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Abstract. For many years, multi-object tracking benchmarks have fo-
cused on a handful of categories. Motivated primarily by surveillance
and self-driving applications, these datasets provide tracks for people,
vehicles, and animals, ignoring the vast majority of objects in the world.
By contrast, in the related field of object detection, the introduction
of large-scale, diverse datasets (e.g., COCO) have fostered significant
progress in developing highly robust solutions. To bridge this gap, we
introduce a similarly diverse dataset for Tracking Any Object (TAO)4. It
consists of 2,907 high resolution videos, captured in diverse environments,
which are half a minute long on average. Importantly, we adopt a bottom-
up approach for discovering a large vocabulary of 833 categories, an order
of magnitude more than prior tracking benchmarks. To this end, we ask
annotators to label objects that move at any point in the video, and give
names to them post factum. Our vocabulary is both significantly larger
and qualitatively different from existing tracking datasets. To ensure
scalability of annotation, we employ a federated approach that focuses
manual effort on labeling tracks for those relevant objects in a video
(e.g., those that move). We perform an extensive evaluation of state-of-
the-art trackers and make a number of important discoveries regarding
large-vocabulary tracking in an open-world. In particular, we show that
existing single- and multi-object trackers struggle when applied to this
scenario in the wild, and that detection-based, multi-object trackers are
in fact competitive with user-initialized ones. We hope that our dataset
and analysis will boost further progress in the tracking community.

Keywords: datasets, video object detection, tracking

1 Introduction

A key component in the success of modern object detection methods was the
introduction of large-scale, diverse benchmarks, such as MS COCO [38] and
LVIS [27]. By contrast, multi-object tracking datasets tend to be small [40,56],
biased towards short videos [65], and, most importantly, focused on a very
small vocabulary of categories [40,56,60] (see Table 1). As can be seen from

4 http://taodataset.org/

http://taodataset.org/
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Fig. 1. (left) Super-category distribution in existing multi-object tracking datasets
compared to TAO and COCO [38]. Previous work focused on people, vehicles and
animals. By contrast, our bottom-up category discovery results in a more diverse
distribution, covering many small, hand-held objects that are especially challenging
from the tracking perspective. (right) Wordcloud of TAO categories, weighted by number
of instances, and colored according to their supercategory.

Figure 1, they predominantly target people and vehicles. Due to the lack of
proper benchmarks, the community has shifted towards solutions tailored to the
few videos used for evaluation. Indeed, Bergmann et al. [5] have recently and
convincingly demonstrated that simple baselines perform on par with state-of-
the-art (SOTA) multi-object trackers.

In this work we introduce a large-scale benchmark for Tracking Any Object
(TAO). Our dataset features 2,907 high resolution videos captured in diverse
environments, which are 30 seconds long on average, and has tracks labeled for
833 object categories. We compare the statistics of TAO to existing multi-object
tracking benchmarks in Table 1 and Figure 1, and demonstrate that it improves
upon them both in terms of complexity and in terms of diversity (see Figure 2
for representative frames from TAO). Collecting such a dataset presents three
main challenges: (1) how to select a large number of diverse, long, high-quality
videos; (2) how to define a set of categories covering all the objects that might
be of interest for tracking; and (3) how to label tracks for these categories at a
realistic cost. Below we summarize our approach for addressing these challenges.
A detailed description of dataset collection is provided in Section 4.

Existing datasets tend to focus on one or just a few domains when selecting
the videos, such as outdoor scenes in MOT [40], or road scenes in KITTI [24].
This results in methods that fail when applied in the wild. To avoid this bias, we
construct TAO with videos from as many environments as possible. We include
indoor videos from Charades [52], movie scenes from AVA [26], outdoor videos
from LaSOT [21], road-scenes from ArgoVerse [14], and a diverse sample of videos
from HACS [68] and YFCC100M [54]. We ensure all videos are of high quality,
with the smallest dimension larger or equal to 480px, and contain at least 2
moving objects. Table 1 reports the full statistics of the collected videos, showing
that TAO provides an evaluation suite that is significantly larger, longer, and
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Table 1. Statistics of major multi-object tracking datasets. TAO is by far the largest
dataset in terms of the number of classes and total duration of evaluation videos. In
addition, we ensure that each video is challenging (long, containing several moving
objects) and high quality.

Dataset Classes
Videos

Eval. Train
Avg

length (s)
Tracks
/ video

Min
resolution

Ann.
fps

Total Eval
length (s)

MOT17 [40] 1 7 7 35.4 112 640x480 30 248
KITTI [24] 2 29 21 12.6 52 1242x375 10 365
UA-DETRAC [60] 4 40 60 56 57.6 960x540 5 2,240
ImageNet-Vid [48] 30 1,314 4,000 10.6 2.4 480x270 ∼25 13,928
YTVIS [65] 40 645 2,238 4.6 1.7 320x240 5 2,967
TAO (Ours) 833 2,407 500 36.8 5.9 640x480 1 88,605

more diverse than prior work. Note that TAO contains fewer training videos than
recent tracking datasets, as we intentionally dedicate the majority of videos for
in-the-wild benchmark evaluation, the focus of our effort.

Given the selected videos, we must choose what to annotate. Most datasets are
constructed with a top-down approach, where categories of interest are pre-defined
by benchmark curators. That is, curators first select the subset of categories
deemed relevant for the task, and then collect images or videos expressly for
these categories [19,38,55]. This approach naturally introduces curator bias. An
alternative strategy is bottom-up, open-world discovery of what objects are
present in the data. Here, the vocabulary emerges post factum [26,27,69], an
approach that dates back to LabelMe [49]. Inspired by this line of work, we devise
the following strategy to discover an ontology of objects relevant for tracking:
first annotators are asked to label all objects that either move by themselves or
are moved by people. They then give names to the labeled objects, resulting in a
vocabulary that is not only significantly larger, but is also qualitatively different
from that of any existing tracking dataset (see Figure 1). To facilitate training of
object detectors, that can be later used by multi-object trackers on our dataset,
we encourage annotators to choose categories that exists in the LVIS dataset [27].
If no appropriate category can be found in the LVIS vocabulary, annotators can
provide free-form names (see Section 4.2 for details).

Exhaustively labeling tracks for such a large collection of objects in 2,907 long
videos is prohibitively expensive. Instead, we extend the federated annotation
approach proposed in [27] to the tracking domain. In particular, we ask the
annotators to label tracks for up to 10 objects in every video. We then separately
collect exhaustive labels for every category for a subset of videos, indicating
whether all the instances of the category have been labeled in the video. During
evaluation of a particular category, we use only videos with exhaustive labels
for computing precision and all videos for computing recall. This allows us to
reliably measure methods’ performance at a fraction of the cost of exhaustively
annotating the videos. We use the LVIS federated mAP metric [27] for evaluation,
replacing 2D IoU with 3D IoU [65]. For detailed comparisons, we further report
the standard MOT challenge [40] metrics in supplementary.
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Fig. 2. Representative frames from TAO, showing videos sourced from multiple domains
with annotations at two different timesteps.

Equipped with TAO, we set out to answer several questions about the state
of the tracking community. In particular, in Section 5 we report the following
discoveries: (1) SOTA trackers struggle to generalize to a large vocabulary of
objects, particularly for infrequent object categories in the tail; (2) while trackers
work significantly better for the most-explored category of people, tracking
people in diverse scenarios (e.g., frequent occlusions or camera motion) remains
challenging; (3) when scaled to a large object vocabulary, multi-object trackers
become competitive with user-initialized trackers, despite the latter being provided
with a ground truth initializations. We hope that these insights will help to define
the most promising directions for future research.

2 Related work

The domain of object tracking is subdivided based on how tracks are initialized.
Our work falls into the multi-object tracking category, where all objects out of
a fixed vocabulary of classes must be detected and tracked. Other formulations
include user-initialized and saliency-based tracking. In this section, we first review
the most relevant benchmarks datasets in each of these areas, and then discuss
SOTA methods for multi-object and user-initialized tracking.

2.1 Benchmarks

Multi-object tracking (MOT) is the task of tracking an unknown number
of objects from a known set of categories. Most MOT benchmarks [23,24,40,60]
focus on either people or vehicles (see Figure 1), motivated by surveillance and
self-driving applications. Moreover, they tend to include only a few dozen videos,
captured in outdoor or road environments, encouraging methods that are overly
adapted to the benchmark and do not generalize to different scenarios (see
Table 1). In contrast, TAO focuses on diversity both in the category and visual
domain distribution, resulting in a realistic benchmark for tracking any object.

Several works have attempted to extend the MOT task to a wider vocabulary
of categories. In particular, the ImageNet-Vid [48] benchmark provides exhaustive
trajectories annotations for objects of 30 categories in 1314 videos. While this
dataset is both larger and more diverse than standard MOT benchmarks, videos
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tend to be relatively short and the categories cover only animals and vehicles.
The recent YTVIS dataset [65] has the most broad vocabulary to date, covering
40 classes, but the majority of the categories still correspond to people, vehicles
and animals. Moreover, the videos are 5 seconds long on average, making the
tracking problem considerably easier in many cases. Unlike previous work, we take
a bottom-up approach for defining the vocabulary. This results in not only the
largest set of categories among MOT datasets to date, but also in a qualitatively
different category distribution. In addition, our dataset is over 7 times larger
than YTVIS in the number of frames. The recent VidOR dataset [51] explores
Video Object Relations, including tracks for a large vocabulary of objects. But,
since ViDOR focuses on relations rather than tracks, object trajectories tend to
be missing or incomplete, making it hard to repurpose for tracker benchmark-
ing. In contrast, we ensure TAO maintains high quality for both accuracy and
completeness of labels (see supplementary for a quantitative analysis).

Finally, several recent works have proposed to label masks instead of bounding
boxes for benchmarking multi-object tracking [56,65]. In collecting TAO we made
a conscious choice to prioritize scale and diversity of the benchmark over pixel-
accurate labeling. Instance mask annotations are significantly more expensive to
collect than bounding boxes, and we show empirically that tracking at the box
level is already a challenging task that current methods fail to solve.

User-initialized tracking forgoes a fixed vocabulary of categories and instead
relies on the user to provide bounding box annotations for objects at need to be
tracked at test time [21,30,34,55,61] (in particular, the VOT challenge [34] has
driven the progress in this field for many years). The benchmarks in this category
tend to be larger and more diverse than their MOT counterparts, but most still
offer a tradeoff between the number of videos and the average length of the
videos (see supplementary). Moreover, even if the task itself is category-agnostic,
empirical distribution of categories in the benchmarks tends to be heavily skewed
towards a few common objects. We study whether this bias in category selection
results in methods failing to generalize to more challenging objects by evaluating
state-of-the-art user-initialized trackers on TAO in Section 5.2.

Semi-supervised video object segmentation differs from user-initialized
tracking in that both the input to the tracker and the output are object masks,
not boxes [43,64]. As a result, such datasets are a lot more expensive to collect,
and videos tend to be extremely short. The main focus of the works in this
domain [12,33,57] is on accurate mask propagation, not solving challenging
identity association problems, thus their effort is complementary to ours.

Saliency-based tracking is an intriguing direction towards open-world tracking,
where the objects of interest are defined not with a fixed vocabulary of categories,
or manual annotations, but with bottom-up, motion- [42,43] or appearance-
based [13,59] saliency cues. Our work similarly uses motion-based saliency to
define a comprehensive vocabulary of categories, but presents a significantly larger
benchmark with class labels for each object, enabling the use and evaluation of
large-vocabulary object recognition approaches.
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2.2 Algorithms

Multi-object trackers for people and other categories have historically been
studied by separate communities. The former have been mainly developed on
the MOT benchmark [40] and follow the tracking-by-detection paradigm, linking
outputs of person detectors in an offline, graph-based framework [3,4,10,20]. These
methods mainly differ in the way they define the edge cost in the graph. Classical
approaches use overlap between detections in consecutive frames [31,44,67]. More
recent methods define edge costs based on appearance similarity [41,47], or motion-
based models [1,15,16,35,45,50]. Very recently, Bergmann et al. [5] proposed a
simple baseline approach for tracking people that performs on par with SOTA by
repurposing an object detector’s bounding box regression capability to predict the
position of an object in the next frame. All these methods have been developed
and evaluated on the relatively small MOT dataset, containing 14 videos captured
in very similar environments. By contrast, TAO provides a much richer, more
diverse set of videos, encouraging trackers more robust to tracking challenges
such as occlusion and camera motion.

The more general multi-object tracking scenario is usually studied using
ImageNet-Vid [48]. Methods in this group also use offline, graph-based optimiza-
tion to link frame-level detections into tracks. To define the edge potentials, in
addition to box overlap, Feichtenhofer et al. [22] propose a similarity embedding,
which is learned jointly with the detector. Kang et al. [32] directly predict short
tubelets, and Xiao et al. [63] incorporate a spatio-temporal memory module inside
a detector. Inspired by [5], we show that a simple baseline relying on the Viterbi
algorithm for linking detections [22,25] performs on par with the aforementioned
methods on ImageNet-Vid. We then use this baseline for evaluating generic
multi-object tracking on TAO in Section 5.2, and demonstrate that it struggles
when faced with a large vocabulary and a diverse data distribution.

User-initialized trackers tend to rely on a Siamese network architecture
that was first introduced for signature verification [11], and later adapted for
tracking [7,18,29,53]. They learn a patch-level distance embedding and find the
closest patch to the one annotated in the first frame in the following frames. To
simplify the matching problem, state-of-the-art approaches limit the search space
to the region in which the object was localized in the previous frame. Recently
there have been several attempts to introduce some ideas from CNN architectures
for object detection into Siamese trackers. In particular, Li et al. [37] use the
similarity map obtained by matching the object template to the test frame as input
to an RPN-like module adapted from Faster-RCNN [46]. Later this architecture
was extended by introducing hard negative mining and template updating [71],
as well as mask prediction [58]. In another line of work, Siamese-based trackers
have been augmented with a target discrimination module to improve their
robustness to distractors [9,17]. We evaluate several state-of-the-art methods in
this paradigm for which public implementation is available [9,17,18,36,58] on
TAO, and demonstrate that they achieve only a moderate improvement over
our multi-object tracking baseline, despite being provided with a ground truth
initialization for each track (see Section 5.2 for details).
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3 Dataset design

Our primary goal is a large-scale video dataset with a diverse vocabulary of
labeled objects to evaluate trackers in the wild. This requires designing a strategy
for (1) video collection, (2) vocabulary discovery, (3) scalable annotation, and (4)
evaluation. We detail our strategies for (2-4) below, and defer (1) to Section 4.1.

Category discovery. Rather than manually defining a set of categories, we
discover an object vocabulary from unlabeled videos which span diverse operating
domains. Our focus is on dynamic objects in the world. Towards this end, we
ask annotators to mark all objects that move in our collection of videos, without
any object vocabulary in mind. We then construct a vocabulary by giving names
for all the discovered objects, following the recent trend for open-world dataset
collection [27,69]. In particular, annotators are asked to provide a free-form name
for every object, but are encouraged to select a category from the LVIS [27]
vocabulary whenever possible. We detail this process further in Section 4.2.

Federation. Given this vocabulary, one option might be to exhaustively label
all instances of each category in all videos. Unfortunately, exhaustive annotation
of a large vocabulary is expensive, even for images [27]. We choose to use our
labeling budget instead on collecting a large-scale, diverse dataset, by extending
the federated annotation protocol [27] from image datasets to videos. Rather
than labeling every video v with every category c, we define three subsets of
our dataset for each category: Pc, containing videos where all instances of c are
labeled, Nc, videos with no instance of c present in the video, and Uc, videos
where some instances of c are annotated. Videos not belonging to any of these
subsets are ignored when evaluating category c. For each category c, we only use
videos in Pc and Nc to measure the precision of trackers, and videos in Pc and
Uc to measure recall. We describe how to define Pc, Nc, and Uc in Section 4.2.

Granularity of annotations. To collect TAO, we choose to prioritize scale
and diversity of the data at the cost of annotation granularity. In particular, we
label tracks at 1 frame per second with bounding box labels but don’t annotate
segmentation masks. This allows us to label 833 categories in 2,907 videos at a
relatively modest cost. Our decision is motivated by the observation of [55] that
dense frame labeling does not change the relative performance of the methods.

Evaluation and metric. Traditionally, multi-object tracking datasets use either
the CLEAR MOT metrics [6,24,40] or a 3D intersection-over-union (IoU) based
metric [48,65]. We report the former in supplementary (with modifications for
large-vocabularies of classes, including multi-class aggregation and federation),
but focus our experiments on the latter. To formally define 3D IoU, let G =
{g1, . . . , gT } and D = {d1, . . . , dT } be a groundtruth and predicted track for a

video with T frames. 3D IoU is defined as: IoU3d(D,G) =
∑T

t=1 gt∩dt∑T
t=1 gt∪dt

. If an object

is not present at time t, we assign gt to an empty bounding box, and similarly for
a missing detection. We choose 3D IoU (with a threshold of 0.5) as the default
metric for TAO, and provide further analysis in supplementary.

Similar to standard object detection metrics, (3D) IoU together with (track)
confidence can be used to compute mean average precision across categories. For



8 A. Dave, T. Khurana, P. Tokmakov, C. Schmid, D. Ramanan

methods that provide a score for each frame in a track, we use the average frame
score as the track score. Following [27], we measure precision for a category c in
video v only if all instances of the category are verified to be labeled in it.

4 Dataset collection

4.1 Video selection

Most video datasets focus on one or a few domains. For instance, MOT bench-
marks [40] correspond to urban, outdoor scenes featuring crowds, while AVA [26]
contains produced films, typically capturing actors with close shots in carefully
staged scenes. As a result, methods developed on any single dataset (and hence
domain) fail to generalize in the wild. To avoid this bias, we constructed TAO by
selecting videos from a variety of sources to ensure scene and object diversity.

Diversity. In particular, we used datasets for action recognition, self-driving cars,
user-initialized tracking, and in-the-wild Flickr videos. In the action recognition
domain we selected 3 datasets: Charades [52], AVA [26], and HACS [68]. Charades
features complex human-human and human-object interactions, but all videos are
indoor with limited camera motion. By contrast, AVA has a much wider variety of
scenes and cinematographic styles but is scripted. HACS provides unscripted, in-
the-wild videos. These action datasets are naturally focused on people and objects
with which people interact. To include other animals and vehicles, we source
clips from LaSOT [21] (a benchmark for user-initialized tracking), BDD [66] and
ArgoVerse [14] (benchmarks for self-driving cars). LaSOT is a diverse collection
whereas BDD and ArgoVerse consist entirely of outdoor, urban scenes. Finally
we sample in-the-wild videos from the YFCC100M [54] Flickr collection.

Quality. The videos are automatically filtered to remove short videos and videos
with a resolution below 480p. For longer videos, as in AVA, we use [39] to extract
scenes without shot changes. In addition, we manually reviewed each sampled
video to ensure it is high quality: i.e., we removed grainy videos as well as videos
with excessive camera motion or shot changes. Finally, to focus on the most
challenging tracking scenarios, we only kept videos that contain at least 2 moving
objects. The full statistics of the collected videos are provided in Table 1. We point
out that many prior video datasets tend to limit one or more quality dimensions
(in terms of resolution, length, or number of videos) in order to keep evaluation
and processing times manageable. In contrast, we believe that in order to truly
enable tracking in the open-world, we need to appropriately scale benchmarks.

4.2 Annotation pipeline

Our annotation pipeline is illustrated in Figure 3. We designed it to separate
low-level tracking from high-level semantic labeling. As pointed out by others [2],
semantic labeling can be subtle and error-prone because of ambiguities and
corner-cases that arise in category boundaries. By separating tasks into low vs
high-level, we are able to take advantage of unskilled annotators for the former
and highly-vetted workers for the latter.

Object mining and tracking. We combine object mining and track labeling
into a single stage. Given the videos described above, we ask annotators to
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(a)

(c) (d)

(b)

: {person} 

: {camel} 

: {bicycle, mirror}

exhaustive 

non-exhaustive 

negative

Fig. 3. Our federated video annotation pipeline. First (a), annotators mine and track
moving objects. Second (b), annotators categorize tracks using the LVIS vocabulary or
free-form text, producing the labeled tracks (c). Finally, annotators identify categories
that are exhaustively annotated or verified to be absent. In (d), ‘person’s are identified as
being exhaustively annotated, ‘camel’s are present but not exhaustively annotated and
‘bicycle’s and ‘mirror’s are verified as absent. These labels allow accurately penalizing
false-positives and missed detections for exhaustively annotated and verified categories.

mark objects that move at any point in the video. To avoid overspending our
annotation budget on a few crowded videos, we limited the number of labeled
objects per video to 10. Note that this stage is category-agnostic: annotators are
not instructed to look for objects from any specific vocabulary, but instead to use
motion as a saliency cue for mining relevant objects. They are then asked to label
these objects throughout the video with bounding boxes at 1 frame-per-second.
Finally, the tracks are verified by one independent annotator. This process is
illustrated in Figure 3, where we can see that 6 objects are discovered and tracked.

Object categorization. Next, we collected category labels for objects discov-
ered in the previous stage and simultaneously constructed the dataset vocabulary.
We focus on the large vocabulary from the LVIS [27] object detection dataset,
which contains 1,230 synsets discovered in a bottom-up manner similar to ours.
Doing so also allows us to make use of LVIS as a training set of relevant object de-
tectors (which we later use within a tracking pipeline to produce strong baselines
- Section 5.1). Because maintaining a mental list of 1,230 categories is challenging
even for expert annotators, we use an auto-complete annotation interface to
suggest categories from the LVIS vocabulary (Fig. 3 (b)). The autocomplete
interface displays classes with a matching synset (e.g., “person.n.01”), name,
synonym, and finally those with a matching definition. Interestingly, we find
that some objects discovered in TAO, such as “door” or “marker cap”, do not
exist in LVIS. To accommodate such important exceptions, we allow annotators
to label objects with free-form text if they do not fit in the LVIS vocabulary.
Overall, annotators labeled 16,144 objects (95%) with 488 LVIS categories, and
894 objects (5%) with 345 free-form categories. We use the 488 LVIS categories
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for MOT experiments (because detectors can be trained on LVIS), but use all
categories for user-initialized tracking experiments in supplementary.

Federated “exhaustive” labeling. Finally, we ask annotators to verify which
categories are exhaustively labeled for each video. For each category c labeled
in video v, we ask annotators whether all instances of c are labeled. In Fig. 3,
after this stage, annotators marked that ‘person’ is exhaustively labeled, while
‘camel’ is not. Next, we show annotators a sampled subset of categories that are
not labeled in the video, and ask them to indicate which categories are absent in
the video. In Fig. 3, annotators indicated that ‘bicycle’ and ‘mirror’ are absent.

4.3 Dataset splits

We split TAO into three subsets: train, validation and test, containing 500, 988
and 1,419 videos respectively. Typically, train splits tend to be larger than val and
test. We choose to make TAO train small for several reasons. First, our primary
goal is to reliably benchmark trackers in-the-wild. Second, most MOT systems are
modularly trained using image-based detectors with hyper-parameter tuning of
the overall tracking system. We ensure TAO train is sufficiently large for tuning,
and that our large-vocabulary is aligned with the LVIS image dataset. This allows
devoting most of our annotation budget for large-scale val and held-out test sets.
We ensure that the videos in train, val and test are well-separated (e.g., each
Charades subject appears in only one split); see supp. for details.

5 Analysis of state-of-the-art trackers

We now use TAO to analyze how well existing multi- and single-object trackers
perform in the wild and when they fail. We tune the hyperparameters of each
tracking approach on the ‘train’ set, and report results on the ‘val’ set. To
capitalize on existing object detectors, we evaluate using the 488 LVIS categories
in TAO. We begin by shortly describing the methods used in our analysis.

5.1 Methods

Detection. We analyze how well state-of-the-art object detectors perform on
our dataset. To this end, we present results using a standard Mask R-CNN [46]
detector trained using [62] in Section 5.2.

Table 2. ImageNet-Vid detection and track
mAP; see text (left) for details.

Viterbi Det mAP Track mAP

Detection 73.4 [63] -
D&T [22] 3 79.8 -
STMN [63] 3 79.0 60.4

Detection 3 79.2 60.3

Multi-Object Tracking. We ana-
lyze SOTA multi-object tracking meth-
ods on ImageNet-Vid. We first clar-
ify whether such approaches improve
detection or tracking. Table 2 re-
ports the standard ImageNet-Vid De-
tection and Track mAP. The ‘Detec-
tion’ row corresponds to a detection-
only baseline widely reported by prior
work [63,22,70]. D&T [22] and STMN [63] are spatiotemporal architectures that
produce 6-7% detection mAP improvements over a per-frame detector. However,
both D&T and STMN post-process their per-frame outputs using the Viterbi
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algorithm, which iteratively links and re-weights the confidences of per-frame
detections (see [25]). When the same post-processing is applied to a single-frame
detector, one achieves nearly the same performance gain (Table 2, last row).

Our analysis reinforces the bleak view of multi-object tracking progress
suggested by [5]: while ever-more complex approaches have been proposed for the
task, their improvements are often attributable to simple, baseline strategies. To
foster meaningful progress on TAO, we evaluate a number of strong baselines. We
evaluate a per-frame detector trained on LVIS [27] and COCO [38], followed by two
linking methods: SORT [8], a simple, online linker initially proposed for tracking
people, and the Viterbi post-processing step used by [22,63], in Section 5.2.

Person detection and tracking. Detecting and tracking people has been a
distinct focus in the multi-object tracking community. Section 5.2 compares the
above baselines to a recent SOTA people-tracker [5].

User-initialized tracking. We evaluate several recent user-initialized trackers
for which public implementation is available [9,17,18,36,58]. Unfortunately, these
trackers do not classify tracked objects, and cannot directly be compared to multi-
object trackers which simultaneously detect and track objects. However, these
trackers can be evaluated with an oracle classifier, enabling direct comparisons.

Oracles. Finally, to disentangle the complexity of classification and tracking, we
use two oracles. The first, a class oracle, computes the best matching between
predicted and groundtruth tracks. Predicted tracks that match to a groundtruth
track with 3D IoU > 0.5 are assigned the corresponding groundtruth category.
Tracks that do not match to a groundtruth track are not modified, and count as
false positives. This allows us to evaluate the performance of trackers assuming
the semantic classification task is solved. The second oracle computes the best
possible assignment of per-frame detections to tracks, by comparing them with
groundtruth. When doing so, class predictions for each detection are held constant.
Any detections that are not matched are discarded. This oracle allows us to
analyze the best performance we could expect given a fixed set of detections.

5.2 Results

How hard is object detection on TAO? We start by assessing the difficulty
of detection on TAO by evaluating the SOTA object detector [28] using detection
mAP. We train this model on LVIS and COCO, as training on LVIS alone led to
low accuracy in detecting people. The final model achieves 27.1 mAP on TAO
val at IoU 0.5, suggesting that single-frame detection is challenging on TAO.

Do multi-object trackers generalize to TAO? Table 3 reports results using
tracking mAP on TAO. As a sanity check, we first evaluate a per-frame detector
by assigning each detection to its own track. As expected, this achieves an mAP
of nearly 0 (which isn’t quite 0 due to the presence of short tracks).

Next, we evaluate two multi-object tracking approaches. We compare the
Viterbi linking method to an online SORT tracker [8]. We tune SORT on our
diverse ‘train’ set, which is key for good accuracy. As the offline Viterbi algorithm
takes over a month to run on TAO train, we only tune the post-processing score
threshold for reporting a detection at each frame. See supplementary for tuning
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Oracle
Method Class Track Track mAP

Detection 0.6

Viterbi [22,25] 6.3
SORT [8] 13.2
Detection 3 31.5

Viterbi [22,25] 3 15.7
SORT [8] 3 30.2
Detection 3 3 83.6

Table 3. SORT and Viterbi linking pro-
vide strong baselines on TAO, but detec-
tion and tracking remain challenging. Rela-
beling and linking detections from current
detectors using the class and track oracles
leads to high performance, suggesting a
pathway for progress on TAO.

Fig. 4. SORT qualitative results, show-
ing (left) a successful tracking result, and
(right) a failure case due to semantic flicker
between similar classes, suggesting that
large-vocabulary tracking on TAO requires
additional machinery.

details. Surprisingly, we find that the simpler, online SORT approach outperforms
Viterbi, perhaps because the latter has been heavily tuned for ImageNet-Vid.
Because of its scalablity (to many categories and long videos) and relatively better
performance, we focus on SORT for the majority of our experiments. However,
the performance of both methods remains low, suggesting TAO presents a major
challenge for the tracking community, requiring principled novel approaches.

To better understand the nature of the complexity of TAO, we separately
measure the challenges of tracking and classification. To this end, we first evaluate
the “track” oracle that perfectly links per-frame detections. It achieves a stronger
mAP of 31.5, compared to 13.2 for SORT. Interestingly, providing SORT tracks
with an oracle class label provides a similar improvement, boosting mAP to 30.2.
We posit that these improvements are orthogonal, and verify this by combining
them; we link detections with oracle tracks and assign these tracks oracle class
labels. This provides the largest delta, dramatically improving mAP to 83.6%.
This suggests that large-vocabulary tracking requires jointly improving tracking
and classification accuracy (e.g., reducing semantic flicker as shown in Fig. 4).

Table 4. Person-tracking re-
sults on TAO. See text (left).

Method Person AP

Viterbi [22,25] 16.5
SORT [8] 18.5
Tracktor++ [5] 36.7

How well can we track people? We now eval-
uate tracking on one particularly important cat-
egory: people. Measuring AP for individual cat-
egories in a federated dataset can be noisy [27],
so we emphasize relative performance of trackers
rather than their absolute AP. We evaluate Track-
tor++ [5], the state-of-the-art method designed
specifically for people tracking, and compare it to the SORT and Viterbi baselines
in Table 4. We update Tracktor++ to use the same detector used by SORT and
Viterbi, using only the ‘person’ predictions. We tune the score threshold on TAO
‘train’, but find the method is largely robust to this parameter (see supp.). Track-
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tor++ strongly outperforms other approaches (36.7 AP), while SORT modestly
outperforms Viterbi (18.6 vs 16.5 AP). It is interesting to note that SORT, which
can scale to all object categories, performs noticeably worse on all categories
on average (13.2 mAP). This delta between ‘person’ and overall is even more
dramatic using the MOTA metric (6.7 overall vs 54.8 for ‘person’; see supp.). We
attribute the higher accuracy for ‘person’ to two factors: (1) a rich history of
focused research on this one category, which has led to more accurate detectors
and trackers, and (2) more complex categories present significant challenges, such
as hand-held objects which exhibit frequent occlusions during interactions.

To further investigate Tracktor++’s performance, we evaluate a simpler vari-
ant of the method from [5], which does not use appearance-based re-identification
nor pixel-level frame alignment. We find that removing these components reduces
AP from 36.7 to 25.9, suggesting these components contribute to a majority of
improvements over the baselines. Our results contrast [5], which suggests that
re-id and frame alignment are not particularly helpful. Compared to prior bench-
marks, the diversity of TAO results in a challenging testbed for person tracking
which encourages trackers robust to occlusion and camera jitter.

Do user-initialized trackers generalize better? Next, we evaluate recent
user-initialized trackers in Table 5. We provide the tracker with the groundtruth
box for each object from its first visible frame. As these trackers do not report
when an object is absent [55], we modify them to report an object as absent
when the confidence drops below a threshold tuned on TAO ‘train’ (see supp).

Table 5. User-initialized trackers on ‘val’.
We re-train some trackers on their train set
with TAO videos removed, denoted *.

Oracle Track
Method Init Class mAP

SORT 3 30.2

ECO [18] 3 3 23.7
SiamMask [58] 3 3 30.8
SiamRPN++ LT [36] 3 3 27.2
SiamRPN++ [36] 3 3 29.7
ATOM* [17] 3 3 30.9
DIMP* [9] 3 3 33.2

We compare these trackers to
SORT, supplying both with a class
oracle. As expected, the use of a
ground-truth initialization allows the
best user-initialized methods to out-
perform the multi-object tracker. How-
ever, even with this oracle box initial-
ization and an oracle classifier, track-
ing remains challenging on TAO. In-
deed, most user-initialized trackers
provide at most modest improvements
over SORT. We provide further analy-
sis in supplementary, showing that (1)
while a more informative initialization frame improves user-initialized tracker
accuracy, SORT remains competitive, and (2) user-initialized trackers accurately
track for a few frames after init, leading to improvements in MOTA, but provide
little benefits in long-term tracking. We hypothesize that the small improvement
of user-initialized trackers over SORT is due to the fact that the former are
trained on a small vocabulary of objects with limited occlusions, leading to
methods that do not generalize to the most challenging cases in TAO. One goal of
user-initialized trackers is open-world tracking of objects without good detectors.
TAO’s large vocabulary allows us to analyze progress towards this goal, indicating
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that large-vocabulary multi-object trackers may now address the open-world of
objects as well as category-agnostic, user-initialized trackers.

6 Discussion

Developing tracking approaches that can be deployed in-the-wild requires being
able to reliably measure their performance. With nearly 3,000 videos, TAO
provides a robust evaluation benchmark. Our analysis provides new conclusions
about the state of tracking, while raising important questions for future work.

The role of user-initialized tracking. User-initialized trackers aim to track
any object, without requiring category-specific detectors. In this work, we raise a
provocative question: with the advent of large vocabulary object detectors [27], to
what extent can (detection-based) multi-object trackers perform generic tracking
without user initialization? Table 5, for example, shows that large-vocabulary
datasets (such as TAO and LVIS) now allow multi-object trackers to match or
outperform user-initialization for a number of categories.

Specialized tracking approaches. TAO aims to measure progress in tracking
in-the-wild. A valid question is whether progress may be better achieved by
building trackers for application-specific scenarios. An indoor robot, for example,
has little need for tracking elephants. However, success in many computer vision
fields has been driven by the pursuit of generic approaches, that can then be
tailored for specific applications. We do not build one class of object detectors for
indoor scenes, and another for outdoor scenes, and yet another for surveillance
videos. We believe that tracking will similarly benefit from targeting diverse
scenarios. Of course, due to its size, TAO also lends itself to use for evaluating
trackers for specific scenarios or categories, as in Section 5.2 for ‘person.’

Video object detection. Although image-based object detectors have signifi-
cantly improved in recent years, our analysis in Section 5.1 suggests that simple
post-processing of detection outputs remains a strong baseline for detection in
videos. While we do not emphasize it in this work, TAO can also be used to
measure progress in video object detection, where the goal is not to maintain
the identity of objects, but only to reliably detect them in every video frame.
TAO’s large vocabulary particularly provides avenues for incorporating temporal
information to resolve classification errors, which remain challenging (see Fig. 4).

Acknowledgements. We thank Jonathon Luiten and Ross Girshick for detailed
feedback, and Nadine Chang and Kenneth Marino for reviewing early drafts.
Annotations for this dataset were provided by Scale.ai. This work was supported
in part by the CMU Argo AI Center for Autonomous Vehicle Research, the
Inria associate team GAYA, and by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior/Interior Business Center (DOI/IBC)
contract number D17PC00345. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes not withstanding any copyright
annotation theron. Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied of IARPA,



TAO: A Large-Scale Benchmark for Tracking Any Object 15

DOI/IBC or the U.S. Government. This work was funded in part by the French
government under management of Agence Nationale de la Recherche as part of
the “Investissements davenir” program, reference ANR-19-P3IA-0001 (PRAIRIE
3IA Institute).



16 A. Dave, T. Khurana, P. Tokmakov, C. Schmid, D. Ramanan

References

1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social
LSTM: Human trajectory prediction in crowded spaces. In: CVPR (2016) 6

2. Barriuso, A., Torralba, A.: Notes on image annotation. arXiv preprint
arXiv:1210.3448 (2012) 8

3. Berclaz, J., Fleuret, F., Fua, P.: Robust people tracking with global trajectory
optimization. In: CVPR (2006) 6

4. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-
shortest paths optimization. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33(9), 1806–1819 (2011) 6

5. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles.
In: ICCV (2019) 2, 6, 11, 12, 13

6. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance:
the clear mot metrics. Journal on Image and Video Processing 2008, 1 (2008) 7

7. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-
convolutional Siamese networks for object tracking. In: ECCV (2016) 6

8. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime
tracking. In: ICIP (2016) 11, 12

9. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model
prediction for tracking. In: CVPR (2019) 6, 11, 13

10. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Robust
tracking-by-detection using a detector confidence particle filter. In: ICCV (2009) 6
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