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Experiments performed in DECLIC-DSI on board the International Space Station evidenced oscillatory
modes during the directional solidification of a bulk sample of succinonitrile-based transparent alloy. The
interferometric data acquired during a reference experiment, Vp = 1 μm/s and G = 19 K/cm, allowed us to
reconstruct the cell shape and thus measure the cell tip position, radius, and growth velocity evolution, in order
to quantify the dynamics of the oscillating cells. This study completes our previous reports [Bergeon et al., Phys.
Rev. Lett. 110, 226102 (2013); Tourret et al., Phys. Rev. E 92, 042401 (2015); Pereda et al., Phys. Rev. E 95,
012803 (2017)] with, to our knowledge, the first complete monitoring of the geometric cell tip characteristics
variations in bulk samples. The evolution of the shape, velocity, and position of the tip of the oscillating cells is
associated with an evolution of the concentration field, inaccessible experimentally but mediating the diffusive
interactions between the cells. The experimental results are supported by 3D phase-field simulations which
evidence the existence of transversal solute fluxes between neighboring cells that play a fundamental role
in the oscillation dynamics. The dynamics of oscillation of an individual cell is analyzed using a theoretical
model based on classical equations of solidification through the calculation of the phase relationships between
oscillation of the different tip characteristics.
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I. INTRODUCTION26

In a wide range of scientific fields, pattern formation, a27

quite complex process occurring in highly nonlinear growth28

regimes, is of paramount importance [1]. Nonequilibrium in-29

terface patterns can be obtained by directional solidification30

of binary alloys. These patterns have been widely stud-31

ied because they are analogous to patterns formed in other32

fields (combustion, fluid dynamics, geology, biology, etc.) and33

because of their metallurgical relevance [2–4]. During direc-34

tional solidification, the crucible containing a binary alloy of35

nominal solute concentration C0 is placed inside a furnace36

that imposes a temperature gradient G, and it is pulled at a37

constant velocity Vp towards the cold region of the furnace.38

For low pulling velocities, the interface remains stable and39

planar but, when Vp exceeds a critical value [5,6], the solid-40

liquid interface undergoes the Mullins-Sekerka morphological41

instability. The interface then develops fingerlike structures42

called cells and, for even higher velocities, dendritic structures43

with secondary and tertiary side arms. Further understating44

of the basic physical mechanisms governing microstructure45

formation during solidification are of major importance be-46

cause they directly benefit to the improvement of materials47

processing [2,3].48

The cellular or dendritic patterns may undergo secondary49

instabilities in domains of control parameters where non-50

steady-state growth solutions become dynamically selected.51

*Corresponding author: fatima.lisboa-mota@im2np.fr

Interface patterns may present a diversity of secondary in- 52

stabilities, very frequently occurring in a narrow range of 53

growth conditions [7–12]. One typical example of secondary 54

instability, generic of spatially modulated interface patterns, 55

is the oscillatory growth mode. In directional solidification, 56

the period-doubling oscillatory mode (2λ−O) has been ex- 57

perimentally, theoretically, and numerically studied, in thin 58

samples for both cellular [7,8,12–16] and two-phase eutectic 59

interfaces [17–21]. Oscillatory modes have been predicted by 60

numerical studies of 3D cellular growth first [22,23] before 61

being recently experimentally observed [24–26]. 62

In thin samples of transparent alloys, Georgelin and 63

Pocheau [14] experimentally evidenced and characterized the 64

oscillation of cellular patterns, that appeared to be a 2λ−O 65

mode. Adjacent cells form pairs that oscillate in phase oppo- 66

sition with both tip position and cell width oscillation, nearly 67

in phase quadrature. Recently, the origin and nature of oscil- 68

lations was revisited by combining the former experiments 69

of Georgelin and Pocheau [14] with 3D phase-field numeri- 70

cal simulations [16]. Phase-field simulations together with a 71

solute balance model revealed the fundamental role of trans- 72

verse solute fluxes between neighboring cells and provided 73

a complete description of the physical mechanism of 2λ−O 74

oscillations. 75

Due to gravity-induced convection, 3D oscillating modes 76

were never directly observed in experiments until recently 77

when experiments were performed under microgravity con- 78

ditions in bulk (3D) samples of a succinonitrile-0.24 wt% 79

camphor alloy in the framework of joint project between the 80
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French Space Agency (CNES) and NASA. Experiments were81

performed using the Directional Solidification Insert (DSI) of82

the DEvice for the study of Critical LIquids and Crystalliza-83

tion (DECLIC) developed by CNES which is dedicated to in84

situ and real-time characterization of the dynamical selection85

of the solid-liquid interface morphology on bulk samples of86

transparent materials [27–30]. For a limited range of exper-87

imental control parameters, extended cellular patterns, that88

are globally disordered, form and display oscillations with89

periods of few tens of minutes. Oscillating cells are usu-90

ally noncoherent due to array disorder. However, in regions91

displaying short-range spatial ordering, groups of cells can92

synchronize into oscillatory breathing modes. In case of a93

local hexagonal ordering, three sublattices beating with an ap-94

proximately ± 2π
3 phase shift with each other were observed;95

for a local square ordering, two sublattices were beating in96

phase opposition [24,25]. Dedicated large-scale phase-field97

simulations were performed that produced oscillating modes98

of comparable characteristics in terms of period as well as99

spatiotemporal coherence [24,26]. In simulations, long-range100

coherence of breathing modes could be achieved for a per-101

fect spatial arrangement of cells imposed as initial condition,102

whereas, when realistic noisy initial conditions are used, a103

global disorder was observed that prevents oscillation co-104

herence as in experiments. The conditions of appearance of105

oscillations were also specified and linked to the stable spac-106

ing range of a cellular array [26].107

In the previous works [24–26], 3D oscillating experimental108

patterns were analyzed using the top-view images provided109

in DECLIC-DSI; in this observation mode, oscillation is re-110

vealed by the periodic variation of the apparent cell area which111

corresponds to the cell width oscillation seen from the top.112

The characterization of the cell shape is therefore only partial113

as tip shape and position are not measurable. As previously114

mentioned, all these parameters were measured for the case115

of thin samples observed from the side and were found to be116

affected by the oscillation [14]. To overcome this limitation117

and completely characterize the oscillating cell dynamics in118

the 3D extended patterns, we used the DECLIC-DSI Mach-119

Zehnder interferometer which is installed along the axial120

direction of the crucible. This interferometer was specifically121

designed to capture the 3D geometry of the interface in real122

time. In the frame of the DECLIC project, interferometric123

data were previously used to quantitatively characterize the124

shape of dendrites grown by directional solidification and125

followed by in situ observation during their whole growth126

[31]. In this paper, the interferometric images of a reference127

experiment, whose control parameters lead to oscillating cel-128

lular patterns (Vp = 1 μm/s and G = 19 K/cm), are analyzed129

to reconstruct the shape and position of each cell during its130

oscillation cycle and rebuild the oscillation cycle of the main131

cell shape parameters, tip position, radius, and velocity. Dedi-132

cated phase-field simulations are used to better understand the133

driving mechanisms of cellular oscillation. The results shed134

light on the mechanisms of oscillation which involves vertical135

and horizontal solute fluxes.136

In Sec. II the experimental device will be first briefly de-137

scribed as well as the method of interferometric data treatment138

used to exploit the information encoded in the interferometric139

fringes. It produces detailed quantitative descriptions of the140

interface shapes and their time evolution. Tip velocity varia- 141

tions can be evidenced with resolution of a few nanometers 142

per second. Section III covers the statistical characteristics 143

and mechanism of oscillation of individual cells, including 144

a detailed description of the quantities and phase relation- 145

ships involved in an oscillating cell, the supporting phase-field 146

simulations and a proposed driving mechanism of cellular 147

oscillation. Conclusions will be summarized in Sec. IV. 148

II. EXPERIMENTAL 149

A. The directional solidification device DECLIC-DSI 150

The DSI insert of the DECLIC facility includes a 151

Bridgman-type furnace and the experimental cartridge; more 152

complete descriptions of DECLIC and its inserts can be found 153

elsewhere [29,30]. The Bridgman furnace is composed of hot 154

and cold zones located at the top and bottom of the adiabatic 155

zone, respectively, so that a temperature gradient G can be 156

generated (between 10 and 30 K/cm). Solidification is per- 157

formed by pulling the experimental cartridge containing the 158

alloy from the hot zone towards the cold zone at a constant 159

pulling rate Vp (between 0.1 and 30 μm/s). The experimental 160

cartridge includes the quartz crucible and a system of volume 161

compensation made of stainless steel that is mandatory to 162

accommodate the specimen volume variations associated to 163

phase changes. The cylindrical crucible has an inner diameter 164

of 1 cm and a length that enables about 10 cm of solidification, 165

thus allowing the study of the whole development of extended 166

3D patterns from their initial stages till permanent regime of 167

growth morphology. The crucible is equipped with a flat glass 168

window at the bottom and with an immersed lens in the melt 169

at the top. The main observation mode takes advantage of 170

the complete axial transparency of the cartridge provided by 171

these last two elements: the light coming from LEDs passes 172

through the cartridge from the bottom to the top, therefore 173

crossing the interface, the image of which is formed on a CCD 174

camera (top-view image); this observation mode provides 175

top-view images of the microstructure and is used to study 176

array dynamics and cell characteristics. On the same cartridge 177

axis, a Mach-Zehnder interferometer is also set using a He-Ne 178

laser (λ = 632.8 nm). The basic principles of the analyses of 179

the interferometric images can be found in Refs. [31,32] but 180

the ultimate method that we currently use will be presented 181

in Sec. II B. In the transverse mode, the light coming from 182

two LEDs crosses the sample from one side to the other, 183

which provides a real-time control of interface position and 184

curvature (side-view image). Due to the cylindrical shape of 185

the crucible, this observation mode has a quite low resolution 186

and cannot be used for the detailed analysis of cell shape. In 187

this study, only the images obtained by the direct and interfer- 188

ometric axial observations are analyzed. It is worth noticing 189

that since those two diagnostics share the same optical path, 190

they cannot be active simultaneously. 191

The organic transparent alloy Succinonitrile (SCN) - 192

0.24 wt% camphor is used (Table I). SCN purified by NASA 193

by both distillation and zone melting was used to fill the 194

crucible. All procedures for sample preparation were carefully 195

realized under vacuum to avoid humidity contamination. A 196

single crystalline solid seed with a direction 〈100〉 parallel to 197
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TABLE I. Properties of succinonitrile and succinonitrile-
camphor alloy [33–39].

Physical parameter Symbol Magnitude Unit

Succinonitrile

Melting temperature Tm 331.24 K
Molar mass M 80.09 g/mol
Latent heat of fusion �H 3.713 kJ/mol
Liquid density ρL 970 kg/m3

Solid density ρS 1016 kg/m3

Liquid thermal conductivity λL 0.223 J/(ms K)
Solid thermal conductivity λS 0.224 J/(ms K)
Thermal expansion coefficient βT 7.85 × 10−4 K−1

Interface energy γ 8.95 × 10−3 J/m2

Kinetic viscosity υ 2.6 mm2/s
Succinonitrile-camphor

Solute (camphor) concentration C0 0.24 wt%
Liquidus slope m −1.365 K/wt%
Solute diffusion coefficient (liq.) DL 270 μm2/s
Thermal diffusion coefficient Dth 1.15 × 105 μm2/s
Solute partition coefficient k 0.07 −
Gibbs-Thomson coefficient 	 0.06478 K μm
Anisotropy strength ε4 0.011 −

the pulling axial direction was prepared on ground and kept198

during all the experimental campaign. Further details about199

the experimental procedure can be found in previous works200

[28,40].201

No direct in situ measurement of the thermal gradient is202

available in the DSI as no thermocouple is inserted inside203

the sample to avoid thermal perturbations. A complete dis-204

cussion of the thermal gradient determination can be found205

in Ref. [41]: two different thermal gradients were estimated206

by thermal numerical simulation [42] at G1 = 19 K/cm and207

G2 = 12 K/cm. A range of pulling velocities from 0.25 to 30208

μm/s was studied which covers the whole range of possible209

unstable microstructures.210

The oscillation mode was observed in a narrow range of211

pulling rates: from 0.5 to 1.5 μm/s for a thermal gradient212

of 19 K/cm, and at 0.5 μm/s for a gradient of 12 K/cm.213

The most striking oscillatory experiment, which was the basis214

of our previous analyses, was obtained for Vp = 1 μm/s and215

G = 19 K/cm [24,25]. These last conditions are then chosen216

to perform the experiment with sequences of interferometric217

observation followed by white light acquisitions of the same218

duration (approximately 45 min).219

B. Interferometry in the context of cellular interface220

characterization221

Interferometric images are used to determine the inter-222

face shape and growth velocity. Interference fringes appear223

at the recombination of the laser beam passing through the224

crucible with a reference beam passing outside. These fringes225

can be considered as level curves of the solid-liquid interface.226

The spatial variation of the interferogram contains the infor-227

mation related to the 3D shape of the cell tips, whereas its228

temporal evolution is required to follow the height of an in-229

FIG. 1. (a) Global view of the solid-liquid interface obtained by
direct observation (Vp = 1 μm/s, G = 19 K/cm, t = 15.6 h). The
green square is zoomed to show the corresponding interferometric
observation. (b) Frames of reference used for interferometric recon-
struction. The instantaneous position Zi of each cell is taken relative
to its initial position Z0

i defined at t = 0. The shape of a cell is
described by the height of the interface hi(�r, t ), which is a function
of �r, a 2D vector with origin fixed at the cell tip position.

terface point with time [31]. A snapshot of a cellular interface 230

obtained by direct and interferometric observations is given 231

in Fig. 1(a). In the interferometric view, each group of rings 232

corresponds to a cell, separated from its neighbors by a region 233

where beam coherence is lost. Therefore, the interferogram 234

conveys information only near the cell tips; as there are no 235

fringes in the grooves between cells, it is not possible to 236

directly relate the tip heights of different cells. Temporally, 237

we can obtain only the variation of an interface point height 238

relative to its initial height at the start of interferometric ac- 239

quisition but not its absolute height. 240

We define Z as the pulling and optical axis. The simplest 241

representation of a cellular interface is a height map zφ (�r, t ) 242

with �r the location of an interface point in the (x, y) plane 243

normal to Z [Fig. 1(b)] and the subscript φ stands for the tip 244

phase shift, which will be detailed in the next subsection. As 245

there is no continuity of fringes from one cell to its neighbors, 246

it is convenient to separate zφ (�r, t ) into the tip-position com- 247

ponent Zi(t ) and the shape component hi(�r, t ): 248

zφ (�r, t ) = Zi(t ) + hi(�r, t ). (1)

The frames of reference �r and h are centered on the tip posi- 249

tion of the ith cell [Fig. 1(b)]. 250

We can detail the variation of the tip height: 251

Zi(t ) = Z0
i + Vpt + δZi(t ), (2)

where Z0
i is the initial height of the ith’s cell tip at the start 252

of the sequence (it depends exclusively on i), Vpt is the av- 253

erage front elevation during growth and δZi(t ) is the possible 254

deviation of a cell tip from this average, resulting for example 255

from velocity oscillations (it depends on i and t). The position 256

of the interface zφ (�r, t ) can then be separated into an absolute 257

front position component Zifront (t ) = Z0
i + Vpt , a relative cell 258

tip position component δZi(t ) and a shape component hi(�r, t ): 259

zφ (�r, t ) = Zifront (t ) + δZi(t ) + hi(�r, t ). (3)

The main objectives are then to calculate hi(�r, t ) to ac- 260

cess the interface shape, and to calculate δZi(t ) and its time 261
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FIG. 2. (a) Side cut of the solid-liquid interface. Two adjacent
rays 1 and 2 have similar paths save for the short distance �h
where P1 travels through a solid, and P2 travels through a liquid.
Their difference in phase can then be attributed solely to the shape
of the interface. (b) Time evolution: as pulling rate is applied, the
entire interface advances, and the fringes slide towards lower parts
of the interface. The interface shape is considered constant within
short durations, and the temporal change in L is attributed solely to
changes in length of the solid and liquid columns above and below
the interface.

derivative to characterize the oscillation of the cell tip in terms262

of height and velocity. Each cell is treated independently.263

The starting point is the interferogram and its spatiotemporal264

intensity variations.265

C. From the interferogram to the cell tip characterization266

For a point of location zφ (�r, t ) attached to a given cell,267

the corresponding intensity I (�r, t ) recorded at instant t on268

the CCD camera results from the difference of optical paths269

L(�r, t ) between the ray crossing the interface at �r, and its270

corresponding reference ray:271

I (�r, t ) = 2I0{1 + cos[ϕ(�r, t )]} with ϕ(�r, t ) = 2π
L(�r, t )

λ
.

(4)
ϕ(�r, t ) is simply the optical path phase difference at a given272

point �r and time t ; it can be rewritten in analogy to zφ :273

ϕ(�r, t ) = φi(t ) + θi(�r, t ), (5)

where φi(t ) is the tip phase shift taken at the tip position due274

to Zi(t ), and θi(�r, t ) is the component of the phase shift due275

to the shape component hi(�r, t ). These phase differences are276

linked to the optical paths:277

LSi(�r, t ) = θi(�r, t )λ

2π
and LTi(t ) = φi(t )λ

2π
, (6)

where LSi corresponds to the part of L due to shape [i.e.,278

related to hi(�r, t )], and LTi corresponds to the part of L due279

to the tip height [i.e., related to Zi(t )].280

During a solidification experiment, the main variations of281

optical paths are attributed to variations of the lengths of the282

two different phases (solid and liquid). The optical paths of283

parallel rays crossing the interface at different locations P1 and284

P2 at the same time t [Fig. 2(a)] reveal the interface shape.285

If P1 and P2 lie on two neighboring black fringes [blue and286

yellow lines in Fig. 2(b)], their L differs by a laser wavelength287

λ. Similarly in time, if a pixel is at its darkest at a given time,288

the next time it will be at its darkest again is when its L is one 289

laser wavelength λ longer. 290

The optical path L depends both on the position of the 291

solid-liquid interface zφ (�r, t ), and of the entire temperature 292

field of the sample T (�r, z, t ), because of the dependence of the 293

optical index on the temperature. In DECLIC-DSI, there is no 294

access to the temperature field, so a simplified model is used 295

as shown in Fig. 2. Homogeneous temperature Tφ along the 296

interface and its close vicinity is assumed. Far from the inter- 297

face, the liquid is at temperature Thot, and the solid is at Tcold. 298

The shape component is obtained by comparing the optical 299

paths of two rays crossing the interface at different locations, 300

namely, at �r and at the tip (�r = �0). The corresponding paths 301

differ only close to the interface over a length h(�r): 302

LSi(�r, t ) = L(�r, t ) − L(�0, t )

= −h(�r)nφL + h(�r)nφS (7)

⇔ h(�r) = LSi(�r, t )

�nφ

, (8)

where nφL and nφS are the refractive indices at the interface 303

temperature on the liquid and the solid side, respectively, 304

and �nφ = nφS − nφL. The time component is obtained by 305

following the L variation at one location. Due to the motion 306

of the crucible, a length Vp�t of cold solid replaces the same 307

length of hot liquid during a time �t . If the local tip velocity 308

varies about the pulling velocity (in case of oscillation for ex- 309

ample), the tip location is shifted by δZi(t ) ahead or below the 310

average interface location (steady-state growth). If δZi(t ) > 0, 311

a corresponding length of solid at temperature Tφ has replaced 312

the liquid during �t : 313

LTi(t ) = L(�0, t + �t ) − L(�0, t ) = Vp�t�nSL + δZi(t )�nφ,

(9)
where �nSL is the difference of refractive indices between 314

the cold solid and hot liquid (�nSL = nSTcold − nLThot ), and in 315

steady state δZi(t ) = 0. 316

Several measurements were performed to determine the 317

variation of the refractive index of pure liquid SCN as a 318

function of temperature (Inatomi et al. [43] and unpublished 319

data by Trivedi et al.). The solid phase was explored less, and 320

the only extensive characterization of n(T ) was done by Mac- 321

Farlane et al. [44]. From the literature data, �nSL = 0.034 and 322

�nφ = 0.019. These values are critical to the characterization 323

of the interface, so they have been reassessed in situ during 324

the experimental campaign in microgravity [45]. The value 325

of �nφ was refined to 0.013 by analyzing the interferogram 326

of a macroscopically curved interface, whose curvature was 327

observed by transverse observation. The value of �nSL was 328

refined to 0.0348 by counting precisely the number of fringes 329

that traversed the middle of the interface during a long exper- 330

iment of precisely known pulling length. These latter values 331

are used for analysis. 332

Based on Eqs. (4)–(9), we see that to reconstruct the 333

interface shape and to get the local tip velocities, the in- 334

terferograms need to be analyzed to extract first the phase 335

shift and then to deduce the different components of optical 336

paths LSi and LTi. The problem is then to extract an adequate 337

phase shifting that monotonously describes the tip profile, in 338

spite of the periodic variation of the intensity, and in spite 339
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of unavoidable noise in intensity variations of the interfer-340

ograms. To solve this problem, the phase-shifting algorithm341

proposed by Wang and Han [46] was implemented in an in-342

house procedure written in Python with extensive use of the343

open-source scientific libraries NumPy and SciPy. At instant344

t , a small subset of consecutive interferograms, of sufficiently345

short duration to consider that the cell shape is not changing,346

is used to calculate the phase-map image θi(�r, t ) that reflects347

the morphology; successive subsets of images superpose to348

ensure the continuity of the results. The successive subsets349

are used to determine φi(t ).350

The duration of an interferometry sequence is 45 min,351

which amounts to ≈800 images. The treatment was applied352

to an interface area of 5.0 × 4.3 mm2 enclosing M = 337353

cells. To analyze the oscillating cells, gliding subsets of 30354

images, with a shift of three images between successive sub-355

sets, are used. For each cell, the result of the treatment is a356

curve corresponding to Zifront (t ) + δZi(t ) and a sequence of357

cell shapes hi(�r, t ) at different times. Due to the lack of an358

absolute reference, inherent to interferometry, the origin of Z359

is taken to be 0, meaning that Z0
i = 0 and Zifront (t ) = Vpt . This360

procedure was repeated for each observed cell, the Z position361

of the cell tips was averaged, and the average was taken as the362

front position Z f ront (t ) = 1
M

∑M
i=1 zφ,i(�0, t ) = Vpt = Zifront (t ).363

Subtracting this average component from zφ,i(�r, t ), the two364

characteristics affected by oscillation, δZi(t ) and hi(�r, t ), can365

be obtained from Eq. (3).366

To calculate the growth velocity deviation δVi(t )[ dδZi (t )
dt ]367

from the raw measured data, δZi(t ) is smoothed by applying a368

Savitzky-Golay filter (windowed linear least squares fit) with369

a window of 3 min, before being differentiated with respect to370

time. A filter window of 3 min was chosen by trial and error371

to reduce noise without significantly altering the shape of the372

curve.373

As mentioned above, only the regions near the tips are ac-374

cessible through interferometry. The lowest observable point375

of hi(�r, t ) is typically 300 μm below the cell tip. These regions376

have a mean diameter of 86 μm, in contrast to 154 μm con-377

sidering the apparent cell areas during direct observation. The378

measurement of tip radius is chosen to quantitatively charac-379

terize the cell shape and its evolution. An elliptical paraboloid380

is fitted to the reconstructed depth map hi(�r, t ) which allows381

estimating the mean radius of curvature ρi(t ) for each cell.382

Considering the mean radius of curvature or Gaussian radius383

of curvature leads to very similar results, so it was decided to384

consider only the mean radius.385

III. RESULTS386

Before turning to the cell oscillation dynamics, it is impor-387

tant to briefly describe the main characteristics of the extended388

2D cellular pattern. The in situ and real-time observation of389

the solidification allows one to follow the primary spacing390

evolution as function of time. Primary spacing is one of the391

main characteristics describing the interface morphology and392

is defined as the average center-to-center distance between393

a cell and its first neighbors. The average primary spacing394

increases until it reaches a steady-state value. If an average395

is made throughout the whole interface, the primary spacing396

at steady state is equal to 288 ± 42 μm which compares397

FIG. 3. Maps of primary spacing (a) and nearest neighbors (b) at
steady state (Vp = 1 μm/s, G = 19 K/cm, t = 15.6 h).

well with the previously analyzed experiment (without in- 398

terferometry) [25]. The primary spacing map at the end of 399

solidification is given in Fig. 3(a): the primary spacing is 400

homogeneously dispersed and does not depend on the cell’s 401

placement on the interface. The number of nearest neighbors 402

is also determined which gives information on the quantity 403

of topological defects in the pattern: a perfect hexagonal 404

tiling would correspond to six nearest neighbors for each cell. 405

Figure 3(b) shows the map of nearest neighbors at steady 406

state: there is a high number of topological defects that are 407

mainly instances of five and seven nearest neighbors. Similar 408

to our previous work [24–26], the experiments show a com- 409

plex interface dynamics, with a constantly evolving spatial 410

organization of cells, nourished by regular tip-splitting and 411

elimination events. The pattern does not display any long- 412

range order. 413
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FIG. 4. Example of the data obtained for a single cell during
three interferometric (shaded region) and three direct observation
sequences. δZ , δV , ρ, and S have oscillation amplitudes of 11 μm,
26 nm/s, 12 μm, and 0.005 mm2, respectively (Vp = 1 μm/s, G =
19 K/cm).

A. Oscillation of cell tip parameters414

Each interferometric or white light acquisition sequence415

represents approximately one period of the oscillations. The416

white light acquisitions yield the evolution of the cell visible417

surface S(t ), and the interferometric acquisitions yield the418

radius of curvature evolution ρi(t ), and cell position devia-419

tion δZi(t ). Figure 4 shows an example of the data extracted420

from the sequences of direct and interferometric observations421

of one cell: pseudo-sinusoidal periodic oscillations are evi-422

denced. A movie of the evolution of one cell throughout the423

sequences is given in the Supplemental Material Ref. [47] to424

visually check that the same cell has been followed through-425

out. The data are then fitted with a sine function y(t ) =426

A sin ( 2π
T t + φ) + B, where A is the amplitude, T is the period,427

φ is the phase and B the offset. The physical quantities δZi(t ),428

δVi(t ), ρi(t ), and Si(t ) are fitted simultaneously, using the429

same period throughout the fit, but different amplitudes, phase430

shifts, and offsets.431

Statistical analyses conducted on 336 cells enable us to432

evaluate the amplitudes of oscillations of all these data, which433

appear to vary widely from one cell to the other. Some cells434

do not oscillate, or the amplitude of their oscillation is too435

small to be measured, other cells may present a phase shift in436

oscillation so that the fit is not accurate. The 104 cells with437

the best sinusoidal fit were used below. Sinusoidal fits of δZ438

and S exhibit a similar mean period of 52 ± 6 min. These439

measurements are close albeit slightly higher than the average440

value obtained for the other solidification experiment at Vp =441

1 μm/s that was observed in white light (48 min) [24–26].442

Typical amplitudes of oscillation of tip position, growth ve-443

locity, and tip radius are, respectively, of 12 μm (≈1% of the444

thermal length), 25 nm/s (≈3% of the pulling velocity), and445

9 μm (≈17% of the average tip radius), even if quite large446

dispersions are observed. The order of magnitude of the oscil-447

lation amplitudes is in good agreement with the one measured448

FIG. 5. Amplitudes of oscillation of the data extracted from in-
terferometric measurements. Amplitudes for growth velocity (a) and
tip position (b) are represented as a function of the tip radius os-
cillation amplitudes, to reveal their correlations (Vp = 1 μm/s, G =
19 K/cm).

in 2λ − O modes in thin samples [14]. As expected, ampli- 449

tudes of oscillation of these different characteristics extracted 450

from interferometry measurements show marked correlations 451

as illustrated in Fig. 5: AδV [nm/s] = (2.61 ± 0.06)Aρ [μm] 452

and Aδz [μm] = (1.27 ± 0.03)Aρ [μm]. 453

The next step is to analyze the phase relations between the 454

different oscillating variables. To obtain phase relationships 455

between S(t ), extracted from direct observation, and δZ and 456

ρ, extracted from interferometric measurements that are not 457

simultaneous, the curves are individually fitted to sinusoids, 458

and the phases of the fits are compared. The histogram of 459

Fig. 6(a) depicts the phase difference between ρ(t ) and S(t ), 460

whereas Fig. 6(b) points out the correlation of their amplitudes 461

[AS [mm2] = (9.861 ± 0.01) × 10−3Aρ [μm]]. It appears that 462

the radii of curvature and the apparent cell areas are generally 463
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FIG. 6. Comparison of cell area, S(t ), and tip radius, ρ(t ), oscil-
lations: (a) phase difference; (b) correlation of oscillation amplitudes
(Vp = 1 μm/s, G = 19 K/cm).

in phase and well correlated, albeit with a large dispersion.464

Regarding the fact that the size of the apparent surface area465

is limited mainly by the deviation of the light due to high466

slope towards the grooves, it can be considered that S(t ) and467

ρ(t ) roughly describe the same phenomenon: an increase of468

the tip radius corresponds to a larger and flatter tip therefore469

associated to an increase of S(t ). The large dispersion may be470

attributed to the fit quality as the data are not simultaneously471

acquired and are not perfectly sinusoidal. In the following, it472

will then be considered that S(t ) and ρ(t ) both describe the473

lateral stretching or shrinking of cells during oscillation and474

the focus will be on phase relations between ρ, δZ , and δV ,475

which are obtained from the sine fits.476

As illustrated in Fig. 4, growth velocity is in phase advance477

compared to tip position oscillation, which is itself in phase478

advance compared to tip radius (and apparent cell surface)479

oscillation. If the direct measurements of δZi(t ) and δVi(t )480

are compared for each one of the cells i, the average dif-481

ference between δZ and δV is ≈0.52π , as expected from a482

pseudo-sinusoid and its derivative. As illustrated in Fig. 7, the483

FIG. 7. Histograms of phase differences ρ − δZ (dark blue) and
ρ − δV (light green). Only cells with the best sinusoidal fits are
considered (≈104 cells). The gray intervals in each peak contain
≈60% of the cells.

phase shift between ρ and δV is (0.86 ± 0.07)π ; it is (0.38 ± 484

0.07)π between ρ and δZ (the defined intervals gather about 485

60% of the cells). Regarding these data, the difference be- 486

tween those phase shifts is equivalent to the phase difference 487

between δZ and δV : slightly reduced to ≈0.48π , but in good 488

agreement with the direct measurements. Figure 8(a) shows an 489

idealized plot of these curves based on the mean phase values: 490

it can be seen as the evolution of the main characteristics for 491

a typical oscillating cell. 492

The variations of cell tip surface and tip undercooling 493

during oscillation predicted by previous 3D phase-field cal- 494

culations for in-phase oscillation (Fig. 11 of Ref. [26]) can 495

be compared to these values considering that the cell tip 496

surface is in phase with the tip radius and that there is phase 497

opposition between tip position and undercooling. With these 498

assumptions, the phase-field results display a phase difference 499

of 0.36π between ρ and δZ , consistent with our measure- 500

ments. Recent phase-field simulations [16] applied to the 501

experiments in thin samples of Georgelin and Pocheau [14] re- 502

port phase shifts comparable with our values: 0.75π between 503

ρ and δV , and 0.25π between ρ and δZ . 504

New 3D phase-field simulations have been performed in 505

the frame of the analysis of this specific study and compared 506

to experimental results. We will now refer to those simulations 507

when comparing to our experiments. The phase-field model 508

used is based on the thin interface phase-field model extended 509

to the case of a binary dilute alloy [33], and is exactly the 510

same as in Ghmadh et al. [16]. Further details of simulation 511

procedures can be found in Ref. [26]. The model is adapted 512

to the present situation by using the physical parameters for 513

the SCN-camphor alloy given in Table I. Simulations are 514

performed for Vp = 1 μm/s and G = 24 K/cm. As pointed 515

out in our previous work, the thermal gradient used in phase 516

field simulations is taken slightly higher than the experimental 517

value to find stable oscillating patterns [26]. Coherent oscilla- 518

tions of three groups of cells in a hexagonal array are obtained 519
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FIG. 8. (a) Scheme of the evolution of a cell shape during an os-
cillation period. Simplified representation of the δV , δZ , and ρ curves
of a cell, shown as sinusoids of normalized amplitude (markers blue

, green , and red , respectively). These curves are generated from
the mean of the differences of the studied cells, when the phase
of δZ is arbitrarily set to zero. (b) Example of the data obtained
by phase-field simulation for a single cell during three oscillation
periods (Vp = 1 μm/s, G = 24 K/cm, λ = 177 μm): δZ , green ;
δV , blue ; ρ, red ; Ct , empty �. (c) Cell shape evolution. The time
labels correspond to the extrema and mean values of δZ and ρ. The
arrows at the tips represent an increasing or decreasing tip radius
(◦ for unchanging). The vertical arrows in the middle of the cells
represent δV .

using a domain containing 1.5 cells, with no-flux boundary520

conditions in y and “helical” boundary conditions in x [26].521

Simulations were performed using a box of 265 μm in width,522

156 μm in thickness, and 3183 μm in height.523

These simulations lead to oscillating cells exhibiting524

hexagonal ordering where three subarrays oscillate with a525

phase shift of ≈ ± 2π
3 , which is in good agreement with526

our experimental observations [24,25]. The evolution of the527

three geometrical parameters, tip radius, velocity, and position528

[Fig. 8(b)], lead to the phase shifts summarized in Table II and529

a simplified representation very similar to the experimental530

one. Additionally, the mean curvature radius found in phase-531

field simulations (54 ± 7 μm) is in very good agreement532

with the one found experimentally by interferometric analysis533

(54 ± 5 μm).534

Thanks to these analyses, a scheme of the evolution of535

cell shape during a period of oscillation can be given in536

Fig. 8(c). While δZ advances from its mean position, tip537

radius increases from near its minimum value. This tip radius538

increase continues well after δZ has reached its maximum539

and has started to recede. The cell tip is bluntest when δZ540

is decreasing and about to reach its mean position. The cell541

radius continues to decrease until after the cell reaches its542

minimum δZ . The existence of phase differences between543

the relevant characteristics of the cells is associated to the544

dynamics of oscillation; classical steady-state considerations545

such as, for example, that a faster tip is associated to a smaller546

tip radius are not valid in that dynamical asymptotic regime.547

TABLE II. Phase relationships and amplitude ratios between the
geometrical characteristic of oscillating tips: radius ρ, position δz,
and velocity δV . Comparison between measured results in experi-
ments and in 3D phase field simulation (PF) and theoretical model
for both cases. The phase-relationships obtained by PF of 2λ − O
oscillating patterns [16] are also given.

Phase shift Experiments 3D PF PF

between Meas. Theor. Meas. Theor. 2λ − O

ρ and δz 0.38π 0.29π 0.38π 0.34π 0.25π

ρ and δV 0.86π 0.79π 0.86π 0.84π 0.75π

δz and δV 0.52π 0.50π 0.48π 0.50π 0.50π

Amplitude ratios
Av

Az
(s−1) 0.0021 0.0020 0.0037 0.0038 –

Aρ/ρ0
Az

(μm−1) 0.013 0.002 0.032 0.005 –

The experimental evolution scheme of Fig. 8(c) relating the 548

cell tip shape and position (or undercooling) during oscillation 549

is thus mandatory to propose an interpretation of the origin of 550

oscillation. 551

These results can be compared to those of Georgelin 552

and Pocheau [14] in thin samples. The scheme of Fig. 8(c) 553

is quite similar to the images of Fig. 2 of Ref. [14]: the 554

medium tip position of cells corresponds to either large or thin 555

cells, the highest position of the tip corresponds to thick—but 556

not thickest—cell and the lowest position of tip corresponds 557

to thin—but not thinnest—cell. Georgelin and Pocheau [14] 558

reported a phase difference of 0.56π of tip position leading 559

the cell width, 1.5 times larger than our measurement (0.38π ), 560

thus suggesting a faster dynamics of shape adjustment in our 561

case. At this stage, it is not possible to relate this difference 562

to the sample geometry or to growth parameters, as measure- 563

ments are available for only one set of parameters in both 564

cases. 565

B. Analysis of solutal interactions driving oscillation 566

Experimentally, the analysis of the oscillating patterns us- 567

ing interferometry made it possible to highlight and quantify 568

the evolution of shape, velocity and position of the oscillating 569

cells. They are associated to the evolution of the concentration 570

field, which is not accessible experimentally but is clearly the 571

key parameter to explain the coupling between neighboring 572

cells. The advantage of phase field simulations is that, in 573

addition to purely geometric characteristics of the cell tip, 574

they provide the spatiotemporal evolution of the concentration 575

field. 576

To evidence the very small variations of concentration as- 577

sociated to oscillation, Ghmadh et al. [16] have developed 578

an original method of analysis based on the determination 579

of local constitutional supercooling. The constitutional su- 580

percooling �C(�r, t ) is defined as the difference between the 581

equilibrium concentration of a liquid point, which is the liq- 582

uidus concentration and the actual concentration C(�r, t ): 583

�C(�r, t ) = CL(z, t ) − C(�r, t ). (10)

It may also be interesting to compare these data to the 3D 584

phase-field simulations conducted by Ghmadh et al. [16] to 585
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FIG. 9. Time evolution of the oscillation mode of a hexagonal
array obtained numerically. Solid appears in black in the lower part;
white arrows indicate the direction of the cells’ motion; in the liquid
phase, isosurfaces are drawn for the constitutional undercooling �.
One oscillation period corresponds to the time interval between t1

and t9.

analyze 2λ − O oscillating patterns obtained by Georgelin and586

Pocheau [14] in thin samples. The phase relationships are in587

very good agreement with the ones found experimentally as588

well as they are in the same range as those found by Ghmadh589

et al. [16]. Especially, in spite of slight differences of values,590

those phase shifts lead to a scheme of evolution similar to the591

one presented in Fig. 8(b).592

A dimensionless undercooling � can then be defined as593

� = − k
C0

�C. Once the interface is destabilized, a zone of594

negative undercooling builds up in the liquid and � goes595

through a minimum at some distance ahead of the cell tips596

(in the solid, the undercooling is uniformly set to an arbitrary597

negative constant). � becomes more negative when the con-598

stitutional supercooling increases. We applied the same kind599

of analysis in this work, for the 2π
3 -oscillating patterns.600

Figure 9 represents � in the xz plane that intersects the601

cell tips along the red dotted line in the top view. One can602

follow the evolution of the geometric parameters [Fig. 8(b)]603

by focusing attention on cell B of Fig. 9. Let us first con-604

sider the variation of tip velocity. At time t2, δV = 0 and it605

decreases until t5. This decrease of velocity below the average606

tip velocity means that the vertical flux rejected at the tip607

decreases below its average value: the concentration ahead of608

the tip also decreases with a small time shift, producing the609

large black area that develops above the cell tip between t4 and610

t7. The increase of velocity between t7 and t9 above the aver-611

age velocity induces the inverse phenomenon, with a resulting612

increase of concentration and the reduction of the black area613

above the tip. The same behavior shifted by 2π
3 is observed614

for the two other cells, A and B. Similar observations were615

done by Ghmadh et al. [16] in the 2λ − O oscillating patterns,616

except that they had only two cells in phase opposition.617

Whatever the system is, the question at this point is to iden-618

tify the mechanism that enables us to counteract the variations619

FIG. 10. Time evolution of the field d�

dx during one oscillation
period (t1 to t9). The arrows indicate the orientations of the horizontal
solute currents that converge towards the neighbor cell; ◦ denotes
zero flow. At the bottom and the top of the frames, the zero current
areas, respectively, represent the solid and the far-field liquid.

of velocity and concentration to go back to average values: 620

such a mechanism is necessary to explain why, for example, a 621

cell would not continue to recoil and eventually be eliminated 622

when the velocity decreases. As described in Ref. [16], it is 623

possible to evidence horizontal solute fluxes, by representing 624

d�
dx (in the solid, d�

dx = 0): Fig. 10 shows the time evolution 625

of d�
dx over an oscillation period. On the same basis used for 626

the 2λ − O oscillating patterns [16], it is possible to explain 627

the cycle of oscillation, taking into account horizontal solute 628

fluxes coming from neighboring cells. When the concentra- 629

tion is minimal above the cell tip B (large black area above 630

the cells), the concentration above cell tips A and C is higher 631

than above B: the horizontal solute currents coming from the 632

cells A and C converge, which induce a melting of the tip 633

and sides of cell B. The tip radius of B decreases to reach 634

its minimum, thus inducing an increase of diffusion currents 635

at the tip and consequently an increase of the tip velocity 636

and of the concentration above B. Compared to the 2λ − O 637

oscillation mode, the main difference evidenced in Fig. 10 is 638

the asymmetry of the horizontal fluxes coming to or from B. 639

This probably results from the phase shift of ± 2π
3 between the 640

three subpatterns, and this provokes an asymmetry of the cell 641

shape clearly visible in Fig. 10. 642

The two mechanisms that modify the solute concentration 643

(and thus the undercooling) above the tip are identified: a 644

vertical one and a horizontal one resulting from interaction 645

with neighbors. The coupling of these two mechanisms in- 646

volved in the oscillation fixes the phase shifts between the 647

oscillation of the different cell tip characteristics, since one of 648

these mechanisms is based on neighbor interaction. We may 649

suspect that the pattern organization and the coherence and 650

synchronization mode of oscillation affect those phase shifts. 651
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C. Theoretical analysis of the cell tip dynamics652

Let δZ , δV , δρ, δCt , respectively, denote the oscillating653

components of the tip position, velocity, curvature radius654

and interfacial liquid solute concentration at the cell tip.655

Sine variations are considered which will be treated as com-656

plex numbers for easier calculations: δ̃ρ = Aρei(ωt ), δ̃v =657

Avei(ωt+φv ), δ̃z = Azei(ωt+φz ), δ̃Ct = Acei(ωt+φc ). Since the ve-658

locity is given by the temporal derivative of the tip position,659

V (t ) = ż(t ), we have660

Av

Az
= ω and φv = φz + π

2
. (11)

Moreover, local equilibrium at the interface implies that661

δCt = Gδz

m
with m < 0 (12)

so that662

Ac

Az
= G

|m| and φc = φz + π. (13)

The existence of local equilibrium at the interface implies663

the solute diffusion time in the liquid to be much faster than664

the oscillation period. As previously mentioned, the mean665

oscillation period is equal to 52 ± 6 min. The solute diffu-666

sion time can be estimated by the ratio between the square667

of the diffusion length and the solute diffusion coefficient668

in the liquid DL (Table I). In our case, a relevant diffusion669

length would be the primary spacing (288 ± 42 μm). So, the670

solute diffusion time may be estimated as 5.1 min, which is671

≈10 times smaller than τosc. We can then consider that the672

conditions for local equilibrium are respected. An additional673

selection criterion that defines the operating conditions at the674

cell tip and relates the tip radius to the other oscillating tip675

characteristics is imposed to determine the remaining phase676

shift. Even if it is more adapted to the dendritic regime, we677

consider that the tip radius is selected through the solvability678

approach, taking into account capillarity [48,49]:679

ρ2(mGc − G) = 	

σ ∗ ⇒ 2ρ0δρ(mGc,0 − G) + ρ2
0 mδGc = 0,

(14)

where Gc is the concentration gradient at the tip, 	 the Gibbs-680

Thomson coefficient, and σ ∗ the stability constant. ρ0 and Gc,0681

are the average values of ρ and Gc, respectively.682

The concentration gradient at the tip may be defined by the683

solute flow balance:684

Gc(t ) = k − 1

DL
Ct (t )V (t ) ⇒

δGc(t ) = k − 1

DL
(VpδCt + Ct,0δV ), and (15)

GC,0 = k − 1

DL
Ct,0Vp,

where Ct,0 is the average value of Ct and the average value of685

the velocity is equivalent to the pulling velocity, Vp. Combin-686

ing Eqs. (14) and (15):687

2
δρ

ρ0
= −B

(
δCt

Ct,0
+ δVt

Vp

)
(16)

with 1
B = 1 − GDL

mVpCt,0(k−1) > 0.688

Using the complex notation previously defined, and the 689

results of Eqs. (11)–(13), one gets 690

2
Aρ

ρ0
= e−iπ B

(
Ac

Ct,0
eiφc + Av

Vp
eiφv

)

= Beiφz

(
Ac

Ct,0
− i

Av

Vp

)
, (17)

which is equivalent to 691

Aρ

Az
= B

ρ0

2

√(
G

|m|Ct,0

)2

+
(

ω

Vp

)2

and tan(φz ) = Ct,0

Vp

ω|m|
G

. (18)

The average tip concentration Ct,0 can be calculated using 692

the undercooling �KP defined in the Karma-Pelcé (KP) model 693

[50,51]: 694

�KP = TL − Tt,0

TL − TS
= fs,0k + (1 − fs,0) DL

VPlT

1 − fs,0(1 − k)
, (19)

where Tt,0 is the average tip temperature, TL and TS are the 695

liquidus and solidus temperatures for the composition C0, 696

respectively. lT is the thermal length defined as mC0(k−1)
kG . fs 697

is defined as the solid fraction in a region behind the tip where 698

the cell width can be assumed constant; fs,0 is the average 699

value of fs. It should be pointed out that Eq. (19) reduces to 700

the well-known Bower-Brody-Flemings model [52] when fs,0 701

vanishes. From Eq. (19), we get 702

Ct,0 = C0

(
1 − k − 1

k
�KP

)
. (20)

Equations (11)–(18) are used to calculate all the phase 703

shifts and oscillation amplitudes that define the oscillating 704

cell dynamics, to compare them with experimental and nu- 705

merical simulation results. In addition to the experimental 706

control parameters and to the characteristics of the alloy, the 707

tip concentration is required for the calculations. For phase- 708

field simulations, the tip undercooling is directly provided and 709

converted in tip concentration using Eq. (20). The tip concen- 710

tration evolution is represented by the dark curve in Fig. 8(b), 711

for Vp = 1 μm/s, G = 24 K/cm and λ = 177 μm, and a sinu- 712

soidal fit leads to Ct,0 = 0.85 wt% and Ac = 0.01.The analysis 713

of the sinusoidal fits of Ct and δz is in accordance with 714

Eq. (13). In experiments, the tip concentration is not available, 715

but we can estimate the solid fraction fs deduced from the 716

measurements of the visible cell surface S and use Eqs. (19) 717

and (20) to characterize the experimental tip concentration. 718

Considering an ideal hexagonal pattern, fs can be evaluated as 719

the ratio between S and the area of a hexagon with an apothem 720

equal to the half of the primary spacing. This calculation 721

leads to fs,0 ≈ 0.60 and A fs = 0.01, and Ct,0 = 0.89 wt% and 722

Ac = 0.02. However, this determination of the solid fraction is 723

relatively imprecise as we cannot be sure that the cell visible 724

surface S exactly fits the cell size (it may be underestimated 725

depending on optical visibility) and the calculation of the 726

fraction is based on the hypothesis of a perfect hexagonal 727

pattern, which is not experimentally the case. The experi- 728

mental and simulation values of Ct,0 are nonetheless very 729

close. 730
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The values of phase shifts are gathered in Table II: the731

theoretical values are compared to both experimental and732

numerical values. Using the numerical oscillation period T =733

27 min and the estimated average tip concentration 0.85 wt%,734

the theoretical phase shift of z is calculated φz = 0.34π ; it735

is quite similar to its value directly measured in PF and to736

the experimental value (both 0.38π ). With the experimental737

parameters (T = 52 min and Ct,0 = 0.89 wt%), the theoretical738

phase shift of Z is equal to φz = 0.29π , significantly lower739

than the experimentally measured value of 0.38π as well.740

It appears that this phase shift is very sensitive to the solid741

fraction fs: a fs,0 ≈ 0.90 would be necessary to get a perfect742

agreement between theory and experiment. The other phase743

shifts are deduced from the derivative relationship between V744

and z, and the phase shifts between experiments, or simula-745

tion, and the theoretical calculation are quite consistent.746

Regarding the ratio of oscillation amplitudes, the theo-747

retical Av

Az
= 0.0020 s−1 is very close to the experimental748

one (0.0021 s−1), and, similarly, between the theoretical749

0.0038 s−1 and the phase-field simulation 0.0037 s−1. It750

should be pointed out that this agreement is trivially expected751

since the ratio Av

Az
is fixed by the oscillation period follow-752

ing Eq. (11) and the period is accurately determined in both753

experiment and simulation. Relation (18) is used to calculate754

the theoretical value of Aρ/ρ0

Az
. For the phase-field simulation755

working parameters, its value is 0.005 μm−1, which is almost756

six times lower than the one estimated using the directly757

measured amplitudes of oscillation (0.032 μm−1). Experi-758

mentally, the variations of Aρ

ρ0
as a function of Az lead to a759

slope of 0.013 μm−1, and the estimated value through Eq. (18)760

is equal to 0.002 μm−1, also six times lower. We may suggest761

two different hypotheses for the discrepancy observed in the762

ratio of oscillation amplitudes Aρ/ρ0

Az
.763

First, we recall that Eq. (14) was developed for a dendritic764

regime. In that case, tips can be approximated as isolated765

parabolic tips, with almost no overlap of the concentration766

field. It is not exact in case of cells and especially of oscil-767

lating cells for which the solute fluxes between neighboring768

cells are critical during the oscillation cycle. To see how the769

equations would be modified by using a specifically cellular770

equation, we can replace Eq. (14) by an equation developed771

in the theoretical framework of the analogy between cells and772

Saffman-Taylor (ST) viscous fingers [50,53]. Its use is neither773

fully justified because it applies theoretically within the limit774

of small cell tip Péclet number (Pe = λVp

DL
� 1, where λ is the775

primary spacing), which is not our case (Pe ≈ 1). The cell776

shape is determined by the relative width � of the cell, which777

corresponds to the ratio of the cell width with the primary778

spacing. In analogy with ST solutions, the selection of �779

proceeds through a capillary function F�(�) that depends on780

a parameter that quantifies surface tension effects [54]:781

ρ2(mGc − G) = 	F�(�). (21)

We see that, if the term F�(�) is set to a specific constant,782

we go back to Eq. (14) developed for a dendritic regime783

[48,49]. Equations (14) and (21) therefore describe two limit784

domains, our case being between them. The ST finger shape785

basically contains two shape parameters, ρ

λ
and �, related to786

each other, so that only one of these variables is required to 787

describe the shape: F�(�) = F�( ρ

λ
). In the oscillating exper- 788

iments, the primary spacing attains a steady-state value: the 789

capillary function is then supposed to vary only due to tip 790

radius oscillations and we can switch from F�( ρ

λ
) to Fρ (ρ). 791

After differentiation, we get 792

2ρ0δρ(mGc,0 − G) + ρ2
0 mδGc = 	δFρ (ρ). (22)

In a 3D pattern, we can consider that the relative width � is 793

similar to the solid fraction fS ∝ S
λ2 . As the apparent surface 794

S oscillates in phase with the tip radius, it thus follows that 795

the solid fraction, the relative width, the tip radius and the 796

capillary function oscillations are all in phase. We then define 797

the complex number for δFρ , with the tip radius fixing the 798

origin of phases: δ̃Fρ = AF ei(ωt ). The calculation is carried out 799

in the same way and with the same assumptions as previously 800

done, and Eqs. (17) and (18) can be replaced by 801

2
Aρ

ρ0
− AF

F0
= Beiφz

(
Ac

Ct,0
− i

Av

Vp

)
, (23)

where F0 is the average value of F�(�) defined as ρ2
0 (mGc,0−G)

	
. 802

Equation (23) is equivalent to 803

Aρ

Az
= ρ0

2F0

AF

Az
+ B

ρ0

2

√(
G

|m|Ct,0

)2

+
(

ω

Vp

)2

and tan(φz ) = Ct,0

Vp

ω|m|
G

. (24)

We note that the theoretical phase shift of z is not affected 804

by the modification, so that the small differences between 805

measured and theoretical phase shifts do not come from the 806

incorrect choice of the equation for the operating point. How- 807

ever, for amplitudes, Aρ

Az
is increased by the capillary function 808

oscillation AF
F0

when compared to the previous expression. It 809

was previously observed that Eq. (18) leads to a large un- 810

derestimation of Aρ

Az
when compared to the measured value: 811

the correct description of the operating point could partly 812

explain the difference. Applying the limit case of ST analogy 813

described by Eq. (24), we can evaluate a relative oscillation 814

amplitude for the capillary function AF
F0

: 24% and 28% with, 815

respectively, PF and experimental parameters. Those values 816

are almost twice the relative oscillation amplitude of tip ra- 817

dius; inversely, if a ratio AF
F0

similar to the relative oscillation 818

amplitude of tip radius is used, the discrepancy between theo- 819

retical and measured values of Aρ/ρ0

Az
decreases from a ratio of 820

6 to 1.4. A correct description of the operating point would 821

probably lead to an intermediate situation between the use 822

of Eqs. (14) and (21), with still an underestimation of the tip 823

radius oscillation, but largely reduced compared to the use of 824

Eq. (14). We also can postulate that the phase-shift expression 825

would not be modified. 826

The second element that could explain the discrepancy 827

observed in the ratio of oscillation amplitudes Aρ/ρ0

Az
is the fact 828

that this theoretical analysis does not take into account the 829

solute fluxes that come from neighboring cells and that are 830

essential in the oscillating mechanism. These fluxes modify 831

the concentration field and the resulting tip concentration 832
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and gradient. It is difficult to include these fluxes in the833

analysis but they also partly affect the oscillation amplitudes834

ratio and more importantly, necessarily affect the phase shift:835

as a matter of fact, the dynamics of these fluxes strongly836

depends on the pattern organization and of the type of oscil-837

lation coherence. In the 2π
3 type or 2λ − O oscillations, the838

neighboring fluxes have different dynamics: we note that in839

spatially extended PF and experimental cases, the underlying840

pattern order is similar (hexagonal type) and the measured841

phase shifts have the same value (φz = 0.38π ) whereas in842

simulation of 2λ − O, the phase shift is smaller (φz = 0.25π ).843

As a conclusion, the basic solidification equations can be844

a good starting point to describe the oscillation dynamics. A845

qualitative analysis suggests that the oscillation amplitudes846

would be better evaluated mainly by a more adequate de-847

scription of the operating point. The neighboring solute fluxes,848

and therefore the underlying pattern order, mainly control the849

phase shifts of the different oscillating parameters.850

IV. CONCLUSIONS851

Experiments under low-gravity conditions were carried out852

in the directional solidification insert (DSI) of the DECLIC853

facility installed on board the International Space Station as854

part of a joint research program between CNES and NASA.855

The use of an organic transparent alloy in a large cylindri-856

cal crucible enabled the real-time and in situ observation of857

spatially extended patterns, and microgravity enabled growth858

in a diffusive transport mode. These exceptional conditions859

allowed us to observe, for the first time, the dynamics of860

extended oscillating cellular 3D patterns. In some previous861

articles [24–26], we characterized the oscillations through the862

study of the periodic variation of the apparent area of cells863

in the xy plane—which is in fact associated to a tip radius864

oscillation—using top-view interface observation. However,865

oscillating cells also display variations of the tip position and866

velocity in the vertical Z direction. In the present work, the867

interferometric data available in DECLIC-DSI were used to868

reconstruct cell shape and measure oscillations of the cell tip869

position δZ and growth velocity δV , in order to completely870

quantify the dynamics of oscillating cells. Moreover, the in-871

terface shape was reconstructed for each cell which allowed872

measuring the radius of curvature and its oscillations. The873

method of interferometric images analysis, for which it is not874

trivial to reach the highest resolution in spite of noise and875

nonuniform contrast conditions, was described. The individ-876

ual cell shapes were then reconstructed with a ρ resolution877

of ≈3 μm, and the evolution of cell growth velocity with a878

resolution of a few nm/s. Comparison with the cell apparent879

surfaces showed that S and ρ are correlated and in phase. A880

value of 0.86π was measured for the phase shift between ρ881

and δV , showing that cell tip radius and cell velocity are part882

of a rather complex dynamic of advance and bulging. These883

analyses allowed us to propose a scheme of the evolution of 884

the cell shape during one period of oscillation. While Z ad- 885

vances from its mean position, ρ increases from its minimum 886

value and it continues well after Z has reached its maximum 887

position and started to recede. The cell tip is bluntest when Z 888

is decreasing and about to reach its mean position. 889

The oscillations of tip shape parameters and tip position 890

were correlated to the evolution of the concentration field by 891

using phase-field simulations that, additionally to the purely 892

geometric parameters of the cell tip, gave the spatiotemporal 893

evolution of the concentration field. Phase-field simulations 894

were performed to compare with the experimental results 895

on extended arrays. The phase shifts of the geometrical pa- 896

rameters obtained experimentally and in simulation proved 897

perfectly comparable. Due to simulation results, two mech- 898

anisms modifying the solute concentration above the tip were 899

identified, a vertical one and a horizontal one resulting from 900

the interaction with neighbor cells. Similarly to what was 901

recently evidenced for 2λ − O oscillations in thin samples 902

[16], the dynamics of these two mechanisms was found to 903

determine the phase shifts between the oscillations of the 904

different cell tip characteristics. 905

A theoretical modeling based on classical equations of so- 906

lidification enables us to analyze the oscillation characteristics 907

of the different tip parameters. The oscillation amplitude of 908

the tip radius estimated using the theoretical model is signif- 909

icantly smaller than the measured one. Two limit cases are 910

used in the model to describe the tip operating point and relate 911

the tip radius to the undercooling, corresponding to small and 912

large Péclet numbers. Even if our situation lies between these 913

limit cases, this approach enabled us to evidence the impor- 914

tance of the tip-shape selection on the oscillation amplitudes; 915

it also demonstrated that phase shifts between the different 916

oscillating quantities are not affected by the tip-shape selec- 917

tion. The theoretical phase shifts are rather consistent with 918

experimental measurements as well as phase-field numerical 919

simulations. However, we expect these phase shifts to be 920

influenced by the neighboring solute fluxes—linked to the un- 921

derlying pattern order—which are not included in the model. 922

Thus, 3D phase-field analyses of square patterns, with two 923

subpatterns in phase opposition, would also be interesting to 924

compare to the hexagonal configuration analyzed in this work. 925

ACKNOWLEDGMENTS 926

We would like to thank Samuel Quiret for his help to 927

build the database of image analysis procedures. This re- 928

search was achieved thanks to the support of CNES through 929

the MISOL3D project (MIcrostructures de SOLidification 930

3D), National Aeronautics and Space Administration (NASA) 931

through Grants No. NNX12AK54G and 80NSSC19K0135, 932

and Région PACA through the ENEMS project (Etude 933

Numérique et Expérimentale des Microstructures de Solidi- 934

fication). 935

[1] M. Cross and H. Greenside, Pattern Formation and Dynamics
in Nonequilibrium Systems (Cambridge University Press, New
York, 2009).

[2] J. A. Dantzig and M. Rappaz, Solidification (EPFL Press, Lau-
sanne, 2009).

[3] W. Kurz and D. J. Fisher, Fundamentals of Solidification (Trans
Tech Pub, Zurich, 1998).

[4] P. Pelcé, Théorie Des Formes De Croissance (EDP Sci-
ences/CNRS Éditions, Paris, 2012).

002800-12



EXPERIMENTAL CHARACTERIZATION AND THEORETICAL … PHYSICAL REVIEW E 00, 002800 (2020)

[5] W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, Acta
Mater. 1, 428 (1953).

[6] W. Mullins and R. Sekerka, J. Appl. Phys. 35, 444 (1964).
[7] K. Kassner, C. Misbah, H. Müller-Krumbhaar, and A. Valance,

Phys. Rev. E 49, 5477 (1994).
[8] C. Misbah and A. Valance, Phys. Rev. E 49, 166 (1994).
[9] A. J. Simon, J. Bechhoefer, and A. Libchaber, Phys. Rev. Lett.

61, 2574 (1988).
[10] W. Losert, D. A. Stillman, H. Z. Cummins, P. Kopczynski, W. J.

Rappel, and A. Karma, Phys. Rev. E 58, 7492 (1998).
[11] P. Coullet and G. Iooss, Phys. Rev. Lett. 64, 866 (1990).
[12] B. Grossmann, K. R. Elder, M. Grant, and J. M. Kosterlitz,

Phys. Rev. Lett. 71, 3323 (1993).
[13] P. E. Cladis, J. T. Gleeson, P. L. Finn, and H. R. Brand, Phys.

Rev. Lett. 23, 3239 (1991).
[14] M. Georgelin and A. Pocheau, Phys. Rev. Lett. 79, 2698 (1997).
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