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Experimental characterization and theoretical analysis of cell tip oscillations in directional solidification

Experiments performed in DECLIC-DSI on board the International Space Station evidenced oscillatory modes during the directional solidification of a bulk sample of succinonitrile-based transparent alloy. The interferometric data acquired during a reference experiment, V p = 1 μm/s and G = 19 K/cm, allowed us to reconstruct the cell shape and thus measure the cell tip position, radius, and growth velocity evolution, in order to quantify the dynamics of the oscillating cells. This study completes our previous reports [Bergeon et al., Phys. 

I. INTRODUCTION

In a wide range of scientific fields, pattern formation, a quite complex process occurring in highly nonlinear growth regimes, is of paramount importance [START_REF] Cross | Pattern Formation and Dynamics in Nonequilibrium Systems[END_REF]. Nonequilibrium interface patterns can be obtained by directional solidification of binary alloys. These patterns have been widely studied because they are analogous to patterns formed in other fields (combustion, fluid dynamics, geology, biology, etc.) and because of their metallurgical relevance [START_REF] Dantzig | Solidification[END_REF][START_REF] Kurz | Fundamentals of Solidification[END_REF][START_REF] Pelcé | Théorie Des Formes De Croissance[END_REF]. During directional solidification, the crucible containing a binary alloy of nominal solute concentration C 0 is placed inside a furnace that imposes a temperature gradient G, and it is pulled at a constant velocity V p towards the cold region of the furnace.

For low pulling velocities, the interface remains stable and planar but, when V p exceeds a critical value [START_REF] Tiller | [END_REF]6], the solidliquid interface undergoes the Mullins-Sekerka morphological instability. The interface then develops fingerlike structures called cells and, for even higher velocities, dendritic structures with secondary and tertiary side arms. Further understating of the basic physical mechanisms governing microstructure formation during solidification are of major importance because they directly benefit to the improvement of materials processing [START_REF] Dantzig | Solidification[END_REF][START_REF] Kurz | Fundamentals of Solidification[END_REF].

The cellular or dendritic patterns may undergo secondary instabilities in domains of control parameters where nonsteady-state growth solutions become dynamically selected. * Corresponding author: fatima.lisboa-mota@im2np.fr Interface patterns may present a diversity of secondary in-52 stabilities, very frequently occurring in a narrow range of 53 growth conditions [7][8][9][10][11][12]. One typical example of secondary 54 instability, generic of spatially modulated interface patterns, 55 is the oscillatory growth mode. In directional solidification, 56 the period-doubling oscillatory mode (2λ-O) has been ex-57 perimentally, theoretically, and numerically studied, in thin 58 samples for both cellular [7,8,[12][13][14][15][16] and two-phase eutectic 59 interfaces [17][18][19][20][21]. Oscillatory modes have been predicted by 60 numerical studies of 3D cellular growth first [22,23] before 61 being recently experimentally observed [24][25][26].
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In thin samples of transparent alloys, Georgelin and 63 Pocheau [14] experimentally evidenced and characterized the 64 oscillation of cellular patterns, that appeared to be a 2λ-O 65 mode. Adjacent cells form pairs that oscillate in phase oppo-66 sition with both tip position and cell width oscillation, nearly 67 in phase quadrature. Recently, the origin and nature of oscil-68 lations was revisited by combining the former experiments 69 of Georgelin and Pocheau [14] with 3D phase-field numeri-70 cal simulations [16]. Phase-field simulations together with a 71 solute balance model revealed the fundamental role of trans-72 verse solute fluxes between neighboring cells and provided 73 a complete description of the physical mechanism of 2λ-O 74 oscillations.

French Space Agency (CNES) and NASA. Experiments were performed using the Directional Solidification Insert (DSI) of the DEvice for the study of Critical LIquids and Crystallization (DECLIC) developed by CNES which is dedicated to in situ and real-time characterization of the dynamical selection of the solid-liquid interface morphology on bulk samples of transparent materials [27][28][START_REF] Marcout | 57th International Astronautical Congress, AIAA Meeting Paper[END_REF][START_REF] Pont | 60th International Astronautical Congress[END_REF]. For a limited range of experimental control parameters, extended cellular patterns, that are globally disordered, form and display oscillations with periods of few tens of minutes. Oscillating cells are usually noncoherent due to array disorder. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. In case of a local hexagonal ordering, three sublattices beating with an approximately ± 2π 3 phase shift with each other were observed;

for a local square ordering, two sublattices were beating in phase opposition [24,25]. Dedicated large-scale phase-field simulations were performed that produced oscillating modes of comparable characteristics in terms of period as well as spatiotemporal coherence [24,26]. In simulations, long-range coherence of breathing modes could be achieved for a perfect spatial arrangement of cells imposed as initial condition, whereas, when realistic noisy initial conditions are used, a global disorder was observed that prevents oscillation coherence as in experiments. The conditions of appearance of oscillations were also specified and linked to the stable spacing range of a cellular array [26].

In the previous works [24][25][26], 3D oscillating experimental patterns were analyzed using the top-view images provided in DECLIC-DSI; in this observation mode, oscillation is revealed by the periodic variation of the apparent cell area which corresponds to the cell width oscillation seen from the top.

The characterization of the cell shape is therefore only partial as tip shape and position are not measurable. As previously mentioned, all these parameters were measured for the case of thin samples observed from the side and were found to be affected by the oscillation [14]. To overcome this limitation and completely characterize the oscillating cell dynamics in the 3D extended patterns, we used the DECLIC-DSI Mach-Zehnder interferometer which is installed along the axial direction of the crucible. This interferometer was specifically designed to capture the 3D geometry of the interface in real time. In the frame of the DECLIC project, interferometric data were previously used to quantitatively characterize the shape of dendrites grown by directional solidification and followed by in situ observation during their whole growth [START_REF] Bergeon | [END_REF]. In this paper, the interferometric images of a reference The DSI insert of the DECLIC facility includes a 151 Bridgman-type furnace and the experimental cartridge; more 152 complete descriptions of DECLIC and its inserts can be found 153 elsewhere [START_REF] Marcout | 57th International Astronautical Congress, AIAA Meeting Paper[END_REF][START_REF] Pont | 60th International Astronautical Congress[END_REF]. The Bridgman furnace is composed of hot 154 and cold zones located at the top and bottom of the adiabatic 155 zone, respectively, so that a temperature gradient G can be 156 generated (between 10 and 30 K/cm). Solidification is per-157 formed by pulling the experimental cartridge containing the 158 alloy from the hot zone towards the cold zone at a constant 159 pulling rate V p (between 0.1 and 30 μm/s). The experimental 160 cartridge includes the quartz crucible and a system of volume 161 compensation made of stainless steel that is mandatory to 162 accommodate the specimen volume variations associated to 163 phase changes. The cylindrical crucible has an inner diameter 164 of 1 cm and a length that enables about 10 cm of solidification, 165 thus allowing the study of the whole development of extended 166 3D patterns from their initial stages till permanent regime of 167 growth morphology. The crucible is equipped with a flat glass 168 window at the bottom and with an immersed lens in the melt 169 at the top. The main observation mode takes advantage of 170 the complete axial transparency of the cartridge provided by 171 these last two elements: the light coming from LEDs passes 172 through the cartridge from the bottom to the top, therefore 173 crossing the interface, the image of which is formed on a CCD 174 camera (top-view image); this observation mode provides 175 top-view images of the microstructure and is used to study 176 array dynamics and cell characteristics. On the same cartridge 177 axis, a Mach-Zehnder interferometer is also set using a He-Ne 178 laser (λ = 632.8 nm). The basic principles of the analyses of 179 the interferometric images can be found in Refs. [START_REF] Bergeon | [END_REF]32] but 180 the ultimate method that we currently use will be presented 181 in Sec. II B. In the transverse mode, the light coming from 182 two LEDs crosses the sample from one side to the other, 183 which provides a real-time control of interface position and 184 curvature (side-view image). Due to the cylindrical shape of 185 the crucible, this observation mode has a quite low resolution 186 and cannot be used for the detailed analysis of cell shape. In 187 this study, only the images obtained by the direct and interfer-188 ometric axial observations are analyzed. It is worth noticing 189 that since those two diagnostics share the same optical path, 190 they cannot be active simultaneously.

191

The organic transparent alloy Succinonitrile (SCN) -192 0.24 wt% camphor is used ( i defined at t = 0. The shape of a cell is described by the height of the interface h i ( r, t ), which is a function of r, a 2D vector with origin fixed at the cell tip position.

terface point with time [START_REF] Bergeon | [END_REF]. A snapshot of a cellular interface obtained by direct and interferometric observations is given in Fig. 1(a). In the interferometric view, each group of rings corresponds to a cell, separated from its neighbors by a region where beam coherence is lost. Therefore, the interferogram conveys information only near the cell tips; as there are no fringes in the grooves between cells, it is not possible to directly relate the tip heights of different cells. Temporally, we can obtain only the variation of an interface point height relative to its initial height at the start of interferometric acquisition but not its absolute height.

We define Z as the pulling and optical axis. The simplest representation of a cellular interface is a height map z φ ( r, t ) with r the location of an interface point in the (x, y) plane normal to Z [Fig. 1(b)] and the subscript φ stands for the tip phase shift, which will be detailed in the next subsection. As there is no continuity of fringes from one cell to its neighbors, it is convenient to separate z φ ( r, t ) into the tip-position component Z i (t ) and the shape component h i ( r, t ):

z φ ( r, t ) = Z i (t ) + h i ( r, t ). ( 1 
)
The frames of reference r and h are centered on the tip position of the ith cell [Fig. 1(b)].

We can detail the variation of the tip height:

Z i (t ) = Z 0 i + V p t + δZ i (t ), (2) 
where Z 0 i is the initial height of the ith's cell tip at the start of the sequence (it depends exclusively on i), V p t is the average front elevation during growth and δZ i (t ) is the possible deviation of a cell tip from this average, resulting for example from velocity oscillations (it depends on i and t). The position of the interface z φ ( r, t ) can then be separated into an absolute front position component Z ifront (t ) = Z 0 i + V p t, a relative cell tip position component δZ i (t ) and a shape component h i ( r, t ):

z φ ( r, t ) = Z ifront (t ) + δZ i (t ) + h i ( r, t ). ( 3 
)
The main objectives are then to calculate h i ( r, t ) to access the interface shape, and to calculate δZ i (t ) and its time 

I ( r, t ) = 2I 0 {1 + cos[ϕ( r, t )]} with ϕ( r, t ) = 2π L( r, t ) λ .
(4) ϕ( r, t ) is simply the optical path phase difference at a given 272 point r and time t; it can be rewritten in analogy to z φ :

273 ϕ( r, t ) = φ i (t ) + θ i ( r, t ), (5) 
where φ i (t ) is the tip phase shift taken at the tip position due 274 to Z i (t ), and θ i ( r, t ) is the component of the phase shift due 275 to the shape component h i ( r, t ). These phase differences are 276 linked to the optical paths:

277 L Si ( r, t ) = θ i ( r, t )λ 2π and L Ti (t ) = φ i (t )λ 2π , ( 6 
)
where L Si corresponds to the part of L due to shape [i.e., the next time it will be at its darkest again is when its L is one laser wavelength λ longer.

The optical path L depends both on the position of the solid-liquid interface z φ ( r, t ), and of the entire temperature field of the sample T ( r, z, t ), because of the dependence of the optical index on the temperature. In DECLIC-DSI, there is no access to the temperature field, so a simplified model is used as shown in Fig. 2. Homogeneous temperature T φ along the interface and its close vicinity is assumed. Far from the interface, the liquid is at temperature T hot , and the solid is at T cold . The shape component is obtained by comparing the optical paths of two rays crossing the interface at different locations, namely, at r and at the tip ( r = 0). The corresponding paths differ only close to the interface over a length h( r):

L Si ( r, t ) = L( r, t ) -L( 0, t ) = -h( r)n φL + h( r)n φS (7) ⇔ h( r) = L Si ( r, t ) n φ , ( 8 
)
where n φL and n φS are the refractive indices at the interface temperature on the liquid and the solid side, respectively, and n φ = n φSn φL . The time component is obtained by following the L variation at one location. Due to the motion of the crucible, a length V p t of cold solid replaces the same length of hot liquid during a time t. If the local tip velocity varies about the pulling velocity (in case of oscillation for example), the tip location is shifted by δZ i (t ) ahead or below the average interface location (steady-state growth). If δZ i (t ) > 0, a corresponding length of solid at temperature T φ has replaced the liquid during t:

L Ti (t ) = L( 0, t + t ) -L( 0, t ) = V p t n SL + δZ i (t ) n φ , ( 9 
)
where n SL is the difference of refractive indices between the cold solid and hot liquid ( n SL = n ST coldn LT hot ), and in steady state δZ i (t ) = 0.

Several measurements were performed to determine the variation of the refractive index of pure liquid SCN as a function of temperature (Inatomi et al. [43] and unpublished data by Trivedi et al.). The solid phase was explored less, and the only extensive characterization of n(T ) was done by Mac-Farlane et al. [44]. From the literature data, n SL = 0.034 and n φ = 0.019. These values are critical to the characterization of the interface, so they have been reassessed in situ during the experimental campaign in microgravity [START_REF] Chen | Dynamical microstructure formation in 3D directional solidification of transparent model alloys: In situ characterization in DECLIC-DSI under diffusion transport in microgravity, Matières condensée et Nanosciences[END_REF]. The value of n φ was refined to 0.013 by analyzing the interferogram of a macroscopically curved interface, whose curvature was observed by transverse observation. The value of n SL was refined to 0.0348 by counting precisely the number of fringes that traversed the middle of the interface during a long experiment of precisely known pulling length. These latter values are used for analysis.

Based on Eqs. ( 4)-( 9), we see that to reconstruct the interface shape and to get the local tip velocities, the interferograms need to be analyzed to extract first the phase shift and then to deduce the different components of optical paths L Si and L Ti . The problem is then to extract an adequate phase shifting that monotonously describes the tip profile, in spite of the periodic variation of the intensity, and in spite of unavoidable noise in intensity variations of the interferograms. To solve this problem, the phase-shifting algorithm proposed by Wang and Han [START_REF] Wang | [END_REF] was implemented in an inhouse procedure written in Python with extensive use of the open-source scientific libraries NumPy and SciPy. At instant t, a small subset of consecutive interferograms, of sufficiently short duration to consider that the cell shape is not changing, is used to calculate the phase-map image θ i ( r, t ) that reflects the morphology; successive subsets of images superpose to ensure the continuity of the results. The successive subsets are used to determine φ i (t ).

The duration of an interferometry sequence is 45 min, which amounts to ≈ 800 images. The treatment was applied to an interface area of 5.0 × 4.3 mm 2 enclosing M = 337 cells. To analyze the oscillating cells, gliding subsets of 30 images, with a shift of three images between successive subsets, are used. For each cell, the result of the treatment is a curve corresponding to Z ifront (t ) + δZ i (t ) and a sequence of cell shapes h i ( r, t ) at different times. Due to the lack of an absolute reference, inherent to interferometry, the origin of Z is taken to be 0, meaning that Z 0 i = 0 and Z ifront (t ) = V p t. This procedure was repeated for each observed cell, the Z position of the cell tips was averaged, and the average was taken as the

front position Z f ront (t ) = 1 M M i=1 z φ,i ( 0, t ) = V p t = Z ifront (t ).
Subtracting this average component from z φ,i ( r, t ), the two characteristics affected by oscillation, δZ i (t ) and h i ( r, t ), can be obtained from Eq. (3).

To calculate the growth velocity deviation

δV i (t )[ dδZ i (t ) dt ]
from the raw measured data, δZ i (t ) is smoothed by applying a Savitzky-Golay filter (windowed linear least squares fit) with a window of 3 min, before being differentiated with respect to time. A filter window of 3 min was chosen by trial and error to reduce noise without significantly altering the shape of the curve.

As mentioned above, only the regions near the tips are accessible through interferometry. The lowest observable point of h i ( r, t ) is typically 300 μm below the cell tip. These regions have a mean diameter of 86 μm, in contrast to 154 μm considering the apparent cell areas during direct observation. The measurement of tip radius is chosen to quantitatively characterize the cell shape and its evolution. An elliptical paraboloid is fitted to the reconstructed depth map h i ( r, t ) which allows estimating the mean radius of curvature ρ i (t ) for each cell.

Considering the mean radius of curvature or Gaussian radius of curvature leads to very similar results, so it was decided to consider only the mean radius.

III. RESULTS

Before turning to the cell oscillation dynamics, it is important to briefly describe the main characteristics of the extended well with the previously analyzed experiment (without in-398 terferometry) [25]. The primary spacing map at the end of 399 solidification is given in Fig. 3(a): the primary spacing is 400 homogeneously dispersed and does not depend on the cell's 401 placement on the interface. The number of nearest neighbors 402 is also determined which gives information on the quantity 403 of topological defects in the pattern: a perfect hexagonal 404 tiling would correspond to six nearest neighbors for each cell. 405 Figure 3(b) shows the map of nearest neighbors at steady 406 state: there is a high number of topological defects that are 407 mainly instances of five and seven nearest neighbors. Similar 408 to our previous work [24][25][26], the experiments show a com-409 plex interface dynamics, with a constantly evolving spatial 410 organization of cells, nourished by regular tip-splitting and 411 elimination events. The pattern does not display any long-412 range order. 

A. Oscillation of cell tip parameters

Each interferometric or white light acquisition sequence represents approximately one period of the oscillations. The white light acquisitions yield the evolution of the cell visible surface S(t ), and the interferometric acquisitions yield the radius of curvature evolution ρ i (t ), and cell position deviation δZ i (t ). Figure 4 shows an example of the data extracted from the sequences of direct and interferometric observations of one cell: pseudo-sinusoidal periodic oscillations are evidenced. A movie of the evolution of one cell throughout the sequences is given in the Supplemental Material Ref. [47] to visually check that the same cell has been followed throughout. The data are then fitted with a sine function y(t ) = A sin ( 2π T t + φ) + B, where A is the amplitude, T is the period, φ is the phase and B the offset. The physical quantities δZ i (t ), δV i (t ), ρ i (t ), and S i (t ) are fitted simultaneously, using the same period throughout the fit, but different amplitudes, phase shifts, and offsets.

Statistical analyses conducted on 336 cells enable us to evaluate the amplitudes of oscillations of all these data, which appear to vary widely from one cell to the other. Some cells do not oscillate, or the amplitude of their oscillation is too small to be measured, other cells may present a phase shift in oscillation so that the fit is not accurate. The 104 cells with the best sinusoidal fit were used below. Sinusoidal fits of δZ and S exhibit a similar mean period of 52 ± 6 min. These measurements are close albeit slightly higher than the average value obtained for the other solidification experiment at V p = 1 μm/s that was observed in white light (48 min) [24][25][26].

Typical amplitudes of oscillation of tip position, growth velocity, and tip radius are, respectively, of 12 μm (≈ 1% of the thermal length), 25 nm/s (≈ 3% of the pulling velocity), and 9 μm (≈ 17% of the average tip radius), even if quite large dispersions are observed. The order of magnitude of the oscillation amplitudes is in good agreement with the one measured FIG. 5. Amplitudes of oscillation of the data extracted from interferometric measurements. Amplitudes for growth velocity (a) and tip position (b) are represented as a function of the tip radius oscillation amplitudes, to reveal their correlations (V p = 1 μm/s, G = 19 K/cm). in 2λ -O modes in thin samples [14]. As expected, ampli-449 tudes of oscillation of these different characteristics extracted 450 from interferometry measurements show marked correlations 451 as illustrated in Fig. 5:

A δV [nm/s] = (2.61 ± 0.06)A ρ [μm] 452 and A δz [μm] = (1.27 ± 0.03)A ρ [μm].

453

The next step is to analyze the phase relations between the 454 different oscillating variables. To obtain phase relationships 455 between S(t ), extracted from direct observation, and δZ and 456 ρ, extracted from interferometric measurements that are not 457 simultaneous, the curves are individually fitted to sinusoids, 458 and the phases of the fits are compared. The histogram of 459 Fig. 6(a) depicts the phase difference between ρ(t ) and S(t ), 460 whereas Fig. 6 in phase and well correlated, albeit with a large dispersion.

464

Regarding the fact that the size of the apparent surface area phase shift between ρ and δV is (0.86 ± 0.07)π ; it is (0.38 ± 0.07)π between ρ and δZ (the defined intervals gather about 60% of the cells). Regarding these data, the difference between those phase shifts is equivalent to the phase difference between δZ and δV : slightly reduced to ≈ 0.48π , but in good agreement with the direct measurements. Figure 8(a) shows an idealized plot of these curves based on the mean phase values: it can be seen as the evolution of the main characteristics for a typical oscillating cell.

The variations of cell tip surface and tip undercooling during oscillation predicted by previous 3D phase-field calculations for in-phase oscillation (Fig. 11 of Ref. [26]) can be compared to these values considering that the cell tip surface is in phase with the tip radius and that there is phase opposition between tip position and undercooling. With these assumptions, the phase-field results display a phase difference of 0.36π between ρ and δZ, consistent with our measurements. Recent phase-field simulations [16] applied to the experiments in thin samples of Georgelin and Pocheau [14] report phase shifts comparable with our values: 0.75π between ρ and δV , and 0.25π between ρ and δZ.

New 3D phase-field simulations have been performed in the frame of the analysis of this specific study and compared to experimental results. We will now refer to those simulations when comparing to our experiments. The phase-field model used is based on the thin interface phase-field model extended to the case of a binary dilute alloy [33], and is exactly the same as in Ghmadh et al. [16]. Further details of simulation procedures can be found in Ref. [26]. The model is adapted to the present situation by using the physical parameters for the SCN-camphor alloy given in Table I. Simulations are performed for V p = 1 μm/s and G = 24 K/cm. As pointed out in our previous work, the thermal gradient used in phase field simulations is taken slightly higher than the experimental value to find stable oscillating patterns [26]. Coherent oscillations of three groups of cells in a hexagonal array are obtained The experimental evolution scheme of Fig. 8(c) relating the cell tip shape and position (or undercooling) during oscillation is thus mandatory to propose an interpretation of the origin of oscillation.

These results can be compared to those of Georgelin and Pocheau [14] in thin samples. The scheme of Fig. 8(c) is quite similar to the images of Fig. 2 of Ref. [14]: the medium tip position of cells corresponds to either large or thin cells, the highest position of the tip corresponds to thick-but not thickest-cell and the lowest position of tip corresponds to thin-but not thinnest-cell. Georgelin and Pocheau [14] reported a phase difference of 0.56π of tip position leading the cell width, 1.5 times larger than our measurement (0.38π ), thus suggesting a faster dynamics of shape adjustment in our case. At this stage, it is not possible to relate this difference to the sample geometry or to growth parameters, as measurements are available for only one set of parameters in both cases.

B. Analysis of solutal interactions driving oscillation

Experimentally, the analysis of the oscillating patterns using interferometry made it possible to highlight and quantify the evolution of shape, velocity and position of the oscillating cells. They are associated to the evolution of the concentration field, which is not accessible experimentally but is clearly the key parameter to explain the coupling between neighboring cells. The advantage of phase field simulations is that, in addition to purely geometric characteristics of the cell tip, they provide the spatiotemporal evolution of the concentration field.

To evidence the very small variations of concentration associated to oscillation, Ghmadh et al. [16] have developed an original method of analysis based on the determination of local constitutional supercooling. The constitutional supercooling C( r, t ) is defined as the difference between the equilibrium concentration of a liquid point, which is the liquidus concentration and the actual concentration C( r, t ):

C( r, t ) = C L (z, t ) -C( r, t ). ( 10 
)
It may also be interesting to compare these data to the 3D phase-field simulations conducted by Ghmadh et al. [16] to analyze 2λ -O oscillating patterns obtained by Georgelin and Pocheau [14] in thin samples. The phase relationships are in very good agreement with the ones found experimentally as well as they are in the same range as those found by Ghmadh et al. [16]. Especially, in spite of slight differences of values, those phase shifts lead to a scheme of evolution similar to the one presented in Fig. 8

(b).

A dimensionless undercooling can then be defined as

= -k C 0 C.
Once the interface is destabilized, a zone of negative undercooling builds up in the liquid and goes through a minimum at some distance ahead of the cell tips (in the solid, the undercooling is uniformly set to an arbitrary negative constant). becomes more negative when the constitutional supercooling increases. We applied the same kind of analysis in this work, for the 2π 3 -oscillating patterns. of velocity and concentration to go back to average values: 620 such a mechanism is necessary to explain why, for example, a 621 cell would not continue to recoil and eventually be eliminated 622 when the velocity decreases. As described in Ref. [16], it is 623 possible to evidence horizontal solute fluxes, by representing 624 d dx (in the solid, d dx = 0): Fig. 10 shows the time evolution 625 of d dx over an oscillation period. On the same basis used for 626 the 2λ -O oscillating patterns [16], it is possible to explain 627 the cycle of oscillation, taking into account horizontal solute 628 fluxes coming from neighboring cells. When the concentra-629 tion is minimal above the cell tip B (large black area above 630 the cells), the concentration above cell tips A and C is higher 631 than above B: the horizontal solute currents coming from the 632 cells A and C converge, which induce a melting of the tip 633 and sides of cell B. The tip radius of B decreases to reach 634 its minimum, thus inducing an increase of diffusion currents 635 at the tip and consequently an increase of the tip velocity 636 and of the concentration above B. Compared to the 2λ -O 637 oscillation mode, the main difference evidenced in Fig. 10 is 638 the asymmetry of the horizontal fluxes coming to or from B. 639 This probably results from the phase shift of ± 2π 3 between the 640 three subpatterns, and this provokes an asymmetry of the cell 641 shape clearly visible in Fig. 10.

642

The two mechanisms that modify the solute concentration 643 (and thus the undercooling) above the tip are identified: a 644 vertical one and a horizontal one resulting from interaction 645 with neighbors. The coupling of these two mechanisms in-646 volved in the oscillation fixes the phase shifts between the 647 oscillation of the different cell tip characteristics, since one of 648 these mechanisms is based on neighbor interaction. We may 649 suspect that the pattern organization and the coherence and 650 synchronization mode of oscillation affect those phase shifts. 651

C. Theoretical analysis of the cell tip dynamics 652

Let δZ, δV , δρ, δC t , respectively, denote the oscillating 653 components of the tip position, velocity, curvature radius 654 and interfacial liquid solute concentration at the cell tip.

655

Sine variations are considered which will be treated as com-656 plex numbers for easier calculations: δρ = A ρ e i(ωt ) , δv =

657

A v e i(ωt+φ v ) , δz = A z e i(ωt+φ z ) , δC t = A c e i(ωt+φ c ) . Since the ve-658 locity is given by the temporal derivative of the tip position, 659

V (t ) = ż(t ), we have 660 A v A z = ω and φ v = φ z + π 2 . ( 11 
)
Moreover, local equilibrium at the interface implies that

661 δC t = Gδz m with m < 0 (12) so that 662 A c A z = G |m| and φ c = φ z + π. ( 13 
)
The existence of local equilibrium at the interface implies I). In our case, a relevant diffusion 669 length would be the primary spacing (288 ± 42 μm). So, the 670 solute diffusion time may be estimated as 5.1 min, which is 671 ≈ 10 times smaller than τ osc . We can then consider that the shift. Even if it is more adapted to the dendritic regime, we 677 consider that the tip radius is selected through the solvability 678 approach, taking into account capillarity [48,49]:

679 ρ 2 (mG c -G) = σ * ⇒ 2ρ 0 δρ(mG c,0 -G) + ρ 2 0 mδG c = 0, (14) 
where G c is the concentration gradient at the tip, the Gibbs-680

Thomson coefficient, and σ * the stability constant. ρ 0 and G c,0

681
are the average values of ρ and G c , respectively.

682

The concentration gradient at the tip may be defined by the 683 solute flow balance:

684 G c (t ) = k -1 D L C t (t )V (t ) ⇒ δG c (t ) = k -1 D L (V p δC t + C t,0 δV ), and (15) 
G C,0 = k -1 D L C t,0 V p ,
where C t,0 is the average value of C t and the average value of 685 the velocity is equivalent to the pulling velocity, V p . Combin-686 ing Eqs. ( 14) and ( 15):

2 δρ ρ 0 = -B δC t C t,0 + δV t V p ( 16 
)
with 1 B = 1 - GD L mV p C t,0 (k-1) > 0.
688 Using the complex notation previously defined, and the results of Eqs. ( 11)-( 13), one gets

2 A ρ ρ 0 = e -iπ B A c C t,0 e iφ c + A v V p e iφ v = Be iφ z A c C t,0 -i A v V p , ( 17 
)
which is equivalent to

A ρ A z = B ρ 0 2 G |m|C t,0 2 + ω V p 2 and tan(φ z ) = C t,0 V p ω|m| G . ( 18 
)
The average tip concentration C t,0 can be calculated using the undercooling KP defined in the Karma-Pelcé (KP) model [50,51]:

KP = T L -T t,0 T L -T S = f s,0 k + (1 -f s,0 ) D L V P l T 1 -f s,0 (1 -k) , ( 19 
)
where T t,0 is the average tip temperature, T L and T S are the liquidus and solidus temperatures for the composition C 0 , respectively. l T is the thermal length defined as mC 0 (k-1)

kG

. f s is defined as the solid fraction in a region behind the tip where the cell width can be assumed constant; f s,0 is the average value of f s . It should be pointed out that Eq. ( 19) reduces to the well-known Bower-Brody-Flemings model [52] when f s,0 vanishes. From Eq. ( 19), we get

C t,0 = C 0 1 - k -1 k KP . ( 20 
)
Equations ( 11)-( 18) are used to calculate all the phase shifts and oscillation amplitudes that define the oscillating cell dynamics, to compare them with experimental and numerical simulation results. In addition to the experimental control parameters and to the characteristics of the alloy, the tip concentration is required for the calculations. For phasefield simulations, the tip undercooling is directly provided and converted in tip concentration using Eq. (20). The tip concentration evolution is represented by the dark curve in Fig. 8(b), for V p = 1 μm/s, G = 24 K/cm and λ = 177 μm, and a sinusoidal fit leads to C t,0 = 0.85 wt% and A c = 0.01.The analysis of the sinusoidal fits of C t and δz is in accordance with Eq. (13). In experiments, the tip concentration is not available, but we can estimate the solid fraction f s deduced from the measurements of the visible cell surface S and use Eqs. (19) and (20) to characterize the experimental tip concentration. Considering an ideal hexagonal pattern, f s can be evaluated as the ratio between S and the area of a hexagon with an apothem equal to the half of the primary spacing. This calculation leads to f s,0 ≈ 0.60 and A f s = 0.01, and C t,0 = 0.89 wt% and A c = 0.02. However, this determination of the solid fraction is relatively imprecise as we cannot be sure that the cell visible surface S exactly fits the cell size (it may be underestimated depending on optical visibility) and the calculation of the fraction is based on the hypothesis of a perfect hexagonal pattern, which is not experimentally the case. The experimental and simulation values of C t,0 are nonetheless very close.

The values of phase shifts are gathered in Table II: the theoretical values are compared to both experimental and numerical values. Using the numerical oscillation period T = 27 min and the estimated average tip concentration 0.85 wt%, the theoretical phase shift of z is calculated φ z = 0.34π ; it is quite similar to its value directly measured in PF and to the experimental value (both 0.38π ). With the experimental parameters (T = 52 min and C t,0 = 0.89 wt%), the theoretical phase shift of Z is equal to φ z = 0.29π , significantly lower than the experimentally measured value of 0.38π as well.

It appears that this phase shift is very sensitive to the solid fraction f s : a f s,0 ≈ 0.90 would be necessary to get a perfect agreement between theory and experiment. The other phase shifts are deduced from the derivative relationship between V and z, and the phase shifts between experiments, or simulation, and the theoretical calculation are quite consistent.

Regarding the ratio of oscillation amplitudes, the theoretical A v A z = 0.0020 s -1 is very close to the experimental one (0.0021 s -1 ), and, similarly, between the theoretical 0.0038 s -1 and the phase-field simulation 0.0037 s -1 . It should be pointed out that this agreement is trivially expected since the ratio A v A z is fixed by the oscillation period following Eq. ( 11) and the period is accurately determined in both experiment and simulation. Relation ( 18) is used to calculate the theoretical value of

A ρ /ρ 0 A z .
For the phase-field simulation working parameters, its value is 0.005 μm -1 , which is almost six times lower than the one estimated using the directly measured amplitudes of oscillation (0.032 μm -1 ). Experimentally, the variations of A ρ ρ 0 as a function of A z lead to a slope of 0.013 μm -1 , and the estimated value through Eq. ( 18)

is equal to 0.002 μm -1 , also six times lower. We may suggest two different hypotheses for the discrepancy observed in the ratio of oscillation amplitudes

A ρ /ρ 0 A z .
First, we recall that Eq. ( 14) was developed for a dendritic regime. In that case, tips can be approximated as isolated parabolic tips, with almost no overlap of the concentration field. It is not exact in case of cells and especially of oscillating cells for which the solute fluxes between neighboring cells are critical during the oscillation cycle. To see how the equations would be modified by using a specifically cellular equation, we can replace Eq. ( 14) by an equation developed in the theoretical framework of the analogy between cells and Saffman-Taylor (ST) viscous fingers [50,53]. Its use is neither fully justified because it applies theoretically within the limit of small cell tip Péclet number (Pe =

λV p D L
1, where λ is the primary spacing), which is not our case (Pe ≈ 1). The cell shape is determined by the relative width of the cell, which corresponds to the ratio of the cell width with the primary spacing. In analogy with ST solutions, the selection of proceeds through a capillary function F ( ) that depends on a parameter that quantifies surface tension effects [START_REF] Billia | Handbook of Crystal Growth[END_REF]:

ρ 2 (mG c -G) = F ( ). (21) 
We see that, if the term F ( ) is set to a specific constant, we go back to Eq. ( 14) developed for a dendritic regime [48,49]. Equations ( 14) and (21) therefore describe two limit domains, our case being between them. The ST finger shape basically contains two shape parameters, ρ λ and , related to each other, so that only one of these variables is required to 787 describe the shape: F ( ) = F ( ρ λ ). In the oscillating exper-788 iments, the primary spacing attains a steady-state value: the 789 capillary function is then supposed to vary only due to tip 790 radius oscillations and we can switch from F ( ρ λ ) to F ρ (ρ). 791 After differentiation, we get

792 2ρ 0 δρ(mG c,0 -G) + ρ 2 0 mδG c = δF ρ (ρ). (22) 
In a 3D pattern, we can consider that the relative width is 793 similar to the solid fraction f S ∝ S λ 2 . As the apparent surface 794 S oscillates in phase with the tip radius, it thus follows that 795 the solid fraction, the relative width, the tip radius and the 796 capillary function oscillations are all in phase. We then define 797 the complex number for δF ρ , with the tip radius fixing the 798 origin of phases: δF ρ = A F e i(ωt ) . The calculation is carried out 799 in the same way and with the same assumptions as previously 800 done, and Eqs. ( 17) and ( 18) can be replaced by

801 2 A ρ ρ 0 - A F F 0 = Be iφ z A c C t,0 -i A v V p , ( 23 
)
where F 0 is the average value of F ( ) defined as

ρ 2 0 (mG c,0 -G) . 802 Equation (23) is equivalent to 803 A ρ A z = ρ 0 2F 0 A F A z + B ρ 0 2 G |m|C t,0 2 + ω V p 2 and tan(φ z ) = C t,0 V p ω|m| G . ( 24 
)
We note that the theoretical phase shift of z is not affected 804 by the modification, so that the small differences between 805 measured and theoretical phase shifts do not come from the 806 incorrect choice of the equation for the operating point. How-807 ever, for amplitudes, A ρ A z is increased by the capillary function 808 oscillation A F F 0 when compared to the previous expression. It 809 was previously observed that Eq. ( 18) leads to a large un-810 derestimation of A ρ A z when compared to the measured value: 811 the correct description of the operating point could partly 812 explain the difference. Applying the limit case of ST analogy 813 described by Eq. ( 24), we can evaluate a relative oscillation 814 amplitude for the capillary function A F F 0 : 24% and 28% with, 815 respectively, PF and experimental parameters. Those values 816 are almost twice the relative oscillation amplitude of tip ra-817 dius; inversely, if a ratio A F F 0 similar to the relative oscillation 818 amplitude of tip radius is used, the discrepancy between theo-819 retical and measured values of A ρ /ρ 0 A z decreases from a ratio of 820 6 to 1.4. A correct description of the operating point would 821 probably lead to an intermediate situation between the use 822 of Eqs. ( 14) and ( 21), with still an underestimation of the tip 823 radius oscillation, but largely reduced compared to the use of 824 Eq. ( 14). We also can postulate that the phase-shift expression 825 would not be modified.

826

The second element that could explain the discrepancy 827 observed in the ratio of oscillation amplitudes A ρ /ρ 0 A z is the fact 828 that this theoretical analysis does not take into account the 829 solute fluxes that come from neighboring cells and that are 830 essential in the oscillating mechanism. These fluxes modify 831 the concentration field and the resulting tip concentration 832 and gradient. It is difficult to include these fluxes in the 833 analysis but they also partly affect the oscillation amplitudes 834 ratio and more importantly, necessarily affect the phase shift: analyses allowed us to propose a scheme of the evolution of the cell shape during one period of oscillation. While Z advances from its mean position, ρ increases from its minimum value and it continues well after Z has reached its maximum position and started to recede. The cell tip is bluntest when Z is decreasing and about to reach its mean position.

The oscillations of tip shape parameters and tip position were correlated to the evolution of the concentration field by using phase-field simulations that, additionally to the purely geometric parameters of the cell tip, gave the spatiotemporal evolution of the concentration field. Phase-field simulations were performed to compare with the experimental results on extended arrays. The phase shifts of the geometrical parameters obtained experimentally and in simulation proved perfectly comparable. Due to simulation results, two mechanisms modifying the solute concentration above the tip were identified, a vertical one and a horizontal one resulting from the interaction with neighbor cells. Similarly to what was recently evidenced for 2λ -O oscillations in thin samples [16], the dynamics of these two mechanisms was found to determine the phase shifts between the oscillations of the different cell tip characteristics.

A theoretical modeling based on classical equations of solidification enables us to analyze the oscillation characteristics of the different tip parameters. The oscillation amplitude of the tip radius estimated using the theoretical model is significantly smaller than the measured one. Two limit cases are used in the model to describe the tip operating point and relate the tip radius to the undercooling, corresponding to small and large Péclet numbers. Even if our situation lies between these limit cases, this approach enabled us to evidence the importance of the tip-shape selection on the oscillation amplitudes; it also demonstrated that phase shifts between the different oscillating quantities are not affected by the tip-shape selection. The theoretical phase shifts are rather consistent with experimental measurements as well as phase-field numerical simulations. However, we expect these phase shifts to be influenced by the neighboring solute fluxes-linked to the underlying pattern order-which are not included in the model. Thus, 3D phase-field analyses of square patterns, with two subpatterns in phase opposition, would also be interesting to compare to the hexagonal configuration analyzed in this work.

  experiment, whose control parameters lead to oscillating cellular patterns (V p = 1 μm/s and G = 19 K/cm), are analyzed to reconstruct the shape and position of each cell during its oscillation cycle and rebuild the oscillation cycle of the main cell shape parameters, tip position, radius, and velocity. Dedicated phase-field simulations are used to better understand the driving mechanisms of cellular oscillation. The results shed light on the mechanisms of oscillation which involves vertical and horizontal solute fluxes. In Sec. II the experimental device will be first briefly described as well as the method of interferometric data treatment used to exploit the information encoded in the interferometric fringes. It produces detailed quantitative descriptions of the interface shapes and their time evolution.

219B. Interferometry in the context of cellular interface 220 characterization 221

 221 FIG. 1. (a) Global view of the solid-liquid interface obtained by direct observation (V p = 1 μm/s, G = 19 K/cm, t = 15.6 h). The green square is zoomed to show the corresponding interferometric observation. (b) Frames of reference used for interferometric reconstruction. The instantaneous position Z i of each cell is taken relative to its initial position Z 0i defined at t = 0. The shape of a cell is described by the height of the interface h i ( r, t ), which is a function of r, a 2D vector with origin fixed at the cell tip position.

FIG. 2 .

 2 FIG. 2. (a)Side cut of the solid-liquid interface. Two adjacent rays 1 and 2 have similar paths save for the short distance h where P 1 travels through a solid, and P 2 travels through a liquid. Their difference in phase can then be attributed solely to the shape of the interface. (b) Time evolution: as pulling rate is applied, the entire interface advances, and the fringes slide towards lower parts of the interface. The interface shape is considered constant within short durations, and the temporal change in L is attributed solely to changes in length of the solid and liquid columns above and below the interface.
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  related to h i ( r, t )], and L Ti corresponds to the part of L due 279 to the tip height [i.e., related to Z i (t )]. 280 During a solidification experiment, the main variations of 281 optical paths are attributed to variations of the lengths of the 282 two different phases (solid and liquid). The optical paths of 283 parallel rays crossing the interface at different locations P 1 and 284 P 2 at the same time t [Fig. 2(a)] reveal the interface shape. 285 If P 1 and P 2 lie on two neighboring black fringes [blue and 286 yellow lines in Fig. 2(b)], their L differs by a laser wavelength 287 λ. Similarly in time, if a pixel is at its darkest at a given time, 288

  FIG. 3. Maps of primary spacing (a) and nearest neighbors (b) at steady state (V p = 1 μm/s, G = 19 K/cm, t = 15.6 h).

FIG. 4 .

 4 FIG. 4. Example of the data obtained for a single cell during three interferometric (shaded region) and three direct observation sequences. δZ, δV , ρ, and S have oscillation amplitudes of 11 μm, 26 nm/s, 12 μm, and 0.005 mm 2 , respectively (V p = 1 μm/s, G = 19 K/cm).

  FIG. 6. Comparison of cell area, S(t ), and tip radius, ρ(t ), oscillations: (a) phase difference; (b) correlation of oscillation amplitudes (V p = 1 μm/s, G = 19 K/cm).

465

  FIG.7. Histograms of phase differences ρ -δZ (dark blue) and ρ -δV (light green). Only cells with the best sinusoidal fits are considered (≈104 cells). The gray intervals in each peak contain ≈ 60% of the cells.

FIG. 8 .( 54 ±Fig. 8 (

 8548 FIG. 8. (a) Scheme of the evolution of a cell shape during an oscillation period. Simplified representation of the δV , δZ, and ρ curves of a cell, shown as sinusoids of normalized amplitude (markers blue , green , and red , respectively). These curves are generated from the mean of the differences of the studied cells, when the phase of δZ is arbitrarily set to zero. (b) Example of the data obtained by phase-field simulation for a single cell during three oscillation periods (V p = 1 μm/s, G = 24 K/cm, λ = 177 μm): δZ, green ; δV , blue ; ρ, red ; C t , empty . (c) Cell shape evolution. The time labels correspond to the extrema and mean values of δZ and ρ. The arrows at the tips represent an increasing or decreasing tip radius (• for unchanging). The vertical arrows in the middle of the cells represent δV .

FIG. 9 .

 9 FIG. 9. Time evolution of the oscillation mode of a hexagonal array obtained numerically. Solid appears in black in the lower part; white arrows indicate the direction of the cells' motion; in the liquid phase, isosurfaces are drawn for the constitutional undercooling . One oscillation period corresponds to the time interval between t 1 and t 9 .

Figure 9

 9 Figure 9 represents in the xz plane that intersects the cell tips along the red dotted line in the top view. One can follow the evolution of the geometric parameters [Fig. 8(b)] by focusing attention on cell B of Fig. 9. Let us first consider the variation of tip velocity. At time t 2 , δV = 0 and it decreases until t 5 . This decrease of velocity below the average tip velocity means that the vertical flux rejected at the tip decreases below its average value: the concentration ahead of the tip also decreases with a small time shift, producing the large black area that develops above the cell tip between t 4 and t 7 . The increase of velocity between t 7 and t 9 above the average velocity induces the inverse phenomenon, with a resulting increase of concentration and the reduction of the black area above the tip. The same behavior shifted by 2π 3 is observed for the two other cells, A and B. Similar observations were done by Ghmadh et al.[16] in the 2λ -O oscillating patterns, except that they had only two cells in phase opposition.Whatever the system is, the question at this point is to identify the mechanism that enables us to counteract the variations
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  the solute diffusion time in the liquid to be much faster than 664 the oscillation period. As previously mentioned, the mean 665 oscillation period is equal to 52 ± 6 min. The solute diffu-666 sion time can be estimated by the ratio between the square 667 of the diffusion length and the solute diffusion coefficient 668 in the liquid D L (Table

672

  conditions for local equilibrium are respected. An additional 673 selection criterion that defines the operating conditions at the 674 cell tip and relates the tip radius to the other oscillating tip 675 characteristics is imposed to determine the remaining phase 676

835

  as a matter of fact, the dynamics of these fluxes strongly 836 depends on the pattern organization and of the type of oscil-837 lation coherence. In the2π 3 type or 2λ -O oscillations, the 838 neighboring fluxes have different dynamics: we note that in 839 spatially extended PF and experimental cases, the underlying 840 pattern order is similar (hexagonal type) and the measured 841 phase shifts have the same value (φ z = 0.38π ) whereas in 842 simulation of 2λ -O, the phase shift is smaller (φ z = 0.25π ). 843 As a conclusion, the basic solidification equations can be 844 a good starting point to describe the oscillation dynamics. A 845 qualitative analysis suggests that the oscillation amplitudes 846 would be better evaluated mainly by a more adequate de-847 scription of the operating point. The neighboring solute fluxes, 848 and therefore the underlying pattern order, mainly control the 849 phase shifts of the different oscillating parameters. 850 IV. CONCLUSIONS 851 Experiments under low-gravity conditions were carried out 852 in the directional solidification insert (DSI) of the DECLIC 853 facility installed on board the International Space Station as 854 part of a joint research program between CNES and NASA. 855 The use of an organic transparent alloy in a large cylindri-856 cal crucible enabled the real-time and in situ observation of 857 spatially extended patterns, and microgravity enabled growth 858 in a diffusive transport mode. These exceptional conditions 859 allowed us to observe, for the first time, the dynamics of 860 extended oscillating cellular 3D patterns. In some previous 861 articles [24-26], we characterized the oscillations through the 862 study of the periodic variation of the apparent area of cells 863 in the xy plane-which is in fact associated to a tip radius 864 oscillation-using top-view interface observation. However, 865 oscillating cells also display variations of the tip position and 866 velocity in the vertical Z direction. In the present work, the 867 interferometric data available in DECLIC-DSI were used to 868 reconstruct cell shape and measure oscillations of the cell tip 869 position δZ and growth velocity δV , in order to completely 870 quantify the dynamics of oscillating cells. Moreover, the in-871 terface shape was reconstructed for each cell which allowed 872 measuring the radius of curvature and its oscillations. The 873 method of interferometric images analysis, for which it is not 874 trivial to reach the highest resolution in spite of noise and 875 nonuniform contrast conditions, was described. The individ-876 ual cell shapes were then reconstructed with a ρ resolution 877 of ≈ 3 μm, and the evolution of cell growth velocity with a 878 resolution of a few nm/s. Comparison with the cell apparent 879 surfaces showed that S and ρ are correlated and in phase. A 880 value of 0.86π was measured for the phase shift between ρ 881 and δV , showing that cell tip radius and cell velocity are part 882 of a rather complex dynamic of advance and bulging. These
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  Tip velocity varia-141 tions can be evidenced with resolution of a few nanometers 142 per second. Section III covers the statistical characteristics 143 and mechanism of oscillation of individual cells, including 144 a detailed description of the quantities and phase relation-145 ships involved in an oscillating cell, the supporting phase-field 146 simulations and a proposed driving mechanism of cellular 147 oscillation. Conclusions will be summarized in Sec. IV.

148

II. EXPERIMENTAL

149

A.

  Table I). SCN purified by NASA 193 by both distillation and zone melting was used to fill the 194 crucible. All procedures for sample preparation were carefully 195 realized under vacuum to avoid humidity contamination. A 196 single crystalline solid seed with a direction 100 parallel to 197

TABLE I .

 I Properties of succinonitrile and succinonitrilecamphor alloy[33][34][35][36][37][38][39].

		Physical parameter	Symbol Magnitude	Unit
		Succinonitrile	
		Melting temperature	T m	331.24	K
		Molar mass	M	80.09	g/mol
		Latent heat of fusion	H	3.713	kJ/mol
		Liquid density	ρ L	970	kg/m 3
		Solid density	ρ S	1016	kg/m 3
		Liquid thermal conductivity	λ L	0.223	J/(ms K)
		Solid thermal conductivity	λ S	0.224	J/(ms K)
		Thermal expansion coefficient	β T	7.85 × 10 -4	K -1
		Interface energy	γ	8.95 × 10 -3	J/m 2
		Kinetic viscosity	υ	2.6	mm 2 /s
		Succinonitrile-camphor
		Solute (camphor) concentration	C 0	0.24	wt%
		Liquidus slope	m	-1.365	K/wt%
		Solute diffusion coefficient (liq.)	D L	270	μm 2 /s
		Thermal diffusion coefficient	D th	1.15 × 10 5	μm 2 /s
		Solute partition coefficient	k	0.07	-
		Gibbs-Thomson coefficient		0.06478	K μm
		Anisotropy strength	4	0.011	-
	198	the pulling axial direction was prepared on ground and kept
	199	during all the experimental campaign. Further details about
	200	the experimental procedure can be found in previous works
	201	[28,40].		
	202	No direct in situ measurement of the thermal gradient is
	203	available in the DSI as no thermocouple is inserted inside
	204	the sample to avoid thermal perturbations. A complete dis-
	205	cussion of the thermal gradient determination can be found
	206	in Ref. [41]: two different thermal gradients were estimated
	207	by thermal numerical simulation [42] at G 1 = 19 K/cm and
	208	G 2 = 12 K/cm. A range of pulling velocities from 0.25 to 30
	209	μm/s was studied which covers the whole range of possible
	210	unstable microstructures.		
	211	The oscillation mode was observed in a narrow range of
	212	pulling rates: from 0.5 to 1.5 μm/s for a thermal gradient
	213	of 19 K/cm, and at 0.5 μm/s for a gradient of 12 K/cm.
	214	The most striking oscillatory experiment, which was the basis
	215	of our previous analyses, was obtained for V p = 1 μm/s and
	216	G = 19 K/cm [24,25]. These last conditions are then chosen
	217	to perform the experiment with sequences of interferometric
	218	observation followed by white light acquisitions of the same
		duration (approximately 45 min).	

TABLE II .

 II Phase relationships and amplitude ratios between the geometrical characteristic of oscillating tips: radius ρ, position δz, and velocity δV . Comparison between measured results in experiments and in 3D phase field simulation (PF) and theoretical model for both cases. The phase-relationships obtained by PF of 2λ -O oscillating patterns[16] are also given.

	Phase shift	Experiments	3D PF	PF
	between	Meas.	Theor.	Meas.	Theor.	2λ -O
	ρ and δz	0.38π	0.29π	0.38π	0.34π	0.25π
	ρ and δV	0.86π	0.79π	0.86π	0.84π	0.75π
	δz and δV	0.52π	0.50π	0.48π	0.50π	0.50π
			Amplitude ratios		
	Av Az (s -1 ) Aρ /ρ 0 Az (μm -1 )	0.0021 0.013	0.0020 0.002	0.0037 0.032	0.0038 0.005	--
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