
HAL Id: hal-02951944
https://hal.science/hal-02951944v1

Preprint submitted on 29 Sep 2020 (v1), last revised 11 Dec 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Prediction for Discrete Event Systems
Stefan Haar, Serge Haddad, Stefan Schwoon, Lina Ye

To cite this version:
Stefan Haar, Serge Haddad, Stefan Schwoon, Lina Ye. Active Prediction for Discrete Event Systems.
2020. �hal-02951944v1�

https://hal.science/hal-02951944v1
https://hal.archives-ouvertes.fr

Active Prediction for Discrete Event Systems

Stefan Haar1, Serge Haddad2, Stefan Schwoon2, and Lina Ye3

1 INRIA, LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
2 LSV, ENS Paris-Saclay, CNRS, INRIA, Université Paris-Saclay, France

3 CentraleSupélec, LRI, Université Paris-Saclay, France

Abstract. A central task in partially observed controllable system is to detect or prevent the occurrence
of certain events called faults. Systems for which one can design a controller avoiding the faults are called
actively safe. Otherwise, one may require that a fault is eventually detected, which is the task of diagnosis.
Systems for which one can design a controller detecting the faults are called actively diagnosable. An
intermediate requirement is prediction, which consists in determining that a fault will occur whatever the
future behaviour of the system. When a system is not predictable, one may be interested in designing a
controller to make it so. Here we study the latter problem, called active prediction, and its associated
property, active predictability. In other words, we investigate how to determine whether or not a system
enjoys the active predictability property, i.e., there exists an active predictor for the system.
Our contributions are threefold. From a semantical point of view, we refine the notion of predictability
by adding two quantitative requirements: the minimal and maximal delay before the occurence of the
fault, and we characterize the requirements fulfilled by a controller that performs predictions. Then
we show that active predictability is EXPTIME-complete where the upper bound is obtained via a
game-based approach. Finally we establish that active predictability is equivalent to active safety when
the maximal delay is beyond a threshold depending on the size of the system, and we show that this
threshold is accurate by exhibiting a family of systems fulfilling active predictability but not active
safety.

1 Introduction

Monitoring faulty systems. In monitoring faulty systems, two central tasks consist in detecting a fault that
has occurred, resp. will occur, i.e. the tasks of diagnosis and prediction, respectively, based on observations.
However, such tasks may be defeasible due to ambiguity (i.e. observations associated with both correct and
faulty runs). In this case, one may introduce a controller to restrict the behaviour in order to enforce diagnosis
(resp. prediction) to be processed. Such a controller is called an active diagnoser (resp. active predictor). Here
we focus on the existence of an active predictor, a problem called active predictability.
Diagnosis. In partially observed discrete-event systems, diagnosis was defined and studied in the seminal
paper by Sampath et al [16] (see also [6,7]). That work builds a deterministic version of the original model,
a so-called diagnoser, that tries to detect the occurrence of faults. A system is called diagnosable if the
diagnoser can detect every fault occurrence, possibly after some delay. As an illustration, consider the system
in Figure 1, which we shall use as a running example, sometimes with different values for Σ1 and Σ2, where
Σ1 and Σ2 are subsets of events in the system. Precisely, Σ1, Σ2 ⊆ {a, b, c, d}, all of which are observable,
while f represents a fault that is not directly observable. If, e.g., a is contained in both Σ1 and Σ2, then the
system is not diagnosable because any observation adan may belong to a faulty run or a correct one.

The diagnosability problem is in PTIME [21], via an approach called twin-plant construction. When the
system is not diagnosable, it may have to be redesigned, e.g. by adding further sensors to enhance observability,
or by forbidding some actions. Sampath et al [15] followed the last approach, called active diagnosis: one
strives to synthesise a controller, based on partial observations, that forces the behaviour of the system to
stay within a diagnosable subset of its behaviours. For instance, if the system in Figure 1 has Σ1 = Σ2 = {b}
and the controller has the right to block a, then the system is actively diagnosable.

The algorithm for the active-diagnosability problem in [15] operates in doubly exponential time. In [13], we
revisited the problem using automata and game theory and established that in fact the active-diagnosability

problem is EXPTIME-complete. Later on, we generalised the framework, e.g. allowing the controller to be
aware of deadlocks [4]. We also studied active diagnosis for probabilistic systems [1].

In loosely related works. Chanthery and Pencolé [9] proposed a planning-based approach that allows
the verdict of the diagnoser to be ambiguous; the works in [8,10,19] studied the problem of dynamic sensor
activation to ensure some observation properties. In work more closely related to ours [18], Yin and Lafortune
proposed a uniform approach for synthesizing property-enforcing supervisor by mapping the considered
property to a suitably-defined information state, which is applicable to a class of properties that can be
expressed in terms of such information states, including safety, diagnosability, opacity and so on. Note that
predictability cannot be formulated as an information state in that framework since it depends also on future
behaviours of the system; its enforcement thus requires new methods.

q0 q1 q2 q3q4q5
Σ2 d f

a, c
Σ1d

a, b

Fig. 1: Running example, with unobservable events indicated by dashed lines.

Prediction. Several works have studied the (passive) predictability problem, i.e. where no control is involved.
For instance, if Σ1 = {b} and Σ2 = {c} in Figure 1, then upon first seeing c, an observer can predict that
a fault will necessarily occur. In [11], Genc and Lafortune introduced a diagnoser construction to derive a
necessary and sufficient condition for predictability in systems modeled by regular languages. Ye, Dague,
and Nouioua [17] proposed a polynomial time algorithm for predictability analysis in a centralized way and
then extend it to a distributed framework. Brandan Briones and Madalinski [5] introduced and studied two
variants of predictability by defining an additional requirement about either a lower bound or an upper
bound on the number of events between the fault prediction and the fault occurrence. Then Yin and Li [20]
investigated the bounded predictability in the decentralized framework, and proposed a polynomial-time
algorithm for its verification. Madalinski and Khomenko [14] reduce the predictability problem for a Petri net
to LTL-X model checking. All these previous works focus on passive predictability.
Our contributions. First we refine the paradigm of prediction by allowing an observer to quantify its
observations. Unlike [5] but similar to [20], our predictors can at the same time provide both lower and upper
bounds on the number of observations before a fault may (resp. must) occur. For instance, upon seeing c in
the previous example, an observer can not only predict that a fault will eventually happen but that it will
necessarily happen between the first and the second observable event after c. In practice, if a fault prediction
is issued, the reaction procedure of the system should be triggered. As such interventions may require a
certain amount of time to take effect, having both lower and upper bounds are relevant performance criteria
for capture such timing issues.

We then turn to the case of active prediction, where a controller tries to restrict the system’s behaviour
so that faults can be reliably predicted. For instance, if Σ1 = {a, b} and Σ2 = {a, c} in Figure 1, then faults
are unpredictable, but if a controller has the right to block a, it becomes actively predictable (with the
aforementioned bounds). We formalize the idea of active predictability and then propose a class of controller,
called active predictor. We then show that active predictability is equivalent to the existence of an active
predictor.

Next, we focus on the decision and synthesis problems, i.e. to decide whether the system is actively
predictable, and if so, how to build an active predictor. In active diagnosability [13], the solution exploited
the fact that whether a sequence of observations is ambiguous (i.e. corresponds to both faulty and correct
runs) is independent of the control that was applied in the past. In prediction, by contrast, the eventuality
of a fault occurence in the future depends on the control that is going to be applied. Thus solving the
active-predictability problems requires new techniques.

We establish that the decision problem is EXPTIME-complete by reducing it to a turn-based game with a
Büchi objective of exponential size. A memoryless winning strategy of this game provides the main ingredient

2

to build an active predictor. Furthermore we show that instead of solving this Büchi game (which takes
quadratic time), one can equivalently in linear time (1) solve a reachability game, (2) build a safety game that
depends on the winning states of the reachability game, and (3) solve it and combine the winning strategies
to get a winning strategy for the Büchi game when it exists.

Finally we study the relation between the lower prediction bound k and the number of states n of the
system. We establish that if k ≥ 2n then a system is k-actively predictable if and only if it is actively safe.
This bound is tight since we exhibit a family of systems of size O(n) such that the system is 2n-actively
predictable but not actively safe.
Organization. In Section 2, we introduce prediction in both the uncontrollable and controllable framework
and establish a class of controller called active predictor. The existence of such a controller is equivalent to
active predictability. The construction of an active predictor (if it exists) is carried out in Section 3, providing
simultaneously the solutions to the decision and synthesis problems. Section 4 complements these results by a
tight analysis of complexity bounds. We conclude and give some perspectives to this work in Section 5.

2 The Active Prediction Problem

As usual, for an alphabet Σ, we use Σ∗ and Σω, to denote the finite and infinite words over Σ, and
Σ∞ := Σ∗ ∪Σω. The length of a word σ ∈ Σ∗ is denoted |σ|, and � represents the prefix notation.

Labeled transition systems

When dealing with discrete event systems (DES), systems are often modeled using labeled transition systems
(LTS).

Definition 1. A labeled transition system is a tuple A = 〈Q, q0, Σ, T 〉 where:

– Q is a set of states with q0 ∈ Q the initial state;
– Σ is a finite set of events;
– T ⊆ Q×Σ ×Q is a set of transitions.

We note q a−→A q′ for (q, a, q′) ∈ T ; this transition is said to be enabled in q. A run over the infinite word
σ = a1a2 . . . ∈ Σω is a sequence of states (qi)i≥0 with qi

ai+1−−−→A qi+1 for all i ≥ 0, and we write q0
σ
=⇒A if such

a run exists. A finite run over σ ∈ Σ∗ is defined analogously, and we write q σ
=⇒A q′ if it ends at state q′. A

state q is reachable if there exists a run q0
σ
=⇒A q for some σ. The index A in those relations will be omitted if

unambiguous.
In order to formalize problems related to prediction, we partition Σ into two disjoint sets Σo and Σuo,

the sets of observable and of unobservable events, respectively. Moreover, we distinguish a special fault event
f ∈ Σuo. We say σ is correct if σ ∈ (Σ \ {f})∗ (we will denote Σ \ {f} with the short form Σ\f in the
following), and that σ is faulty otherwise. For Σ′ ⊆ Σ, define its projection PΣ′(σ) inductively by: PΣ′(ε) = ε;
PΣ′(σa) = PΣ′(σ)a when a ∈ Σ′, and PΣ′(σa) = PΣ′(σ) otherwise. For the sake of simplicity, write P for
PΣo , |σ|o for |P(σ)|, |σ|Σ′ for |PΣ′(σ)|, and for a ∈ Σ, write |σ|a for |σ|{a}. When σ is an infinite word, its
projection is the limit of the projections of its finite prefixes. This projection can be either finite or infinite.
As usual the projection is extended to languages.

Definition 2 (Languages of an LTS). Let A = 〈Q, q0, Σ, T 〉 be an LTS. The finite and the infinite
(correct) languages of A are defined by:

– L∗(A) = {σ ∈ Σ∗ | ∃q q0
σ
=⇒ q } and Lω(A) = {σ ∈ Σω | q0

σ
=⇒};

– L∗c(A) = {σ ∈ (Σ\f)∗ | ∃q q0
σ
=⇒ q } and Lωc (A) = {σ ∈ (Σ\f)ω | q0

σ
=⇒}

A is safe if L∗(A) = L∗c(A) (i.e. no fault ever occurs).

3

The union of finite and infinite languages of A is denoted L∞(A) = L∗(A)∪Lω(A). The inverse observable
projection with respect to A and w ∈ Σ∗o is defined as P−1A (w) = {σ ∈ L∗(A) | P(σ) = w}, which can be
simply denoted by P−1(w) if there is no ambiguity. An LTS A is deterministic if for every pair q ∈ Q, a ∈ Σ
there is at most one q′ such that q a−→ q′. For a deterministic LTS we write T (q, a) = q′ if q a−→ q′. As is the
case for classical diagnosis problems, we make two assumptions on A:

– Liveness: ∀q ∈ Q, ∃a, q′, q a−→ q′.
– Convergence: Lω(A) ∩Σ∗Σω

uo = ∅.

Liveness implies that from any reachable state of an LTS, there exists at least one transition enabled in
that state. Convergence guarantees that there is no infinite sequence of unobservable events. When A is
convergent, then for all σ ∈ Lω(A), one has P(σ) ∈ Σω

o .

Example 3. Figure 1 shows a live and convergent LTS with Σo = {a, b, c, d}, Σuo = {f}, Σ1 ⊆ Σo, Σ2 ⊆ Σo
and Σ1 ∪Σ2 6= ∅. Transitions labelled by unobservable events are dashed. We also factorize transitions with
same source and target states. Depending on Σ1 and Σ2, this LTS may have different levels of predictability
(see Example 6 for further explanation).

Predictability

Intuitively, a system is predictable with respect to a fault f if in every faulty run, an observer can be certain
that f is going to occur before it actually happens. Before formally defining predictability, we first present
some useful notations. Given σ ∈ L∞(A) and n ≤ |σ|o, pren(σ) denotes the minimal (w.r.t. �) prefix of σ
such that |pren(σ)|o = n. As an abbreviation, pre(σ) := pre |σ|o(σ) removes unobservable events from the end
of σ. For example, in the LTS of Figure 1, we have (as f is unobservable) pre0(bdf) = ε, pre1(bdf) = b and
pre(bdf) = pre2(bdf) = bd. We naturally extend pre to sets of words.

An observed sequence w forbids prediction of a fault when a correct, infinite future behavior is still
possible. We introduce different kinds of observed sequences.

Definition 4. (observation properties) Let A be an LTS, w ∈ Σ∗o , and m ∈ N. Then w is:

– surely correct in A if pre(P−1A (w)) ∩Σ∗fΣ∗ = ∅;
– surely faulty in A if P−1A (w) ∩ L∗c(A) = ∅;
– ambiguous in A if it is neither surely correct nor surely faulty in A;
– m-correct in A if ww′ is surely correct in A for all w′ ∈ Σm

o ;
– m-faulty in A if ww′ is surely faulty in A for all w′ ∈ Σm

o ;
– ω-faulty in A if there exists m ∈ N such that w is m-faulty.

We now define the notion of k-l-predictability, which means that the occurrence of a fault can be predicted
with certainty, based on what has been observed so far, at least k observations before it does occur, and such
that the fault definitely occurs before the l-th additional observation. In the sequel, N+ denotes N \ {0} and
Nω (resp. N+

ω) denotes N (resp. N+) enlarged with ω which is an absorbing item for addition.

Definition 5. (Predictability) Let A be an LTS, w ∈ Σ∗o , k ∈ N, and l ∈ N+
ω .

– w is k-l-faulty in A if w is k-correct and (k + l)-faulty in A.
– A is k-l-predictable if for all σf ∈ L∗(A), P(σ) has a k-l-faulty prefix.

Remark 1. If w is k-l-faulty in A, then w is also k′-l′-faulty in A for all k′ ≤ k and k′ + l′ ≥ k + l.

As an abbreviation, we will call A k-predictable if it is k-ω-predictable, and simply predictable if it is
0-predictable. Thus, Remark 1 implies that predictability is weaker than any other notion of k-l-predictability.

Example 6. Consider the LTS of Figure 1:

– it is not predictable if Σ1 ∩Σ2 6= ∅;

4

– it is 1-1-predictable and not 2-predictable if Σ1 ∩Σ2 = ∅, and both of them are not empty;
– it is 2-1-predictable if Σ1 = ∅ and Σ2 6= ∅.

Let us focus on relations between these notions in finite LTS. Especially, Proposition 8 establishes bounds
for predictability in finite LTS.

Lemma 7. Let A be an LTS with n states, where n is finite, and w ∈ Σ∗o . Then w is ω-faulty if and only if
it is n-faulty.

Proof. One direction of the proof is trivial. For the other, suppose that w is not n-faulty. Then there exists
w′ ∈ Σn

o such that ww′ is not surely faulty, which entails that there exists some σ′ ∈ P−1(ww′) ∩ L∗c(A),
i.e. σ′ does not contain f . Consider some run of A over σ′, and let qi, for i = 0, . . . , n, be the state reached
in that run after pre |w|o+i(σ

′); hence q0 is reached by a run over some word in P−1(w). By the pigeonhole
principle, there are two distinct indices i < j with qi = qj , which allows to construct a word σ′′ ∈ Lωc (A) such
that w is a prefix of P(σ′′). Now A is convergent, so P(σ′′) = ww′′ for some w′′ ∈ Σω

o and ww′′ is not surely
faulty, hence w is not ω-faulty.

Proposition 8. Let A be a k-predictable LTS with n states, where n is finite.

(i) A is k-n-predictable.
(ii) If A is not safe, then k < n.

Proof.

(i) Suppose that A is not k-n-predictable. Then there exists some σf ∈ L∗(A) such that any k-correct prefix
w � P(σ) is not n-faulty. But since A is k-predictable, there must be at least some w � P(σ) that is
both k-correct and ω-faulty, which is a contradiction by Lemma 7.

(ii) Suppose that A is k-predictable for k ≥ n. If there is some σf ∈ L∗(A), then since A is k-predictable,
there exists some k-ω-faulty prefix w � P(σ). Since A is live and convergent, there exists some w′ ∈ Σk

o

such that ww′ ∈ P(L∗(A)). Since w is k-correct, ww′ is surely correct, hence w is not n-faulty. Then by
Lemma 7, w cannot be ω-faulty, a contradiction.

Active predictability

We suppose that Σo is partitioned into subsets Σc ⊆ Σo of controllable and Σuco = Σo\Σc of uncontrollable
actions. Intuitively, a controller may forbid a subset of the controllable actions based on the observations
made so far, thereby restricting the behaviour of A.

Definition 9 (Controlled LTS). Let A be an LTS. A controller for A is a mapping cont : P(L∗(A))→ 2Σ

such that for all w, Σuco ∪Σuo ⊆ cont(w). The controlled LTS Acont = 〈Qcont , q0cont , Σ, Tcont〉 is defined as
the smallest LTS satisfying:

– q0cont = 〈ε, q0〉 ∈ Qcont ;
– if 〈w, q〉 ∈ Qcont , a ∈ cont(w), and q a−→A q′, then 〈wP(a), q′〉 ∈ Qcont and 〈w, q〉 a−→Acont

〈wP(a), q′〉.

The goal of our controllers is to make the system predictable by preserving liveness and to perform
prediction at the same time. Before formally defining prediction verdicts in Definition 11, we discuss their
intuitive meanings: > means that the controller is currently unable to predict a fault, while 〈k, l〉 means that
the run is correct so far but a fault can be predicted to happen between the next k and k + l observations.
When l = ω, a fault is predicted but without an upper bound. 〈?,m〉 means that a fault may or may not
have happened yet but one will surely occur within m further observations, and ⊥ means that a fault has
definitely already occurred.

5

Example 10. Consider again the LTS from Figure 1 and assume that Σ1 = {a} and Σ2 = {b}. At the
beginning, no fault can be predicted, so a controller would be expected to emit the prediction >. After
observing b, the controller could predict that a fault will happen between the first and second next observation
to come, i.e. 〈1, 1〉. After seeing d, this would change to 〈0, 1〉, and finally to ⊥.

Definition 11 (predictions). Let P := {>}∪(N×N+
ω)∪({?}×N+

ω)∪{⊥} be the set of possible predictions.
We define the following measures κ, µ : P→ Nω ∪ {−1, ω + 1}:

– κ(>) = ω + 1, κ(〈k, l〉) = k, and κ(p) = −1 otherwise;
– µ(>) = ω + 1, µ(〈k, l〉) = k + l, µ(〈?,m〉) = m, and µ(⊥) = 0.

We also define two particular types of subsets of P: For k ∈ N and l ∈ N+, let Pk,l := {>,⊥} ∪ { 〈k′, l′〉 | k′ ≤
k, l′ ≤ l } ∪ { 〈?,m〉 | m < l } and Pk,ω := {>,⊥, 〈?, ω〉} ∪ { 〈k′, ω〉 | k′ ≤ k }.

The values κ(p) and µ(p) define the ‘window’ (lower and upper bound on future observations) within
which a fault is to occur according to prediction p. Here, −1 indicates that the fault may or must have
occurred in the past, and in the case of >, ω + 1 is chosen for technical convenience. A predictor using values
from Pk,l makes firm commitments on both the lower and upper bounds within which a fault is going to
occur, while a predictor with values from Pk,ω only commits to a lower bound.

Definition 12 (compatible predictions). Let p, p′ ∈ P and k ∈ N, l ∈ N+
ω . We say that 〈p, p′〉 are

k-l-compatible if the following conditions are all satisfied:

– if p = >, then κ(p′) ≥ k else κ(p′) ≥ κ(p)− 1;
– µ(p′) ≤ µ(p), and if 0 < µ(p) < ω, then µ(p′) < µ(p);
– if p′ 6= >, then µ(p′) ≤ k + l.

Moreover, p is called k-l-initial if 〈>, p〉 are k-l-compatible.

The conditions in Definition 12 describe the relations that should reasonably hold between a prediction p
made for some observation w and the prediction p′ made when one has observed one additional event in a
k-l-predictable controlled LTS. Intuitively these are:

1. When a fault is first predicted, it should be at least k observations in advance, and the gap between this
lower bound and the upper bound should be at most l. This is why p = > should imply κ(p′) ≥ k. In
particular, one cannot switch from > to 〈k′, l′〉 for any k′ < k, nor directly to 〈?,m〉 or ⊥. Moreover, the
third condition ensures that when switching from > to 〈k′, l′〉, we have k′ + l′ ≤ k + l, which with k′ ≥ k
implies l′ ≤ l.

2. Having predicted a fault within a certain ‘window’, the subsequent predictions can only become more
precise. Thus, one can maintain or shrink that window, but not enlarge, shift, or forget about it. Figure 2
illustrates this idea. E.g., when a predictor announces a fault between the 3rd and 7th following observation,
expressed by p = 〈3, 4〉, then one step later it must give p′ = 〈2, 4〉 or a more precise verdict such as 〈3, 2〉.
As another example, if the controller has arrived at a verdict of 〈?, 6〉, meaning “a fault has occurred, or
will occur within six further observations”, then the information gained from an additional observation
may lead it to conclude that the fault has now definitely occurred (⊥), will occur later (e.g., 〈1, 3〉), or to
maintain the prediction (e.g., 〈?, 5〉). Note that 〈?, 6〉 could only be reached by passing through 〈0,m〉,
for some m > 6, earlier in the observation. These relations are ensured by allowing κ to decrease by at
most one and requiring µ to strictly decrease (if an upper bound was given).

A k-l-initial prediction is one that is admissible for the empty observation.

Definition 13 (active predictor). Let A be an LTS, P′ ⊆ P, and h = 〈cont , pred〉, where cont is a
controller and pred is a mapping from P(L∗(Acont)) to P′. We call h a k-l-active predictor over P′, for k ∈ N
and l ∈ N+

ω , if and only if:

(i) Acont is live;

6

|w|
n n+1

〈3, 4〉 3 4

〈2, 4〉

〈3, 2〉

|w|
n n+1

〈?, 6〉 6

〈?, 5〉

〈1, 3〉

⊥

Fig. 2: Examples of compatible predictions 〈p, p′〉 after n resp. n + 1 observations, where p is illustrated
above the timeline, and p′ is one of the predictions below. Solid intervals indicate periods in which a fault is
predicted.

(ii) pred(ε) is k-l-initial;
(iii) for w ∈ P(L∗(Acont)), the prediction satisfies the following:

– if pred(w) = >, then w is (k + 1)-correct in Acont ;
– if pred(w) = 〈k′, l′〉, then w is k′-l′-faulty in Acont ;
– if pred(w) = 〈?,m〉, then w is ambiguous and m-faulty in Acont ;
– if pred(w) = ⊥, then w is surely faulty in Acont ;

(iv) for a ∈ Σo, w,wa ∈ P(L∗(Acont)), 〈pred(w), pred(wa)〉 are k-l-compatible.

Intuitively, condition ((i)) requires that the control cannot introduce deadlocks, and conditions ((ii)),((iii))
ensure that the predictions have the intended semantics. Condition ((iv)) ensures compatibility between
two subsequent predictions along an observation. If there exists a k-l-active predictor for A, we call A
k-l-active-predictable, or just actively predictable. Moreover, A is called actively safe if there exists an active
predictor for A over {>}, which entails that Acont is safe.

Example 14. In the LTS A of Figure 1, assume that Σ1 = {a, c}, Σ2 = {a, b}, Σc = {a, b, c}. Let h =
〈cont , pred〉 be defined by:

– cont(ε) = {b, c, d, f}, and cont(w) = Σ otherwise;
– pred(ε) = pred(w) = >, where w ∈ cΣ∗o ∩P(L∗(A)), pred(b) = 〈1, 1〉, pred(bd) = 〈0, 1〉, and pred(bda+) =
⊥.

In this example, h is a 1-1-active predictor.

Proposition 15 and Proposition 17 will exhibit a tight correspondence between the existence of a k-l-
predictor for A and the existence of a controller that makes A k-l-predictable. Additionally, Proposition 17
shows that the set of predictions used in a predictor can be limited to a finite set, either committing the
prediction to a lower and upper bound for the occurrence of a fault, or just a lower bound.

Proposition 15. If h = 〈cont , pred〉 is a k-l-active predictor for an LTS A, then Acont is k-l-predictable.

Proof. Let σf ∈ L∗(A). We need to prove that P(σ) has a k-l-faulty prefix. Due to Definition 13((ii)) either
pred(ε) = 〈k′, l′〉, for some k′ ≥ k and k′+ l′ ≤ k+ l, then by Definition 13((iii)) and Remark 1, ε is k-l-faulty,
or pred(ε) = >, so ε is k + 1-correct. Then, since P(σ) is not 1-correct and due to Definition 13((iii)),
pred(P(σ)) 6= >. So let wa be the minimal prefix of P(σ) such that pred(wa) 6= >. Then pred(w) = >,
w is k + 1-correct, and wa is still k-correct, therefore pred(wa) is of the form 〈k′, l′〉 with l′ ≤ l because
pred(wa) 6= > and all other cases are excluded by Definition 13((iii)). Furthermore, κ(pred(w)) = ω + 1,
κ(pred(wa)) = k′, so because of Definition 13((iv)), we have that k′ ≥ k. Thus, wa is k′-l′-faulty, hence
|P(σ)| ≥ |wa|+ k′. Consider the prefix w′ of length |wa|+ k′ − k of P(σ); w′ must be k-l′-faulty, and hence
with Remark 1 we get that w′ is k-l-faulty.

Lemma 16. Let A be a k-l-predictable LTS and w ∈ P(L∗(A)). If w is k-correct but not k + 1-correct, for
k ∈ N, then w is k-l′-faulty for some l′ ≤ l.

7

Proof. Since w is k-correct but not k + 1-correct, there is some σ ∈ P−1(wΣk
o) such that σf ∈ L∗(A). Since

A is k-l-predictable, P(σ) has a k-l-faulty prefix w′ � w. If l is finite, then let l′ := l − |w|+ |w′|; otherwise,
let l′ = m− k − |w|+ |w′|, where m ∈ N is a value such that P(σ) is m-faulty. In either case, l′ ≤ l. Since w′
is k + l-faulty, w must be k + l′-faulty and hence also k-l′-faulty.

Proposition 17. Let A be an LTS. If there exists a controller cont such that Acont is live and k-l-predictable,
then there exist k-l-active predictors h = 〈cont , pred〉 for A over both Pk,l and Pk,ω.

Proof. We only need to construct a suitable function pred that satisfies Definition 13 ((ii)), ((iii)), and ((iv)).
We first construct pred over P in general and then discuss the restrictions to Pk,l and Pk,ω (which are identical
when l = ω).

If Acont is k-l-predictable, then either ε is k + 1-correct and we set pred(ε) := >, or otherwise ε is
k-l′-faulty with l′ ≤ l (by Lemma 16) and we set pred(ε) := 〈k, l′〉, thus ((ii)) is satisfied. As for ((iii)) and
((iv)), we proceed by induction on the length of w ∈ P(L∗(Acont)). So let w,wa ∈ P(L∗(Acont)), and assume
that ((iii)) holds for w. In the following, we shall abbreviate pred(w), pred(wa) by p, p′, respectively. We
proceed by a case-by-case analysis on p and show that in each case one can find a value for p′ that verifies
((iii)). The reader can verify that p and p′ satisfy ((iv)) in every case. Moreover, the choice of p′ maintains
the invariant that if p′ = 〈k′, l′〉 or p′ = 〈?,m〉, then k′ ≤ k and l′,m ≤ l.

– If p = >, then w is k + 1-correct.
• Either wa is k + 1-correct, then p′ := >.
• Or wa is not k + 1-correct but k-correct, then by Lemma 16 it is k-l′-faulty for some l′ ≤ l and
p′ := 〈k, l′〉.

– If p = 〈k′, l′〉 with k′ > 0 and l′ ≤ l, then w is k′-l′-faulty and wa is (k′ − 1)-l′-faulty, so p′ := 〈k′ − 1, l′〉.
– If p = 〈0, l′〉 with l′ ≤ l, then w is l′-faulty.
• Either wa is surely correct. Then wa is (l′ − 1)-faulty, and we let p′ := 〈0, l′ − 1〉.
• Or wa is ambiguous and (l′ − 1)-faulty, so we let p′ := 〈?, l′ − 1〉. Notice that this can only happen if
l′ ≥ 2.

• Or wa is surely faulty, then p′ := ⊥ (this must happen if l′ = 1).
– If p = 〈?,m〉 with m ≤ l, then w is ambiguous and m-faulty. The same three cases as before can arise:
• Either wa is surely correct (only possible if m ≥ 2), then it is still (m − 1)-faulty, and we set
p′ := 〈0,m− 1〉.

• Or wa is ambiguous and (m− 1)-faulty, so we can set p′ := 〈?,m− 1〉; this too requires m ≥ 2.
• Or wa is surely faulty, then p′ := ⊥ (this necessarily happens if m = 1).

– If p = ⊥, then w is surely faulty, and so is wa, thus p′ := ⊥.

Observe that when the predictor moves from > to some 〈k, l′〉, then (i) either l′ ≤ l is finite, and both
k′ and l′ can only decrease from there, so the predictions remain in Pk,l, (ii) or l′ = l = ω, and then the
predictions remain in Pk,ω since ω − 1 = ω. Figure 3 abstractly illustrates the differents types of compatible
predictions used in the proof.

> N × N+ω {?} × N+ω ⊥

Fig. 3: Prediction transitions used in the proof of Proposition 17.

8

We remark that the proof of Proposition 17 does not try to optimize the prediction window. For instance,
when p = 〈k′, l′〉 with k′ > 0, it may be possible that wa is in fact k′′-l′′-faulty for some k′′ ≥ k′ − 1 and
k′′ + l′′ ≤ k′ − 1 + l′. In this case Definition 13((iv)) also allows to assign 〈k′′, l′′〉 to p′ instead. Since k′′ may
be larger than k′, the resulting prediction value may then be outside of Pk,l.

Finally, we introduce the notion of pilot as an automata-based representation of k-l-active predictors. In
Section 3 we will show how to find a finite-state pilot when A is actively predictable and finite-state.

Definition 18 (pilot). Let A be an LTS, then C = 〈BC , contC , predC〉 is called pilot for A over P′ ⊆ P if BC =
〈Qc, qc0, Σo, T c〉 is a deterministic LTS with labellings 〈contC , predC〉 : Qc → 2Σ × P′. Let hC = 〈cont , pred〉
associated with C be defined by cont(w) = contC(q) and pred(w) = predC(q) for all w ∈ P(L∗(A)), where q is
the unique state such that qc0

w
=⇒ q. Then C is a k-l-active predictor for A if hC is one.

3 Controller construction

We solve the decision and synthesis problems simultaneously. We try to construct a pilot-based k-l-active
predictor over some P′ ⊆ P for an LTS A. The construction succeeds if and only if A is k-l-actively predictable.
According to Definition 13, the main challenges in building an active predictor are to ensure that (i) the
controlled system remains live, (ii) the fault can be predicted at least k observations before its occurrences,
and (iii) the prediction information is provided.

Our solution consists in building a turn-based game (see [12] for turn-based games) by taking into account
the control that has already been performed.

Definition 19 (turn-based game). A game G with two players called Control and Environment is a tuple
〈VC , VE , E, v0,WIN 〉, where:

– VC , VE are the vertices owned by Control and Environment, respectively, and VG = VC] VE denoting all
vertices, with v0 ∈ VC being an initial vertex;

– E ⊆ VG × VG is a set of directed edges such that for all v ∈ VG, there exists (v, v′) ∈ E;
– WIN ⊆ V ωG is a set of winning sequences.

Given a sequence ρ = v0v1...vn, we denote ρ[i] = vi. A play is a sequence of V ωG such that ρ[0] = v0 and
〈ρ[i], ρ[i+ 1]〉 ∈ E for all i ≥ 0; we call ρk := ρ[0] · · · ρ[k], for some k ≥ 0, a partial play if ρ[k] ∈ VC , and
define last(ρk) := ρ[k]. We write Play∗(G) for the set of partial plays of G. A play ρ is called winning (for
Control) if ρ ∈WIN .

A Büchi game 〈VC , VE , E, v0, VF 〉 defines a game 〈VC , VE , E, v0,WIN 〉 such that WIN = { ρ ∈ V ωG |
ρ[i] ∈ VF for infinitely many i }. A reachability game 〈VC , VE , E, v0, VF 〉 defines a game 〈VC , VE , E, v0,WIN 〉
such that WIN = V ∗G VFV

ω
G . A safety game 〈VC , VE , E, v0, VF 〉 defines a game 〈VC , VE , E, v0,WIN 〉 such that

WIN = V ωF .

Definition 20 (strategy). Let G = 〈VC , VE , E, v0,WIN 〉 be a game. A strategy (for Control) is a function
θ : Play∗(G) → VG such that (last(ξ), θ(ξ)) ∈ E for all ξ ∈ Play∗(G). A play ρ adheres to θ if ρ[i] ∈ VC
implies ρ[i+ 1] = θ(ρi) for all i ≥ 0. A strategy is called winning if every play ρ that adheres to θ is winning.
A positional (also called memoryless) strategy is a function θ′ : VC → VG such that (v, θ′(v)) ∈ E for all
v ∈ VC ; we call θ′ winning if the strategy θ with θ(ξ) = θ′(last(ξ)) is winning.

To verify k-l-active predictability of a given system, the controller that we propose needs to memorize
two subsets of states with the corresponding prediction information 〈Qc, Qf , p〉. The subset Qc (resp. Qf)
represents the possible states reached by a correct (resp. faulty) run after the last observable action, and
Qc ∪ Qf 6= ∅. The prediction information p ∈ P′ is (non-deterministically) decided based on the current
observations. We denote Reach(〈Qc, Qf , p〉) := Qc ∪ Qf and Q̃ := 2Q \ {∅}. The set of possible tuples
memorized by the controller is defined as SP′ = ScP′ ∪ SaP′ ∪ S

f
P′ , where:

– ScP′ = Q̃× {∅} × { p ∈ P′ | κ(p) ≥ 0 }

9

– SaP′ = Q̃× Q̃×
(
P′ ∩ ({?} × N+

ω)
)

– SfP′ = {∅} × Q̃× {⊥}

In the following, we will simply write S for SP′ when P′ is clear from context.
The controller needs to update the state subsets after an observable action, for which we first define some

sets of possible next states from a given state q after a ∈ Σo.

– NOA(q, a) = { q′ | q
σ
=⇒A q′, σ ∈ Σ∗uoa }

– NOCA(q, a) = { q′ | q
σ
=⇒A q′, σ ∈ (Σuo \ {f})∗a }

– NOFA(q, a) = { q′ | q
σ
=⇒A q′, σ ∈ Σ∗uofΣ∗uoa }

One can omit the subscript A when there is no ambiguity. The extension to a set of states is defined in a
natural way, e.g. NO(Q′, a) =

⋃
q∈Q′ NO(q, a). We now define how the controller updates its tuple once an

observable action occurs. In the following, � represents a state in which the controller has lost, and we denote
S� := S ∪ {�}.

Definition 21 (knowledge update). Let A be an LTS, P′ ⊆ P, and k ≥ 0. Then the knowledge transition
relation ∆k

A ⊆ S ×Σo × S� is defined as follows. Let s = 〈Qc, Qf , p〉 ∈ S and a ∈ Σo. Then 〈s, a, s′〉 ∈ ∆k
A

if and only if:

1. either s′ = 〈NOC (Qc, a),NOF (Qc, a) ∪NO(Qf , a), p
′〉 ∈ S and 〈p, p′〉 are k-l-compatible;

2. or s′ = � when there is no s′′ ∈ S such that 〈s, a, s′′〉 ∈ ∆k
A.

Notice that, given s and a, the choice of s′ is largely deterministic except for p′, which must be k-l-
compatible with p. When s′ has no prediction consistent with the updated correct resp. faulty state subsets,
cf Definition 13((iii)), then the only possible update is to �.

Example 22. Consider the LTS in Figure 1 and assume that Σ1 = {a, c}, Σ2 = {a, b} and Σc = {a, b, c}.

1. Let s = 〈{q0}, ∅,>〉. If the observable action a is chosen, then we have 〈s, a, s′〉 ∈ ∆k
A, where s

′ =
〈{q1, q4}, ∅,>〉. Notice that 〈>,>〉 are k-l-compatible.

2. Let s = 〈{q2, q5}, ∅,>〉 after observing a and d. If a is chosen from here, we can only have 〈s, a,�〉 ∈ ∆k
A.

The reason is that after a, the system can end up in either q3 (with a fault) or in q5 (without fault), the
next prediction should thus be an ambiguous one, i.e., 〈?,m〉. However, 〈>, 〈?,m〉〉 are not k-l-compatible.
It follows that there does not exist s′′ ∈ S such that 〈s, a, s′′〉 ∈ ∆k

A. Hence we have 〈s, a,�〉 ∈ ∆k
A by

Definition 21.

The objective of Control is to obtain a winning play by suitably restricting the possible actions, and any
winning strategy corresponds to a controller with which the controlled system is predictable. The game begins
with Control to choose a prediction for ε. Then the game proceeds in rounds: 1) Control restricts the set of
possible actions to some Σ′; 2) Environment chooses a ∈ Σ′ to determine the next state. 3) Control updates
its knowledge.

The choices of Control are subject to some restrictions. Indeed, each state s = 〈Qc, Qf , p〉 represents
Control’s knowledge about the current potential states of A as well as the corresponding prediction information.
To ensure that the controlled system remains live, the set of possible actions Σ′ must not cause deadlocks in any
state reachable by unobservable actions from Qc∪Qf . Also, Control cannot prevent the uncontrollable actions.
So we define the admissible sets and the game as follows, where we use ΣPO(q) = {a ∈ Σo | q

σ
=⇒ q′′, σ ∈ Σ∗uoa }

to denote the possible next observable actions from the state q, which can be extended to a set of states in a
natural way.

Definition 23 (admissible action set). Let A = 〈Q, q0, Σ, T 〉 be an LTS and Q′ ⊆ Q be a subset of states.
We call Σ′ ⊆ Σo an admissible set for Q′ if it fulfills the following conditions:

– Σuco ⊆ Σ′ as any action in Σuco is observable but not controllable.
– for all q′ ∈ Q′, q ∈ Q, and σ ∈ Σ∗uo, q′

σ
=⇒ q implies ΣPO(q) ∩Σ′ 6= ∅.

10

The set of admissible sets for Q′ are denoted as adm(Q′), which is not empty when Q′ 6= ∅ as A is a live and
convergent LTS.

Example 24. Consider the same LTS as in Example 22. Let Q′ = {q0}. Then adm(Q′) = {Σ′ | Σ′ ⊆ Σo, {d} (
Σ′}. In other words, adm(Q′) contains all subsets of Σo = {a, b, c, d} that include d, except the singleton {d},
which is not an admissible set as it blocks the system. More precisely, the set of possible next observable
actions from q0 is ΣPO(q0) = {a, b, c}, whose intersection with {d} is empty. Thus {d} cannot be an admissible
set for Q′.

The vertices of our controller-synthesis game consist of an initial vertex ι, the states of S�, a set
V1 := S×2Σo where Control has chosen a set of permitted actions, and a set V2 := S×Σo where Environment
has chosen an observable action. The winning condition assures that once a fault has been predicted, it will
eventually happen.

Definition 25 (controller-synthesis game). Let A be an LTS and P′ ⊆ P. We denote Gk,lA,P′ the Büchi
game 〈VC , VE , E, ι, VF 〉, where VC = {ι} ∪ S� ∪ V2, VE = V1, VF =

(
Q̃×{∅}× {>}

)
∪
(
{∅}× Q̃×{⊥}

)
⊆ S,

and E = Eι ∪ E1 ∪ E2 ∪ E3 ∪ {〈�,�〉}, where
– Eι =

{ 〈
ι, 〈{q0}, ∅, p〉

〉
| p is k-l-initial

}
⊆ {ι} × S;

– E1 =
{ 〈
s, 〈s,Σ′〉

〉
| s ∈ S, Σ′ ∈ adm(Reach(s))

}
⊆ S × V1;

– E2 =
{ 〈
〈s,Σ′〉, 〈s, a〉

〉
| s ∈ S, a ∈ ΣPO(Reach(s)) ∩Σ′

}
⊆ V1 × V2;

– E3 =
{ 〈
〈s, a〉, s′

〉
| 〈s, a, s′〉 ∈ ∆k

A
}
⊆ V2 × S�.

Note that the set V2 records the sequence of observable actions that occur during a play.

ι

s0 s0, Σo

s0, {a, b, d}

s0, {c, d}

s0, b

s0, c

s0, a s1 s1, {d} s1, d s4 s4, {a, d} s4, a �

s2

s3

Fig. 4: Part of the game for the LTS in Figure 1 (Example 26):
s0 = 〈{q0}, ∅,>〉, s1 = 〈{q1, q4}, ∅,>〉, s2 = 〈{q1}, ∅, p2〉, s3 = 〈{q4}, ∅, p3〉, and s4 = 〈{q2, q5}, ∅,>〉.

Example 26. Figure 4 depicts a part of a game for some k, l and the LTS of Figure 1, for which we
assume again Σ1 = {a, c}, Σ2 = {a, b} and Σc = {a, b, c}. From ι, Controller can choose any k-l-initial
prediction; we consider the case where > is chosen, so s0 = 〈{q0}, ∅,>〉. Then from Example 24, we have
adm(Reach(s0)) = adm({q0}) = {Σ′ | Σ′ ⊆ Σo, {d} (Σ′}. Environment cannot choose the action d even
when d is in the admissible set since d /∈ ΣPO(Reach(s0)). After Environment chooses an available action
(say a, leading to 〈s0, a〉), Control updates its knowledge and chooses a new prediction, say >, leading to
s1, with q1, q4 as the possible new states. From here, d is the only choice for Environment. Suppose that
Control then again chooses > as its new prediction in s4, thus s4 = 〈{q2, q5}, ∅,>〉. If a is now chosen, from
the second case of Example 22, we know that the game enters �. To avoid losing, Control needs to switch to
a different prediction early enough.

Now we establish the strong connection between winning strategies and active predictors. Before proving
the following proposition, we first inductively extend the sets of possible next states from given states after
an observable event to a sequence of observable events, e.g. NO(Q′, sa) = NO(NO(Q′, s), a), where s ∈ Σ∗o .
Furthermore, we initialize NOC (q0, ε) = q0 and NOF (q0, ε) = ∅.

11

Proposition 27. Given h = 〈cont, pred〉 a k-l-active predictor over P′ for an LTS A, there exists a
corresponding winning strategy θh in the game Gk,lA,P′ .

Proof.

– We define a strategy θh based on h and demonstrate its existence in Gk,lA,P′ . We also show that any play
ξ adhering to θh and all its prefixes possess the following five invariants, where Obs(ξ) denotes the
observable actions along a partial play ξ. Formally, Obs(ε) = ε, Obs(ξ〈s, a〉) = Obs(ξ)a for 〈s, a〉 ∈ V2,
and Obs(ξr) = Obs(ξ) for r /∈ V2.
• φ¬�: ξ never enters �;
• φo: Obs(ξ) ∈ P(L∗(Acont));
• φc: if last(ξ) = 〈Qc, Qf , p〉 ∈ S, then Qc = NOCAcont(q0,Obs(ξ));
• φf : if last(ξ) = 〈Qc, Qf , p〉 ∈ S, then Qf = NOFAcont(q0,Obs(ξ));
• φp: if last(ξ) = 〈Qc, Qf , p〉 ∈ S, then p = pred(Obs(ξ)).

It is trivial to show that these five invariants are initially true when ξ = ι. From Definition 25, a play
can enter � only by a transition of E3. It is thus enough to prove φ¬� on all transitions in ξ belonging
to E3. We show that ξ preserves φo on transitions of E2, where Obs(ξ) changes. Similarly, φc, φf and
φp should be kept true on the transitions of Eι and E3, where their antecedent is true. Now we define
θh by considering three subsets of Control vertices, for each one their existence in Gk,lA,P′ and invariant
preservation being demonstrated as well.
1. θh(ι) = 〈{q0}, ∅, pred(ε)〉;
• Since h is a k-l-active predictor, pred(ε) is thus k-l-initial by Definition 13 ((ii)). Hence, 〈ι, θh(ι)〉 ∈
Eι from Definition 25.
• For ξ = ιθh(ι), φc, φf and φp are true as Obs(ξ) = ε.

2. Given any ξ ∈ Play∗(Gk,lA,P′) adhering to θh with last(ξ) = s ∈ S, for which all invariants are true, we
have θh(ξ) = 〈s,Σ′〉, where Σ′ = cont(Obs(ξ)) \Σuo;
• Σuco ∪Σuo ⊆ cont(w) for any w ∈ P(L∗(A)) due to Definition 9, thus Σuco ⊆ Σ′. Acont is live
by Definition 13 ((i)), i.e., no deadlock in the controlled system, thus Σ′ ∈ adm(Reach(s)) by
Definition 23. Hence, 〈s, θh(ξ)〉 ∈ E1.
• We show that φo keeps true for any play ξ′ = ξθh(ξ)〈s, a〉, where 〈θh(ξ), 〈s, a〉〉 ∈ E2. Since φo is
true for ξ, let σ ∈ L∗(Acont), σ ∈ Σ∗Σo, such that P(σ) = Obs(ξ). For any 〈θh(ξ), 〈s, a〉〉 ∈ E2,
we have a ∈ ΣPO(Reach(s)) ∩Σ′ and Σ′ ⊆ cont(Obs(ξ)). It follows that there exists σ′ ∈ Σ∗uo
such that σσ′a ∈ L∗(Acont), therefore Obs(ξ′) = Obs(ξ)a = P(σ)a = P(σσ′a) ∈ P(L∗(Acont)).
Hence φo is true for ξ′.

3. Given any ξ ∈ Play∗(Gk,lA,P′) adhering to θh with last(ξ) = 〈〈Qc, Qf , p〉, a〉 ∈ V2, for which all
invariants are true, we have θh(ξ) = 〈Q′c, Q′f , pred(Obs(ξ))〉, where Q′c = NOC (Qc, a) and Q′f =
NOF (Qc, a) ∪NO(Qf , a).
• We first show that 〈p, pred(Obs(ξ))〉 is k-l-compatible. Let ξ′ ∈ Play∗(Gk,lA,P′) and last(ξ′) =
〈Qc, Qf , p〉. We denote Obs(ξ′) = w, and thus we have Obs(ξ) = wa. From the assumption that
φo and φp are true for ξ and its prefixes, we have w,wa ∈ P(L∗(Acont)), p = pred(w), and
pred(Obs(ξ)) = pred(wa). Since h is a k-l-active predictor, 〈p, pred(Obs(ξ))〉 is k-l-compatible by
Definition 13 ((iv)). Hence, we can infer from the construction of Q′c and Q′f that 〈last(ξ), θh(ξ)〉 ∈
E3.
• We need to show all invariants, except φo, are true for ξ′′ = ξθh(ξ). First, since φ¬� is true for ξ and
〈last(ξ), θh(ξ)〉 ∈ E3 shown as above, where θh(ξ) ∈ S, then φ¬� is also true for ξ′′ by Definition 21.
Now consider φc. We have Qc = NOCAcont(q0,Obs(ξ′)) as φc is true for the prefixes of ξ. From
Q′c = NOC (Qc, a) and wa = Obs(ξ′)a ∈ P(L∗(Acont)), we have Q′c = NOCAcont(q0,Obs(ξ′)a),
thus Q′c = NOCAcont(q0,Obs(ξ′′)). So φc is true for ξ′′. φf can be proved to be true for ξ′′ in a
similar way. φp is true for ξ′′ as Obs(ξ) = Obs(ξ′′).

– We next show that θh is winning. Given a play ρ ∈ V ωG adhering to θh, we have ρ[1] = 〈{q0, ∅, p0}〉, p0 is
k-l-initial. We prove that ρ is winning when p0 = > or p0 = 〈k′, l′〉.

12

• If p0 = >, there are two cases as ρ never enters � from φ¬�. One is that for all s = 〈Qc, Qf , p〉 ∈ ρ
and s ∈ S, p = >. In other words, we have infinitely s ∈ Q̃ × {∅} × {>} ⊆ VF in ρ, which is thus
winning. Consider the second case, where there exists s = 〈Qc, Qf , p〉 ∈ ρ and s ∈ S such that p 6= >.
Let ρ[i] = 〈〈Qc, ∅,>〉, a〉, and ρ[i+ 1] = 〈Qc, Qf , p〉, where p 6= >. From 〈ρ[i], ρ[i+ 1]〉 ∈ E3, we can
infer that 〈>, p〉 is k-l-compatible, thus κ(p) ≥ k, so p = 〈k′, l′〉 ∈ N × N+

ω . We analyze two cases
based on l′.
1. l′ < ω: from the invariants φo and φp, we have Obs(ρi+1) ∈ P(L∗(Acont)) and pred(Obs(ρi+1)) = p.

It follows that Obs(ρi+1) is k′-l′-faulty, thus k′+l′ faulty in Acont as h is a k-l-active predictor. One
can thus infer with the same invariants that there exists m < ω such that ρ[m] ∈ {∅} × Q̃× {⊥}.
From φc, one can deduce that for any ρ[m′] ∈ S, m′ > m, ρ[m′] ∈ {∅} × Q̃× {⊥} ⊆ VF , thus ρ is
winning.

2. l′ = ω: as above, one can show that Obs(ρi+1) is ω-faulty, thus m-faulty for some m ∈ N by
Definition 4. Hence, ρ is winning with the same reasoning.

• If p0 = 〈k′, l′〉, one can demonstrate that ρ is winning exactly in the same way for the second case
when p0 = >.

The existence of a winning strategy implies the existence of a positional one due to well-known results
of game theory (see e.g. [12] for all results here related to turn-based games). For the reverse direction, we
next define a pilot from a positional winning strategy in Gk,lA,P′ before proving that this pilot is a k-l-active
predictor.

Definition 28. Let θ be a positional winning strategy in Gk,lA,P′ . We define a pilot Cθ := 〈Bθ, contθ, predθ〉
over P′ as follows:

– Bθ = 〈Qθ, qθ0 , Σo, T θ〉, where
1. Qθ = {q ∈ S | q = last(ξθ) and ξθ ∈ Play∗(Gk,lA,P′) adhering to θ}
2. qθ0 = θ(ι)
3. T θ(s, a) = θ(〈s, a〉)

– contθ(s) = Σ′ ∪Σuo for any s ∈ Qθ, where θ(s) = 〈s,Σ′〉;
– predθ(s) = p, for any s = 〈Qc, Qf , p〉 ∈ Qθ

Proposition 29. Let θ be a positional winning strategy in Gk,lA,P′ . Then Cθ is a k-l-active predictor over P′
for A.

Proof. For any s ∈ Qθ, contθ(s) = Σ′ ∪Σuo, which contains thus Σuo. From Definition 23, contθ(s) contains
also Σuco as θ(s) = 〈s,Σ′〉. Hence, due to Definition 18, the corresponding hCθ = 〈cont , pred〉 is constructed
from Cθ, where cont is a controller by Definition 9.

Now we show that hCθ satisfies all conditions of Definition 13, which means that it is a k-l-active predictor,
and thus is Cθ.

(i) We show that given any σ ∈ L∗(Acont) and w = P(σ), ∃s ∈ Qθ such that qθ0
w
=⇒Bθ s, which is

demonstrated in an inductive way on w (see the following), and thus we have cont(w) = contθ(s). Now we
have θ(s) = 〈s, cont(w) \Σuo〉, therefore cont(w) \Σuo ∈ adm(Reach(s)) from E1. It follows that there
exists a ∈ cont(w) such that σa ∈ L∗(Acont). Hence, Acont is live.
– Let w = ε, then qθ0

w
=⇒Bθ qθ0 , which is the base case.

– For the induction step, suppose w ∈ P(L∗(Acont)) and qθ0
w
=⇒Bθ s. For any wa ∈ P(L∗(Acont)), we

show that ∃s′ such that qθ0
wa
=⇒Bθ s′. From the assumption, we have θ(s) = 〈s,Σ′〉 such that a ∈ Σ′.

wa ∈ P(L∗(Acont)) implies also a ∈ ΣPO(Reach(s)). Thus, 〈〈s,Σ′〉, 〈s, a〉〉 ∈ E2 and ∃s′ ∈ S such
that θ(〈s, a〉) = s′. Hence, we have T θ(s, a) = θ(〈s, a〉) = s′, thus qθ0

wa
=⇒Bθ s′.

(ii) pred(ε) = predθ(q
θ
0) is k-l-initial, deduced directly from Eι.

(iii) Let w ∈ P(L∗(Acont)), and qθ0
w
=⇒Bθ s. One thus has cont(w) = contθ(s) and pred(w) = predθ(s).

13

– If pred(w) = >, we show that w is k + 1-correct in Acont . Let wa ∈ P(L∗(Acont)). From above,
there exists s′ ∈ S such that qθ0

wa
=⇒Bθ s′, therefore pred(wa) = predθ(s

′). Furthermore, since
κ(pred(w)) = ω + 1, so κ(pred(wa)) ≥ k, which implies pred(wa) = > or pred(wa) = 〈k′, l′〉, where
k′ ≥ k. It follows that wa is k′-correct in Acont(see the next step), thus also k-correct. Hence, w is
k + 1-correct.

– If pred(w) = 〈k′, l′〉, we prove that w is k′-correct and k′ + l′-faulty in Acont by induction on k′ and
k′ + l′, respectively.
The base case for k′-correct is 0-correct. For any pred(w) = predθ(s) = 〈k′, l′〉, k′ ≥ 0, we have that
w is surely correct since s ∈ ScP′ , thus 0-correct in Acont from Definition 4. For the induction step, let
k′ ∈ N. Suppose that for any w such that pred(w) = 〈k′′, l′′〉 and k′′ ≥ k′, w is k′-correct in Acont .
We show that w′ is k′ + 1-correct in Acont when pred(w′) = 〈k′ + 1, l1〉, whose κ is k′ + 1. From
k-l-compatibility, we have κ(pred(w′a)) ≥ k′ for any w′a ∈ P(L∗(Acont)). From the assumption, w′a
is k′-correct in Acont . Thus, w′ is k′ + 1-correct in Acont .
For k′ + l′-faulty, we prove it in two cases.
(a) When l′ < ω, the base case is 1-faulty. Let pred(w) = p = 〈0, 1〉, thus µ(p) = 1. For any

wa ∈ P(L∗(Acont)), we have µ(pred(wa)) = 0 and pred(wa) = ⊥, which means that wa is
surely faulty in Acont(see last step), and thus w is 1-faulty in Acont . Given any w′ such that
µ(pred(w′)) ≤ 1, w′ is 1-faulty. For the induction step, let n ∈ N. Suppose that for any w such
that pred(w) = 〈k′, l′〉, where k′ + l′ ≤ n (µ(pred(w)) ≤ n), w is n-faulty in Acont . We next show
that w′ is n + 1-faulty in Acont when pred(w′) = 〈k′′, l′′〉, where k′′ + l′′ = n + 1. Again from
k-l-compatibility, we have µ(pred(w′a)) ≤ n for any w′a ∈ P(L∗(Acont)). From the assumption,
w′a is n-faulty in Acont . Thus, w′ is n+ 1-faulty in Acont .

(b) When l′ = ω, we prove that w is ω-faulty, i.e., ∃m ∈ N such that w is m-faulty. To this end, we
define vw ∈ S, the vertex reached in Gk,lA,P′ after observing w in a play conforming to the strategy
θ. Consider G′, the subgraph of Gk,lA,P′ consisting of successors of vw when following θ without the
vertices whose prediction is ⊥. G′ is acyclic since otherwise there would an infinite play conforming
to the strategy θ where predictions are neither > nor ⊥, thus losing. Thus after a finite number
of steps (bounded by 3|S|), a path conforming to θ and starting from vw must exit G′. Since it
can neither reach � or a state with prediction >, it must reach a state in {∅} × Q̃× {⊥} which
corresponds to a faulty run in Acont . Thus w is m-faulty for some m ≤ |S|+ 1.

– If pred(w) = 〈?,m〉, one can demonstrate that w is m-faulty in the same way as above for k′+ l′-faulty.
Furthermore, s ∈ SaP′ , implying the ambiguity of w.

– If pred(w) = ⊥, then s ∈ SfP′ . Thus, w is surely faulty by the definition.
(iv) Let a ∈ Σo, w,wa ∈ P(L∗(Acont)). From Definition 21, 〈pred(w), pred(wa)〉 is k-l-compatible since the

corresponding strategy is winning, not entering �.

Combining the results of Propositions 27 and 29, we obtain that the active-predictability problem for an
LTS A with n states reduces to solving a Büchi game with 2O(n) vertices. Since Büchi games can be solved in
polynomial time, we obtain the following result:

Theorem 30. The active-predictability problem for finite-state LTS belongs to EXPTIME.

We conclude the section with a supplementary result showing that due to the special structure of Gk,lA,P′ it
can actually be solved in linear time (w.r.t. the size of the game), and not in quadratic time as performed for
general Büchi games.

Proposition 31. If A is a finite-state LTS and P′ ⊆ P, then Gk,lA,P′ can be solved in O(|E|).

Proof. It is well-known that the solution of a Büchi game generally takes quadratic time. However, the
particular Büchi games we generate for the fault prediction problem can be reduced to solving reachability
game and then a safety game deduce from the solution of the reachability game. Since these types of games
can be solved in linear time, so can Gk,lA,P′ .

14

The winning vertices of the Büchi game Gk,lA,P′ = 〈VC , VE , E, ι, VF 〉 can be partitioned into VF = V SF ∪ V RF ,
with V SF := Q̃× {∅} × {>} and V RF := {∅} × Q̃× {⊥} (cf Definition 25). Thus, a winning play either never
admits a fault and predicts > all the time, or it eventually passes to a different prediction, whence it must
eventually reach the prediction ⊥, having definitely committed a fault. Once the prediction ⊥ is reached,
it will remain forever (cf Figure 3), so reachability is equivalent to infinitely repeated reachability for these
vertices. A customized algorithm for Gk,lA,P′ is therefore as follows:

1. First solve the reachability game GR := 〈VC , VE , E, ι, V RF 〉 and determine the winning states of GR
belonging to S, say S′. Let us denote θ1 the (positional) strategy corresponding to the winning states.

2. Then transform Gk,lA,P′ as follows. All vertices different from ι, not associated with prediction > and not
belonging to S′ are deleted and their incoming edges are redirected to �. The vertices that belong to S′
are made absorbing. Then in this arena, solve the safety game that consists in avoiding �. Let us denote
θ2 the (positional) strategy corresponding to the winning states.

Then the controller has a winning strategy in Gk,lA,P′ if ι belongs to the winning states of the safety game. The
corresponding (positional) strategy consists in playing according to θ2 as long as the play do not enter S′ and
when possibly entering in S′ consists in playing according to θ1.

4 Bound analysis

We first prove that it is EXPTIME-hard to decide whether a given LTS A is actively k-l-predictable,
independently of k and `. The proof is similar to the proof in [13] that active diagnosability is EXPTIME-hard
and relies on a reduction from safety games with imperfect information [3].

Theorem 32. The active-predictability decision problem is EXPTIME-hard.

Proof. A tuple G = 〈L, l0, Σ,∆,O, F, obs〉 is called a safety game with imperfect information, where L is a
finite set of locations with initial location l0 ∈ L, Σ is a finite alphabet, ∆ ⊆ L × Σ × L is the transition
relation such that for all l ∈ L and a ∈ Σ there exists at least one l′ with 〈l, a, l′〉 ∈ ∆, O is a finite set of
observations, F ⊆ O are the final observations, and obs : L 7→ O is the observation mapping.
G is a turn-based game played by two players called Control and Environment. It starts in location l0

with Control to play. In the first round, Control chooses a letter a0 in Σ, and then Environment chooses a
location l1 such that 〈l0, a0, l1〉 ∈ ∆. Control only observes o1 = obs(l1). The next rounds are played similarly.
Control wins if for all i, oi /∈ F .

Figure 5 (a) shows an example of a game with alphabet Σ = {a, b} and observations O = {o,p,q},
annotated next to the locations, where q ∈ F is the only final observation. Control must therefore prevent
the system from entering location l3.

Verifying the existence of a winning strategy for Control is EXPTIME-complete [3]. We now describe the
reduction of this problem to an active-predictability decision problem with LTS A defined as follows.

– Q, the set of states, is defined by Q = L] ((L \ obs−1(F))×Σ)] {⊥} and q0 = l0.
– The alphabet is Σ′ = Σ] O] {u, f, z}. The unobservable events are u and f and the (observable)

uncontrollable events are O] {z}.
– T , the transition relation, is defined as follows.

1. For all l ∈ L \ obs−1(F) and a ∈ Σ, 〈l, a, 〈l, a〉〉 ∈ T .
2. For all l ∈ L \ obs−1(F), a ∈ Σ and l′ ∈ L, 〈〈l, a〉, obs(l′), l′〉 ∈ T if 〈l, a, l′〉 ∈ ∆.
3. 〈⊥, z,⊥〉 ∈ T , and for all l ∈ obs−1(F), 〈l, u,⊥〉 and 〈l, f,⊥〉 belong to T .

Evidently, A is actively predictable if one can construct a finite-state pilot that avoids obs−1(F); if that is
possible, then no fault can ever occur, and the prediction is always >. Otherwise, the controlled system has a
choice of going to z with a fault in the next step, or going there with u and never committing a fault, so

15

l1
o

l2
p

l3
q

l1 l2

〈l1, a〉

〈l2, b〉
〈l1, b〉 〈l2, a〉

l3 ⊥

(a) (b)

a

b

a b

a, b

b a

a

b

b
a

u, f

o p

p
o

q q
z

Fig. 5: (a) A safety game with imperfect information; Control must avoid observation q; (b) the corresponding
active-predictability problem constructed by Theorem 32.

predicting a fault becomes impossible. In addition, such a pilot only “controls” the subset of states L\obs−1(F)
and due to the assumptions on G, liveness remains ensured when restricting the allowed events to a singleton.
Furthermore the information available to the pilot is exactly that of Control, i.e. the letters chosen by Control
himself and the observations due to the states chosen by Environment. Therefore, a winning strategy for
Control in G provides an active predictor for A and vice versa. Figure 5 (b) shows the LTS constructed from
the safety game in Figure 5 (a).

Together with Theorem 30, we obtain the following corollary.

Corollary 33. The active-predictability decision problem is EXPTIME-complete.

We study the relation between active predictability and active safety. Theorem 34 relates the maximal
advance warning for fault predictions to the number of states in A.

Theorem 34. Let A be an LTS with n states. If A is 2n-active-predictable, then it is actively safe.

Proof. If A is 2n-ω-active-predictable then by definition there exists a 2n-ω-active predictor h = 〈cont , pred〉
over P′ := Pk,ω for A, and by Proposition 27 there exists a winning strategy θ in Gk,ωA,P′ . In turn, this winning
strategy provides a pilot Cθ = 〈B, cont ′, pred ′〉 according to Proposition 29; let B = 〈Q, q0, Σo, T 〉. We shall
construct a new pilot C for A over {>}, proving that A is actively safe.

Remember that Q is the set of Controller-owned vertices in Gk,ωA,P′ that can be reached by plays adhering
to θ and that these vertices are a subset of SP′ . For q, q′ ∈ Q, let us write q ≺ q′ if q′ is reachable from q in
B. Since θ is positional and winning, ≺ must be an acylic relation between those states of Q that are not
members of VF , i.e. their associated prediction is neither > nor ⊥ (cf Definition 25). We now call q ∈ Q a
cutoff if q is of the form 〈Qc, Qf , p〉 and there exists a state q′ = 〈Qc, Qf , p′〉 with p′ 6= p and q′ ≺ q. Let
co(q), the corresponding state of q, denote the state that is ≺-minimal among all the choices for q′; due to
the structure of the states outside VF , co(q) is unique and not a cutoff itself. Moreover, a state of Q is called
useless if it is either a cutoff or all its (immediate) predecessors in B are useless, and useful otherwise.

Remember that SP′ is a union of ScP′ , S
a
P′ , and S

f
P′ , where S

c
P′ contains the states of the form 〈Qc, ∅, p〉,

with κ(p) ≥ 0. Thus, states in ScP′ are only reached through correct runs in Acont′ , due to invariants φc and
φf in the proof of Proposition 27. Let S′ := { 〈Qc, ∅, p〉 | κ(p) = 0 }. It follows from the construction of Gk,ωA,P′
(cf Definition 21 and Definition 25) that any path from q0 to a state from S′ is of length at least 2n, so by
pigeonhole principle, any path leading to S′ contains a cutoff. Since SaP′ ∪ S

f
P′ can only be reached by going

through S′, those states are useless.
We can now construct the desired pilot C by “folding” cutoffs back onto their corresponding states. We

remark in this context that Reach(q) = Reach(co(q)), and therefore the admissible control choices for both

16

states are the same; proving that the resulting controlled system is live depends only on this property, cf
the proof of Proposition 29 (i). Since the controlled system never admits a fault, the prediction can be > in
all cases. More formally, C := 〈〈Q′, q0, Σo, T ′〉, cont ′, pred ′′〉, where Q′ is the useful subset of Q, and for all
q ∈ Q′, a ∈ Σo:

– T ′(q, a) = T (q, a) if T (q, a) ∈ Q′ and T ′(q, a) = co(T (q, a)) otherwise;
– pred ′′(q) = >.

Theorem 34 implies that if a system is not actively safe, then there is an exponential upper bound on the
advance warning that an active predictor can issue. This bound is asymptotically precise, as the following
family of examples shows.

Theorem 35. There exists a family of systems (An)n≥1 with O(n) states such that An is not actively safe
but 2n-active-predictable.

p

sn−1 s1 s0

q q′

p′ p′′

n− 1

Σn−1

1 Σ1
0

Σ0

Γn−1 Γ1

n− 1
1 0

u

f
n

Γn

n f
n

.

Fig. 6: A 2n-active predictable LTS with O(n) states, where Σo = Σc = {0, ..., n}, Σi = {i+ 1, ..., n}, and
Γi = {0, ..., i− 1}.

Proof. Figure 6 shows a family of LTS with O(n) states but an alphabet of size O(n) and O(n2) transitions.
We first provide a proof for this family as it is easier to understand. After this, we provide a more complex
example with a constant-size alphabet and O(n) states and transitions.

Variable-size alphabet Consider the LTS shown in Figure 6. The observable actions are {0, . . . , n}, all of
which are controllable. There are only two unobservable actions, u and the fault f . We abbreviate by
Σi := {i+ 1, . . . , n} the actions larger than i for 0 ≤ i < n, and by Γi := {0, . . . , i− 1} the actions smaller
than i for 0 < i ≤ n.

The initial state is p. Evidently An is actively safe if a controller can avoid both p′ and q; as we shall see,
this is impossible. However, the system is actively predictable if the controller can at least avoid q. We shall
see that this is indeed possible while entering p′ only after 2n steps, by simulating a binary counter.

We can assume (w.l.o.g.) that the controller permits a single action from Σo in each step and hence the
controlled system will admit a single infinite observation sequence ρ. Having allowed a prefix σ of ρ, let
R(σ) be the set of states that this sequence can lead to. If the controller wants to keep the system from
making a fault, it must ensure that R(σ) remains within the set R := {p, s0, . . . , sn−1}. When R(σ) ⊆ R, let
us associate a measure defined as I(σ) :=

∑
si∈R(σ) 2

i. We observe the following:

17

– R(ε) = {p}, hence I(ε) = 0.
– If si ∈ R(σ), then the controller must not allow action i in the next step, otherwise the system may go to
q, rendering it unpredictable.

– As long as I(σ) < 2n − 1, the controller must permit an action i such that I(σi) > I(σ). To see this, let
si /∈ R(σ), then R(σi) = (R(σ) ∪ {si}) \ {s0, . . . , si−1}. We shall assume that i is chosen minimally, so
I(σi) = I(σ) + 1.

– Therefore, after 2n − 1 steps, the controlled system will have performed a sequence σ̂ with I(σ̂) = 2n − 1.
The only possible course of action for the controller is to permit n from now on, i.e. ρ = σ̂nω. We then
have R(σ̂n) = {p, p′}, R(σ̂nn) = {p′, p′′}, and R(σ̂nnn) = {p′′}.

Going backwards, we can now associate predictions with each prefix of ρ: pred(σ̂nk) = ⊥ for k ≥ 3,
pred(σ̂nn) = 〈?, 1〉, pred(σ̂n) = 〈0, 2〉, and pred(σ) = 〈2n − |σ|, 2〉 for every prefix σ of σ̂. Thus, An is
2n-2-active predictable. Notice that the system could be made 2n-1-active predictable if states s0, . . . , sn−1
transitioned with n to p′ instead, which we avoided simply to keep the drawing of the automaton planar.

Constant-size alphabet To see that the proof with a variable-size alphabet can be adapted to an alphabet of
constant size, consider the LTS A′n in Figure 7. A′n has O(n) states and three observable and controllable
actions 0, 1, a and two unobservable actions u and f . Initially, the LTS performs an a going to either p or r.
The LTS then simulates An of Figure 6, using a unary encoding, in the following sense: Let code(i) = 1i0n−ia,
for i = 0, . . . , n. The reader can verify, case-by-case, that for any two states u, v ∈ {p, p′, s0, . . . , sn−1, q} and
i ∈ {0, . . . , n}, we have u i−→ v in An iff u

code(i)−−−−→ v in A′n. Moreover, the controller must account for the
possibility that the system has gone to state r. Then, to keep the controlled system live, the only possible
sequences that the controller can enforce are code(i) for i = 0, . . . , n, and we have r

code(i)−−−−→ r for i < n. After
the initial a, the controller must therefore admit code(σ̂n), for σ̂ as in An. On this basis, a closer look shows
that A′n is k-l-active predictable for k = 1 + (n+ 1) · 2n and l = n+ 2.

Note that Theorem 35 does not contradict Proposition 8, which establishes linear prediction bounds w.r.t.
the number of states of A. However, Proposition 8 talks about passive predictability, whereas Theorem 35 is
about active predictability.

5 Conclusion and perspectives

We have extended the prediction paradigm by introducing parameters related to the number of observations
before fault may or must occur. Within this framework, we have established that active predictability is
EXPTIME-complete through a procedure for synthetising active predictors that builds a Büchi game. Solving
this game is proved linear in the number of edges in the game. We have shown that if the observation threshold
for eventual prediction is chosen large enough (namely ≥ 2n with n the number of states in the system), then
active predictability is equivalent to active safety. Furthermore we have exhibited a family of systems proving
that this bound is tight.

Out of several possible extensions for the present results, three stand out as natural continuations. First,
we want to introduce a measure that quantifies the faultiness of the system, and then aim to find an active
predictor that minimizes this criterium, or at least ensures a value below some threshold. Second, we plan
to study the notion of prediagnosis introduced in [2] that combines predictability and diagnosability for
controllable systems. Finally, we also want to study active predictability for probabilistic systems, as we had
previously done for diagnosis in [1].

18

p p1 pn−1 pn p′

p′′

r r1 rn−1

tn−1tn−2t1t0

sn−1sn−2s1s0

q

q′

a 1 1 a

f

a, 1

a 1
1

0 0 0

0
a

0 0 0

00

aaaa

a a a a

1110

10

0
00

0

0

00

1

1

0, 1

a

aaaa

uf

a, 1

0

1

1

0

0

1

0

.

Fig. 7: Variant of Figure 6 with constant-size alphabet, with Σo = Σc = {0, 1, a}.

References

1. N. Bertrand, E. Fabre, S. Haar, S. Haddad, and L. Hélouët. Active diagnosis for probabilistic systems. In
FOSSACS 2014, Grenoble, France, volume 8412 of LNCS, pages 29–42, 2014.

2. N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of Diagnosis and Predictability in Probabilistic
Systems. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’14), volume 29 of LIPIcs, pages 417–429, New Delhi, India, December 2014.

3. D. Berwanger and L. Doyen. On the power of imperfect information. In Proc. FSTTCS, volume 2 of LIPICS,
pages 73–82, Bangalore, India, 2008.

4. S. Böhm, S. Haar, S. Haddad, P. Hofman, and S. Schwoon. Active diagnosis with observable quiescence. In Proc.
CDC: 54th IEEE Conf. on Decision and Control, pages 1663–1668, Osaka, Japan, December 2015.

5. L. Brandán Briones and A. Madalinski. Bounded predictability for faulty discrete event systems. In 30nd
International Conference of the Chilean Computer Science Society, SCCC, pages 142–146, Curico, Chile, November
2011.

19

6. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems - Second Edition. Springer, 2008.
7. F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers. Fundamenta Informaticae,

88:497–540, 2008.
8. F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers. Fundam. Informaticae, 88(4):497–540,

2008.
9. E. Chanthery and Y. Pencolé. Monitoring and active diagnosis for discrete-event systems. In Proc. SafeProcess’09,

pages 1545–1550, 2009.
10. E. Dallal and S. Lafortune. On most permissive observers in dynamic sensor activation problems. IEEE Trans.

Autom. Control., 59(4):966–981, 2014.
11. S. Genc and S. Lafortune. Predictability of event occurrences in partially-observed discrete-event systems. Autom.,

45(2):301–311, 2009.
12. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A Guide to Current

Research, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.
13. S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal constructions for active diagnosis. Journal of Computer

and System Sciences, 83(1):101–120, 2017.
14. A. Madalinski and V. Khomenko. Predictability verification with parallel LTL-X model checking based on Petri

net unfoldings. IFAC Proceedings Volumes, 45(20):1232 – 1237, 2012. 8th IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Processes.

15. M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event systems. IEEE Transactions on
Automatic Control, 43(7):908–929, July 1998.

16. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability of discrete-event
systems. IEEE Trans. Aut. Cont., 40(9):1555–1575, 1995.

17. L. Ye, P. Dague, and F. Nouioua. Predictability Analysis of Distributed Discrete Event Systems. In 52nd IEEE
Conference on Decision and Control, pages 5009–5015, Florence, Italy, December 2013.

18. X. Yin and S. Lafortune. A uniform approach for synthesizing property-enforcing supervisors for partially-observed
discrete-event systems. IEEE Trans. Autom. Control., 61(8):2140–2154, 2016.

19. X. Yin and S. Lafortune. A general approach for optimizing dynamic sensor activation for discrete event systems.
Autom., 105:376–383, 2019.

20. X. Yin and Z. Li. Decentralized fault prognosis of discrete event systems with guaranteed performance bound.
Autom., 69:375–379, 2016.

21. T-S. Yoo and S. Lafortune. Polynomial-time verification of diagnosability of partially observed discrete-event
systems. IEEE Trans. Automat. Contr., 47(9):1491–1495, 2002.

20

	Active Prediction for Discrete Event Systems

