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OBSERVABILITY AND CONTROLLABILITY

FOR THE SCHRÖDINGER EQUATION

ON QUOTIENTS OF GROUPS OF HEISENBERG TYPE

CLOTILDE FERMANIAN KAMMERER AND CYRIL LETROUIT

Abstract. We give necessary and sufficient conditions for the controllability of a Schrödinger
equation involving the sub-Laplacian of a nilmanifold obtained by taking the quotient of a group
of Heisenberg type by one of its discrete sub-groups. This class of nilpotent Lie groups is a major
example of stratified Lie groups of step 2. The sub-Laplacian involved in these Schrödinger equations
is subelliptic, and, contrarily to what happens for the usual elliptic Schrödinger equation for example
on flat tori or on negatively curved manifolds, there exists a minimal time of controllability. The
main tools used in the proofs are (operator-valued) semi-classical measures constructed by use of
representation theory and a notion of semi-classical wave packets that we introduce here in the
context of groups of Heisenberg type.
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1. Introduction

In this paper, we consider a nilmanifold M , that is a manifold M = Γ̃\G which is the left quotient

of a nilpotent Lie group G by a discrete cocompact subgroup Γ̃ of G. We assume here that the
Lie group G, as a differential manifold, is an H-type group (also called “group of Heisenberg type”).
On the manifold M , we consider the sub-Laplacian −∆M and we are interested in the Schrödinger
operators −1

2∆M −V for analytic potentials V. We study the controllability and the observability
of the associated Schrödinger equation on M thanks to the Harmonic analysis properties of the
group G. We give in the next section precise definitions about these notions and develop concrete
examples in Section 1.2.

1.1. The nilmanifold M and the Schrödinger equation. An H-type group G is a connected
and simply connected nilpotent Lie group whose Lie algebra is an H-type algebra, denoted by g.
This means that:

• g is a step 2 stratified Lie algebra: it is equipped with a vector space decomposition

g = v⊕ z ,

such that [v, v] = z 6= {0} and z is the center of g.
• g is endowed with a scalar product 〈·, ·〉 such that, for all λ ∈ z∗, the skew-symmetric map

Jλ : v→ v

defined by

(1.1) 〈Jλ(U), V 〉 = λ([U, V ]) ∀U, V ∈ v

satisfies J2
λ = −|λ|2Id. In other words, Jλ is an orthogonal map as soon as |λ| = 1. Here, to

define |λ|, we first identify z∗ to z thanks to 〈·, ·〉, then we define |λ| as the norm (deriving
from 〈·, ·〉) of the image of λ through this identification.

The Lie group G, as a differential manifold, is diffeomorphic to R2d+p, where p is the dimension of
the center of the group. H-type groups were introduced in [34], the main motivation being that the
sub-Laplacians in these groups admit explicit fundamental solutions of an elementary form. The
Heisenberg groups Hd ∼ R2d+1 are examples of H-type groups (with p = 1), as will be recalled
below.

We consider Γ̃, a discrete cocompact subgroup of G. A concrete example is given in Example 1.1.

Then, we set M = Γ̃\G.

Via the exponential map
Exp : g→ G

which is a diffeomorphism from g to G, one identifies G and g as sets and manifolds. We may
identify g with the space of left-invariant vector fields via

(1.2) Xf(x) =
d

dt
f(xExp(tX))

∣∣∣∣
t=0

,

which acts on functions of x ∈ G and on functions of x ∈M since it passes to the quotient. Choosing
an orthonormal basis (Vj)1≤j≤2d of v and identifying g with the Lie algebra of left-invariant vector
fields on G, one defines the sub-Laplacian

∆M =

2d∑
j=1

V 2
j ,

on M , where dim v = 2d. Note that this makes sense since the Vj are left-invariant, and thus pass
to the quotient.
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We consider the hypoelliptic second order equation (see [32])

(1.3) i∂tψ +
1

2
∆Mψ + Vψ = 0

on M , where V is an analytic function defined on M (the latter assumption could be relaxed as
soon as a unique continuation principle holds for 1

2∆M + V, see Remark 3.4 below).

1.2. Examples of nilmanifolds. Let us describe now an example of a quotient manifold M to
which our result will apply. It is known (see [8, Theorem 18.2.1], and also [6]) that any H-type
group is isomorphic to one of the “prototype H-type groups”, which are defined as follows: let
P (1), . . . , P (p) be p linearly independent 2d× 2d orthogonal skew-symmetric matrices satisfying the
property

P (r)P (s) + P (s)P (r) = 0, ∀r, s ∈ {1, ..., p} , r 6= s.

Let us denote by (w, s) = (w1, · · · , w2d, s1, · · · , sp) the points of R2d+p, that is endowed with the
group law

(w, s) · (w′, s′) :=

(
w + w′

sj + s′j + 1
2〈w,P

(j)w′〉, j = 1, ..., p

)
This defines a Lie group with a Lie algebra of left invariant vector fields spanned by the following
vector fields: for j running from 1 to 2d and k from 1 to p,

Xj :=∂wj +
1

2

p∑
k=1

2d∑
l=1

wl P
(k)
l,j ∂sk , and ∂sk .

For more explicit examples of H-type groups, see [8, Section 18.1] (e.g., Example 18.1.3). It includes
the Heisenberg group Hd (of dimension 2d+ 1), but also groups with a center of dimension p > 1.

In this representation, the Heisenberg group Hd corresponds to p = 1 and the choice of

P (1) =

(
0 1Rd
−1Rd 0

)
.

The group law then is

(x, y, s) · (x′, y′, s′) :=

 x+ x′

y + y′

s+ s′ + 1
2

∑d
j=1(xjy

′
j − x′jyj)


where x, y, x′, y′ ∈ Rd and s, s′ ∈ R. We define the scalar product on v by saying that the 2d vector
fields

(1.4) Xj = ∂xj −
yj
2
∂s, Yj = ∂yj +

xj
2
∂s, j = 1, . . . , d

form an orthonormal basis, and we define the scalar product on z by saying that ∂s has norm 1
(and v and z are orthogonal for the scalar product on g). Then we obtain

Jλ

 d∑
j=1

(ajXj + bjYj)

 = λ

d∑
j=1

(−bjXj + ajYj).

where Jλ has been introduced in (1.1).

Example 1.1. An example of discrete cocompact subgroup of the Heisenberg group Hd is

(1.5) Γ̃0 = (
√

2πZ)2d × πZ,

and the associated quotient manifold is the left quotient M0 = Γ̃0\Hd. The manifold M0 is a circle

bundle over the 2d-torus T2d, its fundamental group is Γ̃0 which is non-commutative, implying
3



that M0 is not homeomorphic to a torus. For more general examples of discrete cocompact subgroups
in H-type groups, see [15, Chapter 5].

1.3. Controllability and observability, geometric conditions. One says that the Schrödinger
equation (1.3) is controllable in time T on the measurable set U ⊂ M if for any u0, u1 ∈ L2(M),
there exists f ∈ L2((0, T )×M) such that the solution ψ ∈ L2((0, T )×M) of

i∂tψ +
1

2
∆Mψ + Vψ = f1U

(where 1U denotes the characteristic function of U) with initial condition ψ(0, x) = u0(x) satisfies
ψ(T, x) = u1(x). By the Hilbert Uniqueness Method (see [44]), it is well-known that controllability
is equivalent to an observability inequality.

The Schrödinger equation (1.3) is said to be observable in time T on the measurable set U if
there exists a constant CT,U > 0 such that

(1.6) ∀u0 ∈ L2(M), ‖u0‖2L2(M) ≤ CT,U
∫ T

0

∥∥∥eit(
1
2

∆M+V)u0

∥∥∥2

L2(U)
dt.

For the usual (Riemannian) Schrödinger equation, it is known that if the so-called Geometric
Control Condition is satisfied in some time T ′ (which means that any ray of geometric optics
enters U within time T ′), then observability, and thus controllability, hold in any time T > 0 (see
[38]). Much less is known about the converse implication, due to curvature effects.

Our main result gives a similar condition, replacing the rays of geometric optics by the curves of
the flow map on M × z∗:

Φs
0 : (x, λ) 7→ (Exp(sdZ(λ)/2)x, λ),

where, for λ =
∑

1≤j≤d λjZ
∗
j ∈ z∗ (where (Z∗j )1≤j≤p is the dual basis of the basis (Z1, · · · , Zp)

of z), Z(λ) is the element of z defined by Z(λ) =
∑

1≤j≤p
λj
|λ|Zj . Equivalently, Z(λ) = λ/|λ| after

identification of z and z∗. Note that the integral curves of this flow are transverse to the space
spanned by the Vj ’s. We introduce the following H-type geometric control condition.

(H-GCC) The measurable set U satisfies H-type GCC in time T if

∀(x, λ) ∈M × (z∗ \ {0}), ∃s ∈ (0, T ), Φs
0((x, λ)) ∈ U × z∗.

Definition 1.2. We denote by TGCC(U) the infimum of all T > 0 such that H-type GCC holds in
time T (and we set TGCC(U) = +∞ if H-type GCC does not hold in any time).

In the sequel, we will also consider an additional assumption (A). To give a rigorous statement,
we write the coordinates v = (v1, . . . , v2d) of a vector in the orthonormal basis V = (V1, . . . , V2d)
of v:

V = v1V1 + . . .+ v2dV2d ∈ v.

Given ω ∈ v∗, we write ωj for the coordinates of ω in the dual basis of V , and we write |ω| = 1

when
∑2d

j=1 ω
2
j = 1.

(A) For any (x, ω) ∈M × v∗ such that |ω| = 1, there exists s ∈ R such that

Exp
(
s

2d∑
j=1

ωjVj
)
x ∈ U.

Note that this condition is independent of the choice of the basis V .
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Example 1.3. Let us compute the flows involved in the above conditions in the context of Exam-
ple 1.1. Denoting by (x, y, t) the elements of M0,

Φs
0(x, y, t, λ) =

(
x, y, t+ s

d

2
sgn(λ), λ

)
, s ∈ R

and choosing the basis V = (X1, · · · , Xd, Y1, · · · , Yd) of v (see (1.4)),

Exp
(
s

d∑
j=1

(ajXj + bjYj)
)
(x, y, t) =

(
x+ sa, y + sb, t+

s

2
(x · b− y · a)

)
, s ∈ R.

These trajectories are the lifts in Hd of the geodesics of T2d. A typical open set U ⊂ Γ̃0\Hd of
control which one may consider is the periodization of the complementary of a closed ball in a
fundamental domain:

A = M \ (Γ̃0 ·B)

where B ⊂ [0,
√

2π)2d × [0, π) is a closed ball (for the Euclidean norm for example) whose radius
is strictly less than π. Note that in the definition of A, the symbol \ stands for the difference of
two sets, and not for the quotient. One can also verify that both Assumption (A) and (H-GCC) (in
sufficiently large time, which depends on I) are satisfied.

1.4. Main result. With these geometric definitions, we are able to state conditions for observ-
ability and thus controllability of the subelliptic Schrödinger equation with analytic potential on
H-type nilmanifolds.

Theorem 1.4. Assume that the potential V in (1.3) is analytic. Let U ⊂ M be open and denote
by U its closure.

(1) Assume that U satisfies (A) and that T > TGCC(U), then the observability inequality (1.6)
holds, i.e. the Schrödinger equation (1.3) is observable in time T on U and thus (1.3) is
controllable in time T on U .

(2) Assume T ≤ TGCC(U), then the observability inequality (1.6) fails, and thus the controlla-
bility in time T also fails on U .

Although this will be commented more thoroughly in Remark 3.2, let us already say that the
authors conjecture that the observability inequality (1.6) holds in U at time T under the only
condition that T > TGCC(U) (and thus one could avoid using Assumption (A)). We also point out
Remark 3.4 about the assumption that the potential is analytic. Finally, we notice that in general
TGCC(U) 6= TGCC(U). This is due to the possible existence of “grazing rays”, see Remark 4.7 for
more comments on this issue.

The existence of a minimal time of control in Theorem 1.4 contrasts strongly with the observabil-
ity in arbitrary small time, under Geometric Control Condition, of the usual elliptic Schrödinger
equation (see [38]), which is related to its “infinite speed of propagation”. In the subelliptic setting
which we consider here (meaning that ∆M is subelliptic but not elliptic), in the directions defined
by z, the Schrödinger operator has a very different behaviour, possessing for example a family of
travelling waves moving at speeds proportional to n ∈ N, as was first noticed in [7, Section 1] (see
also [21, Theorem 2.10]). The existence of a minimal time of observability for hypoelliptic PDEs
was first shown in the context of the heat equation: for instance the case of the heat equation
with Heisenberg sub-Laplacian has been investigated in [4] and the case of the heat equation with
“Grushin” sub-Laplacian has been studied in [35], [16] and [5].

More recently, in [10], it was shown that the Grushin Schrödinger equation i∂tu−∂2
xu−x2∂2

yu = 0
in (−1, 1)x × Ty is observable on a set of horizontal strips if and only the time T of observation is
sufficiently large. With related ideas, it is shown in [42] that the observability of the Grushin-type
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Schrödinger equation i∂tu+ (−∂2
x − |x|2γ∂2

y)su = 0 in (−1, 1)x × Ty (with observation on the same
horizontal strips as in [10]) depends on the value of the ratio (γ + 1)/s: observability may hold in
arbitrarily small time, or only for sufficiently large times, or even never hold if (γ + 1)/s is large
enough. These results share many similarities with ours, although their proofs use totally different
techniques. Finally, in contrast with the usual “finite time of observability” of elliptic waves (under
GCC), it was shown in [41] that subelliptic wave equations are never observable. We can roughly
summarize all these results by saying that the subellipticity of the sub-Laplacian slows down the
propagation of evolution equations in the directions needing brackets to be generated.

The proof of Theorem 1.4 is based on adapting standard semi-classical approach to prove ob-
servability for a class of Schrödinger equations with subelliptic Laplacian, through the use of the
operator-valued semi-classical measures of [21] which are adapted to this stratified setting. The
proof also uses the introduction of wave packets playing in this non-commutative setting a role
similar to the ones introduced in [14] and [29] in the Euclidean case. To say it differently, we fol-
low the usual scheme for proving or disproving observability inequalities, but with all the analytic
tools (i.e., pseudodifferential operators, semiclassical measures and wave packets) adapted to our
subelliptic setting: we do not use, for instance, classical pseudodifferential operators.

1.5. Strategy of the proof. The theorem consists in two parts: firstly that the condition (A)
guarantees that the observability holds when T > TGCC(U) and, secondly, that the observability
fails when T ≤ TGCC(U). Beginning with the first part, it is standard (see [38]) to start with a
localized observability result as stated in the next lemma.

Lemma 1.5 (Localized observability). Assume the set U satisfies assumption (A) and that (H-
GCC) holds in time T for U . Let h > 0 and χ ∈ C∞c ((1/2, 2), [0, 1]). Using functional calculus,
we set

(1.7) Phf = χ

(
−h2

(
1

2
∆M + V

))
f, f ∈ L2(M).

Then, there exists a constant C0 > 0 such that for any sufficiently small h > 0 and any u0 ∈ L2(M),

(1.8) ‖Phu0‖2L2(M) ≤ C0

∫ T

0

∥∥∥eit(
1
2

∆M+V)Phu0

∥∥∥2

L2(U)
dt.

Remark 1.6. By conservation of mass in the LHS (and invariance of H-type GCC by translation
in time), this inequality also holds when the integral in the RHS is taken over an arbitrary time
interval (T1, T2) such that T2 − T1 ≥ T .

The proof of the localized observablity is done in Section 3.1 below. The argument is by contra-
diction (as in [11] or [1, Section 7]) and it uses the semi-classical setting based on representation
theory and developed in [20, 21] that we extend to the setting of quotient manifolds in Section 2.
In particular, this argument relies in a strong way on the operator-valued semi-classical measures
constructed in Sections 2.3 and 2.4.

The role of semiclassical measures in the context of observability estimates was first noticed by
Gilles Lebeau [40] and has been widely used since then [45, 1, 2, 48], with all the developments
of semi-classical measures, especially two-scale (also called two-microlocal) semi-classical measures
that allow to analyze more precisely the concentration of families on submanifolds. These two-
scale measures introduced in the end of the 90-s (see [17, 18, 22, 51, 50]) have known since then
a noticeable development in control theory (see the survey [47]) and in a large range of problems
from conical intersections in quantum chemistry [36, 23] to effective mass equations [12, 13]. The
semi-classical measures that we consider here have common features with the two-scales ones in the
sense that they are operator-valued. This operator-valued feature arises from the inhomogeneity
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of the nilmanifolds, in parallel with the homogeneity introduced by a second scale of concentration
as in the references above. However, the operator-valued feature is more fundamental here since it
is due to non-commutativity of nilmanifolds and is a direct consequence of the original features of
Fourier analysis on nilpotent groups: it is thus intrinsic to the structure of the problem.

The second step of the proof of the first part of Theorem 1.4 consists in passing from the localized
observability to observability itself. Standard arguments (see [11]) that we describe in Section 3.2
allow to derive from Lemma 1.5, a weak observability inequality in time T on the domain U : there
exists a constant C1 > 0 such that

(1.9) ∀u0 ∈ L2(M), ‖u0‖2L2(M) ≤ C1

∫ T

0

∥∥∥eit(
1
2

∆M+V)u0

∥∥∥2

L2(U)
dt+ C1‖(Id−∆M )−1u0‖2L2(M).

Note that compared to (1.6), the latter inequality has an added term in its RHS which controls the
low frequencies. This weak observability inequality (1.9) implies (1.6) via a Unique continuation
principle for 1

2∆M +V (see [9] and [37]), as we describe in Section 3.3. It is then not surprising that

the result of Theorem 1.4 holds as soon as a Unique continuation principle is known for 1
2∆M +V,

without further assumption of analyticity on V (see Remark 3.4).

For proving the second part of Theorem 1.4 – the necessity of the condition (H-GCC) – we
construct a family of initial data (uε0) for which the solution (ψε(t)) of the Schrödinger equation (1.3)
concentrates on the curve Φt

0(x0, λ0), for any choice of (x0, λ0) ∈M × z \ {0}. As mentioned above,
this set of initial data is the non-commutative counterpart to the wave packets (also called coherent
states) in the Euclidean setting [14, 29]. These aspects are the subject of Section 4. Our proof relies
on a statement of propagation of semiclassical measures which was proved in [21] when V = 0 and
that we adapt to our setting. A second proof consists in using the results of Appendix C, which are
of independent interest: we prove that, if the initial datum is a wave packet, the solution of (1.3)
is also (approximated by) a wave packet.

Our approach could be developed in general graded Lie groups through the generalization of the
tools we use: for semi-classical measures in graded groups, see Remarks 3.3 and 4.4 in [20], and for
an extension of non-commutative wave packets to a more general setting, see Sections 6.3 and 6.4
in [19] (based on [52]).

Acknowledgements. We thank Véronique Fischer, Matthieu Léautaud, Fabricio Macià and Chen-
min Sun for interesting discussions. The authors are also grateful to the referees for their remarks
and suggestions. C.L. was partially supported by the grant ANR-15-CE40-0018 of the ANR (project
SRGI).

2. Semi-classical analysis on quotient manifolds

Semi-classical analysis is based on the analysis of the scales of oscillations of functions. It uses
a microlocal approach, meaning that one understands functions in the phase space, i.e. the space
of position/impulsion of quantum mechanics. As the impulsion variable is the dual variable of
the position variable via the Fourier transform, microlocal analysis crucially relies on the Fourier
representation of functions, and on the underlying harmonic analysis.

Recall that, in the usual Euclidean setting, the algebra of pseudodifferential operators contains
those of multiplications by functions together with Fourier multipliers. These operators are defined
by their symbols via the Fourier inversion formula and are used for analyzing families of functions in
the phase space. Indeed, their boundedness in L2 for adequate classes of symbols allows to build a
linear map on the set of symbols, the weak limits of which are characterized by non-negative Radon
measures. These measures give phase space information on the obstruction to strong convergence
of bounded families in L2(Rd). In a context where no specific scale is specified, they are called
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microlocal defect measures, or H-measures and were first introduced independently in [25, 54].
When a specific scale of oscillations is prescribed, this scale is called the semi-classical parameter
and they are called semi-classical (or Wigner) measures (see [30, 26, 27, 43, 28]). If these functions
are moreover solutions of some equation, the semi-classical measures may have additional properties
such as invariance by a flow.

In the next sections, we follow the same steps, adapted to the context of quotients of H-type
groups, which are non-commutative: following the theory of non-commutative harmonic analysis
(see [15, 55] and some elements given in Appendix A), we define the (operator-valued) Fourier
transform (2.7), based on the unitary irreducible representations of the group, recalled in (2.6),
which form an analog to the usual frequency space. Then, adapting the ideas of [20] to the context
of nilmanifolds, we use the Fourier inversion formula (2.8) to define in (2.11) a class of symbols
and the associated semi-classical pseudodifferential operators in (2.13). From this, Proposition
2.10 guarantees the existence of semi-classical measures, whose additional invariance properties for
solutions of the Schrödinger equation are listed in Proposition 2.12.

2.1. Harmonic analysis on quotient manifolds. Let G be a stratified nilpotent Lie group of

H-type and Γ̃ be a discrete cocompact subgroup of G. We consider the left quotient M = Γ̃\G and
we denote by π the canonical projection

π : G→M

which associates to x ∈ G its class modulo Γ̃.
For each λ ∈ z∗ \ {0}, one associates with λ the canonical skew-symmetric form B(λ) defined

on v by

B(λ)(U, V ) = λ([U, V ]).

The map Jλ : v → v of Section 1 is the natural endomorphism associated with B(λ) and the
scalar product 〈·, ·〉. In H-type groups, the symmetric form −J2

λ is the scalar map |λ|2Id (note that
−J2

λ is always a non-negative symmetric form). Therefore, one can find a λ-dependent orthonormal
basis (

P
(λ)
1 , . . . , P

(λ)
d , Q

(λ)
1 , . . . , Q

(λ)
d

)
of v where Jλ is represented by

〈Jλ(U), V 〉 = B(λ)(U, V ) = |λ|U tJV with J =

(
0 Id
−Id 0

)
,

the vectors U, V ∈ v being written in the
(
P

(λ)
1 , . . . , P

(λ)
d , Q

(λ)
1 , . . . , Q

(λ)
d

)
-basis. We then decom-

pose v in a λ-depending way as v = pλ + qλ with

p := pλ := Span
(
P

(λ)
1 , . . . , P

(λ)
d

)
, q := qλ := Span

(
Q

(λ)
1 , . . . , Q

(λ)
d

)
.

Denoting by z = (z1, · · · , zp) the coordinates of Z in a fixed orthonormal basis (Z1, · · · , Zp) of z,
and once given λ ∈ z∗ \ {0}, we will often use the writing of an element x ∈ G or X ∈ g as

(2.1) x = Exp(X), X = p1P
(λ)
1 + . . .+ pdP

(λ)
d + q1Q

(λ)
1 + . . .+ qdQ

(λ)
d + z1Z1 + . . .+ zpZp,

where X = P +Q+ Z, p = (p1, · · · , pd) are the λ-dependent coordinates of P on the vector basis

(P
(λ)
1 , · · · , P (λ)

d ), q = (q1, · · · , qd) those of Q on (Q
(λ)
1 , · · · , Q(λ)

d ), and z = (z1, · · · , zp) of Z are
independent of λ.

Example 2.1. In the Heisenberg group Hd, there is a natural choice of coordinates, those we used
in Section 1.2 (see [55, Chapter 1]). However, it does not coincide with the (p, q, z) coordinates that

we could define as above by associating with λ = αdz, α ∈ R, the vectors P
(λ)
j = Xj, Q

(λ)
j = Yj for
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α > 0, and P
(λ)
j = Xj, Q

(λ)
j = −Yj for α < 0. One then finds coordinates (p, q, z) that are not the

usual coordinates (x, y, s) of the Heisenberg groups:

(2.2) (x, y, s) = (p, q, z) if λ > 0 and (x, y, s) = (p,−q, z) if λ < 0.

In general H-type groups, there is no canonical choice of coordinates, unlike for Heisenberg groups.

As already mentioned in Section 1.4, we also fix an orthonormal basis (V1, . . . , V2d) of v to write
the coordinates v = (v1, . . . , v2d) of a vector

V = v1V1 + . . .+ v2dV2d ∈ v;

both this orthonormal basis and the coordinates are independent of λ. With these coordinates, we
define a quasi-norm by setting

(2.3) |x| =
(
|v1|4 + · · ·+ |v2d|4 + |z1|2 + · · ·+ |zp|2

)1/4
, x = Exp(V + Z) ∈ G.

We recall that it satisfies a triangle inequality up to a constant.

2.1.1. Functional spaces. We shall say that a function f on G is Γ̃-leftperiodic if we have

∀x ∈ G, ∀γ ∈ Γ̃, f(γx) = f(x).

With a function f defined on M , we associate the Γ̃-leftperiodic function f ◦ π defined on G.

Conversely, a Γ̃-leftperiodic function f naturally defines a function on M . Thus the set of functions

on M is in one-to-one relation with the set of Γ̃-leftperiodic functions on G.

The inner products on v and z allow us to consider the Lebesgue measure dv dz on g = v ⊕ z.
Via the identification of G with g by the exponential map, this induces a Haar measure dx on G
and on M . This measure is invariant under left and right translations:

∀f ∈ L1(M) , ∀x ∈M ,

∫
M
f(y)dy =

∫
M
f(xy)dy =

∫
M
f(yx)dy .

The convolution of two functions f and g on M is given by

f ∗ g(x) =

∫
M
f(xy−1)g(y)dy =

∫
M
f(y)g(y−1x)dy.

Using the bijection of the set of functions on M with the set of Γ̃-leftperiodic functions on G, we
deduce that f ∗ g is well-defined as a function on M . Finally, we define Lebesgue spaces by

‖f‖Lq(M) :=

(∫
M
|f(y)|q dy

) 1
q

,

for q ∈ [1,∞), with the standard modification when q =∞.

2.1.2. Homogeneous dimension. Since G is stratified, there is a natural family of dilations on g
defined for t > 0 as follows: if X belongs to g, we decompose X as X = V + Z with V ∈ v
and Z ∈ z and we set

δtX := tV + t2Z .

The dilation is defined onG via the identification by the exponential map as the map Exp ◦δt ◦Exp−1

that we still denote by δt. The dilations δt, t > 0, on g and G form a one-parameter group of
automorphisms of the Lie algebra g and of the group G. The Jacobian of the dilation δt is tQ where

Q := dim v + 2dim z = 2d+ 2p

is called the homogeneous dimension of G. A differential operator T on G (and more generally
any operator T defined on C∞c (G) and valued in the distributions of G ∼ R2d+p) is said to be
homogeneous of degree ν (or ν-homogeneous) when T (f ◦ δt) = tν(Tf) ◦ δt. We recall that the
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quasi-norm introduced in (2.3) satisfies |δrx| = r|x| for all r > 0 and x ∈ G. It is a homogeneous
quasi-norm and we recall that any homogeneous quasi-norm is equivalent to it.

2.1.3. Irreducible representations and Fourier transform. For the sake of completeness, many de-
tails about the results of this section, which are standard in non-commutative harmonic analysis,
are given in Appendix A.

The infinite dimensional irreducible representations of G are parametrized by z∗ \ {0}: for λ ∈
z∗ \ {0}, one defines πλ· : G→ L2(pλ) ∼ L2(Rd) by

(2.4) πλxΦ(ξ) = eiλ(z)+ i
2
|λ| p·q+i

√
|λ| ξ·q Φ

(
ξ +

√
|λ|p

)
,

where x has been written as in (2.1). The representations πλ, λ ∈ z∗ \{0}, are infinite dimensional.
The other unitary irreducible representations of G are given by the characters of the first stratum
in the following way: for every ω ∈ v∗, we set

(2.5) π(0,ω)
x = eiω(V ), x = Exp(V + Z) ∈ G, with V ∈ v and Z ∈ z.

The set Ĝ of all unitary irreducible representations modulo unitary equivalence is then parametrized
by (z∗ \ {0}) t v∗:

(2.6) Ĝ = {class of πλ : λ ∈ z∗ \ {0}} t {class of π(0,ω) : ω ∈ v∗}.

The subset v∗ of Ĝ is often thought as a bundle over λ = 0 (see the discussions about the Heisenberg
fan in [20, Lemma 2.2]). This explains the 0 in the notation (0, ω) that we use here to differentiate

π(0,ω) from πλ. It is natural since we think of v∗ as “horizontal” and z∗ as “vertical”.

We will identify each representation πλ with its equivalence class. Note that the trivial repre-
sentation 1

Ĝ
corresponds to the class of π(0,ω) with ω = 0, i.e. 1

Ĝ
:= π(0,0). The dilation δε extends

on Ĝ by ε · πλ = πε
2λ for λ ∈ z∗ \ {0} and ε · π(0,ω) = π(0,εω) for ω ∈ v∗.

The set G × Ĝ will be interpreted in our analysis as the phase space of G, and M × Ĝ as the
phase space of M , in analogy with the fact that Rd × Rd and Td × Rd are respectively the phase
space of the Euclidean space Rd and of the torus Td.

Example 2.2. In the case of the Heisenberg group, the formula (2.4) differs from the usual one
for the Heisenberg groups [55, Equation (2.23) in Chapter 1] because the coordinates (p, q, z) are
different from the canonical ones (x, y, s) (see Example 2.1). They are related by the relation (2.2).

The Fourier transform is defined on Ĝ and is valued in the space of bounded operators on L2(pλ):
for any λ ∈ z∗, λ 6= 0,

(2.7) Ff(λ) :=

∫
G
f(x)

(
πλx

)∗
dx ,

Besides, above finite dimensional representations, the Fourier transform is defined for ω ∈ v∗ by

f̂(0, ω) = Ff(0, ω) :=

∫
G
f(x)(π(0,ω)

x )∗dx =

∫
v×z

f(Exp(V + Z))e−iω(V )dV dZ.

Functions f of L1(G) have a Fourier transform (F(f)(λ))λ∈z∗ which is a bounded family of bounded

operators on L2(pλ) with uniform bound:

‖Ff(λ)‖L(L2(pλ)) ≤
∫
G
|f(x)|‖(πλx)∗‖L(L2(pλ))dx = ‖f‖L1(G).

since the unitarity of πλ implies ‖(πλx)∗‖L(L2(pλ)) = 1.
10



Example 2.3. In the Heisenberg group Hd, using the link exhibited in Example 2.1 between the

coordinates in the basis (P
(λ)
j , Q

(λ)
j )1≤j≤d and the variables (x, y, s) of Section 1.2, we obtain that

the Fourier transform of f ∈ S(Hd) writes

∀Φ ∈ S(Rd), Ff(λ)Φ(ξ) =

{ ∫
R2d+1 eiλs+

i
2
λx·y+i

√
λ ξ·yΦ(ξ +

√
λx)dx dy ds if λ > 0,∫

R2d+1 eiλs+
i
2
λx·y−i

√
|λ| ξ·yΦ(ξ +

√
|λ|x)dx dy ds if λ < 0.

The Fourier transform can be extended to an isometry from L2(G) onto the Hilbert space of
measurable families A = {A(λ)}λ∈z∗\{0} of operators on L2(pλ) which are Hilbert-Schmidt for
almost every λ ∈ z∗ \ {0}, with norm

‖A‖ :=

(∫
z∗\{0}

‖A(λ)‖2HS(L2(pλ))|λ|
d dλ

) 1
2

<∞ .

We have the Fourier-Plancherel formula:∫
G
|f(x)|2 dx = c0

∫
z∗\{0}

‖Ff(λ)‖2HS(L2(pλ))|λ|
d dλ ,

where c0 > 0 is a computable constant.

Remark 2.4. This relation shows that Plancherel measure of Ĝ is dµ := c0|λ|ddλ and is supported

in the subset {class of πλ : λ ∈ z∗ \ {0}} of Ĝ, in particular the subset {class of π(0,ω) : ω ∈ v∗}
of Ĝ is of mass 0 for the Plancherel measure. Therefore, the integral on z∗ \ {0} of the Fourier-

Plancherel formula can be thought as an integral on Ĝ, thinking v∗ above {λ = 0}, as suggested
by the notation.

Finally, an inversion formula for f ∈ S(G) and x ∈ G writes:

(2.8) f(x) = c0

∫
z∗\{0}

Tr
(
πλxFf(λ)

)
|λ|d dλ ,

where Tr denotes the trace of operators of L(L2(pλ)) (see [55, Theorem 2.7]). This formula makes
sense since for Schwartz functions f ∈ S(G), the operators Ff(λ), λ ∈ z∗ \ {0}, are trace-class,

with enough regularity in λ so that
∫
z∗\{0}Tr

∣∣∣Ff(λ)
∣∣∣ |λ|d dλ is finite.

To conclude this section, it is important to notice that the differential operators have a Fourier
resolution that allows to think them as Fourier multipliers. In particular, the resolution of the
sub-Laplacian −∆G is well-understood

∀f ∈ S(G), F(−∆Gf)(λ) = H(λ)F(f)(λ).

At π(0,ω), ω ∈ v∗, it is the number F(−∆G)(0, ω) = |ω|2, and at πλ, λ ∈ z∗\{0}, it is the unbounded
operator

(2.9) H(λ) = |λ|
d∑
j=1

(
−∂2

ξj
+ ξ2

j

)
,

where we have used the identification pλ ∼ Rd and the observation that for λ ∈ z∗ \{0}, f ∈ L2(pλ)
and 1 ≤ j ≤ d,

F(P
(λ)
j f) = i∂ξjF(f) and F(Q

(λ)
j f) = ξjF(f).

One writes

(2.10) πλ(P
(λ)
j ) = i∂ξj and πλ(Q

(λ)
j ) = ξj , λ ∈ z∗ \ {0}, 1 ≤ j ≤ d.
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2.2. Semi-classical pseudodifferential operators on quotient manifolds. As observables of
quantum mechanics are functions on the phase space, the symbols of pseudodifferential operators

on M are functions defined on M × Ĝ. In this non-commutative framework, they have the same
properties as the Fourier transform and they are operator-valued symbols.

Following [21, 20], we consider the class of symbols A0 of fields of operators defined on M × Ĝ
by

σ(x, λ) ∈ L(L2(pλ)), (x, λ) ∈M × Ĝ,
that are smooth in the variable x and Fourier transforms of functions of the set S(G) of Schwartz

functions on G in the variable λ: for all (x, λ) ∈M × Ĝ,

(2.11) σ(x, λ) = Fκx(λ), κ ∈ C∞(M,S(G)).

A similar class of symbols in the Euclidean context was introduced in [43, Section 3]. Note that
we kept in (2.11) the notation λ also for the parameters (0, ω), ω ∈ v∗. In this case, the operator
Fκx((0, ω)) = σ(x, (0, ω)) reduces to a complex number since the associated Hilbert space is C.

If ε > 0, we associate with κx (and thus with σ(x, λ)) the function κεx defined on G by

(2.12) κεx(z) = ε−Qκx(δε−1(z)),

We then define the semi-classical pseudodifferential operator Opε(σ) via the identification of func-

tions f on M with Γ̃-leftperiodic functions on G:

(2.13) Opε(σ)f(x) =

∫
G
κεx(y−1x)f(y)dy.

When ε = 1, we omit the index ε and just write Op instead of Opε.

Remark 2.5. The formulas (2.13), (2.12) and (2.11) may be compared to the formulas of the
semiclassical (standard) quantization on the torus Tn = (R/2πZ)n, namely, for σ(x, ξ), x ∈ Tn, ξ ∈
Rn and f a (2πZ)n-periodic function,

OpTn

ε (σ)f(x) =

∫
Rn
Kε (x, x− y) f(y)dy

where Kε(x, z) = ε−nK(x, ε−1z),

K(x,w) =
1

(2π)n

∫
Rn
eiw·ξσ(x, ξ)dξ ∈ C∞(Tn,S(Rn)),

i.e. σ(x, ξ) = (FRn
w K)(x, ξ).

We observe the following facts (the proofs of points (3) to (7) are discussed more in details in
Appendix B).

(1) The operator Opε(σ) is well-defined as an operator on M . Indeed,

Opε(σ)f(γx) =

∫
G
κεγx(y−1γx)f(y)dy =

∫
G
κεx(y−1x)f(γy)dy = Opε(σ)f(x).

Here we have used a change of variable and the relations κγx(·) = κx(·) and f(γy) = f(y).

(2) Using (2.8) and (2.11), we have the useful identities

Opε(σ)f(x) = ε−Q
∫
G
κx(δε−1(y−1x))f(y)dy =

∫
G×(z∗\{0})

Tr(πλy−1xσ(x, ε · λ))f(y)|λ|ddλdy.
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In view of Remark 2.4, using the notations of the dilations on Ĝ, we have the general
formula (as in [20], Remark 3.3)

Opε(σ)f(x) =

∫
G×Ĝ

Tr(πy−1xσ(x, ε · π))f(y)dµ(π)dy.

(3) The kernel of Opε(σ) is given by

kε(x, y) =
∑
γ∈Γ̃

κεx(γy−1x)

(4) The family of operators (Opε(σ))ε>0 is uniformly bounded in L(L2(M)):

(2.14) ‖Opε(σ)‖L(L2(M)) ≤
∫
G

sup
x∈M
|κx(y)|dy.

(5) Semi-classical pseudodifferential operators act locally: let σ ∈ A0 be compactly supported

in an open set Ω such that Ω is strictly included in a fundamental domain B of Γ̃ and
χ ∈ C∞c (B) such that χσ = σ. Then, by definition

Opε(σ) = Opε(χσ) = χOpε(σ)

and for all N ∈ N, there exists a constant cN such that, for any ε > 0,

(2.15) ‖Opε(σ)− χOpε(σ)χ‖L(L2(M)) = ‖Opε(σ)−Opε(σ)χ‖L(L2(M)) ≤ cN ε
N .

Remark 2.6. The last property is crucial for our analysis since it allows to transfer results obtained
in the nilpotent group G for functions in L2

loc(G) to the case of square-integrable functions of the

homogeneous manifold M . Indeed, if f ∈ L2(M), then f can be identified to a Γ̃-leftperiodic
function on L2

loc(G). In particular, we have χf ∈ L2(G) and Opε(σ)χf = χOpε(σ)χf coincides
with the standard definition of [20, 21]. Then, for f, g ∈ L2(M) and σ, χ as before, we have for all
N ∈ N
(2.16) (Opε(σ)f, g)L2(M) = (Opε(σ)χf, χg)L2(G) +O(εN‖f‖L2(M)‖g‖L2(M)).

This correspondance between computations in M and in G will be further developed at the
beginning of Section 4.1, notably through the periodization operator P. It is also at the root of the
next two properties. For stating them, we introduce the difference operators, acting on L(L2(pλ)):

∆λ
pj = |λ|−1/2[ξj , ·], ∆λ

qj = |λ|−1/2[i∂ξj , ·], 1 ≤ j ≤ d.

We also use the operators πλ(P
(λ)
j ) and πλ(Q

(λ)
j ) calculated in (2.10).

(6) The following symbolic calculus result holds:

Proposition 2.7. Let σ ∈ A0. Then, in L(L2(M)),

(2.17) Opε(σ)∗ = Opε(σ
∗)− εOpε(P

(λ) ·∆λ
pσ
∗ +Q(λ) ·∆λ

qσ
∗) +O(ε2).

Let σ1, σ2 ∈ A0. Then in L(L2(M)),

(2.18) Opε(σ1) ◦Opε(σ2) = Opε(σ1 σ2)− εOpε

(
∆λ
pσ1 · P (λ) σ2 + ∆λ

qσ1 ·Q(λ) σ2

)
+O(ε2).

(7) The main contribution of the function (x, z) 7→ κx(z) to the operator Opε(σ), σ(x, λ) =
F(κx)(λ) is due to its values close to z = 1G.

Proposition 2.8. Let χ0 ∈ C∞(G) be compactly supported close to 1G and χε = χ0 ◦ δε. With
σ = F(κx)(λ) we associate σε = F(κxχε). Then, in L2(M), for all N ∈ N,

Opε(σ) = Opε(σε) +O(εN ).
13



2.3. Semi-classical measures. When given a bounded sequence (f ε)ε>0 in L2(M), one defines
the quantities `ε(σ) in analogy with quantum mechanics as the action of observables on this family,
i.e. the families

`ε(σ) = (Opε(σ)f ε, fε) , σ ∈ A0.

Since these quantities are bounded sequences of real numbers, it is then natural to study the
asymptotic ε → 0. The families (`ε(σ))ε>0 have weak limits that depend linearly on σ and enjoy
additional properties. We call semi-classical measure of (f ε)ε>0 any of these linear forms.

For describing the properties of semi-classical measures, we need to introduce a few notations.
If Z is a locally compact Hausdorff set, we denote by M(Z) the set of finite Radon measures

on Z and by M+(Z) the subset of its positive elements. Considering the metric space M × Ĝ

endowed with the field of complex Hilbert spaces L2(pλ) defined above elements (x, λ) ∈ M × Ĝ,

we denote by M̃ov(M × Ĝ) the set of pairs (γ,Γ) where γ is a positive Radon measure on M × Ĝ
and Γ = {Γ(x, λ) ∈ L(L2(pλ)) : λ ∈ Ĝ} is a measurable field of trace-class operators such that

‖Γdγ‖M :=

∫
M×Ĝ

Tr(|Γ(x, λ)|)dγ(x, λ) <∞.

Here, as usual, |Γ| :=
√

ΓΓ∗. Note that Γ(x, λ) is defined as a linear operator on the space L2(pλ)
which does not depend on x but which depends on λ. Considering that two pairs (γ,Γ) and (γ′,Γ′)

in M̃ov(M × Ĝ) are equivalent when there exists a measurable function f : M × Ĝ→ C \ {0} such
that

dγ′(x, λ) = f(x, λ)dγ(x, λ) and Γ′(x, λ) =
1

f(x, λ)
Γ(x, λ)

for γ-almost every (x, λ) ∈M×Ĝ, we define the equivalence class of (γ,Γ) by Γdγ, and the resulting

quotient by Mov(M × Ĝ). One checks readily that Mov(M × Ĝ) equipped with the norm ‖ · ‖M
is a Banach space.

Finally, we say that a pair (γ,Γ) in M̃ov(M × Ĝ) is positive when Γ(x, λ) ≥ 0 for γ-almost all

(x, λ) ∈M × Ĝ. In this case, we write (γ,Γ) ∈ M̃+
ov(M × Ĝ), and Γdγ ≥ 0 for Γdγ ∈M+

ov(M × Ĝ).

With these notations in mind, one can mimic the proofs of [21], considering the C∗-algebra A
obtained as the closure of A0 for the norm sup

(x,λ)∈M×Ĝ ‖σ(x, λ)‖L(L2(pλ)). Indeed, the properties

of this algebra depend on those of Ĝ and the analysis of the set and of [20, 21] also applies in this
context. Then, arguing as in [20, 21], one can define semi-classical measures as follows.

Theorem 2.9. Let (f ε)ε>0 be a bounded family in L2(M). There exist a sequence (εk) ∈ (R∗+)N

with εk −→
k→+∞

0, and Γdγ ∈M+
ov(M × Ĝ) such that for all σ ∈ A,

(Opεk(σ)f εk , fεk)L2(M) −→
k→+∞

∫
M×Ĝ

Tr(σ(x, λ)Γ(x, λ))dγ(x, λ).

Given the sequence (εk)k∈N, the measure Γdγ is unique up to equivalence. Besides,∫
M×Ĝ

Tr(Γ(x, λ))dγ(x, λ) ≤ lim sup
ε→0

‖f ε‖2L2(M).

We emphasize on the operator-valued nature of Γ(x, λ)1λ∈z∗(λ) in opposition to the fact that
Γ(x, λ)1λ∈v∗(λ) ∈ R+ (since finite dimensional representations are scalar operators).

The link of semi-classical measures with the limit of energy densities |f ε(x)|2dx will be discussed
below, it is solved thanks to the notion of ε-oscillating families (see Section 2.4.1).
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2.4. Time-averaged semi-classical measures. The local observability inequality takes into ac-
count time-averaged quadratic quantities of the solution of Schrödinger equation. Physically, it
corresponds to an observation, i.e. the measurement of an observable during a certain time. For
example, when V = 0, the right-hand side of inequality (1.8) can be expressed with the set of
observables introduced in the previous section using the symbol σ(x, λ) = 1x∈Mχ(H(λ)) (see (2.9)
for a definition of H(λ)). Therefore, when considering time-dependent families, as solutions to the
Schrödinger equation (1.3), we are interested in the limits of time-averaged quantities: let (uε)ε>0

be a bounded family in L∞(R, L2(M)), θ ∈ L1(R) and σ ∈ A0, we define

`ε(θ, σ) =

∫
R
θ(t) (Opε(σ)uε(t), uε(t))L2(M) dt

and we are interested in the limit as ε goes to 0 of these quantities.

When introduced, semi-classical measures were first used for systems with a semi-classical time
scaling, i.e. involving ε∂t derivatives, which is not the case here when multiplying the equation (1.3)
by ε2. It is then difficult to derive results for the semi-classical measures at each time t. However,
one can deduce results for the time-averaged semi-classical measures that hold almost everywhere
in time. Indeed, these measures satisfy important geometric properties that can lead to their
identification (for example in Zoll manifolds). This was first remarked by [45] and led to important
results in control [1, 2, 49], but also for example in the analysis of dispersion effects of operators
arising in solid state physics [12, 13]. This approach has been extended to H-type groups in [21]
and, arguing in the same manner as for the proof of Theorem 2.8 therein, we obtain the next result
on the nilmanifold M .

Proposition 2.10. Let (uε)ε>0 be a bounded family in L∞(R, L2(M)). There exist a sequence

(εk) ∈ (R∗+)N with εk −→
k→+∞

0 and a map t 7→ Γtdγt in L∞(R,M+
ov(M × Ĝ)) such that we have for

all θ ∈ L1(R) and σ ∈ A,∫
R
θ(t)(Opεk(σ)uεk(t), uεk(t))L2(M)dt −→

k→+∞

∫
R×M×Ĝ

θ(t)Tr(σ(x, λ)Γt(x, λ))dγt(x, λ)dt.

Given the sequence (εk)k∈N, the map t 7→ Γtdγt is unique up to equivalence. Besides,∫
R

∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ)dt ≤ lim sup
ε→0

‖uε‖2L∞(R,L2(M)).

2.4.1. ε-oscillating families. The link between semi-classical measures and the weak limits of time-
averaged energy densities is solved thanks to the notion of ε-oscillation. Let (uε)ε>0 be a bounded
family in L∞(R, L2(M)). We say that the family (uε)ε>0 is uniformly ε-oscillating when we have
for all T > 0,

lim sup
ε→0

sup
t∈[−T,T ]

∥∥1−ε2∆M>Ru
ε(t)
∥∥
L2(M)

−→
R→+∞

0.

Proposition 2.11. [[21]Proposition 5.3] Let (uε) ∈ L∞(R, L2(M)) be a uniformly ε-oscillating
family admitting a time-averaged semi-classical measure t 7→ Γtdγt for the sequence (εk)k∈N. Then
for all φ ∈ C∞(M) and θ ∈ L1(R),

lim
k→+∞

∫
R×M

θ(t)φ(x)|uεk(t, x)|2dxdt =

∫
R
θ(t)

∫
M×Ĝ

φ(x)Tr (Γt(x, λ)) dγt(x, λ) dt,
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2.4.2. Semi-classical measures for families of Schrödinger equations. Families of solutions to the
Schrödinger equation (1.3) have special features. We recall that in the (non compact) group G, the
operator

H(λ) = |λ|
d∑
j=1

(
−∂2

ξj
+ ξ2

j

)
introduced in (2.9) is the Fourier resolution of the sub-Laplacian −∆G above λ ∈ z∗ \ {0}. Up to
a constant, this is a quantum harmonic oscillator with discrete spectrum {|λ|(2n+ d), n ∈ N} and

finite dimensional eigenspaces. For each eigenvalue |λ|(2n + d), we denote by Π
(λ)
n and V(λ)

n the
corresponding spectral orthogonal projection and eigenspace. Even though the spectral resolution
of −∆G and −∆M are quite different, we shall use the operator H(λ) as one uses the function
ξ 7→ |ξ|2 on the phase space of the torus Td, when studying the operator −∆Td .

Proposition 2.12. Assume Γtdγt is associated with a family of solutions to (1.3).

(1) For (x, λ) ∈M × z∗

(2.19) Γt(x, λ) =
∑
n∈N

Γn,t(x, λ) with Γn,t(x, λ) := Π(λ)
n Γt(x, λ)Π(λ)

n .

Moreover, the map (t, x, λ) 7→ Γn,t(x, λ)dγt(x, λ) defines a continuous function from R into

the set of distributions on M × (z∗ \ {0}) valued in the finite dimensional space L(V(λ)
n )

which satisfies

(2.20)

(
∂t − (n+

d

2
)Z(λ)

)
(Γn,t(x, λ)dγt(x, λ)) = 0

(2) For (x, (0, ω)) ∈M × v∗, the scalar measure Γtdγt is invariant under the flow

Ξs : (x, ω) 7→ (xExp(sω · V ), ω).

Here, ω · V =
∑2d

j=1 ωjVj where ωj denote the coordinates of ω in the dual basis of V .

The proof of this proposition follows ideas from [21] that we adapt to our situation. We give some
elements on the proof of this Proposition in Appendix B.2, in particular we explain the continuity
of the map t 7→ Γtdγt.

We have now all the tools that we shall use for proving Theorem 1.4 in the next two sections.

3. Proof of the sufficiency of the geometric conditions

We prove here the first part of Theorem 1.4, that if U satisfies condition (A), TGCC(U) < +∞
and T > TGCC(U), then the Schrödinger equation (1.3) is observable on U in time T .

3.1. Proof of localized observability. We argue by contradiction. If (1.8) is false, then there
exist (uk0)k∈N and (hk)k∈N such that uk0 = Phkuk0,

(3.1) ‖uk0‖L2(M) = 1 and

∫ T

0

∥∥∥eit(
1
2

∆M+V)Phku
k
0

∥∥∥2

L2(U)
dt −→

k→+∞
0.

Because uk0 = Phkuk0 with χ compactly supported in an annulus (see (1.7)) and V is bounded, the

family uk0 is hk-oscillating in the sense of Section 2.4.1 and so it is for

ψk(t) = eit(
1
2

∆M+V)Phku
k
0.

We consider (after extraction of a subsequence if necessary), the semi-classical measure Γtdγt of
ψk(t) given by Proposition 2.10 and satisfying the properties listed in Proposition 2.12.

Proposition 3.1. We have the following facts:
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(1) There holds

(3.2)

∫ T

0

∫
U×Ĝ

Tr(Γt(x, λ))dγt(x, λ)dt = 0.

(2) γt is supported above z∗ \ {0} for almost every t ∈ R.

Proof of Proposition 3.1. To prove (1), let us recall that for θ ∈ L1(R) and σ ∈ A0,

(3.3)

∫
R
θ(t)(Ophk(σ)ψk(t), ψk(t))L2(M)dt −→

k→+∞

∫
R×M×Ĝ

θ(t)Tr(σ(x, λ)Γt(x, λ))dγt(x, λ)dt.

We take ϕj(x) a sequence of smooth non-negative functions converging to 1U (x), bounded above
by 1 and such that supp(ϕj) ⊂ U , and α ∈ C∞c ((−1, 1)) non-negative with α = 1 in a neighborhood
of 0. Since ψk(t) is uniformly ε-oscillating for ε = hk, we have∫ T

0

∫
R×M×Ĝ

Tr(ϕj(x)Γt(x, λ))dγt(x, λ)dt =

lim
R→+∞

lim
k→+∞

∫ T

0

(
Ophk(ϕj(x)α(R−1H(λ)))ψk(t), ψk(t)

)
L2(M)

dt.

Besides, Ophk(ϕj(x)α(R−1H(λ))) = ϕj(x)α(−h2
kR
−1∆M ), thus

‖Ophk(ϕj(x)α(R−1H(λ)))‖L(L2(M)) ≤ 1

and ∣∣∣∣∫ T

0

(
Ophk(ϕj(x)α(R−1H(λ)))ψk(t), ψk(t)

)
L2(M)

∣∣∣∣ ≤ ∫ T

0
‖ψk(t)‖2L2(U)dt.

We deduce from (3.1) that∫ T

0

∫
R×M×Ĝ

Tr(ϕj(x)Γt(x, λ))dγt(x, λ)dt = 0.

Taking the limit j → +∞ and using Lebesgue’s dominated convergence theorem (since Γtdγt ≥ 0),
we get (3.2).

Point (2) follows from Point (1), the positivity of Γtdγt, Assumption (A) and Point (2) of Propo-
sition 2.12. �

Set
γn,t(x, λ) = Tr (Γn,t(x, λ)) γt(x, λ).

We have obtained

0 =
∑
n∈N

∫ T

0

∫
U×Ĝ

Tr(Γn,t(x, λ))dγt(x, λ)dt =
∑
n∈N

∫ T

0

∫
U×Ĝ

dγn,t(x, λ)dt

whence, the positivity of Γt (and thus of γn,t) yields∫
U×z∗

dγn,t(x, λ) = 0, for almost every t ∈ [0, T ], ∀n ∈ N,

where we have also used that the support of dγn,t is above z∗ \ {0}.
We now use transport equation (2.20). For n ∈ N and λ ∈ z∗ \ {0}, we set

Zn(λ) = (n+
d

2
)Z(λ)

and we have

|Zn(λ)| = n+
d

2
.
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We introduce the map Φs
n defined for s ∈ R and n ∈ N as an application from M × (z∗ \ {0}) to

itself by
Φs
n : (x, λ) 7→ (Exp[sZn(λ)]x, λ) .

The flows Φs
n and Φs

0 are related by

Φs
n(x, λ) = Φs′

0 (x, λ), s′ =

(
2n

d
+ 1

)
s.

The transport equation (2.20) implies that for any interval I and any Λ ⊂M × (z∗ \ {0}),

d

ds

(∫
(I+s)×Φsn(Λ)

dγn,tdt

)
= 0,

which means

(3.4)

∫
(I+s)×Φsn(Λ)

dγn,tdt =

∫
I×Λ

dγn,tdt.

Since T > TGCC(U), we may choose T ′ such that TGCC(U) < T ′ < T and (H-GCC) holds in
time T ′. Assume that there exists τ with 0 < τ < T − T ′ such that

(3.5)

∫ τ

0

∫
M×z∗

dγtdt > 0.

We seek for a contradiction.

Writing γt =
∑∞

n=0 γn,t, with all γn,t being non-negative Radon measures on M×(z∗ \{0}) (since
Point 2 of Proposition 3.1 ensures that it has no mass on the trivial representation), we see that
there exists n0 ∈ N and a bounded open subset Λ ⊂M × (z∗ \ {0}) such that∫ τ

0

∫
Λ
dγn0,tdt > 0.

Fix (x, λ) ∈ Λ and s ∈ (0, T ′) such that Φs
0((x, λ)) ∈ U × z∗. Note that, making Λ smaller

if necessary, by continuity of the flow and using that U is open, Φs
0((x′, λ′)) ∈ U × z∗ for any

(x′, λ′) ∈ Λ. Therefore Φ
s(n0)
n0 ((x′, λ′)) ∈ U × z∗ for any (x′, λ′) ∈ Λ, where s(n0) = sd

2n0+d (with a

slight abuse of notation).

From (3.2), we get

γn0,t(Φ
s(n0)
n0

(Λ)) = 0, a.e. t ∈ (0, T ),

and in particular ∫ T

s(n0)

∫
Φ
s(n0)
n0

(Λ)
dγn0,tdt = 0.

Therefore, by (3.4), ∫ T−s(n0)

0

∫
Λ
dγn0,tdt = 0.

Since τ < T − T ′ < T − s(n0), we get ∫ τ

0

∫
Λ
dγn0,tdt = 0

which is a contradiction. Therefore ∫ τ

0

∫
M×z∗

dγtdt = 0.

This implies γt = 0 for almost every t ∈ (0, τ). In turn, this contradicts the fact that ‖ψk(t)‖L2 = 1.
Therefore (1.8) holds.
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Remark 3.2. Assumption (A) corresponds to the usual Geometric Control Condition which is known
to be a sufficient condition for the control/observation of the Riemannian Schrödinger equation (see
[38]). It is well known that, in the Riemannian setting, this condition is not always necessary : it
is not for the Euclidean torus (see [33, 1, 11]) while it is for Zoll manifolds [46] (these manifolds
have geodesics that are all periodic); so, it depends on the manifold. As already mentioned in
the introduction, the authors tend to think that in the particular case considered in this paper
(quotients of H-type groups), Theorem 1.4 still holds without this assumption. Assumption (A)
has been used in the proof of Point (2) of Proposition 3.1, and it is the only place of the paper
where we use it. By analogy with the results of [1, 2, 10], it is likely that as in [10, Section 7], a
key argument should be a reduction to a problem on the Euclidian torus, as those studied in [2] for
example. Then, the semiclassical analysis of this reduced problem would show that the part of the
measure γt located above M × v∗ vanishes. That would prove that H-type GCC alone is enough
and would avoid the use of Assumption (A).

3.2. Proof of weak observability. We prove here (1.8) =⇒ (1.9).

Consider a partition of unity over the positive real half-line R+:

(3.6) ∀x ∈ R+, 1 = χ0(x)2 +

∞∑
j=1

χj(x)2

where, for j ≥ 1, χj(x) = χ(2−jx) with χ ∈ C∞c ((1/2, 2), [0, 1]). To construct such a partition
of unity, consider ψ ∈ C∞c ((−2, 2), [0, 1]) such that ψ ≡ 1 on a neighborhood of [−1, 1], and set

χ(x) =
√
ψ(x)− ψ(2x) for x ≥ 0, which is smooth for well-chosen ψ. Finally, define χ0(x) for

x ≥ 0 by χ0(x)2 = 1−
∑∞

j=1 χj(x)2, so that χ0(x) = 0 for x ≥ 2. Then (3.6) holds.

We follow the proof of [11, Proposition 4.1]. Set hj = 2
−j
2 for j ≥ 1, and note that Phj =

χj(−(1
2∆M + V)). We choose K so that hK ≤ h0, where h0 is taken so that (1.8) holds for

0 < h ≤ h0. We take ε > 0 such that T ′ + 2ε < T and ψ ∈ C∞c ((0, T ), [0, 1]) with ψ = 1 on a
neighborhood of [ε, T ′ + 2ε]. Then

‖u0‖2L2(M) =
∞∑
j=0

∥∥∥∥χj (−1

2
∆M + V

)
u0

∥∥∥∥2

L2(M)

=

K∑
j=0

‖Phju0‖2L2(M) +

∞∑
j=K+1

‖Phju0‖2L2(M)

≤ C

∥∥∥∥∥
(

Id− (
1

2
∆M + V)

)−1

u0

∥∥∥∥∥
2

L2(M)

+
∞∑

j=K+1

‖Phju0‖2L2(M)

≤ C‖(Id−∆M )−1u0‖2L2(M) + C

∞∑
j=K+1

∥∥∥ψ(t)eit(
1
2

∆M+V)Phju0

∥∥∥2

L2((0,T )×U)

where in the third line we bounded above the low frequencies with a constant C = CK , and in the
last line we used (1.8) (with the term on U being integrated for t ∈ (ε, T ′ + 2ε), which is of length
> T ′, see Remark 1.6). Note that we also used the fact that V is analytic and thus bounded, and
therefore the resolvents of the operators 1

2∆M + V and ∆M are comparable in L2 norm. Using

equation (1.3), we may change Phj = χj(−(1
2∆M + V)) into χj(−Dt) where Dt = ∂t/i. We get

‖u0‖2L2(M) ≤ C‖(Id−∆M )−1u0‖2L2(M) + C

∞∑
j=K+1

∥∥∥ψ(t)χj(−Dt)e
it( 1

2
∆M+V)u0

∥∥∥2

L2((0,T )×U)
(3.7)
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If ψ̃ ∈ C∞c ((0, T ), [0, 1]) satisfies ψ̃ = 1 on supp(ψ), we note that

ψ(t)χj(−Dt) = ψ(t)χj(−D(t))ψ̃(t) + ψ(t)[ψ̃(t), χj(−Dt)]

= ψ(t)χj(−D(t))ψ̃(t) + Ej(t,Dt)(3.8)

where Ej is smoothing, i.e.,

∂αEj = O(〈t〉−N 〈τ〉−N2−Nj)

for any α ∈ N, any N ∈ N and uniformly in j. This fact follows from symbolic calculus and the

remark that, on the support of ψ, ψ̃ is constant and all the derivatives of ψ̃ are zero on the support
of ψ.

Therefore, integrating by parts in the time variable in the second term of the right-hand side
and absorbing the error terms Ej(t,Dt) in ‖(Id−∆M )−1u0‖2L2 , we get

‖u0‖2L2(M) ≤ C‖(Id−∆M )−1u0‖2L2(M) + C
∞∑

j=K+1

‖ψ(t)χj(−Dt)ψ̃(t)eit(
1
2

∆M+V)u0‖2L2((0,T )×U)

≤ C‖(Id−∆M )−1u0‖2L2(M) + C
∞∑

j=K+1

‖χj(−Dt)ψ̃(t)eit(
1
2

∆M+V)u0‖2L2((0,T )×U)

= C‖(Id−∆M )−1u0‖2L2(M) + C
∞∑

j=K+1

(
χj(−Dt)

2ψ̃(t)eit(
1
2

∆M+V)u0 , ψ̃(t)eit(
1
2

∆M+V)u0

)
L2((0,T )×U)

≤ C‖(Id−∆M )−1u0‖2L2(M) + C

 ∞∑
j=0

χj(−Dt)
2ψ̃(t)eit(

1
2

∆M+V)u0 , ψ̃(t)eit(
1
2

∆M+V)u0


L2((0,T )×U)

≤ C‖(Id−∆M )−1u0‖2L2(M) + C‖eit(
1
2

∆M+V)u0‖2L2((0,T )×U)

where we used (3.6) in the last line. This concludes the proof of (1.9).

3.3. Proof of observability. We prove here (1.9) =⇒ (1.6), which concludes the proof of the
sufficiency of the geometric condition H-type GCC. We follow the classical Bardos-Lebeau-Rauch
argument, see for example [11].

For δ ≥ 0, we set

Nδ = {u0 ∈ L2(M) | eit(
1
2

∆M+V)u0 ≡ 0 on (0, T − δ)× U}.

Lemma 3.3. There holds N0 = {0}.

Proof. Let u0 ∈ N0. We define

(3.9) vε,0 =
1

ε

(
eiε(

1
2

∆M+V) − Id
)
u0.

If ε ≤ δ, then eit(
1
2

∆M+V)vε,0 = 0 on (0, T − δ)×U . We write u0 in terms of orthonormal eigenvec-
tors fλ of 1

2∆M + V (associated with λ ∈ Sp, the spectrum of 1
2∆M + V):

u0 =
∑
λ∈Sp

u0,λfλ
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For small enough α, β, applying (1.9) with a slightly smaller T , we have

‖vα,0 − vβ,0‖2L2 ≤ C‖(Id−∆M )−1(vα,0 − vβ,0)‖2L2

≤ C‖(Id− (
1

2
∆M + V))−1(vα,0 − vβ,0)‖2L2

≤ C
∑
λ∈Sp

∣∣∣∣eiαλ − 1

α
− eiβλ − 1

β

∣∣∣∣2 (1 + λ)−2|u0,λ|2

≤ C
∑
λ∈Sp

λ2|α− β|2(1 + λ)−2|u0,λ|2

≤ C|α− β|2.

Hence there exists v0 ∈ L2(M) such that v0 = limα→0 vα,0 where the limit is taken in L2(M). This
limit is necessarily in Nδ for all δ > 0, hence in N0. Moreover, thanks to (3.9), there holds in the
sense of distributions

eit(
1
2

∆M+V)v0 = ∂te
it( 1

2
∆M+V)u0

and therefore

v0 = i(
1

2
∆M + V)u0.

Therefore 1
2∆M +V : N0 → N0 is a well-defined operator. Moreover, according to (1.9), on N0, we

have

‖(Id−∆M ) · ‖L2(M) ≤ C‖ · ‖L2(M)

and, by compact embedding (see Lemma 3.5 below), the unit ball of N0 ⊂ L2(M) is compact.
Hence N0 is finite dimensional and there exists an eigenfunction w ∈ N0 of 1

2∆M + V : N0 → N0,
i.e.,

(
1

2
∆M + V)w = µw, w|U = 0.

By a standard unique continuation principle (see [9] and [37, Theorem 1.12]), since V and ∆M are
analytic (see [8, Section 5.10] for example), we conclude that w = 0, hence N0 = {0}. �

Remark 3.4. To our knowledge, the unique continuation principle used in the above proof is only
known when V is analytic. In C∞ regularity, counterexamples to the unique continuation principle
exist, see [3]. However, the result of Theorem 1.4 holds as soon as a unique continuation principle
holds for 1

2∆M + V.

Lemma 3.5. Set

H(M) = {u ∈ L2(M) | (Id−∆M )u ∈ L2(M)}.
Then H(M) ↪→ L2(M) with compact embedding.

Proof. By [37, Corollary B.1], we have ‖u‖H1(M) ≤ ‖(Id−∆M )u‖L2(M) since G is step 2. Therefore,

H(M) ↪→ H1(M) continuously. The result then follows by the Rellich-Kondrachov (compact
embedding) theorem. �

Assume that (1.6) does not hold. Then there exists a sequence (uk0)k∈N such that

(3.10) ‖uk0‖L2(M) = 1 and

∫ T

0

∥∥∥eit(
1
2

∆M+V)uk0

∥∥∥2

L2(U)
dt −→

k→+∞
0.

Since (uk0)k∈N is bounded in L2(M), we can extract from (uk0)k∈N a subsequence which converges
weakly to some u∞ in L2(M). By Lemma 3.5, we then have (Id − ∆M )−1uk0 → (Id − ∆M )−1u∞
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strongly in L2(M). Moreover, the second convergence in (3.10) gives u∞ ∈ N0. Thanks to (1.9),
we know that

‖uk0‖2L2(M) ≤ C1

∫ T

0

∥∥∥eit(
1
2

∆M+V)uk0

∥∥∥2

L2(U)
dt+ C1

∥∥∥(Id−∆M )−1uk0

∥∥∥2

L2(M)
.

Therefore, taking the limit k → +∞, we get

1 ≤ C1‖(Id−∆M )−1u∞‖2L2(M).

Therefore u∞ 6= 0, which contradicts Lemma 3.3 since u∞ ∈ N0. Hence, (1.6) holds.

4. Non-commutative wave packets and the necessity of the geometric control

In this section, we conclude the proof of Theorem 1.4 and prove the necessity of the condition (H-
GCC) (for U). We use special data that we call non-commutative wave packets that we first
introduce, together with their properties, on which we also elaborate in Appendix C. Then, we
conclude to the necessity of the H-type GCC.

4.1. Non-commutative wave packets. Let us first briefly recall basic facts about classical (Eu-
clidean) wave packets. Given (x0, ξ0) ∈ Rd × Rd and a ∈ S(Rd), we consider the family (indexed
by ε) of functions

(4.1) uεeucl(x) = ε−d/4a

(
x− x0√

ε

)
e
i
ε
ξ0·(x−x0), x ∈ Rd.

Such a family is called a (Euclidean) wave packet.

The oscillation along ξ0 is forced by the term e
i
ε
ξ0·(x−x0) and the concentration on x0 is performed

at the scale
√
ε for symmetry reasons : the ε-Fourier transform of uεeucl, ε

−d/2ûεeucl(ξ/ε) presents
a concentration on ξ0 at the scale

√
ε. The regularity of the wave packets makes them a flexible

tool. Besides, taking a compactly supported in the interior of a fundamental domain for the torus,
one can generalize their definition to the case of the torus by extending them by periodicity. For
example, let us consider the torus Td = Rd/(2πZ)d, we choose a ∈ C∞c ((−π, π)d) and we define
aε(x) as

aε(x) = a

(
x− x0√

ε

)
.

We consider the periodisation operator P which associates with a function ϕ compactly supported
inside a set of the form x0 + (−π, π)d the periodic function defined on the sets k + x0 + (−π, π)d

for k ∈ (2πZ)d by Pϕ(x) = ϕ(x− k). Then, the definition of a wave packet extends to functions on
the torus by setting

uεtorus(x) = εd/4Paε(x)e
i
ε
ξ0·(x−x0).

We introduce here a generalization of these wave packets to the non-commutative setting of Lie
groups and nilmanifolds, in the context of H-type groups, which is strongly inspired by [20]. For
x ∈ G, we write

x = Exp(V + Z) = xzxv = xvxz with V ∈ v, Z ∈ z,

where

xz = eZ ∈ Gz := Exp(z) and xv = eV ∈ Gv := G/Gz.

The concentration is performed by use of dilations: with a ∈ C∞c (G), we associate

aε(x) = a (δε−1/2(x)) .
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The oscillations are forced by using coefficients of the representations, in the spirit of [52]: with
λ0 ∈ z∗, Φ1, Φ2 smooth vectors in the space of representations, i.e. in S(Rd), we associate the
oscillating term

eε(x) =
(
πλεx Φ1,Φ2

)
, λε =

λ0

ε2
.

We restrict to ε ∈ (0, 1) and define the periodisation operator P in analogy with the case of the

torus described above, using the multiplication on the left by elements of Γ̃. We consider a subset B
of G which is a neighborhood of 1G and such that ∪

γ∈Γ̃
(γB) = G and we choose functions a that

are in C∞c (B) (in other words, their support is a subset of the interior of B).

Proposition 4.1. Let Φ1,Φ2 ∈ S(Rd), a ∈ C∞c (B), x0 ∈ M , λ0 ∈ z∗ \ {0}. Then, there exists
ε0 > 0 such that the family (vε)ε∈(0,ε0) defined by

vε(x) = |λε|d/2 ε−p/2 P(eεaε)(x
−1
0 x),

is a bounded ε-oscillating family in L2(M) with bounded ε-derivatives and momenta:

(4.2) ∀k ∈ N, ∃Ck > 0, ∀ε ∈ (0, ε0), ‖(−ε2∆M )k/2vε‖L2(M) ≤ Ck.
Moreover, (vε)ε∈(0,ε0) has only one semi-classical measure Γdγ where

(4.3) γ = ca δ(x− x0)⊗ δ(λ− λ0), ca = ‖Φ2‖2
∫
Gz

|a(xz)|2dxz,

and Γ is the operator defined by

ΓΦ =
(Φ,Φ1)

‖Φ1‖2
Φ1, ∀Φ ∈ L2(Rd).

In the following, we shall say that the family vε is a wave packet on M with cores (x0, λ0),
profile a and harmonics (Φ1,Φ2), and write

vε = WP εx0,λ0(a,Φ1,Φ2) = |λε|d/2 ε−p/2 P(eεaε)(x
−1
0 x).

Remark 4.2. (1) Note that ε0 is chosen small enough so that for ε ∈ (0, ε0), the function

G 3 x 7→ aε(x) has support included in a fundamental domain of G for Γ̃ and thus x 7→
(eεaε)(x

−1
0 x) can be extended by periodicity on G, which defines a function of M .

(2) Omitting the periodisation operator P, we construct wave packets on G that also satisfy
estimates in momenta

∀k ∈ N, ∃Ck > 0, ∀ε > 0,
∑

1≤p+q≤k
‖|x|p(−ε2∆G)q/2vε‖L2(G) ≤ Ck.

(3) The coefficient |λε|d/2ε−p/2 guarantees the boundedness in L2(M) of the family (vε)ε>0.
(4) Characterization of wave packets. Let x ∈ M be identified to a point of G and let us fix

Φ1, Φ2, x0 and λ0. Then, vε is a wave packet on M if there exist x0 ∈ M , λ0 ∈ z∗ \ {0},
a ∈ C∞c (B) and Φ1,Φ2 ∈ S(Rd), such that

εQ/4vε(x0δ√ε(x)) = |λε|d/2εQ/4−p/2a(x)(Φ1, (π
λ0
δ
ε−1/2 (x))

∗Φ2)(4.4)

= |λ0|d/2ε−d/2a(x)(Φ1, (π
λ0
δ
ε−1/2 (x))

∗Φ2).

(5) Generalization. The construction we make here extends to more general Lie groups following
ideas from Section 6.4 in [20] and [52].

4.2. Proof of Proposition 4.1. The proof of Proposition 4.1 is relatively long, and we decompose
it into several steps.
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4.2.1. The norm of wave packets. By the definition of the periodisation operator P,∫
M
|vε(x)|2dx = |λε|dε−p

∫
G
|aε(x−1

0 x)|2|eε(x−1
0 x)|2dx.

We then use (4.4) and we write

‖vε‖2L2(G) = |λ0|dε−d
∫
G
|a(x)|2|(πλ0δ

ε−1/2x
Φ1,Φ2)|2dx

= |λ0|d
∫
G
|a(δ√ε(xv)xz)|2|(πλ0xv Φ1,Φ2)|2dxvdxz

≤

(∫
Gz

sup
yv∈Gv

|a(yvxz)|2dxz

)(
|λ0|d

∫
Gv

|(πλ0xv Φ1,Φ2)|2dxv
)
.

Let us note that the following relation holds for any Φ, Φ̃,Ψ, Ψ̃ ∈ S(Rd):

(4.5) |λ0|d
∫
Gv

(πλ0xv Φ,Ψ)(πλ0xv Φ̃, Ψ̃)dxv = (Φ, Φ̃)(Ψ, Ψ̃).

Therefore,

|λ0|d
∫
Gv

|(πλ0xv Φ1,Φ2)|2dxv = ‖Φ1‖2‖Φ2‖2.

We deduce that vε is uniformly bounded in L2(G).

4.2.2. The ε-oscillation and the regularity of wave packets. Straightforward computations give that
if λ ∈ z∗ \ {0}, Φ1,Φ2 ∈ S(Rd), xv = Exp[P +Q], x = xvxz with

P =
d∑
j=1

pjP
(λ)
j and Q =

d∑
j=1

qjQ
(λ)
j ,

then, for 1 ≤ j ≤ d,

(4.6)
√
|λ| qj

(
πλxΦ1,Φ2

)
=
(

[πλx , i∂ξj ]Φ1,Φ2

)
,
√
|λ| pj

(
πλxΦ1,Φ2

)
=
(

[πλx , ξj ]Φ1,Φ2

)
.

Besides,

(4.7) P
(λ)
j

(
πλxΦ1,Φ2

)
=
√
|λ|
(
∂ξjπ

λ
xΦ1,Φ2

)
and Q

(λ)
j

(
πλxΦ1,Φ2

)
= i
√
|λ|
(
ξjπ

λ
xΦ1,Φ2

)
.

For proving this formula for P
(λ)
j , we use (1.2) and we observe

Exp(tP
(λ)
j )Exp(P +Q+ Z) = Exp(tP

(λ)
j + P +Q+ Z +

t

2
[P

(λ)
j , P +Q]).

Since [P
(λ)
j , Q

(λ)
j ] = Z(λ) and for k 6= j, [P

(λ)
j , P

(λ)
k ] = [P

(λ)
j , Q

(λ)
k ] = 0, we deduce

Exp(tP
(λ)
j )Exp(P +Q+ Z) = Exp(tP

(λ)
j + P +Q+ Z +

t

2
qjZ(λ)).

Therefore, using λ(Z(λ)) = |λ|, we obtain for Φ ∈ S(Rd) and ξ ∈ Rd,

d

dt

(
πλ

Exp(tP
(λ)
j )x

Φ(ξ)

)∣∣∣∣
t=0

=
√
|λ|πλx∂ξjΦ(ξ) + i|λ|qjπλxΦ(ξ) =

√
|λ|∂ξjπ

λ
xΦ(ξ).

The proof for Q
(λ)
j is similar. We deduce (4.2) and that the family (vε) is uniformly ε-oscillating

by the Sobolev criteria of Proposition 4.6 in [20].
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4.2.3. Action of pseudodifferential operators on wave packets. For studying their semi-classical mea-
sure, it is convenient to analyze first the action of pseudodifferential operators on wave packets.

Lemma 4.3. Let Φ1, Φ2 ∈ S(Rd), (x0, λ0) ∈ G× z∗, a ∈ C∞c (B). Let σ ∈ A0 compactly supported

in an open set Ω such that Ω is strictly included in a fundamental domain B of Γ̃. Then there exist
ε1 > 0 and c1 > 0 such that for all ε ∈ (0, ε1),

‖Opε(σ)WP εx0,λ0(a,Φ1,Φ2)−WP εx0,λ0(a, σ(x0, λ0)Φ1,Φ2)‖L2(M) ≤ c1

√
ε.

Remark 4.4. The proof we perform below shows that there exist sequences of profiles (aj)j∈N and

of harmonics (Φ
(j)
1 ,Φ

(j)
2 )j∈N such that for all N ∈ N,

‖Opε(σ)WP εx0,λ0(a,Φ1,Φ2)−
N∑
j=0

ε
j
2WP εx0,λ0(aj ,Φ

(j)
1 ,Φ

(j)
2 )‖L2(M) ≤ c1 (

√
ε)N+1.

Moreover, by commuting the operator (−ε2∆G)s/2 with the pseudodifferential operators, one can
extend this result in Sobolev spaces. Note also that the same type of expansion holds in G, in
refined functional spaces where momenta are controlled:

‖Opε(σ)WP εx0,λ0(a,Φ1,Φ2)−
N∑
j=0

ε
j
2WP εx0,λ0(aj ,Φ

(j)
1 ,Φ

(j)
2 )‖Σkε (G) ≤ c1 ε

N+1
2

where Σk
ε is the vector space of functions f ∈ L2(G) for which the semi-norms

(4.8) ‖f‖Σkε :=

k∑
`=0

(
‖|x|`f‖L2(G) + ‖(−ε2∆G)`/2f‖L2(G)

)
are finite.

Proof. We first observe that, in view of Remark 2.6, it is enough to prove the result for wave packets
in G. Indeed, consider χ ∈ C∞c (B) with χσ = σ. Then for any function f ∈ C∞c (B) and x ∈ M
identified to the point x of G ∩ B, we have for all N ∈ N, thanks to (2.15),

Opε(σ)P(f)(x) = Opε(σ)χP(f)(x) +O(εN )

= Opε(σ)χf(x) +O(εN ) = Opε(σ)f(x) +O(εN ).

Therefore, we are going to prove the result of Lemma 4.3 for wave packets and pseudodifferential
operators inG. Besides, for simplicity, we assume that σ(x, ·) is the Fourier transform of a compactly
supported function. This technical assumption simplifies the proof which extends naturally to
symbols that are Fourier transforms of Schwartz class functions.

We write

Opε(σ)vε(x) = c0|λε|d/2ε−p/2
∫
G×Ĝ

Tr(πλy−1xσ(x, ε2λ))aε(x
−1
0 y)(πλε

x−1
0 y

Φ1,Φ2)|λ|ddλdy

= c0|λε|d/2ε−p/2
∫
G×Ĝ

Tr(πλ
y−1x−1

0 x
σ(x, ε2λ))aε(y)(πλεy Φ1,Φ2)|λ|ddλdy.

where we have performed the change of variable y 7→ x0y. We now focus on ε−Q/4Opε(σ)vε(x0δ√εx)

in order to simplify the computations. Note that this quantity is uniformly bounded in L2(G).

Opε(σ)vε(x0δ√εx) = c0|λε|d/2ε−p/2
∫
G×Ĝ

Tr(πλy−1δ√εx
σ(x0δ√εx, ε

2λ)aε(y)(πλεy Φ1,Φ2)|λ|ddλdy.
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We perform the change of variable ỹ = δε−1/2y and λ̃ = ε2λ. We have

πλy−1δ√εx
= π

λ̃/ε2

δ√ε(y
−1x)

= πλ̃δ
ε−1/2 (ỹ−1x), πλεy = π

λ0/ε2

δ√εỹ
= πλ0δ

ε−1/2 (y)

and
|λ̃|ddλ̃dỹ = ε2dε2pε−Q/2|λ|ddλdy = εQ/2|λ|ddλdy.

We obtain

Opε(σ)vε(x0δ√εx) = c0|λε|d/2ε−p/2ε−Q/2

×
∫
G×Ĝ

Tr(πλδ
ε−1/2 (y−1x)σ(x0δ√εx, λ))a(y)(πλ0δ

ε−1/2 (y)Φ1,Φ2)|λ|ddλdy.

The change of variables w = δε−1/2(y−1x) (for which dy = εQ/2dw and y = x(δ√εw)−1)) gives

Opε(σ)vε(x0δ√εx) = c0|λε|d/2ε−p/2

×
∫
G×Ĝ

Tr(πλwσ(x0δ√εx, λ))a(x(δ√εw)−1)(πλ0
(δ
ε−1/2 (x))w−1Φ1,Φ2)|λ|ddλdw

= c0|λε|d/2ε−p/2

×
∫
G×Ĝ

Tr(πλwσ(x0δ√εx, λ))a(x(δ√εw)−1)(πλ0
w−1Φ1, (π

λ0
δ
ε−1/2 (x))

∗Φ2)|λ|ddλdw.

Computing the integral in λ thanks to the inverse Fourier transform formula (2.8) and denoting
by κx the Schwartz function such that σ(x, ·) = F(κx) we have

εQ/4Opε(σ)vε(x0δ√εx) = |λ0|d/2ε−d/2
∫
G
κx0δ√εx(w)a(x(δ√εw)−1)(πλ0

w−1Φ1, (π
λ0
δ
ε−1/2 (x))

∗Φ2)dw

that we can rewrite

εQ/4Opε(σ)vε(x0δ√εx) = |λ0|d/2ε−d/2
(
Qε(x)Φ1, (π

λ0
δ
ε−1/2 (x))

∗Φ2

)
with

Qε(x) =

∫
G
κx0δ√εx(w)a(x(δ√εw)−1)πλ0

w−1dw.

By performing a Taylor formula on the functions x 7→ κx0δ√εx(w) and w 7→ a(x(δ√εw)−1), we see

that the operator Qε(x) admits a formal asymptotic expansion of the form

(4.9) Qε(x) = Q0(x) +
√
εQ1(x) + · · ·+ ε

j
2Qj(x) + · · ·

with

Q0(x) = a(x)

∫
G
κx0(w)πλ0

w−1dw = a(x)σ(x0, λ0).

It remains to prove the convergence of this asymptotic expansion by examining the remainder term.

We examine the one-term expansion. We write

(4.10) a(x(δ√εw)−1) = a(x) +A(x, δ√εw)

with

(4.11) |A(x,w)| ≤
2d∑
j=1

sup
|z|≤|w|

|zj ||Vja(xz)| ≤ Ca|w|,

where for z ∈ G, |z| denotes the homogeneous norm defined in (2.3). We obtain

(4.12) εQ/4Opε(σ)vε(x0δ√εx) = |λ0|d/2ε−d/2
(
Q0Φ1, (π

λ0
δ
ε−1/2 (x))

∗Φ2

)
a(x) +

√
εrε1(x) +

√
εrε2(x)
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with

rε1(x) = |λ0|d/2ε−d/2
(
Rε1(x)Φ1, (π

λ0
δ
ε−1/2 (x))

∗Φ2

)
, Rε1(x) = ε−1/2

∫
G

(κx0δ√εx(w)−κx0(w))a(x)πλ0
w−1dw

and

rε2(x) = |λ0|d/2ε−d/2
(
Rε2(x)Φ1, (π

λ0
δ
ε−1/2 (x))

∗Φ2

)
, Rε2(x) = ε−1/2

∫
G
κx0δ√εx(w)A(x, δ√εw)πλ0

w−1dw.

Lemma 4.5. The families (rε1)ε>0 and (rε2)ε>0 are uniformly bounded in L2(G).

Applying (4.4) to the first term in the right hand side of (4.12), we see that Lemma 4.5 implies
Lemma 4.3. �

Proof of Lemma 4.5. The idea is that, for j = 1, 2, there holds rεj (x) = ε−d/2r̃εj (δε−1/2(xv), xz, x)
with

y 7→ r̃εj (yv, yz, x)

that is in L2(G), uniformly with respect to ε, with continuity of the map x 7→ r̃εj (·, ·, x).

With this idea in mind, we write, for j = 1, 2,

‖rεj‖2L2(G) = |λ0|dε−d
∫
G

∣∣∣(Rεj(x)Φ1, (π
λ0
δ
ε−1/2 (x))

∗Φ2

)∣∣∣2 dx
= |λ0|d

∫
G

∣∣∣(Rεj(δε1/2(xv)xz)Φ1, (π
λ0
xv )∗Φ2

)∣∣∣2 dxvdxz.(4.13)

Let us first deal with rε1. Writing a Taylor formula, we notice that

Rε1(δε1/2(xv)xz) = ε−1/2

∫
G

(κx0δε(xv)δ√ε(xz)
(w)− κx0(w))a(x)πλ0

w−1dw

=
√
ε

∫
G
B(x,w)a(x)πλ0

w−1dw

where (x,w) 7→ B(x,w) is continuous and compactly supported in w. Therefore Rε1(δε1/2(xv)xz)
is a bounded operator for any x ∈ G. Since a is compactly supported, it implies that (rε1)ε>0 is
uniformly bounded in L2(G).

Let us now deal with rε2. We are going to use that for all multi-indexes α ∈ N2d, the map

(4.14) x 7→ xαv

(
Rε2(δε1/2(xv)xz)Φ1, (π

λ0
xv )∗Φ2

)
is uniformly bounded and has compact support in xz. Let us first prove these properties.

By assumption on the support of κx, we know that the w’s contributing to the integral defining
Rε2(x) are contained in a compact set (independent of x). Then, using (4.10) and the fact that a
has compact support, we obtain that Rε2 has compact support. It follows that the map (4.14) has
compact support in xz, i.e., there exists R0 > 0 such that |xz| ≤ R0 for all x that are in the support
of Rε2(δε1/2(xv)xz). Because of (4.11) and because the integral is compactly supported in w, Rε2(x)
is a bounded operator for all x ∈ G. Besides, the bound is uniform since x belongs to a compact
set. Therefore, there exists a constant C0 > 0 such that∣∣∣(Rε2(δε1/2(xv)xz)Φ1, (π

λ0
xv )∗Φ2

)∣∣∣ ≤ C01xz≤R0(x).

One now wants to prove also decay at infinity in xv. For this, we use the relations (4.6) and
the fact that Φ1 and Φ2 are in the Schwartz class to absorb the factor |xv| in the right part of the
scalar product. Therefore, for all α ∈ N, there exists Cα such that

|xv|α
∣∣∣(Rε2(δε1/2(xv)xz)Φ1, (π

λ0
xv )∗Φ2

)∣∣∣ ≤ Cα1xz≤R0(x).
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As a conclusion, there exists C > 0 such that∫
G

∣∣∣(Rε2(δε1/2(xv)xz)Φ1, (π
λ0
xv )∗Φ2

)∣∣∣2 dxvdxz ≤ C ∫ 1|xz|≤R0
(1 + |xv|2)−Ndxvdxz < +∞

by choosing N large enough. This implies the uniform boundedness of the family (rε2) in L2(G),
which concludes the proof of Lemma 4.5. �

Let us now shortly discuss the generalization of this proof in order to obtain an asymptotic
expansion at any order, as stated in Remark 4.4. The idea is to use a Taylor expansion at higher
order (see Section 3.1.8 of [24]). The terms of the expansion (4.9) are of the form

Qj(x) = xαa(x)

∫
G
wβκx0(w)πλ0

w−1dw

where α and β are multi-indexes such that the sum of their homogeneous lengths is exactly j.
Denoting by ∆wβσ(x, λ0) the Fourier transform of w 7→ wβκx0(w), we obtain

Qj(x) = xαa(x)∆wβσ(x, λ0).

Observe that the operator ∆wβ is a difference operator as defined in [24]. It order to justify
Remark 4.4, one then needs to remark that the rest term produced by the Taylor expansion at
order N is of the form

rεN (x) = |λ0|d/2ε−d/2
(
RεN (x)Φ1, (π

λ0
δ
ε−1/2 (x))

∗Φ2

)
and

RεN (x) = ε−
N+1

2

∫
G
κx0δ√εx(w)AN+1(x, δ√εw)πλ0

w−1dw

where AN+1 satisfies convenient bounds so that an argument similar to the preceding one can
be worked out. We do not develop the argument further because we do not need such a precise
estimate for our purpose.

4.2.4. Semi-classical measure. We can now deduce (4.3) from Lemma 4.3 and the following lemma.

Lemma 4.6. Let (x0, λ0) ∈ G × (z∗ \ {0}) a, b ∈ C∞c (B) where B is a fundamental domain of M ,
and Φ1,Φ2,Ψ1,Ψ2 ∈ S(Rp). Then(

WP εx0,λ0(a,Φ1,Φ2),WP εx0,λ0(b,Ψ1,Ψ2)
)
L2(M)

= (Φ1,Ψ1)(Φ2,Ψ2)

∫
Gz

a(xz)b(xz)dxz +O(
√
ε)

Proof. Define uε = WP εx0,λ0(a,Φ1,Φ2) and vε = WP εx0,λ0(b,Ψ1,Ψ2) the wave packets in G. We
first use that (

WP εx0,λ0(a,Φ1,Φ2),WP εx0,λ0(b,Ψ1,Ψ2)
)
L2(M)

= (uε, vε)L2(G).

Besides,

(uε, vε)L2(G) = |λε|dε−p
∫
G
aε(x

−1
0 x)b(x−1

0 x)(πλε
x−1
0 x

Φ1,Φ2)(πλε
x−1
0 x

Ψ1,Ψ2)dx

= |λ0|d
∫
G
a
(
δ√ε(xv)xz

)
b
(
δ√ε(xv)xz

)
(πλ0xv Φ1,Φ2)(πλ0xv Ψ1,Ψ2)dxvdxz.

A Taylor expansion of the map x 7→ a(δ√ε(xv)xz)b(δ
√
ε(xv)xz) gives

a(δ√ε(xv)xz)b(δ
√
ε(xv)xz) = a(xz)b(xz) +

√
ε
∑

1≤j≤2d

vjrj(xz, δ√ε(xv))
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where xv = Exp(
∑

1≤j≤2d vjVj) and with |rj(x,w)| ≤ Cj for some constants Cj , 1 ≤ j ≤ 2d. We

deduce (using (4.6))

(uε, vε)L2(G) = |λ0|d
∫
Gz

a(xz)b(xz)dxz

∫
Gv

(πλ0xv Φ1,Φ2)(πλ0xv Ψ1,Ψ2)dxv +O(
√
ε)

= (Φ1,Ψ1)(Φ2,Ψ2)

∫
Gz

a(xz)b(xz)dxz +O(
√
ε),

where the second line follows from (4.5). �

Here again, the reader will observe that the expansion can be pushed at any order.

It follows from Lemma 4.3 and Lemma 4.6 that

(Opε(σ)WP εx0,λ0(a,Φ1,Φ2),WP εx0,λ0(a,Φ1,Φ2))

= (WP εx0,λ0(a, σ(x0, λ0)Φ1,Φ2),WP εx0,λ0(a,Φ1,Φ2)) +O(
√
ε)

= (σ(x0, λ0)Φ1,Φ1)‖Φ2‖2
∫
Gz

|a(xz)|2dxz +O(
√
ε)

which concludes the proof of Proposition 4.1.

4.3. End of the proof of Theorem 1.4. By the results of Section 3, we only need to prove that
if T ≤ TGCC(U), the observability inequality (1.6) does not hold.

We first note that if the observability inequality (1.6) is satisfied for some T > 0, then there
exists δ > 0 such that (1.6) also holds in time T − δ. Indeed, if it were not the case, there would
exist un0 ∈ L2(M) such that ‖un0‖L2(M) = 1 and

1 = ‖un0‖2L2(M) ≥ n
∫ T−2−n

0

∥∥∥eit(
1
2

∆M+V)un0

∥∥∥2

L2(U)
dt

≥ n
∫ T

0

∥∥∥eit(
1
2

∆M+V)un0

∥∥∥2

L2(U)
dt− n

2n
.

due to conservation of energy, and (1.6) would not hold in time T .
Therefore, we shall assume in the sequel that T < TGCC(U).
Let T < TGCC(U) and (x0, λ0) ∈ G× (z∗ \ {0}) such that

(4.15) for all s ∈ [0, T ], Φs
0(x0, λ0) /∈ U × z∗.

Let us chose initial data uε0 in (1.3) which is a wave packet in M with harmonics given by the first
Hermite function h0:

uε0 = WP εx0,λ0(a, h0, h0).

As a consequence, the semi-classical measure of (uε0) is Γ0(x, λ)dγ0 with Γ0 the orthogonal projector
on h0 (this is where we use the fact that h0 is the first Hermite function) and

γ0(x, λ) = c δ(x− x0)⊗ δ(λ− λ0)

where c = lim sup ‖uε0‖L2(M) > 0. Let us denote by uε(t) the associated solution, uε(t) =

eit(
1
2

∆M+V)uε0. By Proposition 2.12, any of its semi-classical measures Γtdγt decomposes above
G × z∗ according to the eigenspaces of H(λ) following (2.19). Moreover, by Proposition 2.12, the
maps (t, x, λ) 7→ Γn,t(x, λ)dγt(x, λ) are continuous and satisfy the transport equation (2.20). We
deduce that for n 6= 0, Γn,t(x, λ) = 0,

(4.16) γt(x, λ) = c δ

(
x− Exp

(
t
d

2
Z(λ)

)
x0

)
⊗ δ(λ− λ0)

and Γ0 is the orthogonal projector on h0.
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As a consequence of the conservation of the L2-norm by the Schrödinger equation, ‖uε(t)‖L2(M) =
‖uε0‖L2(M). Besides, the ε-oscillation (see Proposition 2.11) gives that, for the subsequence defin-
ing Γtdγt,

lim
ε→0
‖uε(t)‖2L2(M) =

∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ), ∀t ∈ R.

We deduce that we have, for any t ∈ R,∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ) =

∫
M×Ĝ

Tr(Γ0(x, λ))dγ0(x, λ).

On the other hand, the positivity of the measure Tr(Γt(x, λ))dγt(x, λ) combined with (4.16) gives∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ) ≥
∫
M×z∗

Tr(Γt(x, λ))dγt(x, λ) =

∫
M×z∗

Tr(Γ0(x, λ))dγ0(x, λ)

=

∫
M×Ĝ

Tr(Γ0(x, λ))dγ0(x, λ).

We deduce that γt1v∗ = 0. Now, using (4.15), there exists a continuous function φ : M → [0, 1]
such that φ(Φs

0(x0, λ0)) = 0 for any s ∈ [0, T ] and φ = 1 on U × z∗. Using Proposition 2.11 for the
subsequence defining the semi-classical measure Γtdγt, we get

0 ≤
∫ T

0

∫
U
|uε(t, x)|2dxdt ≤

∫ T

0

∫
M
φ(x)|uε(t, x)|2dxdt−→

ε→0

∫ T

0

∫
M×z∗

φ(x)dγt(x, λ)dt = 0.

Therefore, the observability inequality (1.6) cannot hold.

Remark 4.7. As already noticed in the introduction, it can happen that TGCC(U) < TGCC(U),
and in this case, Theorem 1.4 does not say anything about observability for times T such that
TGCC(U) < T ≤ TGCC(U). This is due to the possible existence of grazing rays, which are rays
which touch the boundary ∂U without entering the interior of U . This phenomenon already occurs
in the context of the observability of Riemannian waves, as was shown for example in [39, Section
VI.B]. The example given in this paper is the observation of the wave equation in the unit sphere S2

from its (open) northern hemisphere: although the GCC condition is violated by the geodesic
following the equator, observability holds in time T > π. Intuitively, even wave packets following
this geodesic have half of their energy located on the northern hemisphere.

Appendix A. Representations of H-type groups

In this Appendix, we provide a proof of the description (2.6) of Ĝ. This material is standard in
non-commutative Fourier analysis, see for example [15].

A.1. The orbits of g. As any group, a nilpotent connected, simply connected Lie group acts on
itself by the inner automorphism ix : y 7→ xyx−1. With this action, one derives the action of G on
its Lie algebra g called the adjoint map

Ad : G → Aut(g)
x 7→ Adx = d(ix)|1G ,

and its action on g∗, the co-adjoint map

Ad∗ : G → Aut(g∗)
x 7→ Ad∗x

defined by

∀x ∈ G, ∀` ∈ g∗, ∀Y ∈ g, (Ad∗x`)(Y ) = `(Ad−1
x Y ).
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It turns out that the orbits of this action play an important role in the representation theory of
the group. Let us recall that the orbit of an element ` ∈ g∗ is the set O` defined by

O` = {Ad∗x(`), x ∈ G}.
The next proposition describes the orbits of H-type groups.

Proposition A.1. Let G be a H-type group, then there are only two types of orbits.

(i) 0-th. dimensional orbits. If ` ∈ v∗, then O` = {`}.
(ii) 2d-th. dimensional orbits. If ` = ω + λ with ω ∈ v∗ and λ ∈ z∗ \ {0}, then O` = Oλ and

Oλ = {ω′ + λ, ω′ ∈ v∗}.

Proof. Let x = Exp(Vx + Zx) ∈ G and y = Exp(Vy + Zy) ∈ G. Then

ix(y) = xyx−1 = Exp(Vx + Zx)Exp(Vy + Zy)Exp(−Vx − Zx)

= Exp(Vy + Zy + [Vx, Vy]).

We deduce that if Y = VY + ZY ∈ g,

Ad−1
x (Y ) = VY + ZY + [Vx, VY ].

Therefore, if ` = ω + λ with λ ∈ z∗ and ω ∈ v∗,

Ad∗x`(Y ) = 〈`,Ad−1
x (Y )〉 = 〈ω, VY 〉+ 〈λ, ZY + [Vx, VY ]〉 = 〈ω + Jλ(Vx), VY 〉+ 〈λ, ZY 〉

As a consequence, if λ = 0, Ad∗x`(Y ) = `(Y ) for all Y ∈ g. We deduce Ad∗x` = ` for all x ∈ G,
which gives the first type of orbits.
If now λ 6= 0 and if ω′ ∈ v∗, one can find Vx ∈ v such that

〈ω′, V 〉 = 〈ω + Jλ(Vx), V 〉, ∀V ∈ v.

One deduces that for all Y ∈ g, Ad∗x`(Y ) = `′(Y ) with `′ = ω′ + λ. We deduce that any of these `′

is in the orbit of `, which concludes the proof. �

Let λ ∈ z∗ \{0}, the sets pλ⊕ z and qλ⊕ z are maximal isotropic sub-algebras of g for the bilinear
map B(λ) (with associated endomorphism Jλ). Such an algebra is said to be a polarizing algebra
of g. We shall use these algebras in the next section.

A.2. Unitary irreducible representations of G. The unitary representations of a locally com-
pact group are homomorphisms π of G into the group of unitary operators on a Hilbert space that
are continuous for the strong topology. The representations for which there is no proper closed
π(G)-invariant subspaces in Hπ are called irreducible. Arbitrary representations can be uniquely
decomposed as sums of irreducible representations.

Kirillov theory establishes a one to one relation between the orbits (O`)`∈g∗ and the irreducible
unitary representations of G for any nilpotent Lie group which is connected and locally connected.
We shall first explain how one associates to an orbit O` a representation π` (which only depends
on the class of the orbit O`). Then, in the next subsection, we shall explain how the Stone-Von
Neumann Theorem implies that any representation can be associated with an orbit.

• Let ω ∈ v∗, the map χω defined below is a 1-dimensional representation of G.

χω : G → S1

Exp(X) 7→ eiω(X).

Note that χω = π(0,ω) as defined in (2.5).
• Let λ ∈ z∗ \ {0}. We consider the polarizing sub-algebra associated with λ

mλ = qλ ⊕ z
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and the subgroup of G defined by M := Exp(mλ). Then, if ` ∈ Oλ, `([mλ,mλ]) = 0, and the map

χλ,M : M → S1

Exp(Y ) 7→ eiλ(Y ).

is a one-dimensional representation of M . This allows to construct an induced representation πλ

on G with Hilbert space pλ ∼ L2(Rp) via the identification of Exp
(∑d

j=1 ξjP
(λ)
j

)
∈ Exp(pλ) with

ξ = (ξ1, · · · , ξd) ∈ Rd. Indeed, let us take ξ ∈ pλ and x = Exp(X), with X = P + Q + Z and
P ∈ pλ, Q ∈ qλ and Z ∈ z. We have, by the Baker-Campbell-Hausdorff formula,

Exp(ξ)Exp(X) = Exp(Q+ Z + [ξ,Q] +
1

2
[P,Q])Exp(ξ + P ),

with

Q+ Z + [ξ,Q] +
1

2
[P,Q] ∈ mλ and ξ + P ∈ pλ.

Let us denote by p, q ∈ Rd the coordinates of P and Q in the bases (P
(λ)
j )1≤j≤d and (Q

(λ)
j )1≤j≤d

respectively. Following [15], we define the induced representation by

πλ(x)f(ξ) = χλ

(
Exp(Q+ Z + [ξ,Q] +

1

2
[P,Q])

)
f(ξ + p).

Using λ([P
(λ)
j , Q

(λ)
j ]) = B(λ)(P

(λ)
j , Q

(λ)
j ) = |λ|, we obtain

πλ(x)f(ξ) = eiλ(Z)+ i
2
|λ|p·q+i|λ|ξ·qf(ξ + p).

We can then use the scaling operator Tλ defined by

Tλf(ξ) = |λ|d/4f(|λ|1/2ξ)
to get the equivalent representation πλx := T ∗λπλ(x)Tλ written in (2.4).

This inductive process can be generalized to the case of groups presenting more than two strata.
For our purpose, it remains to prove that any irreducible representation is equivalent to one of
those, which is a consequence of the Stone-Von Neumann Theorem.

A.2.1. Stone-Von Neumann Theorem. Let us recall the celebrated Stone-Von Neumann theorem
(see [15, Section 2.2.9] for a proof).

Theorem A.2. Let ρ1, ρ2 be two unitary representations of G = Rd in the same Hilbert space H
satisfying, for some α 6= 0, the covariance relation

ρ1(x)ρ2(y)ρ1(x)−1 = eiαx·yρ2(y), for all x, y ∈ Rd.
Then H is a direct sum H = H1 ⊕H2 ⊕ . . . of subspaces that are invariant and irreducible under
the joint action of ρ1 and ρ2. For any k, there is an isometry Jk : Hk → L2(Rd) which transforms
ρ1 and ρ2 to the canonical actions on L2(Rd):

[ρ̃1(x)f ](ξ) = f(ξ + x), [ρ̃2(y)f ](ξ) = eiαy·ξf(ξ).

For each α 6= 0, the canonical pair ρ̃1, ρ̃2 acts irreducibly on L2(Rd), so ρ1, ρ2 act irreducibly on
each Hk.

Let π be an irreducible representation of G on Hπ. Our goal is to prove that it is equivalent
either to a χω or to a πλ of the preceding section. For Z ∈ z, the operators π(Exp(Z)) commute
will all elements of {πg : g ∈ G}. By Schur’s Lemma (see [15, Lemma 2.1.1]), they are thus scalar:
πExp(Z) = χ(Exp(Z))IdHπ where χ is a one-dimensional representation of the center Z(G) = Exp(z)
of G. Then, two cases appear:
• If χ ≡ 1, then π is indeed a representation of the Abelian quotient group G/Z(G) = Exp(v),

thus it is one-dimensional and of the form χω for some ω ∈ v∗.
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• If χ 6≡ 1, there is λ ∈ z∗ \ {0} such that χ(Exp(Z)) = eiλ(Z). We keep the notations of (2.1),

the notations P = p1P
(λ)
1 + . . .+ pdP

(λ)
d , Q = q1Q

(λ)
1 + . . .+ qdQ

(λ)
d and Z = z1Z1 + . . .+ zpZp of

the previous section, and we set p = (p1, . . . , pd), q = (q1, . . . , qd) and z = (z1, . . . , zp). The actions
of the d-parameter subgroups ρ1(p) = πExp(P ) and ρ2(q) = πExp(Q) satisfy the covariance relation

ρ1(p)ρ2(q)ρ−1
1 (p)ρ−1

2 (q) = π
Exp( 1

2
(p1q1[P

(λ)
1 ,Q

(λ)
1 ]+...+pdqd[P

(λ)
d ,Q

(λ)
d ]))

= e
i
2
|λ|p·qIdHπ

where we have used [P
(λ)
j , Q

(λ)
j ] = Z(λ) with λ(Z(λ)) = |λ|. The joint action of ρ1 and ρ2 is

irreducible since the d-parameter subgroups generate G and π is irreducible. Thus, we may apply
the Stone-Von Neumann theorem, which gives that there exists an isometry identifying Hπ with
L2(Rd) such that the actions take the form

[ρ1(p)f ](t) = [πExp(P )f ](ξ) = f(ξ + p),

[ρ2(q)f ](t) = [πExp(Q)f ](ξ) = ei|λ|q·ξf(ξ)

for all f ∈ L2(Rd) and p, q ∈ Rd. Hence, in this model, the action of an arbitrary element of G is

[πExp(P+Q+Z)f ](ξ) = eiλ(z)+ i
2
|λ|p·q+i|λ|q·ξf(ξ + p)

since Exp(P + Q + Z) = Exp(Z + 1
2 [P,Q]) · Exp(Q) · Exp(P ) by the Baker-Campbell-Hausdorff

formula. This is just the action of πλ modeled in L2(Rd). Thus, an infinite-dimensional irreducible
representation π is isomorphic to πλ for some λ.

Appendix B. Pseudodifferential operators and semi-classical measures

In this Appendix we focus on different aspects of the pseudodifferential calculus on quotient
manifolds.

B.1. Properties of pseudodifferential operators on quotient manifolds. We prove here
properties (3) to (7) of Section 2.

• Proof of Property (3). We write G = ∪
γ∈Γ̃

Mγ−1 and, using the periodicity of f , we obtain∫
G
κεx(y−1x)f(y)dy =

∑
γ∈Γ̃

∫
y∈Mγ−1

κεx(y−1x)f(y)dy =
∑
γ∈Γ̃

∫
y∈M

κεx(γy−1x)f(y)dy.

As a consequence, the action of the operator Opε(σ) writes as a sum of convolution

Opε(σ)f(x) =
∑
γ∈Γ̃

f ∗ κεx(γ·)(x).

• Proof of Property (4). By Young’s convolution inequality

‖f ∗ κεx(γ·)‖L2(M) ≤ ‖ sup
x∈M
|κεx(γ·)|‖L1(M)‖f‖L2(M).

We have

‖ sup
x∈M
|κεx(γ·)|‖L1(M) = ε−Q

∫
M

sup
x∈M
|κx(ε · γy)|dy =

∫
γ−1M

sup
x∈M
|κx(y)|dy.

Therefore

‖Opε(σ)f‖L2(M) ≤ ‖f‖L2(M)

∑
γ∈Γ̃

∫
γ−1M

sup
x∈M
|κx(y)|dy = ‖f‖L2(M)

∫
G

sup
x∈M
|κx(y)|dy,

which gives (2.14)
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• Proof of Property (5). We argue as for the L2 boundedness and observe that the kernel of
Opε(σ)−Opε(σ)χ is the function

(x, y) 7→ κεx(y−1x)(1− χ)(y).

Writing

κεx(y−1x)(1− χ(y)) = κεx(y−1x)(1− χ)(x(y−1x)−1)

we deduce that we can write the operator Opε(σ)−Opε(σ)χ as the convolution with an x-dependent
function:

(Opε(σ)−Opε(σ)χ)f(x) =
∑
γ∈Γ̃

f ∗ θε(x, γ·)

with θε(x, z) = ε−Qκx(ε · z)(1− χ)(xz−1). Therefore, if K = suppσ (where χ ≡ 1), we have

‖ sup
x∈K

θε(x, γ·)‖L1(M) ≤
∫
M

sup
x∈K
|κx(γz)||(1− χ)(x(ε · (γz))−1)|dz.

A Taylor formula gives that there exists a constant c > 0 such that for all x ∈ K,

|(1− χ)(x(ε · (γz))−1)| ≤ cεN |γz|N .

Therefore,

‖ sup
x∈K

θε(x, γ·)‖L1(M) ≤ cεN
∫
M

sup
x∈K
|κx(γz)||γz|Ndz.

We deduce thanks to Young’s convolution inequality

‖(Opε(σ)(1− χ)f‖L2(M) ≤ εNc‖f‖L2(M)

∑
γ∈Γ̃

∫
M

sup
x∈K
|κx(γz)||γz|Ndz

= εNc‖f‖L2(M)

∫
G

sup
x∈K
|κx(z)||z|Ndz.

• Proof of Property (6).

Proof of Proposition 2.7. We take f, g ∈ L2(M). We use a partition of unity
∑

1≤j≤J χj = 1B
with χj ∈ C∞0 (G), compactly supported in a fundamental domain of M (which depends on j). We
decompose σ as

σ(x, λ) =
∑

1≤j≤J
σj(x, λ), σj(x, λ) = χj(x)σ(x, λ), (x, λ) ∈ G× G̃;

and we consider χ̃j ∈ C∞0 (G), real-valued, compactly supported in the same fundamental domain
of M as χj with χ̃j = 1 on the support of χj . For proving (2.17), it is enough to prove it for each
of the σj . Besides, the symbol σj and the smooth function χ̃j satisfy Point (5) and we have

Opε(σj) = χ̃jOpε(σj)χ̃j +O(εN )

for N ∈ N in L(L2(M)). We will use this property to transform the relations in L2(M) into relations
in L2(G):

(Opε(σj)
∗f, g)L2(M) = (f,Opε(σj)g)L2(M) = (χ̃jf,Opε(σj)χ̃jg)L2(G) +O(εN‖χ̃jf‖L2(G)‖χ̃jg‖L2(G))

= (Opε(σj)
∗χ̃jf, χ̃jg)L2(G) +O(εN‖χ̃jf‖L2(G)‖χ̃jg‖L2(G))
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We can now use symbolic calculus in L2(G) and we obtain by Proposition 3.6 of [20],

(Opε(σj)
∗f, g)L2(M) =

(
Opε(σ

∗
j )χ̃jf, χ̃jg

)
L2(G)

− ε(Opε(P
(λ) ·∆λ

pσ
∗
j +Q(λ) ·∆λ

qσ
∗
j )χ̃jf, χ̃jg)L2(G)

+O(ε2‖χ̃jf‖L2(G)‖χ̃jg‖L2(G))

=
(
Opε(σ

∗
j )f, g

)
L2(M)

− ε(Opε(χ̃j(P
(λ) ·∆λ

pσ
∗
j +Q(λ)) ·∆λ

qσ
∗
j ))f, g)L2(M)

+O(ε2‖f‖L2(M)‖g‖L2(M))

by (2.15). We now use that χ̃jσj = σj , whence χ̃jσ
∗
j = σ∗j and also χ̃j∆

λ
pσj = ∆λ

pσj , χ̃j∆
λ
qσj =

∆λ
qσj . Besides since χ̃j = 1 on the support of σj , we deduce

χ̃j(P
(λ) ·∆λ

pσ
∗
j +Q(λ) ·∆λ

qσ
∗
j ) = P (λ) ·∆λ

pσ
∗
j +Q(λ) ·∆λ

qσ
∗
j ,

whence (2.17).

Let us now prove (2.18). We argue similarly and write in L(L2(M))

Opε(σ1) =
∑

1≤j≤J
Opε(χjσ1) =

∑
1≤j≤J

χ̃jOpε(χjσ1)χ̃j +O(εN )

for N ∈ N. Considering χ
j

smooth, real-valued, compactly supported in a fundamental domain

and equal to 1 on the support of χ̃j , we have

χ̃jOpε(σ2) = Opε(χ̃jσ2) = Opε(χ̃jσ2)χ
j

+O(εN )

in L(L2(G)) and we deduce that for 1 ≤ j ≤ J

(Opε(χjσ1) ◦Opε(σ2)f, g)L2(M) =
(

Opε(χjσ1) ◦Opε(χ̃jσ2)χ
j
f, χ̃jg

)
L2(G)

+O(εN‖f‖L2(M)‖g‖L2(M)).

By symbolic calculus in G

(Opε(χjσ1) ◦Opε(σ2)f, g)L2(M) =
(

Opε(χjσ1σ2 − εr)χjf, χ̃jg
)
L2(G)

+O(ε2‖f‖L2(M)‖g‖L2(M))

with

r(x, λ) = ∆λ
p(χjσ1) · P (λ) (χ̃jσ2) + ∆λ

q (χjσ1) ·Q(λ) (χ̃jσ2) = χj(∆
λ
pσ1 · P (λ) σ2 + ∆λ

qσ1 ·Q(λ) σ2)

where we have used that χ̃j = 1 on the support of χj . Summing the contributions in j, we obtain

(Opε(σ1) ◦Opε(σ2)f, g)L2(M)

=
∑

1≤j≤J

(
Opε(χj(σ1σ2 − ε(∆λ

pσ1 · P (λ) σ2 + ∆λ
qσ1 ·Q(λ) σ2)))χ

j
f, χ̃jg

)
L2(G)

+O(ε2‖f‖L2(M)‖g‖L2(M))

=
∑

1≤j≤J

(
Opε(χj(σ1σ2 − ε(∆λ

pσ1 · P (λ) σ2 + ∆λ
qσ1 ·Q(λ) σ2)))f, g

)
L2(M)

+O(ε2‖f‖L2(M)‖g‖L2(M))

because both χ
j

and χ̃j are equal to 1 on the support of χj . Finally, using
∑

1≤j≤J χj = 1, we

obtain

(Opε(σ1) ◦Opε(σ2)f, g)L2(M) =
(

Opε(σ1σ2 − ε(∆λ
pσ1 · P (λ) σ2 + ∆λ

qσ1 ·Q(λ) σ2))f, g
)
L2(M)

+O(ε2‖f‖L2(M)‖g‖L2(M)),

whence the result. �
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• Proof of Property (7).

Proof of Proposition 2.8. Here again, we reduce by using a partition of unity to the case of σ as
in (5) above, with a fundamental domain B containing 1G. We introduce the associated function
χ ∈ C∞c (B) such that χσ = σ. We observe that χσε = σε and we use Proposition 3.4 of [20] to
write for f, g ∈ L2(M),

(Opε(σ)f, g)L2(M) = (Opε(σ)χf, χg)L2(G)

= (Opε(σε)χf, χg)L2(G) +O(εN‖χf‖L2(G)‖χg‖L2(G))

= (Opε(σε)f, g)L2(M) +O(εN‖f‖L2(M)‖g‖L2(G))

which concludes the proof. �

B.2. Time-averaged semi-classical measures. We give here comments about the proof of
Proposition 2.12. Note that when V = 0, Theorem 2.10(ii)(2) in [21] implies the statement, except
for the continuity of the map t 7→ Γtdγt. The key observation is that for any symbol σ ∈ A0,

(B.1)
1

iε

[
−ε

2

2
∆M − ε2V,Opε(σ)

]
=

1

iε

[
−ε

2

2
∆M ,Opε(σ)

]
+O(ε)

in L(L2(G)) by the boundedness of V. As a consequence, the results of Theorem 2.10(ii)(2) in [21]
without potential passes to the case with a bounded potential. Note in particular that we do not
need any analyticity on the potential. The two points of Proposition 2.12 derive from relation (B.1).

For (1), using Proposition 2.7 and multiplying (B.1) by ε, one gets that for any symbol σ ∈ A0

and θ ∈ L1(G), ∫
R×G×Ĝ

θ(t)Tr([σ(x, λ), H(λ)]Γt(x, λ))dγt(x, λ)dt = 0,

which implies the commutation of Γt(x, λ) with H(λ) and thus the relation 2.19.

Let us now prove the transport equation and the continuity property; Let Π
(λ)
n be the projector on

the n-th eigenspace of H(λ). We prove here the continuity of the map t 7→ (Π
(λ)
n Γt1z∗Π

(λ)
n , γt1z∗).

Since Π
(λ)
n /∈ A0, it is necessary to regularize the operator Π

(λ)
n σ(x, λ)Π

(λ)
n for σ ∈ A0. In that

purpose, we fix χ ∈ C∞(R) such that 0 ≤ χ ≤ 1, χ(u) = 1 for on |u| > 1 and χ(u) = 0 for |u| ≤ 1/2.
We consider σ ∈ A0 a symbol strictly supported inside a fundamental domain of M and associate
with it the symbol

σ(u,n)(x, λ) = χ(uH(λ))Π(λ)
n σ(x, λ)Π(λ)

n , n ∈ N, u ∈ (0, 1].

In view of Corollary 3.9 in [21], this symbol belongs to the class S−∞ of regularizing symbols.
Besides, it is also supported inside a fundamental domain of M . Fix n ∈ N and consider the map

t 7→
(

Opε(σ
(u,n))ψε(t), ψε(t)

)
:= `u,ε(t)

where ψε(t) is a family of solutions to (1.3) for some family of initial data (ψε0)ε>0.

Lemma B.1. The map t 7→
(
Opε(σ

(u,n))ψε(t), ψε(t)
)

is equicontinuous with respect to the param-
eter ε ∈ (0, 1).

We recall that from Theorem 2.5 (i) of [21] we have for all σ ∈ A0, χ and u as above, θ ∈ L1(R),
and p, p′ ∈ N with p 6= p′,∫

R
θ(t)

(
Opε(Πpχ(uH(λ))σΠp′)ψ

ε(t), ψε(t)
)
dt = O(ε)(B.2)
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Proof. For any symbol σ ∈ A0, we have

d

dt
(Opε(σ)ψε(t), ψε(t)) =

1

iε2

([
Opε(σ),−ε

2

2
∆M − ε2V

]
ψε(t), ψε(t)

)
=

1

iε2
(Opε([σ,H(λ)]ψε(t), ψε(t))− 1

iε

(
Opε(V · πλ(V )σ)ψε(t), ψε(t)

)
(B.3)

− 1

2i
(Opε(∆Mσ)ψε(t), ψε(t))− 1

i
([Opε(σ),V]ψε(t), ψε(t)) .

For σ(u,n) (which commutes with H(λ)) we have

d

dt
`u,ε(t) =

1

iε2

(
[Opε(σ

(u,n)),−ε
2

2
∆M − ε2V]ψε(t), ψε(t)

)
= − 1

iε

(
Opε(V · πλ(V )σ(u,n))ψε(t), ψε(t)

)
− 1

2i

(
Opε(∆Mσ

(u,n))ψε(t), ψε(t)
)

+O(ε)

where we used [Opε(σ
(u,n)),V] = O(ε) in L(L2(M)) by Proposition 2.7. By Lemma 4.1 in [21],

there exists σ1(x, λ) such that

V · πλ(V )σ(u,n)(x, λ) = [σ1(x, λ), H(λ)](B.4)

(V · πλ(V )σ1(x, λ)) =

(
(n+

d

2
)iZ(λ) − 1

2
∆M

)
σ(u,n)(x, λ)

The proof of these relations is discussed at the end of the proof of Proposition C.1 where we use
quite similar properties. We then write for t, t′ ∈ R,

`u,ε(t)− `u,ε(t′) = − 1

iε

∫ t

t′
(Opε([σ1, H(λ)])ψε(s), ψε(s)) ds

− 1

2i

∫ t

t′

(
Opε(∆Mσ

(u,n))ψε(s), ψε(s)
)
ds+O(ε|t− t′|).

Besides, using (B.3) for the symbol σ1, we deduce

− 1

iε
(Opε([σ1, H(λ)])ψε(t), ψε(t)) = −ε

i
([Opε(σ1),V]ψε(t), ψε(t))− ε d

dt
(Opε(σ1)ψε(t), ψε(t))

− 1

i

(
Opε(V · πλ(V )σ1)ψε(t), ψε(t)

)
− ε

2i
(Opε(∆Mσ1)ψε(t), ψε(t)) .

This implies

`u,ε(t)− `u,ε(t′) = −1

i

∫ t

t′

(
Opε(V · πλ(V )σ1)ψε(s), ψε(s)

)
ds− 1

2i

∫ t

t′
(Opε(∆Mσ1)ψε(s), ψε(s)) ds

+O(ε|t− t′|)

= (n+
d

2
)

∫ t

t′

(
Opε(Z(λ)σ)ψε(s), ψε(s)

)
ds+O(ε|t− t′|)(B.5)

which concludes the proof. �

The continuity of the map t 7→ (Π
(λ)
n Γt1z∗Π

(λ)
n , γt1z∗) follows from Lemma B.1 and the Arzelà-

Ascoli theorem. Note that, equation (B.5) of the proof of Lemma B.1 also implies the transport
equation (2.20).

Finally, let us prove Point (2) of Proposition 2.12. We use the relation

1

ε
[−ε2∆M ,Opε(σ)] =

1

ε
Opε([H(λ), σ])− 2Opε(V · πλ(V )σ)− εOpε(∆Mσ).
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together with (B.1). We denote by ςt the scalar measure Γtdγt1v∗ and we use that for the finite

dimensional representations π(0,ω), we have π(0,ω)(Vj) = iωj . In the limit ε→ 0, we obtain that for
any θ ∈ L1(R) and σ ∈ A0 commuting with H(λ),∫

R×M×z∗
θ(t)Tr(V · π(V )σ(x, λ)Γt(x, λ))dγt(x, λ)dt+

∫
R×M×v∗

θ(t)iω · V σ(x, ω)dςt(x, ω)dt = 0.

Since Γt commutes with H(λ) and V · π(V )σ is off-diagonal when σ is diagonal (see (B.4)), we
deduce that the first term of the left-hand side of the preceding relation is 0. Therefore,∫

R×M×v∗
θ(t)ω · V σ(x, ω)dςt(x, ω)dt = 0,

which implies the invariance of ςt(x, ω) by the map (x, ω) 7→ (Exp(sω · V )x, ω), s ∈ R.

Appendix C. Wave packet solutions to the Schrödinger equation

We assume here V = 0. We prove that the solution of (1.3) with an initial datum which is a
wave packet can be approximated by a wave packet. We focus on the case where the harmonics
verify Φ1 = Φ2 = h0, see the discussion preceding Remark C.2 for more details. We work in G,
keeping in mind that by Remark 2.6, the result extends to M . Note that the results of this section
give in particular a second proof of the necessary part of Theorem 1.4 in case V = 0.

Proposition C.1. Let uε(t) be the solution of equation (1.3) with V = 0 and initial data of the
form

uε0 = WP εx0,λ0(a, h0, h0),

where (x0, λ0) ∈M × (z∗ \ {0}), a ∈ S(G) and h0 is the first Hermite function. Then, there exists
a map (t, x) 7→ a(t, x) in C1(R,S(G)) such that for all k ∈ N,

uε(t, x) = WP εx(t),λ0
(a(t, ·), h0, h0) +O(

√
ε)

in Σk
ε (see (4.8) for definition), with

x(t) = Exp

(
d

2
tZ(λ0)

)
x0.

In particular, this proposition means that, contrarily to what happens in Riemannian manifolds,
there are wave packet solutions of the Schrödinger equation which remain localized even in very long
time (of order ∼ 1 independently of ε). For example, this is not the case for the torus (see [1, 11])
or semi-classical completely integrable systems (see [2]).

In what follows, we use the notation πλ(X) for denoting the operator such that

F(Xf)(λ) = πλ(X)F(f), ∀f ∈ Hλ
where X ∈ g (recall that Xf is defined in (1.2)). Using an integration by part in the definition of
F(Xf)(λ) and the fact that (πλx)∗ = πλ−x, we obtain in particular

(C.1) X(πλxΦ1,Φ2) = (πλ(X)πλxΦ1,Φ2)

and, in view of (4.7), we have

(C.2) πλ(P
(λ)
j ) =

√
|λ|∂ξj and πλ(Q

(λ)
j ) = i

√
|λ|ξj .

We recall that extending the definition to −∆G, we have πλ(−∆G) = H(λ) where H(λ) is the
Harmonic oscillator

(C.3) H(λ) = |λ|
d∑
j=1

(−∂2
ξj

+ ξ2
j ).
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Of course, we also have the relations

(C.4) H(λ) = −
d∑
j=1

πλ(Vj)
2 = −

d∑
j=1

(
πλ(P

(λ)
j )2 + πλ(Q

(λ)
j )2

)
.

In the sequel, in order to simplify notations, since λ = λ0 is fixed, we write Pj and Qj instead of

P
(λ0)
j and Q

(λ0)
j . We also use the notation Πn instead of Π

(λ0)
n .

Proof of Proposition C.1. We construct a function vε(t, x) of the form

(C.5) vε(t, x) = |λε|d/2ε−p/2
(
σε(t, δε−1/2(x−1

0 x))πλε
x−1
0 x

h0, h0

)
, λε =

λ0

ε2

which solves for all t ∈ R,

(C.6) i∂tv
ε +

1

2
∆gv

ε = O(
√
ε)

in all the spaces Σε
k, k ∈ N. More precisely, we look for σε(t, x) =

∑N
j=1 ε

j
2σj(t, x), for some

N ∈ N to be fixed later and some maps (t, x) 7→ σj(t, x) that are smooth maps from R × G to

L(L2(Rd)), and we shall require that σ0(t, x) = a(t, x)Id for some smooth function a satisfying
a(0, x) = a(x) (note that, more rigorously, these operator-valued maps are the values at λ = λ0 of
fields of operators σj(t, x, λ) over the spaces Hλ = L2(Rd) of representations, as the symbols of the
pseudodifferential calculus). Then, an energy estimate shows that uε(t)− vε(t) = O(

√
ε) in L2(G)

for all t ∈ R.

In view of (4.4), it is equivalent to construct a family ṽε(t, x) = εQ/4vε(t, x(t)δ√ε(x)) which
satisfies

iε∂tṽ
ε − id

2
Z(λ0)ṽε +

1

2
∆Gṽ

ε = O(ε
√
ε)

and

(C.7) ṽε(t, x) =
N∑
j=0

ε
j
2 (σj(t, x)πλ0δ

ε−1/2 (x)h0, h0), N ∈ N.

We emphasize that if we look for operators σj(t, x) which are of finite rank, then, decomposing

σj(t, x)h0 on the Hermite basis, the function (σj(t, x)πλ0δ
ε−1/2 (x)h0, h0) is a sum of terms of the form

(aj,β(t, x)πλ0δ
ε−1/2 (x)h0, hβ),

which means that vε(t) satisfying (C.5) is indeed a sum of wave packets.

Let us now construct the operators σj(t, x). In order to simplify the notations, we set S0 = |λ0|
d
2

and

L = i
d

2
Z(λ0) − 1

2
∆G.

Note that

i
d

2
Z(λ0)πλ0x = −S0π

λ0
x

and that S0 is such that H(λ0)h0 = 2S0h0. We denote by Π0 the orthogonal projector on the
eigenspace of H(λ0) for the eigenvalue 2S0. For any operator-valued σ(t, x), we have the following
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result:

(iε∂t − L)(σ(t, x)πλ0δ
ε−1/2 (x)h0, h0) =

S0

ε
(σ(t, x)πλ0δ

ε−1/2 (x)h0, h0)− 1

2ε
(σ(t, x)H(λ0)πλ0δ

ε−1/2 (x)h0, h0)

+
1√
ε

(V σ(t, x) · πλ0(V )πλ0δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ(t, x)πλ0δ

ε−1/2 (x)h0, h0)

where V σ · Πλ0(V ) =
∑2d

j=1 VjσΠλ0(Vj). Equivalently, we can write the latter relation under the
more convenient form:

(iε∂t − L)(σ(t, x)πλ0δ
ε−1/2 (x)h0, h0) =

1

2ε
([H(λ0), σ(t, x)]πλ0δ

ε−1/2 (x)h0, h0)

+
1√
ε

(V σ(t, x) · πλ0(V )πλ0δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ(t, x)πλ0δ

ε−1/2 (x)h0, h0).(C.8)

Therefore, for σ0 = a ∈ C1(R,S(G)) a scalar map, we have

(iε∂t − L)(σ0(t, x)πλ0δ
ε−1/2 (x)h0, h0) = (rε0(t, x)πλ0δ

ε−1/2 (x)h0, h0)

with

rε0(t, x) =
1√
ε

(V σ0(t, x) · πλ0(V )πλ0δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ0(t, x)πλ0δ

ε−1/2 (x)h0, h0)(C.9)

In other words, for any σ0(t, x) which is scalar, the rest term is of order ε−1/2. At the end of the
proof, we will specify our choice of σ0 in (C.14).

We now focus on constructing correction terms in order to compensate the rest term rε0(x). Note
that since Π0h0 = h0, we also have

rε0(t, x) =
1√
ε

(Π0V σ0(t, x) · πλ0(V )πλ0δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ0(t, x)πλ0δ

ε−1/2 (x)h0, h0)

The second term involves the scalar operator (iε∂t−L)σ0(t, x) which commutes with Π0 while the
first one depends on Π0V σ0(t, x) · πλ0(V ) which does not. For constructing σ1(t, x), we use the
computation (C.8) and the fact that for symbols σ(t, x) that anti-commute with H(λ0), one can
find θ(t, x) such that σ(t, x) = [H(λ0), θ(t, x)].

• Construction of the approximate solution up to
√
ε. We have already noticed in Section B.2

that if

θ0(t, x) = − 1

2i|λ0|

d∑
j=1

(
Pjσ0(t, x)πλ0(Qj)−Qjσ0(t, x)πλ0(Pj)

)
,

we have the following relations that we prove below

V σ0(t, x) · πλ0(V ) = −[H(λ0), θ0(t, x)],(C.10)

Π0(V θ0(t, x) · πλ0(V ))Π0 =
1

2
Π0

(
i
d

2
Zλ0σ0(t, x)− 1

2
∆Gσ0(t, x)

)
Π0 =

1

2
Π0Lσ0(t, x).(C.11)

Therefore, setting

σ1(t, x) = 2Π0θ0(t, x),

and using (C.8), we obtain that

(iε∂t − L)(σ1(t, x)πλ0δ
ε−1/2 (x)h0, h0) = −1

ε
(V σ0(t, x) · πλ0(V )πλ0δ

ε−1/2 (x)h0, h0)

+
1√
ε

(Lσ0(t, x)πλ0δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ1(t, x)πλ0δ

ε−1/2 (x)h0, h0)
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Therefore, the function ṽε1(t, x) = ((σ0(t, x)+
√
εσ1(t, x))πλ0δ

ε−1/2 (x)h0, h0) satisfies in Σk
ε the equation

(iε∂t − L)ṽε1(t, x) = rε1(t, x) +O(ε
√
ε)

with
rε1(t, x) = −

√
ε(Lσ1(t, x)πλ0δ

ε−1/2 (x)h0, h0) + iε(∂tσ0(t, x)πλ0δ
ε−1/2 (x)h0, h0).

• Construction of the approximate solution up to ε. We observe that by construction θ0(t, x)
and σ1(t, x) anticommute with H(λ0). Therefore, there exists σ2(t, x) such that

(C.12) Lσ1(t, x) =
1

2
[H(λ0), σ2(t, x)],

and the function ṽε2(t, x) = ((σ0(t, x)+
√
εσ1(t, x)+ε

√
εσ2(t, x))πλ0δ

ε−1/2 (x)h0, h0) satisfies the equation

(iε∂t − L)ṽε2(t, x) = rε2(t, x) +O(ε
√
ε)

with

rε2(t, x) = ε(V σ2(t, x) · πλ0(V )πλ0δ
ε−1/2 (x)h0, h0) + iε(∂tσ0(t, x)πλ0δ

ε−1/2 (x)h0, h0).

At this stage of the proof, we observe that by choosing an adequate term σ3, the off-diagonal part
of V σ2 · πλ0(V ) can be treated in the same manner than the off-diagonal term Lσ1. Finally we are
left with

ṽε3(t, x) = ((σ(t, x) +
√
εσ1(t, x) + ε

√
εσ2(t, x) + ε2σ3(t, x))πλ0δ

ε−1/2 (x)h0, h0)

and the equation

(iε∂t − L)ṽε3(t, x) = rε3(t, x) +O(ε3/2)

with
rε3(t, x) = ε((i∂tσ0 + Π0V σ2(t, x) · πλ0(V )Π0)πλ0δ

ε−1/2 (x)h0, h0).

• Construction of the approximate solution up to ε3/2. For concluding the proof, we use the
specific form of the term Π0V σ2(t, x) · πλ0(V )Π0. We claim, and we prove below, that there exists

a selfadjoint differential operator L̃ such that

(C.13) Π0V σ2(t, x) · πλ0(V )Π0 = L̃σ0(t, x)Π0.

Therefore, it is enough to choose the function σ0(t, x) as the solution of the equation

(C.14) i∂tσ0(t, x) + L̃σ0(t, x) = 0 σ0(0, x) = a(x).

• Proof of relations (C.10), (C.11) and (C.13). Let us begin with (C.10). Using (C.2) and (C.3),
we get that for 1 ≤ j ≤ d there holds

[H(λ0), πλ0(Qj)] = 2i|λ|πλ0(Pj) and [H(λ0), πλ0(Pj)] = −2i|λ0|πλ0(Qj).

Therefore

[H(λ0), θ0] = − 1

2i|λ|

d∑
j=1

(Pjσ0[H,πλ0(Qj)]−Qjσ0[H,π(λ0)(Pj)])

= −
d∑
j=1

(Pjσ0π
λ0(Pj) +Qjσ0π

(λ0)(Qj))

= −V σ0 · πλ0(V )

which gives (C.10).
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The relation (C.11) is a direct application of Lemma B.2 in [21] which states that if

T :=

 2d∑
j1=1

Vj1π
λ0(Vj1)

 ◦
 d∑
j2=1

(
Pj2π

λ0(Qj2)−Qj2πλ0(Pj2)
) ,

then

ΠnTΠn = |λ0|
(

(n+
d

2
)Z(λ0) +

i

2
∆G

)
Πn

where Πn denotes the orthogonal projector on Vect(hα, |α| = n) (recall that Πn depends on λ0

since it is defined from H(λ0) but we omit this fact in the notation). Note that these relations are
nothing but consequences of the elementary properties of the creation-annihilation operators ∂ξj
and iξj .

Let us now prove the claim (C.13).We use the notations of [21] and introduce the operators

Rj :=
1

2
(Pj − iQj), and R̄j :=

1

2
(Pj + iQj).

By (4.7), the operators πλ0(Rj) =

√
|λ0|
2 (∂ξj + ξj) and πλ0(R̄j) =

√
|λ0|
2 (∂ξj − ξj) are the creation-

annihilation operators associated with the harmonic oscillator H(λ0). The well-known recursive
relations of the Hermite functions give for α ∈ Nd and j = 1, . . . , d,

πλ0(Rj)hα =

√
|λ0|
2

√
2αjhα−1j πλ0(R̄j)hα = −

√
|λ0|
2

√
2(αj + 1)hα+1j .

In the preceding formula, we use the convention hα−1j = 0 as soon as αj = 0. Actually, one has

π(Rj)h0 = 0. We will also use the expression of Π0π(R̄j) that derives from these formula.

Let us now compute σ2. Starting from

d∑
j=1

(Pjπ
λ0(Qj)−Qjπλ0(Pj)) = −2i

d∑
j=1

(Rjπ
λ0(R̄j)− R̄jπλ0(Rj)),

and using Π0π
λ0(R̄j) = 0, we obtain

σ1(t, x) = −2Π0

|λ0|

d∑
j=1

R̄ja(t, x)πλ0(Rj).

Therefore σ1 = Π0σ1Π1 can be written

Π0σ1Π1 = − 2

|λ0|

d∑
j=1

R̄ja(t, x)Π0π
λ0(Rj).

We deduce from (C.12) that

Π0σ2Π1 = − 1

|λ0|
Π0Lσ1Π1.

Therefore

σ2(t, x) =
2

|λ0|2
d∑
j=1

LR̄ja(t, x)Π0π
λ0(Rj).

We now use that for any operator-valued σ(t, x),

V σ ·Πλ0(V ) = 2
d∑

k=1

(Rkσπ
λ0(R̄k) + R̄kσπ

λ0(Rk))
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and we obtain

V σ2 ·Πλ0(V ) =
4

|λ0|2
d∑

j,k=1

(RkLR̄ja(t, x)Π0π
λ0(Rj)π

λ0(R̄k) + R̄kLR̄ja(t, x)Π0π
λ0(Rj)π

λ0(Rk)).

When computing the diagonal part of the operator above or, more precisely Π0V σ2 ·Πλ0(V )Π0, we
use Π0π(Rj)π(R̄k) = Π0π(R̄k)π(Rj) = 0 when j 6= k and we find

Π0V σ2 ·Πλ0(V )Π0 =
4

|λ0|2
d∑
j=1

RjLR̄ja(t, x)Π0π
λ0(Rj)π

λ0(R̄j).

Using

RjR̄j =
1

4
(P 2

j +Q2
j ) +

i

4
Z(λ0) and [Rj , R̄j ] =

i

2
Z(λ0),

we obtain

RjLR̄j = (L − iZ(λ0))RjR̄j and Π0π
λ0(Rj)π

λ0(R̄j) = −|λ0|
2

Π0

and therefore

Π0V σ2 ·Πλ0(V )Π0 =− 2

|λ0|

d∑
j=1

(L − iZ(λ0))RjR̄jaΠ0

=− 2

|λ0|
(L − iZ(λ0))(

1

4
∆G +

id

4
Z(λ0))aΠ0

=− 1

2|λ0|

(
i

(
d

2
− 1

)
Z(λ0) − 1

2
∆G

)
(∆G + idZ(λ0))aΠ0

which concludes the proof of (C.13) with

L̃ = − 1

2|λ0|

(
i

(
d

2
− 1

)
Z(λ0) − 1

2
∆G

)
(∆G + idZ(λ0))

that is clearly self-adjoint. �

In case the harmonics of the initial wave packet are no more equal to h0, e.g.

uε0 = WP εx0,λ0(a, hα, hα)

with α ∈ Nd of length n, the operator ΠnV σ2π(V )Πn is not scalar: it is matricial since one must add
terms of the form (bβ(t, x)πλ0x hα, hβ) for all β ∈ Nd of length n. Equation (C.14) is then replaced
by an equation with values in finite-rank operators. Setting F (σ0) = ΠnV σ2π(V )Πn, F is a linear
map on the set S(G,L(Vn)) where Vn = Vect(hα, |α| = n). We endow this set of matrix-valued
functions with the scalar product 〈a, b〉 =

∫
G TrL(Vn)(a(x)b(x))dx. Then, one can define two linear

maps A and S such that F = S + A with S self-adjoint, A skew symmetric and A ◦ S = S ◦ A.
Observing that σ0(0) = a(x)IdVn ∈ KerA, one then solves i∂tσ0 = F (σ0) in KerA, which induces
the solution σ0(t) = e−itSσ0(0). As a conclusion, noticing that the argument would be the same for

uε0 = WP εx0,λ0(a, hγ , hα)

for α 6= γ, we deduce the following remark from the linearity of the equation and the fact that the
set of Hermite functions generates L2(Rd).

Remark C.2. The solution to (1.3) with V = 0 and initial data which is a wave packet is asymptotic
to a wave packet in finite time.
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elliptiques dégénérés, Ann. Inst. Fourier, 19(1):277–304, 1969.

[10] N. Burq and C. Sun. Time optimal observability for Grushin Schrödinger equation. To appear in Analysis and
PDEs (arXiv:1910.03691v3).

[11] N. Burq and M. Zworski. Control for Schrödinger operators on tori, Math. Res. Lett, 19(2):309–324, 2012.
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