the infinite (correct) languages of A are defined by:

-L * (A) = { σ ∈ Σ * | ∃q q 0 σ = ⇒ q } and L ω (A) = { σ ∈ Σ ω | q 0 σ = ⇒ }; -L * c (A) = { σ ∈ (Σ \f ) * | ∃q q 0 σ = ⇒ q } and L ω c (A) = { σ ∈ (Σ \f ) ω | q 0 σ = ⇒ } A is safe if L * (A) = L * c (A) (i.
e. no fault ever occurs).

The union of finite and infinite languages of

A is denoted L ∞ (A) = L * (A) ∪ L ω (A).
The inverse observable projection with respect to A and w ∈ Σ * o is defined as P -1 A (w) = {σ ∈ L * (A) | P(σ) = w}, which can be simply denoted by P -1 (w) if there is no ambiguity. An LTS A is deterministic if for every pair q ∈ Q, a ∈ Σ there is at most one q such that q a -→ q . For a deterministic LTS we write T (q, a) = q if q a -→ q . As is the case for classical diagnosis problems, we make two assumptions on A:

-Liveness: ∀q ∈ Q, ∃a, q , q a -→ q . -Convergence: L ω (A) ∩ Σ * Σ ω uo = ∅.
Liveness implies that from any reachable state of an LTS, there exists at least one transition enabled in that state. Convergence guarantees that there is no infinite sequence of unobservable events. When A is convergent, then for all σ ∈ L ω (A), one has P(σ) ∈ Σ ω o . Example 3. Figure 1 shows a live and convergent LTS with

Σ o = {a, b, c, d}, Σ uo = {f }, Σ 1 ⊆ Σ o , Σ 2 ⊆ Σ o and Σ 1 ∪ Σ 2 = ∅.
Transitions labelled by unobservable events are dashed. We also factorize transitions with same source and target states. Depending on Σ 1 and Σ 2 , this LTS may have different levels of predictability (see Example 7 for further explanation).

Predictability

Intuitively, a system is predictable with respect to a fault f if in every faulty run, an observer can be certain that f is going to occur before it actually happens. Before formally defining predictability, we first present some useful notations. Given σ ∈ L ∞ (A) and n ≤ |σ| o , pre n (σ) denotes the minimal (w.r.t.

) prefix of σ such that |pre n (σ)| o = n. As an abbreviation, pre(σ) := pre |σ|o (σ) removes unobservable events from the end of σ. For example, in the LTS of Figure 1, we have (as f is unobservable) pre 0 (bdf ) = ε, pre 1 (bdf ) = b and pre(bdf ) = pre 2 (bdf ) = bd. We naturally extend pre to sets of words.

An observed sequence w forbids prediction of a fault when a correct, infinite future behavior is still possible. We introduce different kinds of observed sequences. 

-surely correct in A if pre(P -1 A (w)) ∩ Σ * f Σ * = ∅; -surely faulty in A if P -1 A (w) ∩ L * c (A) = ∅; -ambiguous in A if it is neither surely correct nor surely faulty in A; -m-correct in A if ww is surely correct in A for all w ∈ Σ m o ; -m-faulty in A if ww is surely faulty in A for all w ∈ Σ m o ; -ω-faulty in A if there exists m ∈ N such that w is m-faulty.
We now define the notion of k-l-predictability, which means that the occurrence of a fault can be predicted with certainty, based on what has been observed so far, at least k observations before it does occur, and such that the fault definitely occurs before the l-th additional observation. In the sequel, N + denotes N \ {0} and N ω (resp. N + ω ) denotes N (resp. N + ) enlarged with ω which is an absorbing item for addition.

Definition 5. (Predictability) Let

A be an LTS, w ∈ Σ * o , k ∈ N, and l ∈ N + ω . -w is k-l-faulty in A if w is k-correct and (k + l)-faulty in A. -A is k-l-predictable if for all σf ∈ L * (A), P(σ) has a k-l-faulty prefix. Remark 6. If w is k-l-faulty in A, then w is also k -l -faulty in A for all k ≤ k and k + l ≥ k + l.
As an abbreviation, we will call A k-predictable if it is k-ω-predictable, and simply predictable if it is 0-predictable. Thus, Remark 6 implies that predictability is weaker than any other notion of k-l-predictability.

Example 7. Consider the LTS of Figure 1:

-it is not predictable if Σ 1 ∩ Σ 2 = ∅; -it is 1-1-predictable and not 2-predictable if Σ 1 ∩ Σ 2 = ∅, and both of them are not empty; -it is 2-1-predictable if Σ 1 = ∅ and Σ 2 = ∅.
Proposition 8 establishes bounds for predictability in finite LTS: Proposition 8. kkpredic Let A be a k-predictable LTS with n states, where n is finite.

(i) A is k-n-predictable. (ii) If A is not safe, then k < n.

Active predictability

We suppose that Σ o is partitioned into subsets Σ c ⊆ Σ o of controllable and Σ uco = Σ o \Σ c of uncontrollable actions. Intuitively, a controller may forbid a subset of the controllable actions based on the observations made so far, thereby restricting the behaviour of A.

Definition 9 (Controlled LTS). Let A be an LTS. A controller for A is a mapping cont : P(L * (A)) → 2 Σ such that for all w, Σ uco ∪ Σ uo ⊆ cont(w). The controlled LTS A cont = Q cont , q 0cont , Σ, T cont is defined as the smallest LTS satisfying:

-q 0cont = ε, q 0 ∈ Q cont ; -if w, q ∈ Q cont , a ∈ cont(w)
, and q a -→ A q , then wP(a), q ∈ Q cont and w, q a -→ Acont wP(a), q .

The goal of our controllers is to make the system predictable by preserving liveness and to perform prediction at the same time. Before formally defining prediction verdicts in Definition 11, we discuss their intuitive meanings: means that the controller is currently unable to predict a fault, while k, l means that the run is correct so far but a fault can be predicted to happen between the next k and k + l observations. When l = ω, a fault is predicted but without an upper bound. ?, m means that a fault may or may not have happened yet but one will surely occur within m further observations, and ⊥ means that a fault has definitely already occurred.

Example 10. Consider again the LTS from Figure 1 and assume that Σ 1 = {a} and Σ 2 = {b}. At the beginning, no fault can be predicted, so a controller would be expected to emit the prediction . After observing b, the controller could predict that a fault will happen between the first and second next observation to come, i.e. 1, 1 . After seeing d, this would change to 0, 1 , and finally to ⊥.

Definition 11 (predictions). Let

P := { } ∪ (N × N + ω ) ∪ ({?} × N + ω )
∪ {⊥} be the set of possible predictions. We define the following measures κ, µ :

P → N ω ∪ {-1, ω + 1}: -κ( ) = ω + 1, κ( k, l ) = k, and κ(p) = -1 otherwise; -µ( ) = ω + 1, µ( k, l ) = k + l, µ( ?, m ) = m, and µ(⊥) = 0.
We also define two particular types of subsets of P: For k ∈ N and l ∈ N + , let

P k,l := { , ⊥} ∪ { k , l | k ≤ k, l ≤ l } ∪ { ?, m | m < l } and P k,ω := { , ⊥, ?, ω } ∪ { k , ω | k ≤ k }.
The values κ(p) and µ(p) define the 'window' (lower and upper bound on future observations) within which a fault is to occur according to prediction p. Here, -1 indicates that the fault may or must have occurred in the past, and in the case of , ω + 1 is chosen for technical convenience. A predictor using values from P k,l makes firm commitments on both the lower and upper bounds within which a fault is going to occur, while a predictor with values from P k,ω only commits to a lower bound.

Definition 12 (compatible predictions). Let p, p ∈ P and k ∈ N, l ∈ N + ω . We say that p, p are k-l-compatible if the following conditions are all satisfied:

-if p = , then κ(p ) ≥ k else κ(p ) ≥ κ(p) -1; -µ(p ) ≤ µ(p), and if 0 < µ(p) < ω, then µ(p ) < µ(p); -if p = , then µ(p ) ≤ k + l. Moreover, p is called k-l-initial if , p are k-l-compatible.
The conditions in Definition 12 describe the relations that should reasonably hold between a prediction p made for some observation w and the prediction p made when one has observed one additional event in a k-l-predictable controlled LTS. Intuitively these are:

1. When a fault is first predicted, it should be at least k observations in advance, and the gap between this lower bound and the upper bound should be at most l. This is why p = should imply κ(p ) ≥ k. In particular, one cannot switch from to k , l for any k < k, nor directly to ?, m or ⊥. Moreover, the third condition ensures that when switching from to k , l , we have

k + l ≤ k + l, which with k ≥ k implies l ≤ l. 2.
Having predicted a fault within a certain 'window', the subsequent predictions can only become more precise. Thus, one can maintain or shrink that window, but not enlarge, shift, or forget about it. Figure 2 illustrates this idea. E.g., when a predictor announces a fault between the 3rd and 7th following observation, expressed by p = 3, 4 , then one step later it must give p = 2, 4 or a more precise verdict such as 3, 2 . As another example, if the controller has arrived at a verdict of ?, 6 , meaning "a fault has occurred, or will occur within six further observations", then the information gained from an additional observation may lead it to conclude that the fault has now definitely occurred (⊥), will occur later (e.g., 1, 3 ), or to maintain the prediction (e.g., ?, 5 ). Note that ?, 6 could only be reached by passing through 0, m , for some m > 6, earlier in the observation. These relations are ensured by allowing κ to decrease by at most one and requiring µ to strictly decrease (if an upper bound was given).

A k-l-initial prediction is one that is admissible for the empty observation.

Definition 13 (active predictor). Let A be an LTS, P ⊆ P, and h = cont, pred , where cont is a controller and pred is a mapping from P(L * (A cont )) to P . We call h a k-l-active predictor over P , for k ∈ N and l ∈ N + ω , if and only if:

(i) A cont is live; (ii) pred (ε) is k-l-initial;
(iii) for w ∈ P(L * (A cont )), the prediction satisfies the following: (iv) for a ∈ Σ o , w, wa ∈ P(L * (A cont )), pred (w), pred (wa) are k-l-compatible.

-if pred (w) = , then w is (k + 1)-correct in A cont ; -if pred (w) = k , l , then w is k -l -faulty in A cont ; -if pred (w) = ?,
Intuitively, condition ((i)) requires that the control cannot introduce deadlocks, and conditions ((ii)),((iii)) ensure that the predictions have the intended semantics. Condition ((iv)) ensures compatibility between two subsequent predictions along an observation. If there exists a k-l-active predictor for A, we call A k-l-activepredictable, or just actively predictable. Moreover, A is called actively safe if there exists an active predictor for A over { }, which entails that A cont is safe. In this example, h is a 1-1-active predictor.

Proposition 15 and Proposition 16 will exhibit a tight correspondence between the existence of a k-l-predictor for A and the existence of a controller that makes A k-l-predictable. Additionally, Proposition 16 shows that the set of predictions used in a predictor can be limited to a finite set, either committing the prediction to a lower and upper bound for the occurrence of a fault, or just a lower bound.

Proposition 15. firstpart If h = cont, pred is a k-l-active predictor for an LTS A, then A cont is k-l-predictable.
Proposition 16. secondpart Let A be an LTS. If there exists a controller cont such that A cont is live and k-l-predictable, then there exist k-l-active predictors h = cont, pred for A over both P k,l and P k,ω .

Finally, we introduce the notion of pilot as an automata-based representation of k-l-active predictors. In Section 3 we will show how to find a finite-state pilot when A is actively predictable and finite-state.

Definition 17 (pilot). Let A be an LTS, then

C = B C , cont C , pred C is called pilot for A over P ⊆ P if B C = Q c , q c 0 , Σ o , T c is a deterministic LTS with labellings cont C , pred C : Q c → 2 Σ × P . Let h C = cont,
pred associated with C be defined by cont(w) = cont C (q) and pred (w) = pred C (q) for all w ∈ P(L * (A)), where q is the unique state such that q c 0 w = ⇒ q. Then C is a k-l-active predictor for A if h C is one.

Controller construction

We solve the decision and synthesis problems simultaneously. We try to construct a pilot-based k-l-active predictor over some P ⊆ P for an LTS A. The construction succeeds if and only if A is k-l-actively predictable. According to Definition 13, the main challenges in building an active predictor are to ensure that (i) the controlled system remains live, (ii) the fault can be predicted at least k observations before its occurrences, and (iii) the prediction information is provided.

Our solution consists in building a turn-based game (see [START_REF] Grädel | Automata, Logics, and Infinite Games: A Guide to Current Research[END_REF] for turn-based games) by taking into account the control that has already been performed.

Definition 18 (turn-based game).

A game G with two players called Control and Environment is a tuple V C , V E , E, v 0 , WIN , where:

-V C , V E are the vertices owned by Control and Environment, respectively, and

V G = V C V E denoting all vertices, with v 0 ∈ V C being an initial vertex; -E ⊆ V G × V G is a set of directed edges such that for all v ∈ V G , there exists (v, v ) ∈ E; -WIN ⊆ V ω
G is a set of winning sequences.

Given a sequence ρ = v 0 v 1 ...v n , we denote ρ[i] = v i . A play is a sequence of V ω G such that ρ[0] = v 0 and ρ[i], ρ[i + 1] ∈ E for all i ≥ 0; we call ρ k := ρ[0] • • • ρ[k],
for some k ≥ 0, a partial play if ρ[k] ∈ V C , and define last(ρ k ) := ρ[k]. We write Play * (G) for the set of partial plays of G. A play ρ is called winning

(for Control) if ρ ∈ WIN . A Büchi game V C , V E , E, v 0 , V F defines a game V C , V E , E, v 0 , WIN such that WIN = { ρ ∈ V ω G | ρ[i] ∈ V F for infinitely many i }. A reachability game V C , V E , E, v 0 , V F defines a game V C , V E , E, v 0 , WIN such that WIN = V * G V F V ω G . A safety game V C , V E , E, v 0 , V F defines a game V C , V E , E, v 0 , WIN such that WIN = V ω F . Definition 19 (strategy). Let G = V C , V E , E, v 0 , WIN be a game. A strategy (for Control) is a function θ : Play * (G) → V G such that (last(ξ), θ(ξ)) ∈ E for all ξ ∈ Play * (G). A play ρ adheres to θ if ρ[i] ∈ V C implies ρ[i + 1] = θ(ρ i )
for all i ≥ 0. A strategy is called winning if every play ρ that adheres to θ is winning. A positional (also called memoryless) strategy is a function θ :

V C → V G such that (v, θ (v)
) ∈ E for all v ∈ V C ; we call θ winning if the strategy θ with θ(ξ) = θ (last(ξ)) is winning.

To verify k-l-active predictability of a given system, the controller that we propose needs to memorize two subsets of states with the corresponding prediction information Q c , Q f , p . The subset Q c (resp. Q f ) represents the possible states reached by a correct (resp. faulty) run after the last observable action, and Q c ∪ Q f = ∅. The prediction information p ∈ P is (non-deterministically) decided based on the current observations. We denote

Reach( Q c , Q f , p ) := Q c ∪ Q f and Q := 2 Q \ {∅}.
The set of possible tuples memorized by the controller is defined as S P = S c P ∪ S a P ∪ S f P , where:

-S c P = Q × {∅} × { p ∈ P | κ(p) ≥ 0 } -S a P = Q × Q × P ∩ ({?} × N + ω ) -S f P = {∅} × Q × {⊥}
In the following, we will simply write S for S P when P is clear from context.

The controller needs to update the state subsets after an observable action, for which we first define some sets of possible next states from a given state q after a ∈ Σ o .

-NO A (q, a) = { q | q σ = ⇒ A q , σ ∈ Σ * uo a } -NOC A (q, a) = { q | q σ = ⇒ A q , σ ∈ (Σ uo \ {f }) * a } -NOF A (q, a) = { q | q σ = ⇒ A q , σ ∈ Σ * uo f Σ * uo a }
One can omit the subscript A when there is no ambiguity. The extension to a set of states is defined in a natural way, e.g. NO(Q , a) = q∈Q NO(q, a). We now define how the controller updates its tuple once an observable action occurs.

In the following, represents a state in which the controller has lost, and we denote S := S ∪ { }.

Definition 20 (knowledge update).

Let A be an LTS, P ⊆ P, and k ≥ 0.

Then the knowledge transition relation

∆ k A ⊆ S × Σ o × S is defined as follows. Let s = Q c , Q f , p ∈ S and a ∈ Σ o . Then s, a, s ∈ ∆ k
A if and only if:

1. either s = NOC (Q c , a), NOF (Q c , a) ∪ NO(Q f , a
), p ∈ S and p, p are k-l-compatible; 2. or s = when there is no s ∈ S such that s, a, s ∈ ∆ k A .

Notice that, given s and a, the choice of s is largely deterministic except for p , which must be k-l-compatible with p. When s has no prediction consistent with the updated correct resp. faulty state subsets, cf Definition 13((iii)), then the only possible update is to .

Example 21. Consider the LTS in Figure 1 and assume that Σ 1 = {a, c}, Σ 2 = {a, b} and Σ c = {a, b, c}. 1. Let s = {q 0 }, ∅, . If the observable action a is chosen, then we have s, a, s ∈ ∆ k A , where s = {q 1 , q 4 }, ∅, . Notice that , are k-lcompatible.

2. Let s = {q 2 , q 5 }, ∅, after observing a and d. If a is chosen from here, we can only have s, a, ∈ ∆ k A . The reason is that after a, the system can end up in either q 3 (with a fault) or in q 5 (without fault), the next prediction should thus be an ambiguous one, i.e., ?, m . However, , ?, m are not k-l-compatible. It follows that there does not exist s ∈ S such that s, a, s ∈ ∆ k A . Hence we have s, a, ∈ ∆ k A by Definition 20.

The objective of Control is to obtain a winning play by suitably restricting the possible actions, and any winning strategy corresponds to a controller with which the controlled system is predictable. The game begins with Control to choose a prediction for ε. Then the game proceeds in rounds: 1) Control restricts the set of possible actions to some Σ ; 2) Environment chooses a ∈ Σ to determine the next state. 3) Control updates its knowledge.

The choices of Control are subject to some restrictions. Indeed, each state s = Q c , Q f , p represents Control's knowledge about the current potential states of A as well as the corresponding prediction information. To ensure that the controlled system remains live, the set of possible actions Σ must not cause deadlocks in any state reachable by unobservable actions from Q c ∪ Q f . Also, Control cannot prevent the uncontrollable actions. So we define the admissible sets and the game as follows, where we use

Σ PO (q) = {a ∈ Σ o | q σ = ⇒ q , σ ∈ Σ *
uo a } to denote the possible next observable actions from the state q, which can be extended to a set of states in a natural way.

Definition 22 (admissible action set)

. Let A = Q, q 0 , Σ, T be an LTS and Q ⊆ Q be a subset of states. We call Σ ⊆ Σ o an admissible set for Q if it fulfills the following conditions:

-Σ uco ⊆ Σ as any action in Σ uco is observable but not controllable.

for all q ∈ Q , q ∈ Q, and σ ∈ Σ * uo , q σ = ⇒ q implies Σ PO (q) ∩ Σ = ∅.

The set of admissible sets for Q are denoted as adm(Q ), which is not empty when Q = ∅ as A is a live and convergent LTS.

Example 23. Consider the same LTS as in Example 21.

Let Q = {q 0 }. Then adm(Q ) = {Σ | Σ ⊆ Σ o , {d} Σ }.
In other words, adm(Q ) contains all subsets of Σ o = {a, b, c, d} that include d, except the singleton {d}, which is not an admissible set as it blocks the system. More precisely, the set of possible next observable actions from q 0 is Σ PO (q 0 ) = {a, b, c}, whose intersection with {d} is empty. Thus {d} cannot be an admissible set for Q .

The vertices of our controller-synthesis game consist of an initial vertex ι, the states of S , a set V 1 := S × 2 Σo where Control has chosen a set of permitted actions, and a set V 2 := S × Σ o where Environment has chosen an observable action. The winning condition assures that once a fault has been predicted, it will eventually happen.

Definition 24 (controller-synthesis game). Let A be an LTS and P ⊆ P. We denote G k,l A,P the Büchi game

V C , V E , E, ι, V F , where V C = {ι} ∪ S ∪ V 2 , V E = V 1 , V F = Q × {∅} × { } ∪ {∅} × Q × {⊥} ⊆ S, and E = E ι ∪ E 1 ∪ E 2 ∪ E 3 ∪ { , },
where

-E ι = ι, {q 0 }, ∅, p | p is k-l-initial ⊆ {ι} × S; -E 1 = s, s, Σ | s ∈ S, Σ ∈ adm(Reach(s)) ⊆ S × V 1 ; -E 2 = s, Σ , s, a | s ∈ S, a ∈ Σ PO (Reach(s)) ∩ Σ ⊆ V 1 × V 2 ; -E 3 = s, a , s | s, a, s ∈ ∆ k A ⊆ V 2 × S .
Note that the set V 2 records the sequence of observable actions that occur during a play. 

s 0 = {q 0 }, ∅, , s 1 = {q 1 , q 4 }, ∅, , s 2 = {q 1 }, ∅, p 2 , s 3 = {q 4 }, ∅, p 3 , and 
s 4 = {q 2 , q 5 }, ∅, .
Example 25. Figure 3 depicts a part of a game for some k, l and the LTS of Figure 1, for which we assume again Σ 1 = {a, c}, Σ 2 = {a, b} and Σ c = {a, b, c}. From ι, Controller can choose any k-l-initial prediction; we consider the case where is chosen, so s 0 = {q 0 }, ∅, . Then from Example 23, we have adm(Reach(s 0 )) = adm({q 0 }) = {Σ | Σ ⊆ Σ o , {d} Σ }. Environment cannot choose the action d even when d is in the admissible set since d / ∈ Σ PO (Reach(s 0 )). After Environment chooses an available action (say a, leading to s 0 , a ), Control updates its knowledge and chooses a new prediction, say , leading to s 1 , with q 1 , q 4 as the possible new states. From here, d is the only choice for Environment. Suppose that Control then again chooses as its new prediction in s 4 , thus s 4 = {q 2 , q 5 }, ∅, . If a is now chosen, from the second case of Example 21, we know that the game enters . To avoid losing, Control needs to switch to a different prediction early enough. Now we establish the strong connection between winning strategies and active predictors.

Proposition 26. frompredtogame Given h = cont, pred a k-l-active predictor over P for an LTS A, there exists a corresponding winning strategy θ h in the game G k,l A,P .

The existence of a winning strategy implies the existence of a positional one due to well-known results of game theory (see e.g. [START_REF] Grädel | Automata, Logics, and Infinite Games: A Guide to Current Research[END_REF] for all results here related to turn-based games). For the reverse direction, we next define a pilot from a positional winning strategy in G k,l A,P before proving that this pilot is a k-l-active predictor.

Definition 27. Let θ be a positional winning strategy in G k,l A,P . We define a pilot C θ := B θ , cont θ , pred θ over P as follows:

-B θ = Q θ , q θ 0 , Σ o , T θ , where 1. Q θ = {q ∈ S | q = last(ξ θ ) and ξ θ ∈ Play * (G k,l A,P ) adhering to θ} 2. q θ 0 = θ(ι) 3. T θ (s, a) = θ( s, a ) -cont θ (s) = Σ ∪ Σ uo for any s ∈ Q θ , where θ(s) = s, Σ ; -pred θ (s) = p, for any s = Q c , Q f , p ∈ Q θ
Proposition 28. fromgametopred Let θ be a positional winning strategy in G k,l A,P . Then C θ is a k-l-active predictor over P for A.

Combining the results of Propositions 26 and 28, we obtain that the activepredictability problem for an LTS A with n states reduces to solving a Büchi game with 2 O(n) vertices. Since Büchi games can be solved in polynomial time, we obtain the following result:

Theorem 29. The active-predictability problem for finite-state LTS belongs to EXPTIME.

We conclude the section with a supplementary result showing that due to the special structure of G k,l A,P it can actually be solved in linear time (w.r.t. the size of the game), and not in quadratic time as performed for general Büchi games.

Proposition 30. linear If A is a finite-state LTS and P ⊆ P, then G k,l A,P can be solved in O(|E|).

Bound analysis

We first prove that it is EXPTIME-hard to decide whether a given LTS A is actively k-l-predictable, independently of k and . The proof (developed in [START_REF] Haar | Active Prediction for Discrete Event Systems[END_REF]) is similar to the proof in [START_REF] Haar | Optimal constructions for active diagnosis[END_REF] that active diagnosability is EXPTIME-hard and relies on a reduction from safety games with imperfect information [START_REF] Berwanger | On the power of imperfect information[END_REF].

Theorem 31. hardness The active-predictability decision problem is EXPTIMEhard.

Together with Theorem 29, we obtain the following corollary.

Corollary 32. The active-predictability decision problem is EXPTIME-complete.

We study the relation between active predictability and active safety. Theorem 33 relates the maximal advance warning for fault predictions to the number of states in A.

Theorem 33. predtosafe Let A be an LTS with n states. If A is 2 n -activepredictable, then it is actively safe.

Proof. If A is 2 n -ω-active-predictable then by definition there exists a 2 n -ω-active predictor h = cont, pred over P := P k,ω for A, and by Proposition 26 there exists a winning strategy θ in G k,ω A,P . In turn, this winning strategy provides a pilot C θ = B, cont , pred according to Proposition 28; let B = Q, q 0 , Σ o , T . We shall construct a new pilot C for A over { }, proving that A is actively safe.

Remember that Q is the set of Controller-owned vertices in G k,ω A,P that can be reached by plays adhering to θ and that these vertices are a subset of S P . For q, q ∈ Q, let us write q ≺ q if q is reachable from q in B. Since θ is positional and winning, ≺ must be an acylic relation between those states of Q that are not members of V F , i.e. their associated prediction is neither nor ⊥ (cf Definition 24). We now call q ∈ Q a cutoff if q is of the form Q c , Q f , p and there exists a state q = Q c , Q f , p with p = p and q ≺ q. Let co(q), the corresponding state of q, denote the state that is ≺-minimal among all the choices for q ; due to the structure of the states outside V F , co(q) is unique and not a cutoff itself. Moreover, a state of Q is called useless if it is either a cutoff or all its (immediate) predecessors in B are useless, and useful otherwise.

Remember that S P is a union of S c P , S a P , and S f P , where S c P contains the states of the form Q c , ∅, p , with κ(p) ≥ 0. Thus, states in S c P are only reached through correct runs in A cont . Let S := { Q c , ∅, p | κ(p) = 0 }. It follows from the construction of G k,ω A,P (cf Definition 20 and Definition 24) that any path from q 0 to a state from S is of length at least 2 n , so by pigeonhole principle, any path leading to S contains a cutoff. Since S a P ∪ S f P can only be reached by going through S , those states are useless.

We can now construct the desired pilot C by "folding" cutoffs back onto their corresponding states. We remark in this context that Reach(q) = Reach(co(q)), and therefore the admissible control choices for both states are the same; proving that the resulting controlled system is live depends only on this property. Since the controlled system never admits a fault, the prediction can be in all cases. More formally, C := Q , q 0 , Σ o , T , cont , pred , where Q is the useful subset of Q, and for all q ∈ Q , a ∈ Σ o :

-T (q, a) = T (q, a) if T (q, a) ∈ Q and T (q, a) = co(T (q, a)) otherwise; pred (q) = .

Theorem 33 implies that if a system is not actively safe, then there is an exponential upper bound on the advance warning that an active predictor can issue. This bound is asymptotically precise, as the following family of examples shows.

Theorem 34. counter There exists a family of systems (A n ) n≥1 with O(n) states such that A n is not actively safe but 2 n -active-predictable. Proof. Figure 4 shows a family of LTS with O(n) states but an alphabet of size O(n) and O(n 2 ) transitions. We first provide a proof for this family as it is easier to understand. After this, we provide a more complex example with a constant-size alphabet and O(n) states and transitions.

p s n-1 s 1 s 0 q q p p n -1 Σ n-1 1 Σ 1 0 Σ 0 Γ n-1 Γ 1 n -1 1 0 u f n Γ n n f n . . . . . .

Variable-size alphabet

Consider the LTS shown in Figure 4. The observable actions are {0, . . . , n}, all of which are controllable. There are only two unobservable actions, u and the fault f . We abbreviate by Σ i := {i + 1, . . . , n} the actions larger than i for 0 ≤ i < n, and by Γ i := {0, . . . , i -1} the actions smaller than i for 0 < i ≤ n. The initial state is p. Evidently A n is actively safe if a controller can avoid both p and q; as we shall see, this is impossible. However, the system is actively predictable if the controller can at least avoid q. We shall see that this is indeed possible while entering p only after 2 n steps, by simulating a binary counter.

We can assume (w.l.o.g.) that the controller permits a single action from Σ o in each step and hence the controlled system will admit a single infinite observation sequence ρ. Having allowed a prefix σ of ρ, let R(σ) be the set of states that this sequence can lead to. If the controller wants to keep the system from making a fault, it must ensure that R(σ) remains within the set R := {p, s 0 , . . . , s n-1 }. When R(σ) ⊆ R, let us associate a measure defined as I(σ) := si∈R(σ) 2 i . We observe the following:

-R(ε) = {p}, hence I(ε) = 0.

-If s i ∈ R(σ), then the controller must not allow action i in the next step, otherwise the system may go to q, rendering it unpredictable. -As long as I(σ) < 2 n -1, the controller must permit an action i such that I(σi) > I(σ). To see this, let s i / ∈ R(σ), then R(σi) = (R(σ) ∪ {s i }) \ {s 0 , . . . , s i-1 }. We shall assume that i is chosen minimally, so I(σi) = I(σ)+1.

-Therefore, after 2 n -1 steps, the controlled system will have performed a sequence σ with I(σ) = 2 n -1. The only possible course of action for the controller is to permit n from now on, i.e. ρ = σn ω . We then have R(σn) = {p, p }, R(σnn) = {p , p }, and R(σnnn) = {p }.

Going backwards, we can now associate predictions with each prefix of ρ: pred (σn k ) = ⊥ for k ≥ 3, pred (σnn) = ?, 1 , pred (σn) = 0, 2 , and pred (σ) = 2 n -|σ|, 2 for every prefix σ of σ. Thus, A n is 2 n -2-active predictable. Notice that the system could be made 2 n -1-active predictable if states s 0 , . . . , s n-1 transitioned with n to p instead, which we avoided simply to keep the drawing of the automaton planar.

Constant-size alphabet

To see that the proof with a variable-size alphabet can be adapted to an alphabet of constant size, consider the LTS A n in Figure 5. A n has O(n) states and three observable and controllable actions 0, 1, a and two unobservable actions u and f . Initially, the LTS performs an a going to either p or r. The LTS then simulates A n of Figure 4, using a unary encoding, in the following sense: Let code(i) = 1 i 0 n-i a, for i = 0, . . . , n. The reader can verify, case-by-case, that for any two states u, v ∈ {p, p , s 0 , . . . , s n-1 , q} and i ∈ {0, . . . , n}, we have

u i - → v in A n iff u code(i)
----→ v in A n . Moreover, the controller must account for the possibility that the system has gone to state r. Then, to keep the controlled system live, the only possible sequences that the controller can enforce are code(i) for i = 0, . . . , n, and we have r code(i) ----→ r for i < n. After the initial a, the controller must therefore admit code(σn), for σ as in A n . On this basis, a closer look shows that A n is k-l-active predictable for k = 1 + (n + 1) • 2 n and l = n + 2.

Note that Theorem 34 does not contradict Proposition 8, which establishes linear prediction bounds w.r.t. the number of states of A. However, Proposition 8 talks about passive predictability, whereas Theorem 34 is about active predictability.

Conclusion and perspectives

We have extended the prediction paradigm by introducing parameters related to the number of observations before fault may or must occur. Within this framework, we have established that active predictability is EXPTIME-complete through a procedure for synthetising active predictors that builds a Büchi game. Solving this game is proved linear in the number of edges in the game. We have shown that if the observation threshold for eventual prediction is chosen large enough (namely ≥ 2 n with n the number of states in the system), then active predictability is equivalent to active safety. Furthermore we have exhibited a family of systems proving that this bound is tight.

Out of several possible extensions for the present results, three stand out as natural continuations. First, we want to introduce a measure that quantifies the faultiness of the system, and then aim to find an active predictor that minimizes this criterium, or at least ensures a value below some threshold. Second, we plan to study the notion of prediagnosis introduced in [START_REF] Bertrand | Foundation of Diagnosis and Predictability in Probabilistic Systems[END_REF] that combines predictability and diagnosability for controllable systems. Finally, we also want to study active predictability for probabilistic systems, as we had previously done for diagnosis in [START_REF] Bertrand | Active diagnosis for probabilistic systems[END_REF]. 
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 32 Fig.2: Examples of compatible predictions p, p after n resp. n + 1 observations, where p is illustrated above the timeline, and p is one of the predictions below. Solid intervals indicate periods in which a fault is predicted.
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 14 In the LTS A of Figure 1, assume that Σ 1 = {a, c}, Σ 2 = {a, b}, Σ c = {a, b, c}. Let h = cont, pred be defined by: cont(ε) = {b, c, d, f }, and cont(w) = Σ otherwise; pred (ε) = pred (w) = , where w ∈ cΣ * o ∩ P(L * (A)), pred (b) = 1, 1 , pred (bd) = 0, 1 , and pred (bda + ) = ⊥.
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 3 Fig. 3: Part of the game for the LTS in Figure 1 (Example 25):s 0 = {q 0 }, ∅, , s 1 = {q 1 , q 4 }, ∅, , s 2 = {q 1 }, ∅, p 2 , s 3 = {q 4 }, ∅, p 3 , and s 4 = {q 2 , q 5 }, ∅, .
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 4 Fig. 4: A 2 n -active predictable LTS with O(n) states, where Σ o = Σ c = {0, ..., n}, Σ i = {i + 1, ..., n}, and Γ i = {0, ..., i -1}.
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 5 Fig. 5: Variant of Figure 4 with constant-size alphabet, with Σ o = Σ c = {0, 1, a}.
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