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Lagrangian discretization of variational mean field games

Clément SARRAZIN

Abstract

In this article, we introduce a method to approximate solutions of some variational mean
field game problems with congestion, by finite sets of player trajectories. These trajectories
are obtained by solving a minimization problem, similar to the initial variational problem. In
this discretized problem, congestion is penalized by a Moreau envelop with the 2-Wasserstein
distance. Study of this envelop as well as efficient computation of its values and variations is
done using semi-discrete optimal transport.

We show convergence of the discrete sets of trajectories toward a solution of the mean field
game, as well as conditions on the discretization in order to get this convergence. We also show
strong convergence (in particular almost everywhere) in some cases for the underlying densities
resulting from the Moreau projection of solution to the discrete problem.

1 Introduction

Mean field games were introduced by Lasry and Lions in [12, 13] and, independentely by Caines,
Huang and Malhamé in [10]. In these games, an infinite population of indistinguishable players
evolve in a domain while minimizing an energy that depends on the trajectory of the whole popula-
tion. In a simple case, players, which are represented by curves on the domain Ω, x ∈ C0([0;T ],Ω),
are trying to minimize an accumulated energy∫ T

0

[
‖x′(t)‖2

2
+ g(µ(t, x(t))) + V (x(t))

]
dt+ Φ(x(T )).

Here, g is an increasing function on R, penalizing µ(t, x(t)), the density of the population around
player x at time t, V and Φ are scalar functions on Rd. Players are then pushed towards areas
where V is low (and, at the end of the trajectory, Φ), while also trying to avoid overcrowded areas,
where g(µ(t, x)) is too large. At equilibrium, each player is following an optimal path for his/her
own energy, the evolution of the population’s density µ is linked to this of the value function:

φ : (t0, x0) 7→ inf

{∫ T

t0

[
‖x′(t)‖2

2
+ g(µ(t, x(t))) + V (x(t))

]
dt+ Φ(x(T ))

∣∣∣∣∣ x(t0) = x0

}

via a mean-field game system (with no-flux conditions for the second equation):
−∂tφ+ ‖∇φ‖2

2 = g(µ) + V

∂tµ−∇.(µ∇φ) = 0

µ(0, .) = µ0, φ(T, .) = Φ

If we set f ′ = g, the first (Hamilton-Jacobi) equation in this system is interpreted as the

belonging of −∂tφ + ‖∇φ‖2
2 − V to the subgradient of the (convex) function f . Using some tools
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from convex analysis, one can show that µ, seen as a curve in C0([0;T ],P(Ω)) is a minimizer for
the variational mean field game problem:

inf
∂tµ+∇.(µv)=0

µ(0)=µ0

∫ T

0

∫
Ω

[
‖v(t, x)‖2

2
µ(t, x) + f(µ(t, x)) + V (x)µ(t, x)

]
dxdt+

∫
Ω

Φ(x)µ(T, x)dx

This is a convex minimization problem, up to the change of variables µ = µ, w = µv. Con-
versely, any minimizer for this problem induces weak solutions to the mean field system (for a more
precise statement of this correspondance we refer the reader to the course notes on mean field games
by Cardaliaguet [5], and by Santambrogio [19] as well as the survey by Santambrogio, Carlier and
Benamou, [2]).

In this article, we will consider the more general case of (µ, v) minimizing the following global
energy:

J(µ, v) =

∫ T

0

[∫
Ω
L(v(t, x))dµ(t, x)dx+ F (µ(t, .))

]
dt+G(µ)

under the constraints ∂tµ+∇ · (µv) = 0 (with no flux boundary conditions) and the initial distri-
bution µ(0, .) = µ0 ∈ P(Ω).

The first term in J ,
∫ T

0

∫
Ω L(v(t, x))dµ(t, x)dt measures the cost of displacement associated with

the evolution of µ following the velocity v and will be refered to as the ”kinetic” part of the energy.
We make the assumption that L : Rd → R is a convex continuous function on Rd which behaves
like ‖.‖r for some r > 1. More precisely, there exists C > 0,

∀p ∈ Rd,
1

rC
||p||r − C ≤ L(p) ≤ C

r
||p||r + C (1)

The second term, involving F, modelizes the impact of congestion. It penalizes high densities,
dissuading players from concentrating during their movement. F is now a convex lower semi-
continuous function (for the topology associated with the narrow topology) overM+(Ω) (the space
of positive finite measures on Ω). In the previous variational mean field games, it was defined by:

F : µ ∈M(Ω)

{∫
Ω f(µ(x))dx if 0 ≤ µ� dx

+∞ otherwise
.

To handle its possibly bad behaviour at singular measures we use the particular Moreau-Yosida
regularization defined in Section 6. The simplest expression, for which we compute approximate
optimal trajectories in Section 8, is

F : µ ∈M(Ω) 7→

{
0 if 0 ≤ µ ≤ dx
+∞ otherwise

which corresponds to a hard congestion constraint, forbidding the presence of more than one player
at a given position.

Finally, G is a continuous (again, for the topology associated with the narrow topology) convex
function over C0([0;T ],P(Rd)), bounded from below. By driving the players toward a goal (the
trajectories at which it is the lowest) this term will often favorize congestion. In our numerical
simulations, it will be given by a potential, at intermediate times (V in the introductory example
above) and/or at final time (Φ in this example).
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Discretization of mean field games: In Parts 1 to 3 of this paper, we study a lagrangian
approximation of the solutions to the mean field game described above. In practice, this means
reformulating it as a minimization over P(C0([0;T ],Rd)), then looking for minimizers of a similar

problem, over discrete probability measures this time. For such measures, the term
∫ T

0 F (µ(t))dt
could be ill-defined and congestion must be penalized in a different manner. The main goal of
this article is to show that replacing the functional F with a regularized version, in the form of a
Moreau envelope in the Wasserstein space:

Fε(µ) := inf
ρ∈P(Ω)

W 2
2 (ρ, µ)

2ε
+ F (ρ)

circumvents this issue and allows us to build our approximate trajectories as solutions of the
discretized problem:

inf

{∫ T

0

[∫
Ω
L(v(t, x))dµ(t, x) + Fε(µ(t))

]
dt+G(µ)

∣∣∣∣ µ ∈ C0([0;T ],PN (Rd)), µ(0) = µ0
N

}
(2)

Here, minimization is done on the space of continuous curves valued into the space of discrete
uniform probability measures on Rd , PN (Rd), for which there exists a vector field v such that
∂tµ+∇ · (µv) = 0. Note that this problem is non-convex, due to the term Fε, however, after time
discretization of the time integrals above, it is a finite dimensional minimization problem, and we
can look for its local minimizers, using standard gradient descent algorithms.

A general weak convergence of the discrete minimizers of (2) is shown in Sections 4 and 5, as N
goes to infinity and ε to 0. Such a convergence is very reminiscent of Γ-convergence and guarantees
that we recover the continuous solutions, as the number of players goes to infinity. In particular
cases of functional F , one can extract from the Moreau envelop a density that approximates the
optimal density at all time, in a stronger Lp sense, as shown in Section 7.

Such a discretization is applied, in [14], to the similar problem of Wasserstein gradient descent,
on the same kind of congestion penalizations F . However, in this particular case, the same con-
vergence results as those we claim above can only be proven under strong assumptions that are
deemed ”unnatural” by the authors.

Moreau envelope in the Wasserstein space: In Part 6, we further study these Moreau
envelopes in the 2-Wasserstein space. Indeed, their restrictions to the space of uniform discrete
measures on N points enjoy some good regularity properties (when seen as functions on (Rd)N ,
the positions of the Diracs). We give explicit expressions for their derivatives, which are then used
in Section 8 to compute good candidates for the minimizers of these discrete problems (which are
non-convex).

Values of the Moreau envelope can be numerically computed using a Newton algorithm (as
the corresponding problem can be cast as a concave problem), whereas the minimizing discrete
trajectories, are approximated using an implementation of the L-BFGS algorithm on the finite
dimensional problem, after time discretization. The images from section 8 can be obtained using
the code available on Github1.

Acknowlegments: The author would like to thank his PhD advisors Quentin Mérigot and
Filippo Santambrogio for their numerous insights and advice. He also would like to thank Hugo

1https://github.com/CSarrazin-prog/Congested_MFG.git
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Leclerc for his work on the pysdot2 library for numerical computations of integrals over Laguerre
cells, as well as Jean-Marie Mirebeau for his work on approximating the solutions of Eikhonal
equations3. We make ample use of these libraries in Section 8 when we compute our approximated
optimal trajectories.

Finally, this work has been supported by Agence nationale de la recherche (ANR-16-CE40-0014
- MAGA - Monge-Ampère et Géométrie Algorithmique).

2 Preliminaries

To guarantee existence of minimizers for our our minimization problems, we make the assumption
that the various functions we use are lower semi-continuous (l.s.c), often for the narrow conver-
gence described below. That is to say, if xn converges to x (for the corresponding topology), then
H(x) ≤ limn→∞H(xn) for the l.s.c function H. A standard way to show that such functions admit
minimizers according to a given set of closed constraints is to take a minimizing sequence (of ad-
missible points) and extract from it a converging subsequence. Then the limit point is a minimizer
for the problem.

For a Polish space X, the space M(X) of finite measures over X can be endowed with the
topology of narrow convergence, which is defined by duality with the space of continuous bounded
functions on X. It is, in particular, in this sense that we express the continuity in time of solutions
to the continuity equation mentioned in Theorem 1.

Given µ ∈ P(X) and T : X → Y another Polish space, one defines the push-forward (or image)
measure of µ by T, which we write T#µ, as verifying: for any φ ∈ C0

b (Y ),∫
Y
φ(y)d(T#µ)(y) =

∫
X
φ(T (x))dµ(x)

We use in particular this notation when dealing with a probability measure on C0([0;T ],Rd) to
access the corresponding measure at time t, et#Q. Here, the map used is the evaluation at time
t ∈ [0;T ], et : C0([0;T ],Rd) ∈ Γ 7→ γ(t).

In the specific case where the Polish space X is compact, the narrow topology described above
is metrizable, using the celebrated Wasserstein distance which derives from the notion of optimal
transport between measures (see [20], [22] and [21]):

Given µ, ρ ∈ P(X) and a cost function c : X2 7→ R ∪ +∞ which is lower semi-continuous and
bounded from below, the optimal transport cost from µ to ρ according to c is:

Ic(µ, ρ) := inf
π∈Π(µ,ρ)

∫
X2

c(x, y)dπ(x, y)

where the transport plans π are coupling probabilities, with marginals µ and ρ, i.e. the infimum is
taken over Π(µ, ρ) :=

{
π ∈ P(X2) | px#γ = µ, py#γ = ρ

}
(px and py being the projectors on the

first and second coordinates for X2). With these hypotheses on X and c, this infimum is always
attained by an optimal transport plan π.

2https://github.com/sd-ot/pysdot
3https://github.com/Mirebeau/HamiltonFastMarching.git, implementation based on [17]
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This convex minimization problem over P(X2) admits a dual concave formulation:

Ic(ρ, µ) = sup

{∫
X
φdµ+

∫
Y
ψdρ

∣∣∣∣φ ∈ C0
b (X), ψ ∈ C0

b (Y ) : ∀(x, y) ∈ X × Y, φ(x) + ψ(y) ≤ c(x, y)

}
Taking, for each φ ∈ C0

b (X) the optimal ψ = φc := infx∈X c(x, .)− φ(x), we have:

Ic(ρ, µ) = sup

{∫
X
φdµ+

∫
Y
φcdρ

∣∣∣∣φ ∈ C0
b (X)

}

When they exist, optimal φ and ψ = φc are called Kantorovich potentials for the transport from
µ to ρ, and symetricaly, φ = ψc. Functions that are the c-transform of functions in C0

b (ψ = φc) are
said to be c-concave so that the optimisation in φ ∈ C0

b (X) above can in fact be done on c-concave
functions only.

In this paper, we focus on optimal transport where one of these measures, let us say µ with
our prevous notations, is supported on a finite set, µ =

∑N
i=1 µiδyi , y1, ..., yN ∈ (Rd)N , whereas

ρ admits a density with respect to the Lebesgue measure. In this case, a theorem attributed to
Brenier, states that an optimal transport plan from ρ (on Ω) to µ, is induced by a transport map
T : π = (T, id)#ρ. Ω is in return partitioned into Laguerre cells, Lagi = T−1(yi), i = 1, . . . , N .
The optimal transport map T can be immediately obtained, given these Laguerre cells. On the
other hand, these cells can be computed using the Kantorovich potentials, (φ, φc), for this optimal
transport. Indeed, setting (for readability purposes) φi = φ(yi), one has the characterization

Lagi = Lagi(y, φ) := {x ∈ Ω | c(x, yi)− φi ≤ c(x, yj)− φj for all j}.

Solving optimal transport amounts to solving the (non-linear) system in φ ∈ Rd:

ρ(Lagi(y, φ)) = µi, for every i

which simply states the mass conservation during transport. This can be done using a quasi New-
ton algorithm on the weights φ, as described in [11].

The Wasserstein distance is obtained from the optimal cost with c being a power of the distance
d on X. Taking the appropriate root of this transport cost naturally gives a distance between
probability measures (albeit only on a subset of P(X)):

Take the cost cp : x, y ∈ X2 7→ d(x, y)p, p > 1. For µ, ρ ∈ P(X), we will write the p-Wasserstein
distance between µ and ρ,

Wp(µ, ρ) :=
(
Icp(µ, ρ)

)1/p
It defines a distance on the set of probabilities over X, with finite p−th order moment. Fur-

thermore, in the case where X is compact, Wp metrizes the narrow topology on P(X).

Notations: In this article, Ω will always denote a smooth compact domain in Rd, and will be
the domain to which our particles are restrained in the continuous setting. However, we will also
consider trajectories going outside the domain and therefore, our variational optimization problems
will be written with the space Γ := C0([0;T ],Rd) as the space of possible trajectories.

For a convex proper l.s.c function f on a locally convex space E in duality with a space E∗, we
define the subdifferential of f at x ∈ E via

∂f(x) := {p ∈ E∗| ∀y ∈ E, f(y) ≥ f(x) + p · (y − x)}
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and the Legendre transform of f at p ∈ E∗:

f∗(p) = sup
x∈E

p · x− f(x)

Finally, to simplify some lengthy computations, we will write . for inequalities up to a multi-
plicative positive constant which only depends on the domain Ω.

3 The lagrangian setting and the continuous case

A curve in C0([0;T ],P(Ω)) solution of our variational mean field game described in Part 1 can be
seen as a probability measure in P(Γ) thanks to the following theorem (see Theorems 4 and 5 of
[15]):

Theorem 1. Let ρ ∈ C0([0;T ];P(Ω)), r > 1, be solution (in the sense of distributions) of the
continuity equation ∂tρ +∇.(ρv) = 0, with a Lr(dρtdt) velocity vector field v. Then there exists a
probability Q ∈ P(Γ) such that:

1. Q-almost every γ ∈ Γ is in W1,r([0;T ]; Ω) and satisfies γ′(t) = v(γ(t)) for L1-almost every
t ∈ [0;T ].

2. ρ(t) = et#Q for every t ∈ [0;T ].

Conversely, any Q ∈ P(Γ) which satisfies
∫
‖γ′‖rLr dQ(γ) < +∞ induces an absolutely continu-

ous curve in C0([0;T ];P(Ω)) solution to the continuity equation, via ρ(t) = et#Q.

For the rest of this article, we fix an initial distribution of players, µ0 ∈ P(Ω), that admits a
density with respect to the Lebesgue measure on Ω. The variational mean-field game we consider
can be rewritten as a minimization problem over P(Γ), using the representation of Theorem 1:

(Mµ0) : inf
Q∈P(Γ)
e0#Q=µ0

J(Q) :=

∫
Γ
L(γ)dQ(γ) +

∫ T

0
F (et#Q)dt+G(Q). (3)

Remark. We have made here the abuse of notations: for γ ∈ Γ,

L(γ) :=

∫ T

0
L(γ(t))dt

We also now take for G, a continuous function, on P(Γ), (for the narrow topology).

Let us briefly recall why this problem admits minimizers, using to the direct method in calculus
of variations:

Proposition 2. The functional J is l.s.c on P(Γ), and (Mµ0) has minimizers.

Proof. We first prove that J is l.s.c by treating separately its three terms. Theorem 4.5 of [9]
and the bounds in (1) on L directly imply the lower-semicontinuity of the kinetic energy on P(Γ),
Q 7→

∫
Γ L(γ)dQ(γ).

We prove the lower semi-continuity of Q 7→
∫

Γ F (et#Q)dt directly. Let (Qn) be a sequence
converging to Q∞ in P(Γ). By continuity of et on Γ, for every t, et#Qn narrowly converges to
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et#Q∞ as n goes to infinity. Thus, by lower semi-continuity of F and Fatou Lemma, we get as
desired ∫ 1

0
F (et#Q∞)dt ≤

∫ 1

0
lim inf
N→∞

F (et#QN )dt ≤ lim inf
N→∞

∫ 1

0
F (et#QN )dt

Finally, G is continuous (and thus l.s.c) by assumption.
To show existence, we first note that for any upper bound C > 0, the set

KC := {γ ∈ Γ | L(γ) ≤ C, γ(0) ∈ Ω}

is compact, which follows from Arzela-Ascoli’s theorem and from the fact that any curve in KC is
Hölder-continuous. If we take a minimizing sequence (Qn)n for (Mµ0) we notice that it is tight
since for any n and C,

Qn(Γ\KC) <
J(Qn)

C
.

Using Prokorov’s theorem, we can extract from it a sequence converging to a Q∞ ∈ P(Γ) for the
narrow topology. In particular, e0#Q = µ0. But then, by lower-semi-continuity, Q∞ is a minimizer
for our problem since J(Q∞) ≤ lim inf

n
J(Qn) = inf Q∈P(Γ)

e0#Q=µ0
J(Q)

For now on, Qmin will denote a (any) minimizer of (Mµ0).

4 Space discretization in P(Γ)

Following the lagrangian point of view of Theorem 1, we wish to approximate solutions of the
previous continuous problem, (Mµ0) by probabilities QN ∈ PN (Γ), with a fixed initial distribution

e0#QN = µ0
N ∈ PN (Ω), where PN (X) :=

{
1
N

∑N
i=1 δxi | x1, ..., xN ∈ X

}
. For such distribution of

trajectories, the value of J defined above can be +∞, even for distribution very close to a minimizer.
We avoid this problem by replacing the congestion term by a regularized version of it, (which

behaves well for discrete probability distributions): in a Hilbert space H, the Moreau envelope of a

convex function g, with parameter ε, is given by the inf convolution gε(x) = infy∈H
‖x−y‖2H

2ε + g(y).
It has the advantages of being finite, and even differentiable, for any x ∈ H, upon some mild
assumptions on g. Notice also that, gε(x) has limit g(x) as ε goes to 0, whereas the limit is inf g
as ε goes to +∞. As we are on the space P(Ω), a natural replacement for the squared norm is the
2-Wasserstein distance squared defined in the Preliminaries section. For ε > 0, we set

Fε : µ ∈ P(Rd) 7→ min
ρ∈P(Ω)

W 2
2 (µ, ρ)

2ε
+ F (ρ).

We call Fε the Moreau envelop of F with parameter ε (by analogy with the Hilbert case). Note
that F (ρ) < +∞ implies spt(ρ) ⊂ Ω, and therefore, as ε goes to 0, points outside Ω highly penalize
the value of Fε.

The corresponding regularization of our energy J , which we describe now, is inspired by [16]
where a similar treatment is applied to a variational formulation for the incompressible Euler
equations. The other terms in J are well defined for discrete probabilities also, and therefore, we
keep them unchanged in the following discretized problem:

(MN,µ0N ,ε
) : inf

{
Jε(Q) | Q ∈ PN (Γ), e0#Q = µ0

N

}
where Jε(Q) :=

∫
Γ
LdQ+

∫ 1

0
Fε(et#Q)dt+G(Q)
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We will come back to Fε more extensively in Section 6. For now, we will only use its lower
semi-continuity on P(Rd) and the limits as ε→ 0/+∞, mentioned in proposition 8. Immediately,
by similar arguments as in Section 3, we have existence of minimizers for this discrete problem:

Proposition 3. For every N ∈ N∗, ε > 0, Jε is l.s.c for the narrow convergence and for every
µ0
N ∈ PN (Ω), the infimum in (MN,µ0N ,ε

) is attained.

Similarly to the Hilbert case, one would expect minimizers for (MN,µ0N ,ε
) to converge to a

minimizer of (Mµ0) as N → ∞ and ε → 0. This is the case, but only provided ε does not vanish
too quickly. Proposition 4, very much in the spirit of Γ-convergence states such a convergence.
Note however that the result stated in (upper bound) is weaker than the usual Γ-limsup one.

The proof of this proposition uses a quantization argument on a solution Qmin of (Mµ0). From
standard sobolev inclusions, we can find 1

2 < s ≤ 1 such that

W1,r([0;T ],Rd) ↪−→ Hs([0;T ],Rd) ↪−→ C0([0;T ],Rd)

and these injections are compact (recall that r is the exponent in the definition of the lagrangian
L). From now on, we will denote Hs([0;T ],Rd) by Hs and the 2-Wasserstein distance on P(Hs)
by WHs , as no confusion can arise. In particular, Qmin is supported on Hs and we will take our
quantization measures supported in this same space.

The reason behind this choice is the following: to prove the (Upper bound) part of proposition 4,
we need to approximate Qmin using discrete probabilities which have lower kinetic energy. Although
the approximation can be done by quantization measures according to most Wasserstein distances,
taking one associated with a Hilbert norm, the Hs norm here, gives quantization measures supported
on suitable barycenters, in some sense. L being a convex function, this gives us measures with a
lower kinetic energy.

Lemma 1. For every N ∈ N∗, there exists Q̃N minimizing W 2
Hs(., Qmin) on PN (Γ). Moreover,

if we set τN := W 2
Hs(Q̃N , Qmin), then τN → 0 as N goes to infinity. In particular, Q̃N narrowly

converges towards Qmin in P(Γ).

Proof. W 2
Hs(., Qmin) is l.s.c for the narrow convergence on PN (Γ), from the lower semi-continuity

of the Hs norm with respect to the uniform norm on Γ. Take a minimizing sequence (Qn)n for our
problem. We can choose Qn to have lower kinetic energy than Qmin:

To see this, fix n ∈ N, and set Qn = 1
N

∑N
i=1 δγ̃i and P = 1

N

∑N
i=1 δγ̃i × Qimin an optimal

transport plan from Qn to Qmin. For each i, set ηi =
∫

Γ γdQ
i
min(γ). For every i, ηi is a minimizer

of the convex functional
∫

Γ ||.− γ||
2
HsdQimin(γ) over Hs (since its gradient is given by an Hs scalar

product and vanishes at ηi). Therefore,

W 2
Hs

(
1

N

N∑
i=1

δηi , Qmin

)
≤ 1

N

N∑
i=1

∫
Γ
||ηi − γ||2HsdQimin(γ)

≤ 1

N

N∑
i=1

∫
Γ
||γ̃i − γ||2HsdQimin(γ) = W 2

Hs(Qn, Qmin)

and we can assume that Qn is supported on the barycenters ηi.

Then we have
∫

Γ LdQn ≤
∫

Γ LdQmin for every n (by convexity of L). Similarly to proposition
2, we can conclude that (Qn)n is tight and, up to a subsequence, it narrowly converges towards a

8



minimizer Q̃N of W 2
Hs(., Qmin) over PN (Γ), which verifies

∫
Γ LdQ̃N ≤

∫
Γ LdQmin.

Now, to show that τN vanishes at infinity, it is sufficient to show that there exists (QN )N ,
such that, for every N , QN ∈ PN (Hs), QN narrowly converges towards Qmin in PN (Hs), and∫

Γ ||γ||
2
HsdQN (γ) converges towards

∫
Γ ||γ||

2
HsdQmin(γ), as N goes to infinity. This can be done, for

instance, as in Theorem 2.13 of [3], by sampling trajectories in the support of Qmin and using a law
of large numbers. Finally, since s > 1

2 , Hs is continuously injected in Γ, and we have the narrow
convergence in P(Γ) (for the uniform norm, this time).

Proposition 4. Let (εN )N be a positive sequence vanishing at infinity and assume that µ0
N narrowly

converges towards µ0 in P(Rd).

• (Lower bound) Let (QN )N narrowly converge to Q∞ in P(Γ). Then, we have

J(Q∞) ≤ lim inf
N→∞

JεN (QN ).

• (Upper bound) Assume that τN = oN→∞(εN ) and W 2
2 (µ0

N , µ
0) = oN→∞(εN ). Then for any

sequence (QN )N where QN is a minimizer, respectively for (MN,µ0N ,εN
),

lim sup
N→∞

JεN (QN ) ≤ J(Qmin).

Proof of proposition 4 (lower bound). Take QN and Q∞ as in the proposition. For every t ∈ [0;T ]
and every N , define ρtN as a minimizer in the problem defining FεN (et#QN ).

One can assume that JεN (QN ) is bounded from above. Therefore, there exists C > 0 such that∫ T
0 W 2

2 (et#QN , ρ
t
N )dt ≤ CεN for every N , since F and G are also bounded from below. Up to

extracting a subsequence, we can assume that for almost all t ∈ [0;T ], ρtN narrowly converges, as
N goes to infinity, towards et#Q∞. Using Fatou lemma, we get∫ T

0
F (et#Q∞)dt ≤

∫ T

0
lim inf
N→∞

FεN (et#QN )dt ≤ lim inf
N→∞

∫ T

0
FεN (et#QN )dt

The lagrangian part (as well as G of course) is l.s.c for the narrow convergence, and we can
write:∫

Γ
L(γ)dQ∞(γ) +

∫ T

0
F (et#Q∞)dt+G(Q∞) ≤ lim inf

N→∞

∫
Γ
L(γ)dQN (γ)

+ lim inf
N→∞

∫ T

0
FεN (et#QN )dt+ lim inf

N→∞
G(QN )

≤ lim inf
N→∞

JεN (QN )

which is our claim.

Lemma 2. Let Q,Q′ ∈ P(Hs). Then, there exists C > 0, such that for every t ∈ [0;T ],

W2(et#Q, et#Q
′) ≤ CWHs,2(Q,Q′)

9



Proof. Since s > 1
2 , Sobolev injections give the existence of C > 0 such that ||.||∞ ≤ C||.||Hs on

Hs. Take P , an optimal transport plan from Q to Q′ with the cost given by ||.||2Hs , and t ∈ [0;T ].
Then, (et, et)#P is a transport plan from et#Q to et#Q

′, and we can write:

W 2
2 (et#Q, et#Q

′) ≤
∫

Γ×Γ
||γ1(t)− γ2(t)||2dP (γ1, γ2)

≤ C2

∫
Γ×Γ
||γ1 − γ2||2Hs,2dP (γ1, γ2).

Proof of prop 4 (upper bound): Set N ∈ N∗ and Q̃N and τN as in Lemma 1. As is, Q̃N is not
necessarily admissible since it may not satisfy e0#Q̃N = µ0

N . However, since they are discrete
measures with the same amount of Diracs and the same masses, we can simply translate the curves
in spt(Q̃N ) in order for it to be admissible for (MN,µ0N ,εN

), using vectors that are constant in time.

This new measure, which we denote by Q̃µ0N ,N
is admissible for (MN,µ0N ,εN

), has the same kinetic

energy as Q̃N and satisfies W 2
Hs(Q̃µ0N ,N

, Q̃N ) = W 2
2 (µ0

N , e0#Q̃N ).

Now, if QN is a minimizer for (MN,µ0N ,εN
), then

JεN (QN ) ≤ JεN (Q̃µ0N ,N
) ≤

∫
Γ
L(γ)dQ̃N (γ) +G(Q̃µ0N ,N

)

+

∫ T

0

W 2
2 (et#Q̃µ0N ,N

, et#Qmin)

2εN
+ F (et#Qmin)dt

≤
∫

Γ
L(γ)dQmin(γ) +G(Q̃µ0N ,N

) + T
W 2

2 (e0#Q̃N , µ
0
N )

εN

+

∫ T

0

W 2
2 (et#Q̃N , et#Qmin)

εN
+ F (et#Qmin)dt

(4)

Besides,
∫ 1

0 W
2
2

(
et#Q̃N , et#Qmin

)
dt . W 2

Hs

(
Q̃N , Qmin

)
= τN following lemma 2 and by

convexity of the transport cost,

W 2
2 (e0#Q̃N , µ

0
N ) ≤ 2

(
W 2

2 (e0#Q̃N , µ
0) +W 2

2 (µ0, µ0
N )
)
.
(
τN +W 2

2 (µ0, µ0
N )
)
.

Now, Q̃µ0N ,N
narrowly converges to Qmin in P(Γ), by construction. If we take (εN )N and µ0

N

such that τN and W 2
2 (µ0, µ0

N ) are negligible compared to εN as N goes to infinity, then, taking the
limsup in inequalities 4 , we get lim supN JεN (QN ) ≤ J(Qmin), as we wanted.

Corollary 4.1. With the same notations and assumptions on (εN )N and (µ0
N )N as in the (upper

bound) property, up to a subsequence, QN narrowly converges towards a minimizer of J . In par-
ticular, if (Mµ0) has a unique minimizer Qmin, then any such sequence (QN )N narrowly converges
toward Qmin.

Proof. By the (Upper bound) property, up to a subsequence, JεN (QN ) converges towards l ≤ min J .
Then as before,

∫
Γ LdQN is bounded in N and (µ0

N )N is tight, therefore, (QN )N is tight, in P(Γ).
Extract from it a subsequence converging towards Q∞ ∈ P(Γ). Then e0#Q∞ = µ0, and by the
(Lower bound) property, J(Q∞) ≤ l ≤ min J hence, Q∞ is a minimizer of (Mµ0).
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The proper sequence εN of parameters (or rather their precise behaviour as N →∞), remains
beyond our reach even in the simpler convex case of Part 8. A hint however, on how to bound the
sequence τN is given by the following correspondence between optimal quantization and optimal
covering of a set:

Proposition 5. In X a metric space, take Q ∈ P(X) supported on Σ ⊂ X. Define the optimal
quantization radius τN = minW 2

dX ,2
(Q, Q̃) as in lemma 1, and the optimal covering radius by

rN = inf P⊂X
|P |≤N

dH(Σ, P ) (here, dH is the Hausdorf distance between subsets of X).

Then, assuming rN = ON→∞

(
N−

1
D

)
one has: τN =


ON→∞

(
N−1

)
if D < 2

ON→∞
(
N−1 lnN

)
if D = 2

ON→∞

(
N−

2
D

)
if D > 2

The constant D in this proposition is often referred to as the box-dimension or Minkowsky
dimension of the set Σ.

Remark. A first point to make is that proposition 5 with X = Rd guarantees that we can choose
µ0
N in such a way that W 2

2 (µ0
N , µ

0) = ON→∞(N−2/d). This is an information to take into account
when choosing εN (although, it is likely to be redundant with the one given by the growth of τN ).

To bound the covering radius rN of the support of Qmin, one can recall that this measure gives
us a solution (ρ, v) to the continuity equation, according to proposition 1. In return, Qmin-almost
every curve is solution almost everywhere on [0;T ] of the EDO γ′ = v(γ). Provided we have
some uniform Lipschitz-continuity of v, ρ is then given by the pushforward of µ0 along the general
solution of x′ = v(t, x) (see for instance [1], chapter 8.1 for more precise assumptions on v, and a
demonstration). It is then immediate that spt(Qmin) is of box-dimension D = d (the dimension of
Ω) in Hs and, in that case, we can take any εN dominating N−2/d (or ln(N)/N in dimension d=2).

5 The fully discrete problem

We now use a uniform time discretization 0, δ, ..., Mδ = T to compute a fully discretized version
of the energy J . Rather than writing heavy formulas for the new global energy, we change the
subset upon which the minimization is done which allows for an energy almost identical to Jε. The
lagrangian and potential parts are then the same as in J and Jε, whereas the congestion term is
approximated by a Riemann sum. This is mainly done to simplify computations, and any time-
discretization of curves in Γ which allows W1,r bounds of the sort of (5) and (6) should also work
here.

We perform our optimization on the space Γlin
δ , of functions in Γ that are affine on each interval

[iδ, (i+ 1)δ] with i = 0..M − 1. Our fully discrete problem is then:

(MN,µ0N ,δ,ε
) : inf

{
Jδ,ε(Q) | Q ∈ PN (Γlin

δ ) s.t. e0#Q = µ0
N

}
with Jδ,ε(Q) =:=

∫
Γ
LdQ+ δ

M−1∑
i=1

Fε (eiδ#Q) +G(Q)

Similarly to (MN,µ0N ,ε
) and (Mµ0), we have existence of minimizers for any value of the param-

eters:

Proposition 6. For every N ∈ N∗, δ, ε > 0, Jδ,ε is l.s.c for the narrow convergence and for every
µ0
N ∈ PN (Ω), the infimum in (MN,µ0N ,δ,ε

) is attained.
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What is more interesting is a similar convergence result to the one in proposition 4, with an
additional constraint on the parameters of the time discretizations, δN :

Proposition 7. Assume that (δN )N , (εN )N converge to 0, and that µ0
N narrowly converges towards

µ0 in P(Rd) as N →∞:

• (lower bound) Let (QN )N narrowly converge to Q∞ in P(Γ). Then, we have

J(Q∞) ≤ lim inf
N→∞

JδN ,εN (QN ).

• (upper bound) Under the same assumptions as in proposition 4, and also assuming that
(δN )2/r′ = o(εN ) where r′ = r

r−1 is the dual exponent for r (set in the Introduction). Then
for every sequence (QN )N , with QN a minimizer respectively for (MN,µ0N ,δN ,εN

), we have

lim sup
N→∞

JδN ,εN (QN ) ≤ J(Qmin)

.

Proof of Proposition 7 (lower bound). We can assume that JδN ,εN (QN ) is bounded from above uni-
formly in N . In particular, QN is supported in W1,r for every N . Then, as before,

∫
Γ LdQ∞ ≤

lim inf
N

∫
Γ LdQN .

For every γ ∈W1,r, and iδN ≤ t ≤ (i+ 1)δN ,

||γ(t)− γ(iδN )||2 ≤ δ2/r′

N

(∫ 1

0
||γ′(u)||rdu

)2/r

(5)

and, integrating this inequality along QN , we get W 2
2 (eiδN #QN , et#QN ) ≤ Cδ

2/r′

N for every t in
]iδN ;≤ (i + 1)δN ], since

∫
LdQN is bounded. In particular, for every t, ebt/δN cδN #QN narrowly

converges towards et#Q∞. Then, by Fatou lemma,∫ 1

0
F (et#Q∞)dt ≤ lim inf

N→∞

MN−1∑
i=0

∫ (i+1)δN

iδN

FεN (eiδN #QN )

≤ lim inf
N→∞

δN

MN−1∑
i=1

FεN (eiδN #QN )

and that last term is exactly the congestion term in JδN ,εN . Finally, continuity of G gives us our
(lower bound) inequality.

Proof of Proposition 7 (upper bound). We momentarily fix N ∈ N∗. Take Q̃N and Q̃µ0N ,N
as in

lemma 1 and the proof of proposition 4 and define the piecewise affine interpolation operator, T lin
δN

:

γ ∈ Γ 7→ γlin
δN

where for t in [iδN ; (i+ 1)δN ], and γ ∈ Γ, γlin
δN

(t) = γ(iδN ) + γ((i+1)δN )−γ(iδN )
δN

(t− iδN ).

The measure Q̃lin
N,δN

= T lin
δN

#Q̃µ0N ,N
will take the role of competitor for the problem (MN,µ0N ,δN ,εN

)

that Q̃µ0N ,N
had for problem (MN,µ0N ,εN

).
Then, convexity of L gives us for every N , the inequality∫

Γ
LdQ̃lin

N,δN
≤
∫

Γ
LdQ̃N ≤

∫
Γ
LdQmin.
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For FεN , we have, as previously,

δN

N∑
i=1

FεN (eiδN #Q̃lin
N,δN

)dt ≤
N∑
i=1

∫ (i+1)δN

iδN

W 2
2 (eiδN #Q̃µ0N ,N

, et#Qmin)

2εN
+ F (et#Qmin)dt

≤
N∑
i=1

∫ (i+1)δN

iδN

W 2
2 (eiδN #Q̃N , et#Q̃N )

εN
+
W 2

2 (et#Q̃N , et#Qmin)

εN
dt

+ T
W 2

2 (µ0
N , e0#Q̃N )

εN
+

∫ T

0
F (et#Qmin)dt

≤C

[
W 2

2 (µ0, µ0
N )

εN
+
δ

2/r′

N

εN
+
τN
εN

]
+

∫ 1

0
F (et#Qmin)dt

Finally, for γ ∈W1,r and iδN < t ≤ (i+ 1)δN∥∥∥∥γ(t)− γ(iδN )− γ((i+ 1)δN )− γ(iδN )

δN
(t− iδN )

∥∥∥∥ ≤ ∫ t

iδN

||γ′(u)||du

+
t− iδN
δN

∫ (i+1)δN

iδN

||γ′(u)||du

≤ 2δ
1/r′

N

(∫ 1

0
||γ′(u)||rdu

)1/r

(6)

and, integrating along Q̃N , limN→∞W
1
L∞(Q̃lin

N,δN
, Q̃N ) = 0, therefore, by continuity of G on Γ,

limN→∞G(Q̃lin
N,δN

) = G(Qmin). Now, to conclude, we observe as before that,

JδN ,εN (QN ) ≤ JδN ,εN (Q̃lin
N,δN

) ≤ J(Q) + C
δ

2/r′

N +W 2
2 (µ0, µ0

N ) + τN
εN

+G(Q̃lin
N,δN

)−G(Q)

and, as soon as (δN )N is taken such that δ
2/r′

N = o(εN ) along with the same growth for the other
parameters as proposition 4, one can conclude lim supN→∞ JδN ,εN (QN ) ≤ J(Q).

As previously, minimizers of JδN ,εN narrowly converge to minimizers of J , under these assump-
tions on εN , δN and µ0

N .

6 The Moreau envelope in the Wasserstein space

To make expressions more concise, we will use from time to time the optimal transport cost asso-

ciated to the cost c(x, y) = ||x−y||2
2ε (and more importantly the associated Kantorovich potentials),

instead of the standard squared norm. Let us quickly recall the definition, for µ ∈ P(Rd):

Fε(µ) := inf
ρ∈M(Ω)

W 2
2 (ρ, µ)

2ε
+ F (ρ) = inf

ρ∈M(Ω)
Ic(ρ, µ) + F (ρ).

The transport cost Ic(., ρ) is +∞ outside of P(Rd) and F is +∞ outside of Dom(F ) so that the
infimum is, in fine, only taken on the intersection of those 2 sets.

13



Proposition 8. For every ε > 0, the infimum defining Fε is attained and Fε is l.s.c on P(Rd).
Therefore, Q ∈ P(Γ) 7→

∫ 1
0 Fε(et#Q)dt is l.s.c on P(Γ).

Furthermore, limε→0 Fε(µ) = F (µ) whereas limε→+∞ Fε(µ) = inf F , assuming µ has finite sec-
ond order moment.

Proof. The fact that the infimum is attained for every ε > 0 is straightforward and can be shown by
the direct method of calculus of variations. Furthermore, take a sequence µn narrowly converging
to µ∞ in P(Ω), and for every n, a measure ρn ∈ Dom(F ) ∩ P(Ω) optimal for the problem defining
Fε(µn). We may assume that Fε(µn) has a finite limit l as n goes to infinity.

Using Prokhorov theorem, we can extract a subsequence from (ρn)n, narrowly converging to-
wards a ρ∞ ∈ Dom(F ). We extract the corresponding subsequence from µn and rename these new
sequences, ρn and µn. Then,

Fε(µ∞) ≤ W 2
2 (ρ∞, µ∞)

2ε
+ F (ρ∞)

≤ lim inf
n

W 2
2 (ρn, µn)

2ε
+ lim inf

n
F (ρn)

≤ lim inf
n

Fε(µn) = l

and this is the lower semi-continuity inequality. The function on P(Γ) is then l.s.c by continuity of
et on Γ and Fatou lemma.

Being defined as the minimum of a convex function, Fε can be rewritten as the supremum of a
concave dual problem using Fenchel-Rockafellar duality (see [7]). We make here two hypotheses on
our congestion penalizing function F to ensure that this dual problem has solutions. These may
seem like demanding restrictions, but in the cases that interest us, they are very natural.

Proposition 9. For any µ ∈ P(Rd),

Fε(µ) = sup
φ c−concave

∫
Rd

φdµ− F ∗(−φc)

with the definition of the Legendre transform F ∗ of F and the c-transform φc of φ given in section
2. This supremum is attained in φ if and only if for any ρ optimal for the primal problem,

∗ (φ, φc) is a pair of c-concave Kantorovich potentials for the optimal transport from µ to ρ.

∗ (−φc) ∈ ∂F (ρ) (or, equivalently, ρ ∈ ∂F ∗(−φc)).

Assume Furthermore that F has non-empty subgradient at two measures ρ− and ρ+ such that
ρ−(Ω) < 1 and ρ+(Ω) > 1, and that µ is supported on a compact set. Then, this supremum is
indeed attained

Proof. Take

G : ρ ∈M(Ω) 7→

{
Ic(ρ, µ) if ρ ∈ P(Ω)

+∞ otherwise

For ρ ∈ M(Ω), G(ρ) = supψ∈C0(Ω)

∫
Ω ψdρ +

∫
Rd ψ

cdµ = Ḡ∗(ρ), where this last functional

Ḡ : ψ ∈ C0(Ω) 7→ −
∫

Ω ψ
cdµ is a convex continuous function. Therefore, G∗ = Ḡ.
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Now, we have G∗ a convex continuous function, and F ∗ which is convex l.s.c and not +∞
everywhere. Applying Fenchel-Rockafellar duality theorem to the following infimum problem:

inf
φ∈C0(Ω)

G∗(φ) + F ∗(−φ),

we can write:

inf
φ∈C0(Ω)

G∗(φ) + F ∗(−φ) = max
ρ∈M(Ω)

−G(ρ)− F (ρ)

= − min
ρ∈M(Ω)

G(ρ) + F (ρ)

= − min
ρ∈P(Ω)

W 2
2 (ρ, µ)

2ε
+ F (ρ)

But, this inf problem also rewrites:

inf
φ∈C0(Ω)

G∗(φ) + F ∗(−φ) = − sup
φ∈C0(Ω)

∫
Ω
φc(x)dµ(x)− F ∗(−φ)

= − sup
φ c-concave

∫
Ω
φc(x)dµ(x)− F ∗(−φ)

where the last equality is a consequence of F ∗(−φ) ≥ F ∗(−φcc) for all φ ∈ C0(Ω), true since ∂F ∗ is
composed of positive measures only, by hypothesis. We can therefore take our supremum only on
the φ that are c-concave.

Finally, up to a change of variable φ 7→ φc we obtain the primal and dual problems that we
claimed:

min
ρ∈P(Ω)

W 2
2 (ρ, µ)

2ε
+ F (ρ) = sup

φ c-concave

∫
Ω
φ(x)dµ(x)− F ∗(−φc)

Optimality conditions for both problems are straightforward. Indeed, for every φ and ρ, both
admissible for their respective problem, we have∫

Ω
φdµ+

∫
Ω
φcdρ ≤ W 2

2 (µ, ρ)

2ε

with equality if and only if (φ, φc) are Kantorovich potentials for the transport from µ to ρ, and,

F ∗(−φc) + F (ρ) ≥ −
∫

Ω
φc(x)dρ(x)

with equality iff ρ ∈ ∂F ∗(−φc). Summing up these inequalities, and canceling the opposite terms,
we get exactly

F (ρ) +
W 2

2 (ρ;µ)

2ε
≥
∫

Ω
φ(x)dµ(x)− F ∗(−φc)

with equality if and only if (φ, φc) are Kantorovich potentials for the transport from µ to ρ and,
ρ ∈ ∂F ∗(−φc).

Now, for the existence part of the proposition, let K be the compact support of µ. Following the
standard method in calculus of variations, consider a maximizing sequence of c-concave functions
for the dual problem, (φn)n. These functions all have the same lipschitz constant as c, on the
compact set K. Let L be this common Lipschitz constant, and for n ∈ N Mn = maxK φn, so that
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for any y ∈ K, Mn − L.diam(K) ≤ φn(y) ≤ Mn. We also set C = maxx∈K, y∈Ω c(x, y). This gives
us the bounds, for any y ∈ Ω and n ∈ N,

−Mn ≤ φcn(y) ≤ C −Mn − L.diam(K) = A−MN ,

the constant A depending only on c, Ω and µ.
Now, assume Mn diverges towards +∞ as n → ∞ (this is equivalent to (φn)n not uniformly

bounded from above on K). Since there exists φ+ such that φ+ ∈ ∂F (ρ+) with ρ+ of mass strictly
more than 1, or equivalently, ρ+ ∈ ∂F ∗(φ+), we can write:

∫
Ω
φn(x)dµ(x)− F ∗(−φcn) ≤Mn − F ∗(φ+)−

∫
Ω

(−φc − φ+)dρ+

≤Mn(1− ρ+(Ω)) +Aρ+(Ω)− F ∗(φ+) +

∫
Ω
φ+dρ+

and that last part diverges to −∞ as n→∞, which is absurd since (φn)n is a maximizing sequence.
Similarly, if Mn diverges towards −∞ as N →∞, the fact that F has a non-empty subgradient at
a measure of mass strictly less than 1 gives us again that φn cannot be a maximizing sequence.

Therefore, (φn)n is uniformly bounded and, using Arzela-Ascoli theorem, we can extract from
it a subsequence that converges uniformly on K, as n → ∞. By upper semi-continuity of the
functional in the dual problem, this limit is a maximizer.

Remark. The hypotheses on F are very natural ones considering our congestion terms have the
integral form 7 in our numerical simulations. However, they are not the sharpest ones to obtain
existence as one can see in this simple example: On a domain with area 1, for F of the form
F (ρ) =

∫
Ω f(ρ(x))dx and f = χ{1} (only a density equal to 1 almost everywhere is allowed),

one can check that the dual problem admits solutions since Fε =
W 2

2 (.,dx)
2ε , which are the classical

Kantorovich potentials for the corresponding transport. However, F itself does not satisfy the
assumptions in proposition 9, since it is only finite at the Lebesgue measure.

Allowing F to be very general can allow the use of congestions such as F (ρ) =
∫

Ω
‖∇ρ‖2
ρ , which

can appear when viewing second-order mean field games with entropy penalization as first order
mean field games (see for instance [8] or [6]). However, in this paper, we will concentrate on the
cases where F has the following form:

F (ρ) =

{∫
Ω f(ρ(x))dx if ρ� dx

+∞ otherwise.
(7)

For F to be l.s.c, convex, we have to take a function f l.s.c, convex, and superlinear (on R).
Finally, our hypothesis on the subgradients of F is equivalent to assuming that 1

|Ω| is in the interior

of Dom(f) as the following proposition justifies:

Proposition 10. Let F be defined as above, with f a convex, l.s.c, superlinear function. Let φ ∈
C0(Ω), and ρ ∈M(Ω), then φ ∈ ∂F (ρ) if and only if ρ� dx and for a.e x ∈ Ω, φ(x) ∈ ∂f(ρ(x)).

Proof. Let ρ, φ be as in the proposition. Then by definition of the Legendre transform, φ ∈ (∂F )(ρ)
if and only if ρ� dx and

∫
Ω f(ρ(x))dx+

∫
Ω f
∗(φ(x))dx =

∫
Ω φ(x)ρ(x)dx.

But then, for a.e. x ∈ Ω, f(ρ(x)) + f∗(φ(x)) ≥ φ(x)ρ(x) and so this is an equality almost
everywhere, which exactly says that φ(x) ∈ (∂f)(ρ(x)). The converse implication is straightforward.
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In the cases of interest to us in Parts 4 and 5, µ is a discrete measure of Rd of the form et#Q
for some Q ∈ PN (Γ). A similar system of optimality conditions as the one in semi-discrete optimal
transport can be found for the dual formulation of Fε, when it is computed at a discrete measure.
In such cases, Fε can be seen as a function of the locations of the Dirac masses in (Rd)N . We claim
the following expression for its dual formulation, as a finite dimensional concave maximization
problem:

Proposition 11. Assume that 1
|Ω| ∈ int(Dom(f)).

Then, for y ∈ (Rd)N , we have

Fε(y) := Fε

(
1

N

N∑
i=1

δyi

)
= max

φ∈RN

N∑
i=1

[
φi
N
−
∫

Lagi(y,φ)
f∗

(
φi −

‖x− yi‖2

2ε

)
dx

]

A pair (ρ, φ) ∈ P(Ω)×RN is optimal for the primal/dual problems defining Fε(y) if and only if
the following conditions hold: For every i = 1, . . . , N

∗
∫

Lagi(y,φ)(f
∗)′(φi − c(x, yi))dx = 1

N (area)

∗ ρ(x) = (f∗)′(φi − c(x, yi)), for a.e. x ∈ Lagi(y, φ) (density)

In particular, the optimal ρ is unique..

Remark. Uniqueness of ρ depends very much on the regularity of φc on Ω. As such regularity
cannot be demanded of ρ, φ could not be unique.

Proof. One clearly has for any y ∈ (Rd)N ,

Fε(y) ≤ sup
φ∈RN

N∑
i=1

[
φi
N
−
∫

Lagi(y,φ)
f∗(φi − c(x, yi))dx

]
.

For the other inequality, similar arguments as for proposition 9 guarantee that this last supre-
mum is a maximum, attained at an optimal φ ∈ RN if and only if it satisfies (area). This implies
that every Laguerre cell Lagi(y, φ) is not Lebesgue-negligible, and in particular, not empty. Tak-
ing ψ = φc := mini c(., yi) − φi it is immediate that ψ ∈ C0

b (Ω) and ψc(yi) = φi for every i.
But then, (area) and (density) exactly express that ψc is optimal for the dual formulation of

Fε

(
1
N

∑N
i=1 δyi

)
.

Now taking ρ optimal for the primal problem, all that remains is rewriting the optimality
condition ρ(x) ∈ ∂f∗(−φc(x)) a.e. on Ω, into the equality almost everywhere, (density): On one
hand, the level-sets of φc are Lebesgue negligible (because µ is discrete) and on the other one, f∗ is
convex, continuous on R because f is superlinear and therefore, differentiable on R except at most
at a countable number of points. Therefore, ∂f∗(−φc(x)) is almost everywhere a singleton, and we
have for a.e. x ∈ Ω, ρ(x) = (f∗)′(−φc(x)) with the appropriate expression on each cell. Note also
that, since this equality has to be true for every ρ and φ optimal, ρ has to be unique.

Let us conclude this section by computing the gradient for the maximized functional in the

dual problem, that is Fε,µ : φ ∈ RN 7→
N∑
i=1

[
φi
N −

∫
Lagi(y,φ) f

∗
(
φi − ‖x−yi‖

2

2ε

)
dx
]

with respect to the

weights, as well as the gradient of Fε with respect to the Diracs’ positions:
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Proposition 12. Fε,µ is C1, concave, and for i = 1..N , and φ ∈ RN , we have

∂

∂φi
Fε,µ(φ) =

1

N
−
∫

Lagi(y,φ)
(f∗)′

(
φi −

‖x− yi‖2

2εN

)
dx

Proof. Take, φ, ψ ∈ RN :

Fε,µ(φ)− Fε,µ(ψ) =

N∑
i=1

[
φi − ψi
N

−

(∫
Lagi(y,φ)

f∗

(
φi −

‖x− yi‖2

2εN

)
dx

−
∫

Lagi(y,ψ)
f∗

(
ψi −

‖x− yi‖2

2εN

)
dx

)]

≤
N∑
i=1

[
φi − ψi
N

−

(∫
Lagi(y,ψ)

f∗

(
φi −

‖x− yi‖2

2εN

)

− f∗
(
ψi −

‖x− yi‖2

2εN

)
dx

)]

and Fε,µ(φ)− Fε,µ(ψ) ≤
N∑
i=1

[
φi−ψi

N −
∫

Lagi(y,ψ)(f
∗)′
(
ψi − ‖x−yi‖

2

2εN

)
(φi − ψi)dx

]
The first inequality comes from the definition of Lagi(y, φ) and the increasing nature of f∗ and

the second one, from the convexity of f∗ and the fact that −ψc has Lebesgue-negligible level sets.

Ergo, Fε,µ is concave and
(

1
N −

∫
Lagi(y,ψ)(f

∗)′
(
ψi − ‖x−yi‖

2

2εN

)
dx
)
i=1..N

∈ ∂Fε,µ(ψ) for every ψ

(in this particular case,”∂” denotes the supergradient of the concave function Fε,µ defined similarly
to the subgradient of a convex one). (f∗)′ is continuous except on an at most countable set of reals,

and the level set of x 7→ φi− ||x−yi||
2

2ε are negligible, as are the boundaries of the Laguerre cells. By
dominated convergence, we have a continuous choice of supergradients for Fε,µ and so, Fε,µ is C1

with the partial derivatives that we claimed.

Remark. Fε,µ being a concave function, this proposition is another way to show the optimality

condition
∫

Lagi(y,φ)(f
∗)′
(
φi − ‖x−yi‖

2

2εN

)
dx = 1

N for every i, that we claimed earlier. Note also,

although this is beyond the scopes of this paper, that this expression is differentiable one more
time (in φ), using the co-area formula. The resulting Hessian is invertible when the Laguerre cells
associated to the weights do not have zero mass. This encourages the use of Newton-type algorithm
similarly to what is done in semi-discrete optimal transport to find the optimal weights.

These expressions are very reminiscent of those obtained by Bourne, Wirth and Schmitzer in [4]
for unbalanced semi-discrete optimal transport. Here, our congestion penalization plays the role of
the mass discrepancy penalization between our discrete measure µ and the Lebesgue measure on
Ω, which does not have mass 1 under the assumptions of proposition 11. This suggests that one
could rewrite Fε as an unbalanced transport problem between these measures.

Now, in order to numerically solve (MN,µ0N ,δN ,εN
) in part 8, we regard JδN ,εN as a function of

the positions of the Dirac masses at various time steps. Its gradient is then given by he following
result.
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Figure 1: From left to right, (1) 50 points scattered in the bottom left corner of a 5× 5 square, (2)
the ”charged” Laguerre cells obtained by intersecting the Laguerres cells with the support of the
optimal ρ defining Fε and (3) the vectors joining each point to the barycenter of its Laguerre cell.
∂yiFε is collinear, opposite, to the corresponding vector by,i − yi, for i=1...N.

Proposition 13 (Gradient of Fε). For y = (y1, ..., yN ) ∈ (Rd)N , let ρy, φy be optimal for the primal
problem defining Fε(y), and for i = 1..N , ρy,i such that

∑ 1
N δyi ⊗ ρy,i is the optimal transport plan

between µy and ρy. Finally, we call for i = 1, . . . , N , by,i the barycenter of the ith Laguerre cell,
according to the probability ρy,i:

by,i =

∫
Ω
xdρy,i(x) = N

∫
Lagi(y,φy)

xdρy(x) (8)

Then, Fε is C1 as a function of y, on DN = (Rd)N\{y|∃i 6= j, yi = yj} and for every y ∈ DN ,

∂yiFε(y) =
yi − by,i
Nε

Proof. We show that Ψ : y 7→ Fε(y)−
∑N

i=1 µi‖yi‖
2

2ε is concave on (Rd)N with the vector −1
ε (µiby,i)i

in its supergradient at y. Then showing that this is a selection of subgradients continuous on DN

will, as before guarantee that Ψ and therefore Fε is C1, on this set. The supergradient is still
valid in configurations when yi = yj occurs, but continuity, and more generally, the fact that the
supergradient is a singleton, does not hold at these points.

First, take x, y ∈ (Rd)N ,

Ψ(y) ≤
N∑
i=1

∫
Lagi(x,φx)

1

2ε
(||z||2 − 2z.yi + ||yi||2)ρx(z) + f(ρx(z))dz − 1

2ε

N∑
i=1

µi ‖yi‖2

≤ Ψ(x)−
N∑
i=1

1

ε

∫
Lagi(x,φx)

zdρx(z).(yi − xi)

≤ Ψ(x)−
N∑
i=1

bx,i
Nε

.(yi − xi)

which exactly means that Ψ is concave and that
(
− 1
Nεbx,i

)
i
∈ ∂Ψ(x) for every x ∈ (Rd)N .
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Let us now show that y ∈ DN 7→ (by,i)i is continuous: First, in order to make some parts of

the proof more concise, we will write for y ∈ (Rd)N , µy = 1
N

∑N
i=1 δyi and for φ ∈ RN , φc the

continuous bounded function on Ω equal to c(., yi)− φi on the Laguerre cell Lagi(y, φ).
Take (yn)n a sequence converging to y in DN . Let for all n, ρn, φn be optimal for the primal

and dual problems defining Fε(y
n) respectively (ρn is uniquely defined for all n). The functions

(φn)c are c-concave Kantorovich potential in the transport from ρn to δyn , and almost everywhere
on Ω, we have ρn(x) = (f∗)′ (−(φn)c(x)).

By similar arguments as for Proposition 9, up to a subsequence, (φn)n converges towards a
φ ∈ RN (and so, (φn)c uniformly converges on Ω towards φc). By the optimality conditions of
Proposition 11, ρn = (f∗)′(−(φn)c) converges almost everywhere (up to a subsequence) towards
ρ = (f∗)′(−φc). And since ρn is bounded in L∞(Ω), the convergence is also a weak-* convergence in
L∞(Ω). In particular, φc is a c-concave Kantorovich potential for the optimal transport from ρ to
µy, since µyn narrowly converges towards µy and ρn towards ρ in their respective spaces. But then
ρ = ρy is the unique minimizer for the primal problem. In particular, by,i = N

∫
Lagi(y,φ) xρ(x)dx.

Finally, for all i and n,

‖byn,i − by,i‖ = N

∥∥∥∥∥
∫

Lagi(y
n,φn)

xρn(x)dx−
∫

Lagi(y,φ)
xρ(x)dx

∥∥∥∥∥
.

∥∥∥∥∥
∫

Lagi(y
n,φn)

xρn(x)dx−
∫

Lagi(y,φ)
xρn(x)dx

∥∥∥∥∥
+

∥∥∥∥∥
∫

Lagi(y,φ)
xρn(x)dx−

∫
Lagi(y,φ)

xρ(x)dx

∥∥∥∥∥
Now, let Tn (resp T ) be the Brenier map for the optimal transport from ρn (resp ρy) to µyn

(resp µy), with cost c. For n large enough,∥∥∥∥∥
∫

Lagi(y
n,φn)

xρn(x)dx−
∫

Lagi(y,φ)
xρn(x)dx

∥∥∥∥∥
.
∑
i 6=j

ρn
(

(Tn = yni ∩ T = yj)
⋃

(Tn = ynj ∩ T = yi)

)

But since ynj converges to yj for every j, this last term is bounded by ρn(‖Tn − T‖ ≥ ωi) with

ωi = 1
2 infj ‖yi − yj‖ (> 0) and we can write

‖byn,i − by,i‖ . ρn(‖Tn − T‖ ≥ ωi) + on→∞(1)

In a similar fashion as [21], Corollary 5.21, we show that limN→∞ ρ
n(‖Tn − T‖ ≥ ωi) = 0 and

we immediately have the continuity of y 7→ by on DN , which concludes our proof:
Take η > 0. Lusin theorem allows us to find a (compact) set A such that ρy(Ω\A) ≤ η and T

coincides with a continuous function T̃ on A. Then also ρn(Ω\A) ≤ 2η for n large enough, by the
weak-* convergence we established, and,

ρn(
∥∥∥Tn − T̃∥∥∥ < ωi) ≤ ρn((‖Tn − T‖ < ωi) ∩A) + ρn(Ω\A)

≤ ρn(‖Tn − T‖ < ωi) + 2η
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Usual stability theorems, with the fact that ρn and ρ are absolutely continuous with respect
to Lebesgue state that the optimal transport plan πn from ρn to µyn narrowly converges to the
optimal transport plan π from ρy to µy.

Consider then the (open) set Ã =
{
x, y

∣∣∣ ∥∥∥y − T̃ (x)
∥∥∥ < ωi

}
. One has

1− η ≤ ρ(
∥∥∥T̃ − T∥∥∥ < ωi) = π(Ã)

≤ lim inf πn(Ã)

≤ lim inf ρn
( ∥∥∥Tn − T̃∥∥∥ < ωi

)
≤ lim inf ρn

(
‖Tn − T‖ < ωi

)
+ 2η

and, this is true for any η > 0, hence, lim ρn(‖Tn − T‖ < ωi) = 1 and we have the limit we
wanted.

7 Strong convergence in strictly convex cases

Propositions 4 and 7 allow us to express a stronger convergence, for the Moreau projections

ρN : t ∈ [0;T ] 7→ argminρ
W 2

2 (ρ, et#QN )

2εN
+

∫
Ω
f(ρ(x))dx

associated with a sequence (QN )N of minimizers for problem (MN,µ0N ,εN
), or its fully discrete ver-

sion.

We will prove this convergence in the case discrete in space, continuous in time:
Let us assume that problem (Mµ0) has a unique solution, Qmin and that for all N ∈ N, QN is

a minimizer for problem (MN,µ0N ,εN
). We take the appropriate values for the parameters εN and

µ0
N such that (up to a subsequence), QN narrowly converges to Qmin and JεN (QN ) converges to
J(Qmin). Now,

Lemma 3. With these notations,

lim
N→∞

∫ T

0

∫
Ω
f(ρN (t)(x))dx =

∫ T

0

∫
Ω
f(et#Qmin(x))dx

Proof. This is a direct consequence of proposition 4. Indeed from lower, semi-continuity of F , we
already have for almost any t ∈ [0;T ],∫

[0;T ]×Ω
f(et#Qmin(x))dxdt ≤ lim inf

N→∞

∫
[0;T ]×Ω

f(ρN (t)(x))dxdt

But, on the other hand,∫
[0;T ]×Ω

f(ρN (t)(x))dxdt ≤
∫

[0;T ]×Γ
Ld(Qmin −QN ) +

∫
[0;T ]×Ω

f(et#Qmin(x))dxdt

+G(Qmin)−G(QN ) + oN→∞(1)

and taking the limsup as N →∞, we obtain

lim sup
N→∞

∫
[0;T ]×Ω

f(ρN (t)(x))dxdt ≤
∫

[0;T ]×Ω
f(et#Qmin(x))dxdt

and our lemma.
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Strong convergence immediately follows in two cases:

Proposition 14. Under the assumptions on εN , µ0
N , QN and Qmin listed above,

• If f is strongly convex, then ρN strongly converges in L2([0;T ] × Ω) (as a function of t
and x), towards ρmin : (t, x) ∈ [0;T ]× Ω 7→ et#Qmin(x).

• If f : ρ 7→ |ρ|m, m ≥ 2 is a power, then a similar strong convergence is true, this time in
Lm([0;T ]× Ω).

Proof. This is immediate from lemma 3.

The power case is the simplest one. Indeed, in this case, our lemma guarantees that ‖ρN‖Lm

converges to ‖ρmin‖Lm . Since ρN narrowly converges towards ρmin already, using a simple argument
of approximation by continuous functions, we have the weak convergence in duality with Lm′

where
m′ = m

m−1 . But, from the convergence of the norms, we can conclude the strong convergence in Lm
using the Radon-Riesz property.

If f is strongly convex, denoting by r the minimum point of f on R, there exists C > 0 such
that for N ∈ N:∫

[0;T ]×Ω
f(ρN (t, x))dxdt ≥ T |Ω|f(r) +

C

2

∫
[0;T ]×Ω

‖ρN (t, x)− r‖2 dxdt.

and (ρN )N is bounded in L2, therefore it weakly-∗ converges to ρmin in L2. But one can also see
F as a strongly convex function over L2([0;T ]×Ω) and there exists another constant C > 0 and a
function p ∈ L2([0;T ]× Ω) such that for any N ∈ N,∫

[0;T ]×Ω
f(ρN (t, x))dxdt ≥

∫
[0;T ]×Ω

f(ρmin(t, x))dxdt+

∫
[0;T ]×Ω

(ρN (t, x)− ρmin(t, x)).p(t, x)dxdt

+
C

2

∫
[0;T ]×Ω

‖ρN (t, x)− ρmin(t, x)‖2 dxdt

and taking the limit as N →∞, we obtain the strong convergence in L2 of ρN to ρmin.

Remark. We briefly note that, if there exists functions j and j∗ on R and a constant C > 0 such
that for p and ρ in R,

f(ρ) + f∗(p) ≥ p · ρ+ C|j(ρ)− j∗(p)|2,

we get strong convergence of the functionals j(ρN ) towards j(ρmin) in L2, provided some invertibility
on j, which implies strict convexity for f . This is a common assumption to show regularity results
on the solutions of a convex problem, using duality (see for instance [18]) and j = j∗ ≡ 0 are
always suitable for any convex function f . However, in the case of f strongly convex, j = Id
and j∗ = (f∗)′ are suitable and we recover the first case of proposition 14. Similarly, for the
case f ≡ |.|m, j(ρ) = ρ.|ρ|m/2−1 and j∗(p) = p.|p|m′/2−1 are suitable. Again, we recover the Lm
convergence claimed above.

8 Numerics

In the following numerical simulations, we restrained ourself to a simple lagrangian given by the
squared norm, L : x 7→ 1

2 ‖x‖
2. The congestion term F and the potential energy G will be specific
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to each case.

The values of Fε at each time steps are computed using the pysdot module for python, which
allows for fast computation of integrals over Laguerre cells. The functional JδN ,εN , seen as a func-
tion on the positions at each time is not a convex function and we used the scipy implementation
of the L-BFGS algorithm (with the gradient of JδN ,εN computed using proposition 13) to find local
minimizers.

Figure 2: On the first 7 images (top left to bottom right), the evolution of the ”charged” Laguerre
cells (intersected with the support of ρN (t)) at several time steps for 400 particles, in the square.
The final picture (bottom right) represents the full trajectories of the particles.

Evolution in a convex domain: For this case, we took the simple congestion penalization,

F : ρ ∈M(Ω) 7→
∫

Ω
χ[0;1](ρ(x))dx =

{
0 if 0 ≤ ρ ≤ dx
+∞ otherwise

with χ[0;1] being the convex indicator function of [0; 1]. Admissible population trajectories for the
continuous problem cannot have a density higher than 1 at any time or position. The conclusions
of part 6 apply in this case with f = χ[0;1] and f∗ = max(., 0) being the positive part function on

R. For y ∈ (Rd)N , the associated optimal density in Fε(y) is given on Lagi(y, φ) by:

ρ(x) =

(
φi −

‖x− yi‖2

2ε

)
+

=

{
1 if ||x− yi||2 ≤ 2εφi

0 otherwise

and the charged Laguerre cells (intersected with the support of ρ) are the intersection of the actual
Laguerre cells, with the respective balls B(yi,

√
2εφi). Although proposition 14 does not apply in

this case, one can expect them to give a good idea of the support of the limit measure et#Qmin,
and we have highlighted them on the pictures instead of the actual player’s positions for this reason.
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For this first experiment, we chose the convex domain Ω = [−1; 10]2 and a ”potential energy”

G : Q ∈ P(Γ) 7→
∫

Γ

∫ T

0
V (γ(t))dt+ Φ(γ(T ))dQ(γ)

with V (x) = (‖x− (6, 6)‖2 − 9)2 and Φ(x) = ‖x− (11, 6)‖2. 400 players, each of mass 1/40 (for a
total mass 10, in order to have visible charged laguerre cells) started aligned on a regular grid on
the square [0; 4]× [0; 4]. The potential term then drove them towards the circle C((6, 6), 3) during
the trajectory and to the point (10, 6) at the end. The trajectories on figure 2 were obtained for
the values of the parameters ε = 0.01, δ = 1/64 and T = 15.

In this case, the hypothesis of a lipschitz velocity field for the continuous solution of our mean
field game seems contradicted by the experiment, as all players do not pass around the same side
of the circle C. However this seems to be the only point of splitting for our optimal trajectories,
which suggests that spt(Qmin) should still be of dimension 2. In such a case, any εN dominating
ln(N)/N should be suitable to obtain the convergence of Proposition 7.

Evolution in a non-convex domain: Here, we had to adapt our congestion term, as the
Newton algorithm did not always converge for diracs too far away from Ω (which was the case
for some particles not using the corridor). To make optimization easier we fix a small maximum
density m > 0 for the area outside Ω but inside its convex envelope conv(Ω), and take the congestion
penalization:

F : ρ ∈M(conv(Ω)) 7→
∫

conv(Ω)
f(x, ρ(x))dx

where f : (x, ρ) ∈ conv(Ω)× R 7→


0 if 0 ≤ ρ ≤ 1 and x ∈ Ω

0 if 0 ≤ ρ ≤ m and x ∈ conv(Ω)\Ω
+∞ otherwise

Although this isn’t quite the framework of Propositions 11 to 13, these can be easily adapted
to this form of congestion. The support of the Moreau projection will still be an intersection of
balls with the Laguerre cells, but the value of the optimal density ρ will not be 1 everywhere on
this support. Instead, ρ(x) = m a.e. on conv(Ω)\Ω giving us larger charged Laguerre cells for the
points passing near the border (or outside) of Ω. For low values of the outside density m, only
very few particles can fit outside the corridor and we should recover the strong penalization of the
convex example.

In this case, our particles evolved on the domain Ω = Ω1
⋃

Ω2
⋃

Ω3 constituted of two rooms,
Ω1 = [0; 8]2 and Ω3 = [11; 19]× [0; 8] separated by a narrow corridor, Ω2 = [8; 11]× [3.5; 4.5].

The particles are driven by a potential energy featuring a fast marching distance on conv(Ω):

G : Q ∈ P(Γ) 7→
∫

Γ
Φ(γ(T ))dQ(γ)

with Φ being solution of the Eikonal equation on conv(Ω):
‖∇Φ(x)‖ = 1 on Ω.

‖∇Φ(x)‖ = v outside.

Φ(18, 1) = Φ(18, 7) = 0
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with v being a small value of the velocity, outside the corridor. Such a potential ”guides”, so to
speak, the players to the closest point between (18,1) and (18,7), while encouraging them to move
inside Ω. Notice that, unlike the one made for F , this prescription ‖∇V (x)‖ = v outside Ω is
dictated by the theory since our discrete trajectories could pass outside the corridor and we do not
regularize G. However, even for our value v = 0.1, trajectories leaving Ω were, in the end, rejected
by the optimization.

To obtain figure 3, we ran the optimization for 400 particles, each of mass 1/8, starting on a
regular grid over the first square Ω1. The trajectories on these images were obtained for ε = 0.1, a
time step of δN = 1/28 and a maximum time T = 600. We chose to take a fairly strong congestion
penalization outside the corridor, with m = 10−3, putting a much weaker penalization on the speed
via the Eikonal equation, with a value v = 0.1.

Figure 3: On the top six images are represented the positions and ”charged” Laguerre cells of 400
particles moving in Ω. The bottom picture shows the trajectories of all the particles.
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