
HAL Id: hal-02951578
https://hal.science/hal-02951578

Submitted on 28 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive online learning for graph matching using
active strategies

Donatello Conte, Francesc Serratosa

To cite this version:
Donatello Conte, Francesc Serratosa. Interactive online learning for graph matching using active
strategies. Knowledge-Based Systems, 2020, 205, pp.106275. �10.1016/j.knosys.2020.106275�. �hal-
02951578�

https://hal.science/hal-02951578
https://hal.archives-ouvertes.fr

Interactive Online Learning for Graph Matching using
Active Strategies

Donatello Contea,∗, Francesc Serratosab

aLaboratoire d’Informatique Fondamentale et Appliquée de Tours (LIFAT - EA6300)
Tours, France

bUniversitat Rovira i Virgili, Departament d’Enginyeria Informàtica i Matemàtiques
Tarragona, Catalonia, Spain

Abstract

In some pattern recognition applications, objects are represented by attributed

graphs, in which nodes represent local parts of the objects and edges represent

relationships between these local parts. In this framework, the comparison

between objects is performed through the distance between attributed graphs.

Usually, this distance is a linear equation defined by some cost functions on the

nodes and on the edges of both attributed graphs. In this paper, we present an

online, active and interactive method for learning these cost functions, which

works as follows. Graphs are provided to the learning algorithm by pairs in a

sequential order (online). Then, a correspondence between them is computed,

and there is a strategy that, given the current pair of graphs and the computed

correspondence, proposes which node-to-node mapping would most contribute

to the learning process (active). Finally, the human can correct some node-to-

node mappings if the human thinks they are wrong (interactive). This is the first

learning method applied to graph matching that has the following two features:

Being an online method and being active and interactive. These properties make

our method useful in the cases that data does not arrive at once and when the

human can interact on the system. Thus, given some human interactions the

method would have to tend to gradually increase its accuracy. The results show

∗Corresponding author
Email addresses: donatello.conte@univ-tours.fr (Donatello Conte),

francesc.serratosa@urv.cat (Francesc Serratosa)

Preprint submitted to Knowledge-Based Systems September 28, 2020

that with few interactions, we achieve better results than the offline learning

state of the art methods that are currently available.

Keywords: Online learning, Active learning, Human interaction, Graph

matching, Costs functions.

1. Introduction

Attributed graphs have found widespread applications in several research

fields of structural pattern recognition [1, 2, 3, 4]. This is due to their ability to

represent structured objects through unary and binary local entities. To com-

pare the graphs, several distance measures between attributed graphs have been5

presented [1, 4], and the problem is usually called graph matching. Typically,

the problem consists of finding the node-to-node assignment between a pair of

attributed graphs that minimizes an objective function encoding local dissimi-

larities (a linear term) and structural dissimilarities (a quadratic term). To do

so, it is necessary to define the cost functions between the linear terms and the10

quadratic terms of both attributed graphs, given the application at hand.

Note that a proper definition of these cost functions is crucial to achieve

good classification or recognition results, and it is not an easy task. In most

applications, cost functions are manually set in a trial and error process [3].

Moreover, they are usually defined as known distances, such as the Euclidean15

distance (in the case that the attributes are numbers), or other more compli-

cated ones, such as the Levenshtein distance [4] (in the case the attributes are

strings of characters). Use of learned cost functions would have to generate more

application dependent functions that would increase the recognition accuracy.

Moreover, it would not be necessary to waste time on a trial and error process20

to properly tune these cost functions.

Machine learning methods are broadly classified as either offline or online

learning. In offline methods, learning the model is performed in a first stage.

Then, use of this model occurs in a second stage in applications based on pattern

recognition or clustering, among others. In contrast, for the online learning25

2

methods, the use of the model is alternated with the learning of it. This happens

when newly classified samples are available when the pattern recognition or

clustering stages (among others) are in progress.

For instance, the systems that recognize people in a set of pictures select

the ones in which a specific person appears, but at the same time, they keep30

learning how to recognize this person when new pictures appear that have been

accepted by the user as containing this person.

Figure 1: Online Active and Interactive Learning Framework: Our method updates the cost

functions every time the human interacts. Above the dashed line is a classical graph matching

with imposed cost functions.

Humans are very good at finding mappings between local sections of elements

represented by structures or images given any level of abstraction. In fact, neu-

ropsychological evidence affirms that there are four specific stages identified in35

the process of object recognition for a human being ([5, 6]). These stages involve

processing of basic object components, such as color, depth, and form, grouping

these basic components on the basis of similarity and matching with structural

3

descriptions in memory. Therefore mapping process is something innate in hu-

man beings. For instance, we can easily map the elements of two drawings of40

chemical compounds, or we can map the rear wheels of two motorbikes inde-

pendent of how different the motorbikes are in the images. If these compounds

or images are seen as specific graphs, this suggests that we are good at deducing

the node-to-node mapping between two attributed graphs.

We propose a learning method that not only deduces the distance and node-45

to-node mapping between a pair of graphs but also has the ability to update the

cost functions each time the human interacts. The aim of applying a learning

strategy would be to deduce a more accurate distance and map the next time

the graph matching is computed. To that aim, we have put a human in the

loop. Because humans are good at deducing mappings between structures, in50

our method, the human validates the deduced node-to-node mapping or im-

poses a new one. We assume that this is a way to assure that the output of

the matching method tends to be the one that the human desires, given some

human interactions. We want to highlight that the human is not forced to in-

teract each time the graph matching is performed. In contrast, the human only55

interacts when one considers it is necessary. This is an important feature of

our method, as the human interaction could be much slower than the graph

matching algorithm. Moreover, we have included an active method to reduce

the effort asked of the human. Given the deduced node-to-node mapping, the

system shows a pair of nodes (one per graph) that has been mapped. This pair60

of nodes is the one that has the greatest chance of being wrong. In this way, we

do not ask the human to check the whole node-to-node mapping given a pair

of graphs, but only one pair of nodes. This selected mapping is the most in-

formative for updating the cost functions and therefore improving the following

graph matching runs.65

Figure 1 shows the main scheme of our method. The process line above

the dashed line is a classical graph matching method. That is, given a pair of

graphs and some imposed cost functions, the GraphMatching module returns

a distance and a node-to-node matching between the graphs (represented by

4

blue arrows in Figure 1). The ActiveLearning module receives this mapping70

and outputs a mapping composed of only a node of the first graph and a node

of the second graph (highlighted in red in Figure 1). This mapping has a high

chance of being wrong, considering the whole graphs and the whole node-to-

node mapping. Then, the InteractiveLearning module, which is a human in

our proposal, visualizes this mapping together with the original data, and cor-75

rects this mapping when it considers it to be wrong (the corrected mapping

is highlighted in green in Figure 1). In this case, correcting means substitut-

ing one of the two nodes matched by the node-to-node mapping. Finally, the

LearningCostFunction module updates the cost functions that encode the lo-

cal and structural dissimilarities given the node-to-node mapping proposed by80

the human and the previous cost functions. Because this is an online learning

method, we do not know how many pairs of graphs are going to be introduced

into the system, or if some pairs of graphs are going to be presented to the sys-

tem several times. Nevertheless, the method is ready at any time to compute a

graph matching given the current cost functions.85

The main contributions of this paper are:

• Presenting an online method to learn the cost functions, for the first time.

• Adapting the classical active strategies to the graph matching domain.

• Selective interaction of human onto the system.

• High learning capacity given few human interactions, shown in the exper-90

imental section.

The paper is organized as follows. In Section 2, we present the literature

review of the basic used methods. Section 3 presents the basic definitions and

notations used in the rest of paper. In Section 4, we describe our proposal to

learn the cost functions for graph matching in an online, active and interactive95

way. In Section 5, we present the experimental results. Finally, Section 6

concludes the paper.

5

2. Literature Review

In this section, we first present the literature review of the online (Sec-

tion 2.1), active (Section 2.2) and interactive (Section 2.3) learning methods in100

a general form. This is because our method is an adaptation of these classical

methods into the graph matching field. Finally, in Section 2.4, we summarize

the state of the art in offline machine learning methods applied to learn the

graph-matching cost functions.

2.1. Online Machine Learning Methods105

Online machine learning [7, 8] is a method of machine learning in which

data become available in a sequential order and are used to update a predictor

for future data, as the samples are obtained, to improve performance on the

new data. Conversely, batch learning methods generate the best predictor by

learning on the batch data at once. Online learning is a common technique110

used in areas of machine learning where it is computationally infeasible to train

over the entire dataset. It is also used in situations where it is necessary for

the algorithm to dynamically adapt to new patterns in the data, or when the

data are generated as a function of time. An interesting example could be

the classification of job advertisements [9], in which advertisements have to be115

constantly classified at the same time that new ones appear and other ones

disappear.

Since its introduction, many papers have appeared that address various prob-

lems of online learning. As we will discuss in next Secion 2.2, online learning has

been quickly associated with active querying strategies to decide which data are120

most useful for learning task [10]. In the papers [11, 12] the authors study the

online heterogeneous transfer (OHT) learning problem, where the target data of

interest arrive in an online manner, while the source data are from offline sources

and can be easily annotated; the authors propose some techniques that exploit

offline knowledge transfering it a online different domain. Other papers [13, 14]125

deal with the problems of limited query budget (when it is difficult to annotated

date) and the problem of highly imbalance ratio between classes.

6

2.2. Active Machine Learning Methods

A machine learning algorithm can achieve a greater accuracy with fewer

classified training examples if it can choose the data from which it learns [15,130

16, 17]. In active machine learning, the learner queries some specific elements,

and the answerer informs to which classes these elements belong. It is assumed

that the answer is always correct. For this reason, the answerer, which might

be another automatic system or a human annotator, is called an oracle.

In many modern machine-learning problems, active learning is well moti-135

vated if unclassified samples may be abundant, but finding the class is difficult,

time-consuming or expensive to obtain [18]. Active learning has been applied

in several fields, such as speech recognition [19], information extraction [20],

robotics [21], transcription of text images [22] or object classification in gen-

eral [23, 24, 25, 26].140

All active learning scenarios involve evaluating the informativeness of un-

labeled instances. There have been many proposed ways of formulating such

query strategies [15]. The most commonly used ones, and therefore the ones ap-

plied in this paper, are Least Confident (LC) [27], Margin Sampling (MS) [28]

and Maximum Entropy (ME) [29]. Least Confident [27] queries the element145

whose highest probability of belonging to a class is the lowest among all the

elements. Margin Sampling [28] aims to incorporate the posterior probability of

the second most likely labeled element. Maximum Entropy [29] queries the ele-

ment with maximum Shannon Entropy [30] given the probabilities of belonging

to the classes, because this element is less informative than others.150

One of the latest paradigms of online learning is to optimise the regret func-

tion [31, 32]. Basically, this function deduces the weights to be learned by an

online gradient descendent algorithm, in which the objective function is com-

posed of the sum of a sensitivity function and a specificity function.

2.3. Interactive Machine Learning155

Interactive Machine Learning is a specific type of Active Learning in which

the human interacts with the system through a Human-Machine Interface (HMI).

7

The general idea is that the human receives the information of the state of

the system through any source of information and then influences this system

through any mechanism. The HMI is the space where interactions between160

humans and machines occur. The goal of this interaction is to allow effective

operation of the machine from the human end, while the machine simultane-

ously feeds back information that aids the human to make decisions. Human

interaction has been recently applied to image alignment for robotics pose and

image alignment estimation [33, 34], 2D-camera calibration [35] or engineering165

drawing validation [36].

2.4. Learning Graph Matching Cost Functions

The aim of the learning methods applied to graph matching is to learn the

cost functions on nodes and edges. To our knowledge, only seven papers have

been published related to learning these cost functions [37, 38, 39, 40, 41, 42,170

43]. An important feature of these methods is the nature of the cost functions

the learning algorithm obtains. The method in [37] defines these costs as self-

organizing maps, and the method in [38] defines them as probability density

functions. In contrast, some methods [39, 40, 41] assume the cost functions

are weighted Euclidean distances, and the aim is to determine the weights.175

Mathematically, they define the cost functions on nodes and edges as an inner

product between the weights and the node or edge attributes. Finally, methods

in [42, 43] suppose that the graph matching is solved through an approximation

of the Graph Edit Distance [44, 45] and only learn the costs of inserting and

deleting nodes and edges, which become to be constants.180

The method we present deduces the cost functions through a supervised

classifier; thus, we consider that it is located in the same nature as the methods

from [37, 38, 39, 40, 41]. These methods are similar to our method when they

learn application dependent functions. Nevertheless, the main differences are

that we propose a general online machine learning model instead of an offline185

machine learning model. Moreover, our method is the first one that has online,

active and interactive features. These features make it new and unique.

8

Reference [46] presents an active and interactive method applied to graph

matching. Nevertheless, the aim is not to learn the cost functions but to assist

the graph matching module to deduce a better node-to-node assignment. In that190

case, the human imposes some node-to-node mappings, as does our method, but

they are used only to recompute the whole graph assignment, without learning

the cost functions. That method could be used while matching large graphs (for

instance, palmprint matching with graphs that have approximately 1000 nodes),

in which it is practical for the interactive module to impose just a few correct195

node-to-node mappings. Our active methods were inspired by the methods

presented in that paper, although several modifications have been considered.

3. Definitions and notation

Given a pair of graphs, G and G′, the ith vertex in G is represented as Gi

and the ath vertex in G′ is represented as G′a. Moreover, the edge between the200

ith vertex and the jth vertex in G is represented as Gi,j . Similarly, the edge

between the ath vertex and the bth vertex in G′ is represented as G′a,b.

A correspondence f between graph G and G′ is a bijective function that

assigns one node of G to only one node of G′. We represent the mapping from

node Gi to node G′a as a = f(i). Note that we suppose that both graphs have205

the same order. If this was not the case, then they could be expanded with new

nodes that had a specific attribute. Then, a generic formulation of the graph

matching problem consists of finding the optimal correspondence f∗ given by the

solution of the quadratic assignment problem (NP-hard problem) [47] (Eq. 1).

f∗ = arg min
∀f :G→G′

∑
∀Gi

αi,f(i) +
∑
∀Gi,j

βi,j,f(i),f(j)

 (1)

Functions αi,f(i) and βi,j,f(i),f(j) represent the cost of mapping a pair of210

nodes (Gi and G′f(i)) and a pair of edges (Gi,j and G′f(i),f(j)), respectively, and

they are application dependent.

With the aim of decreasing the computational cost, some methods reduce

9

the quadratic assignment into a linear assignment [48, 49, 50, 51, 52], thus,

they return a suboptimal correspondence between both graphs (Eq. 2).215

f̂∗ = arg min
∀f :G→G′

{∑
∀Gi

γi,f(i)

}
(2)

Where γi,f(i) is the cost between local structures centred at nodes Gi and

G′f(i). In the literature, one of the most used local structures is called Star,

which is composed of a central node, its edges and the nodes these edges connect

to. In [53], several local structures are analyzed from the point of view of how

close the deduced assignment is to the optimal one, and the runtime spent by220

the matching algorithm.

Two different approaches have been used to define γi,f(i) when the local

structures are Stars: The structural approach and the vectorial approach. The

structural approach is based on assuming a Star is a graph [53]. Then, Equation

1 is applied where G and G′ are the Stars centred at nodes Gi and G′f(i),225

respectively. In this case, γi,f(i) equals to the cost that generates f∗ computed

through Equation 1. The vectorial approach converts each Star into a vector

[54]. Then, γi,f(i) is defined as a distance between vectors. The simplest case is

defining it through the Euclidean distance. Nevertheless, it is usual to define it

through a learned distance, for instance through a neural network. This is the230

method we use in this paper and it is explained in Section 4.4.

4. Proposed Framework

In this section, we describe our method, schematically represented in Fig-

ure 2. First, we present a general schema of the method (Section 4.1), and then

we explain in detail the modules of our schema. The first one searches for the235

graph matching (Section 4.2), then the second one executes the active learning

strategies (Section 4.3) and finally the module that learns the cost functions

(Section 4.4).

10

4.1. General problem schema

The first step of our method is devoted to finding an assignment between a240

pair of graphs. As we described in Section 3, we work within the linear assign-

ment framework based on Equation 2, solved using the Hungarian method [55].

Therefore, the graph matching step needs the cost function γi,a and the graphs

G and G′ as inputs for the C cost matrix computation. It provides the cost

matrix between all pair of nodes of G and G′. Then, a solver, such as the245

Hungarian method, is used to provide the (suboptimal) assignment f̂∗.

Then, having the cost matrix and the assignment, the second step in our

framework is the Active Learning module (Section 4.3), whose goal is to propose

a single node-to-node assignment Gi and G′a that is likely to be the worst one

in the complete assignment f̂∗. We tried three different active strategies. Then,250

the human visualizes both nodes with the original data (Section 2.3) and decides

to confirm that they map or proposes a new pair of nodes, G∗i and G′∗a .

The last step is devoted to updating cost function γi,a by adding the new

correct node-to-node mapping G∗i and G′∗a to the learning module. The first

step of this module (detailed in Section 4.4) is to take the node assignment255

provided by the human and to embed it into a vector, considering the structure

and attributes of the original graphs, G and G′. The online learning algorithm

updates its internal parameters, considering an input buffer, and provides a new

cost function γi,a by using the new data as a new training set (in an incremental

manner).260

In the first interaction, the pair of nodes proposed to the user, G∗i and G′∗a ,

are randomly selected because the cost functions γi,a are not initialized and the

cost matrix C cannot be computed yet.

4.2. Graph matching

The graph matching algorithm is composed of two main steps. In the first,265

a square cost matrix C is computed so that each cell represents a combination

γi,a. Rows represent nodes Gi and columns represent nodes G′a, then C(i, a) =

γi,a. In the second one, the assignment f̂∗ is deduced as a solution of a linear

11

Figure 2: Online Active Learning: detailed framework (see text for explanation).

assignment problem applied to this cost matrix. In the first step, it is necessary

to compute the n2 (n is the size of the graphs) combinations of γi,a. Thus,270

the computational cost of this first step is O(K · n2), where K is the cost of

computing γi,a. How K effects the global cost was analyzed in [53]. Note in

our schema, how γi,a is defined is a parameter of the Graph matching module

since it is generated in the Learning cost functions module (Section 4.4).

The second step is exactly solvable in the worst-case in cubic time, O(n3), for275

instance, using the Hungarian method [55]. The fact that solution f̂∗ appears

to be suboptimal is due to the embedding the quadratic problem into a linear

problem (converting Eq. 1 into Eq. 2), but it is not due to the solution of the

linear problem itself.

Note that all the learning method is based on deducing the graph matching280

through a linear algorithm instead of a quadratic algorithm. That is, the graph

correspondence is computed through Eq. 2 instead of Eq. 1. This is because the

run-time of computing Equation 1 has been empirically demonstrated that does

not fulfil the application temporal constraints. In our case, there is a human

waiting for the system to compute the graph correspondence. We belief it would285

be impractical to ask for the human to wait more than several seconds for check-

12

Table 1: Average runtime and distance given four public databases computed through A∗ and

graph bipartite algorithm (BP) (from [48]).

A∗ BP

graphs Avg size Avg Degree Time Dist Time Dist

Alkane 150 8.9 1.8 1.29 15 ≈ 0.001 35

Acyclic 183 8.2 1.8 6.02 17 ≈ 0.001 35

MAO 68 18.4 2.1 — — ≈ 0.001 105

PAH 94 20.7 2.4 — — ≈ 0.001 138

ing the correctness of the correspondence. To validate these reasoning, Table 1

shows a comparison between computing Equation 1 through a A∗ algorithm and

computing Equation 1 through the bipartite graph matching ([48]). The data

in Table 1 has been extracted from [56] and it shows the average run-time of290

computing the graph edit distance between all the graphs of the database and

also the average graph edit distance, given four public databases. Considering

the runtime, we realise that there is a huge difference between both algorithms.

It is reported in [56] that the computation of these values was not possible in

the MAO and PAH databases due to it would take months. Considering the295

distance, we deduce that the bipartite graph matching returns suboptimal corre-

spondences that have a distance twice the optimal one. We conclude, from this

experiment, that using the A* algorithm is not practical since the human would

have to wait too much time waiting for the correspondence proposed by the

system. Note that better correspondence returned, better system performs but300

returning the optimal correspondence is not a critical point since it is the user

that, through interacting, corrects the correspondence until the system achieves

the desired one.

4.3. Active Machine Learning strategies

In this section, we show how we have adapted the active strategies presented305

in section 2.2 to the graph matching problem. In the strategies we commented,

13

the active strategy proposes an element given a specific domain, and the oracle

returns its class. In our case, the modus operandi has been adapted because

we have an active module that proposes to the human only one node-to-node

mapping given a pair of graphs and their assignment computed by the graph310

matching module. Then, the human returns the same node-to-node mapping

whether he considers it correct. In contrast, the humans returns the correct

one, in which one of the two nodes is the same as the one presented by the

active module. In this way, the “element” in the classic active strategy becomes

a node-to-node mapping in our method. Because the answerer has to return the315

“class” of the queried element, in our method, this output has been converted

into a node-to-node mapping.

We propose three active strategies. The input parameters are the cost matrix

C and the suboptimal assignment f̂∗ generated by the graph matching algorithm

(Section 3). The output is a pair of nodes Gi and G′a from each graph. It is320

assumed that their mapping, although in f̂∗, have the highest chance of being

wrong, considering the cost matrix C and the node-to-node mapping f̂∗. The

computational cost of these strategies is quadratic with respect to the number

of nodes of the graphs.

Least Confident (LC): This strategy searches for the element for which the

classifier has more doubts to deduce its class; in our case, it is the node pair

having the highest cost function among the pairs to be selected for node-to-node

mapping. Therefore, this strategy is implemented in three steps. First, the best

mappings of each node in G are selected according Equation 3.

C1 = min
1≤a≤n

{C(1, a)}, C2 = min
1≤a≤n

{C(2, a)}, · · · , Cn = min
1≤a≤n

{C(n, a)} (3)

That is, the minimum costs in the cost matrix are selected for every row, and325

the vector V = [C1, C2, · · · , Cn] is computed. Second, given these mappings,

the node in G that has the highest cost (the worst option) is selected; that

is, the maximum value is computed given the obtained vector of the minimum

values, i.e., Gi = arg max{V }. Third, the node in G′ becomes the one to be

mapped by the assignation of the selected node in G: G′a = f̂∗(Gi).330

14

Margin Sampling (MS): The idea behind this strategy is that node pairs

with similar cost value are more ambiguous to be selected in the final matching.

Thus, in our case, this strategy is implemented in five steps. First, vector V is

computed as it is done in the first step of the Least Confident strategy. Second,

the same operation is performed, but discarding the nodes from G′ found in the335

previous step. Then, a new vector W is computed. Third, the margins of the

nodes in G are computed. That is, the vectors obtained in the first two steps

are subtracted, Z = V − W . Fourth, the node in G that has the minimum

margin is selected, i.e. Gi = arg min{Z}. Fifth, in a similar way to the Least

Confident strategy, G′a = f̂∗(Gi).340

Maximum Entropy (ME): The main idea of the method is to query the

elements that are more difficult to classify because the Shannon entropy is high.

This strategy is similar to the Least Confident strategy except the fact that

nodes are selected according to Eq. 4.

Ci = −
∑

1≤a≤n

{C(i, a) · logC(i, a)} (4)

Then, V = [C1, C2, · · · , Cn]. Note that in this case, the values in the cost matrix

have to be in the domain [0, 1]. Finally, Gi and G′a = f̂∗(Gi) are deduced.

4.4. Learning the cost function

In this section, we explain the method we used to learn the cost function γi,a.

Note that this function depends only on the semantic and structural information345

of nodes proposed by the human G∗i and G′∗a , from both graphs (Section 4.1).

This information is embedded into a vector because we want to use a com-

mon supervised learning algorithm, such as neural network or a support vector

machine. Several embedding methods have been presented in the literature, for

instance, there is one in [57] or two more recent proposals in [58, 59]. In our350

case, we present a simple one defined by the attribute nodes (semantic informa-

tion) and the number of edges adjacent to the node (structural information) as

we show in Figure 3. Others could be analyzed in a future work.

15

Figure 3: Embedding the local information of nodes G∗i and G′∗a into a vector. ni and n′a are

the number of edges of each node

When the interactive module returns that G∗i and G′∗a have to be mapped,

we want the cost function γi,a to be zero. Moreover, we want the cost functions355

{γi,b , a 6= b} and the cost functions {γj,a , j 6= i} to be one (or a high value).

This is because we want the linear assignment algorithm to return the mappings

from G∗i to G′∗a and discard the others.

Each time the interactive module proposes a node-to-node mapping (from

G∗i to G′∗a), the supervised learning algorithm, which aims to learn γi,a, is fed the360

data shown in Figure 4. A is the input matrix and B is the expected outcome

vector. The order of both graphs is n and n′, respectively. Empty rows mean

that the data are exactly the same as the upper cells. Rows with dots indicate

the information of the next node in the graph. For instance, it represents that

node Gj is different from node Gj or Gk. Similarly, it represents that node G′a365

is different from node G′b or G′c. The repetition of the data (empty rows) is done

to solve the unbalancing problems.

The buffer in the learning algorithm, shown in Figure 2, contains the data

(matrices A and B) of M impositions. This buffer has been considered to enrich

the information that the learning algorithm has to consider.370

Note γi,a has been defined as the output of a neural network, being the

embedded information of a node and its local structure the input of this neural

network. Another completely different paradigm could be to define γi,a as a

weighted Euclidean distance between the embedded vectors of nodes Gi and

G′a. In this case, the weights of the Euclidean distance would have to be learned375

16

Figure 4: Input matrix A and expected output vector B generated by the imposition that Gi

and G′a have to be mapped. n and n′ are the orders of graphs G and G′. Empty rows mean

that the data are exactly the same as in the upper cells.

by an optimisation method, such as [31]. This paradigm could be analyzed in a

future work.

5. Experiments and discussion

In this section we present the experimental evaluation of our mode. The

section is divided as follows. In section 5.1, we provide a general description of380

the databases used in the experiments. In section 5.2, we describe the setup in

which we conducted our experiments. In section 5.3, we show our experimental

results. Finally, in section 5.4 we compare our results with the state of the art

results.

5.1. Databases385

In our experiments, we used five different databases. First, we used the

House and Hotel databases, which are described in detail in [60] (Figure 5, left).

They consist of two frame sequences corresponding to two different computer

modeled objects; one is a House (111 frames) and the second is a Hotel (101

frames). The objects move and rotate through the frames. Each frame of these390

sequences has 30 identified and mapped salient points attributed by 60 Context

17

Figure 5: Examples of House-Hotel and Horse original images with salient points and edges.

Shape features. The graphs are built using the salient points as nodes and the

edges by triangulating the nodes according to their position using the Delaunay

algorithm [61].

The other databases are the Horse (Noise, Rotate and Shear) databases (Fig-395

ure 5, right), which are based on an original drawing of a horse taken from [62].

The first paper that used these databases for graph-matching was [39]. Each

graph has 35 nodes that represent hand-marked salient points representing a

horse. Three databases of 199 graphs each (Noise, Shear and Rotate) have been

artificially generated by applying the transformations that its name indicates.400

Each node is attributed by 60 Context Shape features, as in the House and

Hotel databases, and the structure was built by triangulating the nodes using

the Delaunay algorithm.

In all databases, the more temporally separated the frames are in the se-

quence, the more different the frames are, which consequently makes the graph-405

matching process more complex. Moreover, because the nodes are labeled, we

can deduce the ground-truth correspondences between nodes of the graphs. In

the House and Hotel databases, there are 1314 ground-truth correspondences in

the learning set while in the Noise, Rotate and Shear, there are 300 of them.

5.2. Experimental setup410

We build the training, validation and testing sets following the same config-

uration as in [39] and [40]. Thus, we divided each database into three different

collections of graph pairs depending on the number of frames of separation for

18

each experiment: one to train the model, another to validate it, and the last

one to test it. Each pair of graphs is separated by the same number of frames in415

order to keep the level of distortion. The number of frames of separation used

in our experiments is 90 frames for the House and Hotel and 100 frames for the

Noise, Shear and Rotate in order to compare our results with those previously

published in the literature.

On the other hand, to learn and estimate the costs, we have implemented a420

fitting neural network for parameter regression, with a fully connected hidden

layer and the sigmoid as the activation function. The input of network is the

embedded representation of a pair of nodes, while the output is the assignment

cost between this pair of nodes. We trained our network using the conjugate

gradient backpropagation with the Powell-Beale restarts algorithm [63].425

To feed the online backpropagation algorithm that trains the network for

each interaction, we have implemented a circular buffer.

To determine the parameters of the model (number of neurons and buffer

size), we performed some experiments with the validation set until we found

the parameters that maximize the performance while minimizing the number of430

neurons and the buffer size. In addition, in section 5.3.3 we analyze the influence

of these parameters on the performance in terms of accuracy and computational

cost.

5.3. Results

In this section, we present the results achieved by our method. We split435

this section into different subsections. In section 5.3.1, we describe the metrics

that we use to evaluate the results, while in section 5.3.2 we show the results

achieved by our algorithm with respect to the number of interactions. Finally, in

section 5.3.3, we show how the parameters configuration of our neural network

affects the performance of the model.440

19

5.3.1. Metrics

We used three metrics to analyze and compare the performance of our

method:

• The normalized hamming distance between the correspondence deduced

by the Bipartite graph matching algorithm (given the learned parameters)445

and the ground-truth correspondence (given by the database). Because

the aim of the learning algorithm is to find the correspondences as similar

as possible to the ground-truth, we want this distance to be as low as

possible.

Eq. 5 express this metric in formula, where f̂∗ is the calculated matching,450

f is the ground truth matching, and N is the number of assignments.

NHD =
1

N

N∑
i=1

δ
(
f̂∗(Gi) 6= f(Gi)

)
(5)

• The percentage of node-to-node mappings proposed by the active mod-

ule to the user that are different from the ground-truth correspondence.

The active module only proposes node-to-node mappings that are part

of the deduced correspondence (given the current parameters). Thus, we

assume that if the active module selects the ones that are different from

the ground-truth correspondence and the user corrects them, then the

learning algorithm will properly learn the edit costs. Thus, the higher

this metric is, the better the performance. In formula:

PWM =

∣∣∣f̂∗(G)AM 6= f(G)
∣∣∣

N
(6)

where |·| represent the cardinality of a set, f̂∗ is the calculated matching, f

is the ground truth matching, the subscript AM stands for Active Module

and N is the number of assignments.

• The percentage of node-to-node mappings proposed more than once by

the active module to the user during the learning phase. We assume that

20

proposing the same node-to-node mapping several times is less informative

than proposing different ones. For this reason, the lower this metric is, the

better the performance. Mathematical formula for this metric is shown

in Eq. 7 where
∣∣∣f̂∗(G)Repeated

∣∣∣ is the number of mapping proposed more

than onces by the Active module and NLP is the number of node-to-node

mappings proposed during the learning phase.

PRM =

∣∣∣f̂∗(G)
∣∣∣
Repeated

NLP
(7)

5.3.2. Performance evaluation455

To perform the experiments in this section, we have implemented a neural

network with a hidden layer of 30 neurons for all databases; the buffer has a

capacity of 40 mappings for the House and Hotel and 250 for the Noise, Shear

and Rotate databases.

Figure 6 and Figure 7 show the previously commented metrics with respect460

to the number of interactions and using the active learning strategies presented

before. In Figure 6, we show the results of the metrics applied to the House

and Hotel databases, and in Figure 7, we show the results of the metrics applied

to the Noise, Shear and Rotate databases. As described in Figure 2, the usual

modus operandi would be that at each interaction, the system proposes a node-465

to-node mapping to the user according to an active criterion, and the user

corrects this mapping, based on whether the user considers it to be wrong.

Nevertheless, to make the experimental part completely automatic, the human

correction has been simulated by the selection of the node-to-node mapping

proposed by the ground-truth correspondence in the database.470

Both experiments present similar behaviors. Considering the normalized

hamming loss (first row of Figure 6 and Figure 7), we see that our method

(given the three active strategies presented before) can reduce the hamming

distance to zero at some point (approximately 60 interactions for the House

and Hotel and approximately 120 for the Noise, Shear and Rotate) applying the475

LC or the MS strategy. Clearly, it is worth using the active strategies because

21

without them (we have called it “Random”), the number of interactions needed

to reduce the hamming distance is larger. Note that the reduction of interactions

in the online learning methods is usually crucial. In this case, we consider that

asking the user to perform 60 or 100 interactions is not a burden.480

Considering the number of mappings that the human has to correct (second

row of Figure 6 and Figure 7), we observe that the active strategies have a

higher percentage than the “Random” strategy at the first interactions, but

there is a point at which this relationship is inverted or has a similar value. We

consider that having a high percentage of mappings to be corrected by the user485

is good because it makes the learning algorithm to learn faster. Moreover, it

means that when we ask the user to look at the mappings, it is to correct them

and influence the system. When the active strategy presents the user with a

mapping that does not have to be corrected, the human has to look at the data,

but the human’s impositions are not used to influence the learning algorithm.490

Through this reasoning, the three active strategies properly achieve this aim.

The “Random” strategy returns higher percentages from interaction 70 to the

end in the House database. Note that in this case, the hamming distance is zero

at this interaction in the active strategies. Then, it is not possible to improve the

performance of the system, which makes the active strategy present mappings495

that do not have to be corrected.

Finally, considering the number of mappings that are presented to the user

more than once (third row of Figure 6 and Figure 7), we realize that the three

strategies have much more ability to return different mappings, which is good

because they generate a higher chance to need to be corrected by the user.500

The active strategies present higher numbers of repeated matching than the

“Random” strategy at the last interactions because it is much more difficult to

increase the performance of the system when the hamming distance is almost

zero.

Tables 2 and 3 show the normalized Area Under Curve (AUC) and the505

runtime spent to propose a matching to the user according to the different

active learning strategies. The normalised AUC is computed as follows. The

22

(a) (b)

(c) (d)

(e) (f)

Figure 6: Hamming distance (a) and (b) (the lower the better). Percentage of matchings that

need to be corrected deduced by the active algorithm (c) and (d) (the higher the better).

Percentage of proposed repeated matchings (e) and (f) (the lower the better). Horizontal axes

represent the number of interactions. Databases: House (left) and Hotel (right). “Random”

means the active module selects a random node-to-node mapping from the ones deduced by

the graph-matching algorithm.

23

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Hamming distance (a),(b) and (c) (the lower the better). Percentage of matchings

that need to be corrected deduced by the active algorithm (d),(e) and (f) (the higher the

better). Percentage of proposed repeated matchings (g),(h) and (i) (the lower the better).

Horizontal axes represent the number of interactions. Databases: Noise (left), Shear (center)

and Rotate (right). “Random” means the active module selects a random node-to-node

mapping from the ones deduced by the graph-matching algorithm.

24

Table 2: Comparative table in terms of normalized Area Under Curve (AUC) and runtime per

interaction (in seconds) using different active learning strategies in Hotel and House databases.

Best results are underlined.

House Hotel

Strategy AUC Runtime AUC Runtime

Random 0.26 0.78 0.24 0.92

LC 0.08 0.81 0.10 0.88

MS 0.10 0.86 15.02 0.13

ME 0.09 0.87 13.32 0.11

number of properly deduced mappings in the test set is computed each time

the edit costs are recomputed. Then, this number is divided by the number

of mappings. Finally, the Normalised AUC is defined as the addition of these510

values among all the iterations divided by the number of iterations.

Table 2 shows the achieved results in the House and Hotel databases, and

Table 3 shows the results in the Noise, Shear and Rotate databases. The aim of

the model is to minimize the AUC because we want to minimize the hamming

distance with the minimum number of interactions. We observe that it is worth515

applying active strategies instead of proposing random pairs of nodes for each

interaction. The performance between the different active learning strategies

is quite similar; however, in the case of Noise, the ME strategy is not able

to reduce the hamming distance to 0. We conclude that using an appropriate

active learning strategy is crucial, not only because it reduces the number of520

interactions needed to decrease the hamming distance but also because it avoids

falling into local minimums (see hamming distance in the Hotel, the House,

the Noise and the Shear databases). We also realize that the runtime spent

per interaction is quite similar, independent of the strategy. This is because

the system spends much more time solving the graph-matching problem than525

training the model or applying the active learning strategy.

Finally, in Table 4 we show the heat-maps of the cost matrix computed with

25

Table 3: Table comparing normalized Area Under Curve (AUC) and Runtime per interaction

(in seconds) between different active learning strategies with our mode in Noise, Shear and

Rotate databases. Best results are underlined.

Noise Shear Rotate

Strategy AUC Runtime AUC Runtime AUC Runtime

Random 0.23 2.75 0.37 2.74 0.12 2.62

LC 0.10 2.89 0.07 2.82 0.07 2.66

MS 0.10 2.82 0.08 3.11 0.08 2.79

ME 0.09 2.69 0.23 3.13 0.10 2.91

a pair of graphs of the House database after 1, 10, 20, 30 and 40 interactions

using the proposed active strategies and the estimated graph matching. The

ground-truth cost matrix (zeros on the diagonal and ones on the other positions)530

can be deduced because the ground-truth correspondences are provided by the

database. We observe how the model tends to perform better when the number

of interactions increases. We also observe that the ”Random” strategy is the

one that seems to work the worst.

5.3.3. Parameter Analysis535

There are two main parameters that must be set when we design our model:

the buffer size and the number of neurons in the hidden layer of the neural

network. In this subsection, we discuss how these parameters effect the perfor-

mance of the model.

Figure 8 shows the normalized hamming distance with respect to the number540

of interactions using several buffer sizes. When we increase the buffer size, the

hamming distance tends to decrease (the hamming distances given 40 or 80

mappings are superimposed). This means that when we increase the data used

to train the network at each interaction, the cost estimations improve until

reaching a point in which there is no more improvement.545

Table 5 shows the runtime and the Area Under the Curve (the lower the

26

Table 4: Heatmaps of the cost matrix (yellow: high costs, blue: low costs) and graph matchings

(green: correct matchings, red: wrong matchings) using different strategies with respect to

the number of interactions in the House dataset and 90 frames of separation.

Strategy # Interactions Cost Matrix Graph Matching

Ground-Truth -

Random

1

10

20

30

40

LC

1

10

20

30

40

MS

1

10

20

30

40

ME

1

10

20

30

40

27

Figure 8: Hamming distance using different buffer sizes using the Least Confident strategy

in the Hotel dataset with 90 frames of separation. A neural network with a hidden layer of

30 neurons was used in this experiment. The hamming distances given 40 and 80 mappings

obtained the same results.

better) given several buffer sizes. As expected, the runtime spend solving the

graph matching problem does not depend on the buffer size, while the learning

algorithm depends on the amount of data used to train the model and so the

buffer size. This is because when the buffer size increases, the training algorithm550

needs more interactions to find the weights that minimize the error. Finally,

the Area Under the Curve decreases when the buffer size increases, which is

congruent on the results shown in Figure 8.

Finally, Figure 9 shows the normalized hamming distance with respect to

the number of interactions, while Table 6 shows the normalized Area Under555

the Curve and the runtime achieved with different neural networks. We have

changed the number of neurons of the hidden layer in each run. The input layer

has always 122 neurons, 2∗(Attributes+1) = 2∗(60+1) = 122, and the output

layer has only one layer (the value of γ).

We observe that with a neural network of 5, 10 and 20 neurons, the model560

returns a high Area Under the Curve, while if we increase the size to 30 or 40,

28

Table 5: Runtime per interaction (in seconds) and normalized Area Under the Curve given

several buffer sizes in the Hotel dataset using the Least Confident strategy. A neural network

with a hidden layer of 30 neurons was used in this experiment because it is the value that

obtains the best results in Figure 9. Best results are underlined.

Buffer size
Runtime

(graphs matching)

Runtime

(learning)
AUC

2 0.50 0.20 0.78

4 0.49 0.20 0.28

8 0.49 0.20 0.17

20 0.49 0.25 0.12

40 0.48 0.32 0.10

80 0.49 0.42 0.10

the Area Under the Curve is significantly reduced. As expected, there are no

differences in the graph matching runtime. Moreover, increasing the number of

neurons makes the learning runtime increase, but the increase is not significant.

5.4. Comparison to the state-of-the-art565

In Table 7, we show a comparative study between our best results applying

the proposed active learning strategies and the state-of-the-art off-line meth-

ods published in the literature. Our method returns a lower hamming dis-

tance than [39, 40] given approximately 35 interactions for the House and Hotel

databases and 100 interactions for the Noise, Rotate and Shear databases (see570

Figure 6 and Figure 7). Note that we are only using the ratio 35/1314 (2.7%)

and 100/300 (33%) of the databases, respectively. In general, when we apply

some of the proposed strategies, our method reaches the best results. Even when

the performance is similar, as in [59], our model has the crucial advantage of

using an online learning paradigm. This means that, as described above, it has575

the capacity to learn in each interaction, significantly minimizing the number

of node-to-node impositions necessary to obtain the best results. This is very

29

Figure 9: Hamming distance using different numbers of neurons in the hidden layer with the

LC strategy in the Hotel dataset with 90 frames of separation.

Table 6: Runtime per interaction (in seconds) and normalized Area Under Curve given several

number of neurons. in the Hotel dataset using the Lest Confident strategy. Buffer size of 40

mappings. Best results are underlined.

Number of neurons
Runtime

(graphs matching)

Runtime

(learning)
AUC

5 0.53 0.33 0.82

10 0.50 0.39 0.65

20 0.60 0.40 0.66

30 0.56 0.35 0.10

40 0.52 0.40 0.13

30

important because manually annotating mappings between nodes of two graphs

can be a very costly task.

Table 7: Comparison table of normalized hamming distance results. Best results are under-

lined.

Database

Algorithm Strategy House Hotel Noise Shear Rotate

Caetano et. al. [39] - 0.14 0.09 0.32 0 0.42

Cortés et. al. [40] - 0.24 0.21 0.19 0.55 0.18

Leordeanu et. al. [41] - 0.01 0.05 - - -

Santacruz et. al. [58] - 0.02 0.02 - - -

Cortés et. al. [59] - 0 0 0 0 0

Our proposal

Random 0.01 0.02 0.04 0.17 0

LC 0 0 0 0 0

MS 0 0 0 0 0

ME 0 0 0.01 0.08 0.01

6. Conclusions580

This paper proposes a model to learn the cost functions for graph matching in

an online, active and interactive manner. It has the restriction that the graph

matching has to be computed in a suboptimal way and modeled as a linear

assignment problem. Moreover, node and edge attributes have to be structured

as vectors.585

A human (or another intelligent system) is needed to correct the node-to-

node mappings that the active model proposes. This proposed mapping is sup-

posed to have a high chance of being wrong. Putting a human in the loop could

mean an important increase of runtime. Nevertheless, in some applications in

which graphs arrive sequentially, the human effort could make the deduced graph590

assignment be close to the one the human desires with only some interactions.

31

In fact, this is what we deduce in the experimental section. We demonstrated

that in the given databases, our method achieves higher accuracy than other

off-line learning methods with a low number of interactions.

We have proposed three active strategies to present a node-to-node mapping595

to the human. The active module looks for mappings computed by the graph

matching module that have a high chance of being wrong (different from the

mapping that the human would decide), as are the ones whose correction could

generate the highest impact on the learned cost function. This supposition was

demonstrated empirically because when the ratio of selected wrong mapping600

decreases, the accuracy keeps stable. Thus, when the active module proposes

correct mappings, the system does not learn.

In the experimental section, we have analyzed the influence of the three

different active strategies and we have seen that the Least Confident one is the

strategy with the lowest Area Under the Curve, although there are no significant605

differences with respect to the Margin Sampling strategy.

As a future work, we want to study the influence of different embeddings

of the local information of the nodes. We could analyze the impact of these

embeddings with regard to the runtime and the accuracy. Moreover, we could

also present another graph matching paradigm in which the function to be610

optimized was composed of the first and second order terms. Then, the learning

module would have to learn different functions. If this module was implemented

through a neural network, we could analyze the use of more than one neural

network. Finally, we could also apply online learning algorithms other than the

neural network, such as online support vector machines.615

The overall framework is based on linear assignment and bipartite approx-

imation formulation of graph matching. This obviously limit the accuracy of

solution (even if, is still acceptable in several problems). A new direction of

research would be to reformulate the whole framework on the basis of quadratic

formulation of graph matching. In this case all the learning process must be620

revised to take into account quadratic term of the formulation.

32

Acknowledgements

This research is supported by projects TIN2016-77836-C2-1-R and DPI2016-

78957-R.

References625

References

[1] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching

in pattern recognition, International journal of pattern recognition and

artificial intelligence 18 (03) (2004) 265–298.

[2] M. Vento, A long trip in the charming world of graphs for pattern recogni-630

tion, Pattern Recognition 48 (2) (2015) 291–301.

[3] L. Livi, A. Rizzi, The graph matching problem, Pattern Analysis and Ap-

plications 16 (3) (2013) 253–283.

[4] P. Foggia, G. Percannella, M. Vento, Graph matching and learning in pat-

tern recognition in the last 10 years, International Journal of Pattern Recog-635

nition and Artificial Intelligence 28 (01) (2014) 1450001.

[5] G. W. Humphreys, C. J. Price, M. J. Riddoch, From objects to names:

A cognitive neuroscience approach, Psychological research 62 (2-3) (1999)

118–130.

[6] J. Ward, The student’s guide to cognitive neuroscience, Psychology Press,640

2015.

[7] P. Zhao, S. C. Hoi, Cost-sensitive online active learning with application

to malicious url detection, in: Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining, 2013,

pp. 919–927.645

[8] C. Robert, Machine learning, a probabilistic perspective (2014).

33

[9] R. Boselli, M. Cesarini, F. Mercorio, M. Mezzanzanica, Classifying online

job advertisements through machine learning, Future Generation Computer

Systems 86 (2018) 319–328.

[10] X. Zhang, T. Yang, P. Srinivasan, Online asymmetric active learning with650

imbalanced data, in: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2016, pp. 2055–

2064.

[11] Y. Yan, Q. Wu, M. Tan, M. K. Ng, H. Min, I. W. Tsang, Online hetero-

geneous transfer by hedge ensemble of offline and online decisions, IEEE655

transactions on neural networks and learning systems 29 (7) (2017) 3252–

3263.

[12] H. Wu, Y. Yan, Y. Ye, H. Min, M. K. Ng, Q. Wu, Online heterogeneous

transfer learning by knowledge transition, ACM Transactions on Intelligent

Systems and Technology (TIST) 10 (3) (2019) 1–19.660

[13] Y. Zhang, P. Zhao, J. Cao, W. Ma, J. Huang, Q. Wu, M. Tan, Online adap-

tive asymmetric active learning for budgeted imbalanced data, in: Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, 2018, pp. 2768–2777.

[14] Y. Zhang, P. Zhao, S. Niu, Q. Wu, J. Cao, J. Huang, M. Tan, Online adap-665

tive asymmetric active learning with limited budgets, IEEE Transactions

on Knowledge and Data Engineering.

[15] B. Settles, Active learning, Synthesis Lectures on Artificial Intelligence and

Machine Learning 6 (1) (2012) 1–114.

[16] Q. Zhang, S. Sun, Multiple-view multiple-learner active learning, Pattern670

Recognition 43 (9) (2010) 3113–3119.

[17] S. B. Kotsiantis, I. Zaharakis, P. Pintelas, Supervised machine learning: A

review of classification techniques, Emerging artificial intelligence applica-

tions in computer engineering 160 (2007) 3–24.

34

[18] T. M. Mitchell, Machine Learning, 1st Edition, McGraw-Hill, Inc., New675

York, NY, USA, 1997.

[19] A. Sanchis, A. Juan, E. Vidal, A word-based näıve bayes classifier for

confidence estimation in speech recognition, IEEE Transactions on Audio,

Speech, and Language Processing 20 (2) (2012) 565–574.

[20] P. H. Gosselin, F. Precioso, S. Philipp-Foliguet, Incremental kernel learning680

for active image retrieval without global dictionaries, Pattern Recognition

44 (10-11) (2011) 2244–2254.

[21] A. Baranes, P.-Y. Oudeyer, Active learning of inverse models with intrin-

sically motivated goal exploration in robots, Robotics and Autonomous

Systems 61 (1) (2013) 49–73.685

[22] V. Romero, A. H. Toselli, E. Vidal, Multimodal interactive handwritten

text transcription, Vol. 80, World Scientific, 2012.

[23] R. Wang, S. Kwong, D. Chen, Inconsistency-based active learning for sup-

port vector machines, Pattern Recognition 45 (10) (2012) 3751–3767.

[24] D. Gorisse, M. Cord, F. Precioso, Salsas: Sub-linear active learning strategy690

with approximate k-nn search, Pattern Recognition 44 (10-11) (2011) 2343–

2357.

[25] E. Lughofer, Hybrid active learning for reducing the annotation effort of

operators in classification systems, Pattern Recognition 45 (2) (2012) 884–

896.695

[26] A. T. Da Silva, A. X. Falcão, L. P. Magalhães, Active learning paradigms for

cbir systems based on optimum-path forest classification, Pattern Recog-

nition 44 (12) (2011) 2971–2978.

[27] B. Settles, M. Craven, An analysis of active learning strategies for sequence

labeling tasks, in: Proceedings of the conference on empirical methods in700

35

natural language processing, Association for Computational Linguistics,

2008, pp. 1070–1079.

[28] A. Culotta, A. McCallum, Reducing labeling effort for structured prediction

tasks, in: AAAI, Vol. 5, 2005, pp. 746–751.

[29] R. Hwa, Sample selection for statistical parsing, Computational linguistics705

30 (3) (2004) 253–276.

[30] C. E. Shannon, A mathematical theory of communication, ACM SIGMO-

BILE Mobile Computing and Communications Review 5 (1) (2001) 3–55.

[31] P. Zhao, Y. Zhang, M. Wu, S. C. H. Hoi, M. Tan, J. Huang, Adaptive

cost-sensitive online classification, IEEE Transactions on Knowledge and710

Data Engineering 31 (2) (2019) 214–228.

[32] M. Zinkevich, Online convex programming and generalized infinitesimal

gradient ascent, in: Proceedings of the 20th international conference on

machine learning (icml-03), 2003, pp. 928–936.

[33] X. Cortés, F. Serratosa, An interactive method for the image alignment715

problem based on partially supervised correspondence, Expert Systems

With Applications 42 (1) (2015) 179–192.

[34] X. Cortés, F. Serratosa, Cooperative pose estimation of a fleet of robots

based on interactive points alignment, Expert Systems With Applications

45 (2016) 150–160.720

[35] G. Manzo, F. Serratosa, M. Vento, Online human assisted and cooperative

pose estimation of 2d cameras, Expert systems with applications 60 (2016)

258–268.

[36] E. Rica, C. F. Moreno-Garćıa, S. Álvarez, F. Serratosa, Reducing human

effort in engineering drawing validation, Computers in Industry 117 (2020)725

103198.

36

[37] M. Neuhaus, H. Bunke, Self-organizing maps for learning the edit costs in

graph matching, IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics) 35 (3) (2005) 503–514.

[38] M. Neuhaus, H. Bunke, Automatic learning of cost functions for graph edit730

distance, Information Sciences 177 (1) (2007) 239–247.

[39] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, A. J. Smola, Learn-

ing graph matching, IEEE transactions on pattern analysis and machine

intelligence 31 (6) (2009) 1048–1058.

[40] X. Cortés, F. Serratosa, Learning graph matching substitution weights735

based on the ground truth node correspondence, International Journal of

Pattern Recognition and Artificial Intelligence 30 (02) (2016) 1650005.

[41] M. Leordeanu, R. Sukthankar, M. Hebert, Unsupervised learning for graph

matching, International journal of computer vision 96 (1) (2012) 28–45.

[42] X. Cortés, F. Serratosa, Learning graph-matching edit-costs based on the740

optimality of the oracle’s node correspondences, Pattern Recognition Let-

ters 56 (2015) 22–29.

[43] S. Algabli, F. Serratosa, Embedding the node-to-node mappings to learn

the graph edit distance parameters, Pattern Recognition Letters 112 (2018)

353–360. doi:10.1016/j.patrec.2018.08.026.745

URL https://doi.org/10.1016/j.patrec.2018.08.026

[44] K. Riesen, Structural pattern recognition with graph edit distance,

Springer, 2015.

[45] F. Serratosa, Graph edit distance: Restrictions to be a metric, Pattern

Recognition 90 (2018) 250–256.750

[46] F. Serratosa, X. Cortés, Interactive graph-matching using active query

strategies, Pattern Recognition 48 (4) (2015) 1364–1373.

37

https://doi.org/10.1016/j.patrec.2018.08.026
https://doi.org/10.1016/j.patrec.2018.08.026
https://doi.org/10.1016/j.patrec.2018.08.026
http://dx.doi.org/10.1016/j.patrec.2018.08.026
https://doi.org/10.1016/j.patrec.2018.08.026

[47] K. M. Anstreicher, Recent advances in the solution of quadratic assignment

problems, Mathematical Programming 97 (1-2) (2003) 27–42.

[48] K. Riesen, H. Bunke, Approximate graph edit distance computation by755

means of bipartite graph matching, Image and Vision computing 27 (7)

(2009) 950–959.

[49] F. Serratosa, Fast computation of bipartite graph matching, Pattern Recog-

nition Letters 45 (2014) 244–250.

[50] P. Santacruz, F. Serratosa, Error-tolerant graph matching in linear compu-760

tational cost using an initial small partial matching, Pattern Recognition

Letters (2018) in press.

[51] F. Serratosa, Speeding up fast bipartite graph matching through a new

cost matrix, International Journal of Pattern Recognition and Artificial

Intelligence 29 (02) (2015) 1550010.765

[52] F. Serratosa, Computation of graph edit distance: Reasoning about opti-

mality and speed-up, Image and Vision Computing 40 (2015) 38–48.

[53] F. Serratosa, X. Cortés, Graph edit distance: Moving from global to local

structure to solve the graph-matching problem, Pattern Recognition Letters

65 (2015) 204–210.770

[54] P. Santacruz, F. Serratosa, Learning the graph edit costs based on a learn-

ing model applied to sub-optimal graph matching, Neural Processing Let-

ters 51 (1) (2020) 881–904.

[55] J. Munkres, Algorithms for the assignment and transportation problems,

Journal of the Society of Industrial and Applied Mathematics 5 (1) (1957)775

32–38.

[56] S. Bougleux, L. Brun, V. Carletti, P. Foggia, B. Gaüzère, M. Vento, Graph

edit distance as a quadratic assignment problem, Pattern Recognit. Lett.

38

https://doi.org/10.1016/j.patrec.2016.10.001
https://doi.org/10.1016/j.patrec.2016.10.001
https://doi.org/10.1016/j.patrec.2016.10.001

87 (2017) 38–46. doi:10.1016/j.patrec.2016.10.001.

URL https://doi.org/10.1016/j.patrec.2016.10.001780

[57] M. M. Luqman, J.-Y. Ramel, J. Lladós, T. Brouard, Fuzzy multilevel graph

embedding, Pattern Recogn. 46 (2) (2013) 551–565.

[58] P. Santacruz, F. Serratosa, Learning the sub-optimal graph edit distance

edit costs based on an embedded model, in: Joint IAPR International

Workshops on Statistical Techniques in Pattern Recognition (SPR) and785

Structural and Syntactic Pattern Recognition (SSPR), Springer, 2018, pp.

282–292.

[59] X. Cortés, D. Conte, H. Cardot, Learning edit cost estimation models for

graph edit distance, Pattern Recognition Letters 125 (2019) 256 – 263.

[60] C. F. Moreno-Garćıa, X. Cortés, F. Serratosa, A graph repository for learn-790

ing error-tolerant graph matching, in: Joint IAPR International Workshops

on Statistical Techniques in Pattern Recognition (SPR) and Structural and

Syntactic Pattern Recognition (SSPR), Springer, 2016, pp. 519–529.

[61] J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh gen-

eration, Computational geometry 22 (1-3) (2002) 21–74.795

[62] A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, R. Kimmel, Analysis

of two-dimensional non-rigid shapes, International Journal of Computer

Vision 78 (1) (2008) 67–88.

[63] M. J. D. Powell, Restart procedures for the conjugate gradient method,

Mathematical Programming 12 (1977) 241–254.800

39

http://dx.doi.org/10.1016/j.patrec.2016.10.001
https://doi.org/10.1016/j.patrec.2016.10.001

	Introduction
	Literature Review
	Online Machine Learning Methods
	Active Machine Learning Methods
	Interactive Machine Learning
	Learning Graph Matching Cost Functions

	Definitions and notation
	Proposed Framework
	General problem schema
	Graph matching
	Active Machine Learning strategies
	Learning the cost function

	Experiments and discussion
	Databases
	Experimental setup
	Results
	Metrics
	Performance evaluation
	Parameter Analysis

	Comparison to the state-of-the-art

	Conclusions

