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ABSTRACT 

 

Mapping of permafrost mountain landscape of 

Verkhoyansk in the Arctic zone is based on the recognition 

by remote sensing and GIS modeling of the landscape 

permafrost-objects resulting from the combination of the 

Milkov’s taxonomic classifications. The methodology 

developed integrates three types of modeling: the first one is 

mapping the vegetation repartition using Sentinel 2A with 

SVM classifier during the summer vegetative period; second 

is the landform classification using Jenness’s algorithm from 

ASTER data; and the third one is land surface temperature 

calculus from Landsat 8 OLI/TIRS images identifying the 

permafrost characteristics categories. Results are merged 

using a native index equation of permafrost landscape objects 

in GIS. This original mapping approach improves 

significantly the understanding of complexity of the 

permafrost mountain structures and processes with the annual 

monitoring by remote sensing. 

Index Terms— Multi-fusion methods, land surface 

temperature, landform classification, permafrost landscape 

mapping 

 

1. INTRODUCTION 

 

Arctic permafrost mountain landscape is a combination of 

five-dimensional interdependent geographic objects formed 

within the cryolithozone according to the Milkov’s theory 

[1]: rocks, surface and groundwater, climate, soil, and biota. 

The recognition by remote sensing of these five 

geographic components structuring the permafrost-mountain 

landscape in Siberian Arctic region allows modeling the 

evolution of the Arctic landscape and analyses the current 

dynamics and interactions. The spatio-temporal monitoring 

of the five landscape geographic components gives the 

capacities to follow the complex dynamics of the landscape 

structures due to the self-transformations and the climatic 

variability. Furthermore, the spatial modeling gives some 

elements (mapping) of prediction of the degradation of the 

landscape potentially having impact on the infrastructure, 

rural centers, agricultural land, and expected (potential) 

opening gold and silver mines. Remote sensing is the only 

one available approach to analyze these landscape processes 

in this region because of the inaccessibility of the area. 

Remote sensing is also used to analyze the heterogeneity of 

mountain permafrost landscapes: classifications generated 

are more accurate and detailed and they are related to the 

Milkov’s taxonomy. Many studies have evaluated the 

feasibility of mapping permafrost landscapes using remote 

sensing [2], [3], [4]. However, most of these studies focus on 

the validation and on the joint interpretation of field 

observations and measurements. The aim of this study is to 

provide an original approach to the classification and 

mapping of permafrost mountain landscapes based on multi-

fusion of image classifications (series of intra-seasonal land 

cover, landform classification and land surface temperature) 

using existing taxonomical basis [5], [6], [7] for interpreting 

landscape components.  

 

2. MATERIALS AND METHODS 

 

2.1. Arctic mountain permafrost landscapes  

 

The study area has a size of 60x100 km and lies between 

latitude 68°24,1'– 67°34,3' N and longitude 129°14,5' – 

131°32' E. It is the Orulgan ridge, the North-eastern part of 

the Verkhoyansk Mountain ridge system in Siberia. 

According to the permafrost landscape map [8], this Artic 

region is composed of mountain deserts, mountain tundra and 

sparse forests, as well as intrazonal valley landscapes: north-

taiga and mountain taiga, and mountain tundra. 
The vegetation repartition combines different types and 

associations [9]. It is used for the mapping of land cover and 

vegetation classification. 

 

2.2. Remote sensing and DEM data 

 

Sentinel 2A images (4 bands: 490nm, 560nm, 665nm and 

842nm at 10m spatial resolution) were used in this research. 

They were obtained during the summer vegetative period for 

the recognition and classification of vegetation with Support 

Vector Machine classifier. Sentinel 2A images were acquired 

on the 15th of June 2019, 12th of July 2019 and 29th of August 

2019. Landform classification using Jenness’s algorithm 

from ASTER data was processed from 6 scenes of ASTER 

GDEM. Landsat 8 OLI/TIRS was acquired on the 28th of 

August 2018 for recognizing the permafrost categories 
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(types) by the Land surface temperature modeling. 

Preprocessing for Sentinel 2A and Landsat 8 OLI/TIRS data 

includes radiometric calibration and atmospheric correction 

applied DOS 1.  

 

2.2.  Multi-fusion modeling approach 

 

The multi-fusion data modeling approach (Fig. 1) includes 

three methods for landscape object recognition: land cover 

(Section 2.2.1) and landform (Section 2.2.2) classification 

[10], and land surface temperature (Section 2.2.3).   

 

 
Fig. 1. Mountain permafrost landscape multi-fusion 

modeling 

 

2.2.1. Land cover classification 

The method of land cover analysis has three main steps:  

1) The image enhancement that is performed by principal 

component analysis (PCA) to reduce dimensionality to 

the 4 spectral bands: three principal components contain 

91% of spectral (radiometric) information of 4 bands of 

Sentinel 2A. 

2) Supervised spectral classification by the Support Vector 

Machine (SVM) algorithm [11], [12] using the radial 

basis function (RBF) of the kernel type and C-Support 

model: we selected 23 training geographic object areas on 

Sentinel 2A acquired in June, July and August vegetative 

period. These training areas correspond with the land 

cover classes (forest, rare forest, bushes, shrubs, grass, 

moss, bare soil, and water).  

3) Calculation of the overall accuracy of land cover 

classifications by the error matrix and the kappa 

coefficient respectively for June (84,2% and 0.74), July 

(79,1% and 0.71) and August (81,5 % and 0.72).   

The spectral classification for each summer dates gives a 

good result according to the differences of brightness 

characteristics of vegetation species during the observation 

period [13].  

 

 

2.2.2. Landform classification by ASTER GDEM 

Compilation of ASTER GDEM data scenes (30m resolution) 

generates the mesorelief types obtained by the automatic 

landform classification using Jenness algorithm [14] based on 

Topographic Position Index (TPI). The TPI algorithm 

compares the values of each cell inside the DEM with the 

average of a specific neighborhood around the cell. Landform 

classification made using TPI is performed with 5x5 window 

neighborhood analysis at 250m (Fig.2 a) and at 500m (Fig. 2 

b) radius (small and large scales) (Fig. 2, a, b) calculating 

slope degrees and altitudes. Five types of landform related to 

mesorelief characteristics are recognized (Table 1). 

 

Fig. 2. a) TPI 250 m; b) TPI 500 m; c) landform classification 

Table 1. Landform Classification modified according to 

mesorelief characteristics:   

We used altitude (height) to distinguish mid and low terraces 

for the river valley landform object with similar TPI and slope 

characteristics.  

 

2.2.3. Land Surface Temperature (LST) 

LST was determined by thermal infrared image from Landsat 

8 TIRS sensor.  LST is estimated by Planck Function (1) [15] 

using Brightness Temperature algorithm (BT). The Land 

Surface Emissivity (LSE) is calculated by the logarithmic 

relationship of the NDVI made by Landsat 8 OLI sensor with 

bands 4 (red) and 5 (NIR) with the surface emissivity.  
 

                 LST=BT/{1+[λ⋅BT/ρ]⋅lnLSE}  (1) 

 

λ is the central band wavelength of emitted radiance (1080 

nm for band 10; ρ is h × c/σ (1.438 × 10–2 m K), with σ as 

the Boltzmann constant (1.38 × 10–23 J/K), h - Planck’s 

constant (6.626 ×10–34 J *s), and c as the velocity of light 

(2.998 × 10 m/s). The calculated LST value is then converted 

to Celsius degree. The late summer images allow to analyze 

Landform types Samples 

Mountain tops Small Neighborhood TPI ≥ 1;  

Large Neighborhood TPI ≥ 1; 

Slope ≤ 5° 

Mountain slope Small Neighborhood -1 < TPI < 1;  

Large Neighborhood TPI ≥ 1 

Slope ≥ 5° 

Glacial valley Small Neighborhood -1 < TPI < 1 

Large Neighborhood TPI ≤ -1 

Mid-terrace Small Neighborhood TPI ≤ -1;  

Large Neighborhood TPI ≥ 1 

Low-terrace Small Neighborhood: -1 < TPI < 1 

Large Neighborhood: -1 < TPI < 1 

Slope ≤ 15°  

Height ≤ 500 
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surfaces with a seasonally thawed layer of permafrost 

including the weak effect of vegetation activity. 

 

3. MOUNTAIN PERMAFROST LANDSCAPE 

RECOGNITION 

 

3.1. Identification of landscape vegetation association 

 

The vegetation association (VA) and the mesorelief are the 

factors differentiating the landscape’s types in accordance 

with the Milkov’s theory. The combination by arithmetic 

fusion of summer land cover and landform classes generates 

the landscape VA permafrost map (Fig. 3). 

 

          VA = 1000 * x₁ + 100x₂ + 10 * x₃ + x₄  (2) 

  

The identification of VA was provided by the multi-fusion 

analysis of photosynthetic activities variations of land cover 

in different types of landform (2): x₁- landform types, land 

cover class - x₂ (June), x₃(July), x₄(August).  

 

The photosynthetic activities of the vegetation land cover 

classes were calculated by NDVI. We have found that in the 

mountain arctic sparse forest, the vegetation index reflects 

not only the upper stage of vegetation, but also the lower 

vegetation stages (shrub, grass, moss). The table 2 presents 

NDVI threshold variation of identified vegetation 

association. Fifteen VA were extracted from the 2566 

combinations of raster values by reclassification (assignment 

of a new class code of the obtained VA value in accordance 

with the identification affiliation to the type of vegetation 

association [16], [17]. 

 
Fig. 3. Vegetation association map. 1)larch forest, birch bilberry, 

3) larch forest, lingonberry-ledum, 2) cubalpine-shrubby, 4) mixed 

grass meadow, 5) wet meadows, 6) willow shrubs, 7) larch forest 

moss, 8) tussock meadow, 9) subalpine-lichen with juniper thickets, 

10) alpine meadow, 11) dryads alpine, 12) epilithic-lichen, 13) 

larch forest low-terraced, 14) valley mixed forest, 15) willow shrub 

low terraced 

 

3.2. Permafrost characteristics categories 

 

The permafrost characteristics are modelled in GIS by the 

thermal surfaces, slopes and exposures. The frozen surfaces 

are modelled by the following factors: the lower brightness 

temperatures, the higher emissivity, and the greater optical 

thickness [18]. The lack of data on snow cover did not allow 

us to determine frozen and unfrozen lands.  

 

 
Fig. 4. Permafrost distribution map transition (green), 

continuous (yellow), permafrost in stone field (grey) and 

water (blue) 

Moreover, this model based on the above indicators allows to 

identify transitionally frozen surface characteristics of the 

warm slopes of mountains not covered by woody vegetation 

and frozen surface of stone fields of high mountains. Three 

categories of permafrost characteristics are result of calculus 

by maximum similarity of the LST, slope degree, northern 

and southern exposures by the supervised classification 

Table 2. NDVI photosynthetic activities of vegetation 

associations 

Vegetation 

associations (VA) 

NDVI threshold Landfo

rm 

object 
june july august 

larch forest, birch, 

bilberry 

0,62-0,7 0,33-0,45 0,3-0,4 Mid 

terrace 

larch forest 

lingonberry-

ledum 

0,57-0,62 0,45-0,5 0,25-0,33 

subalpine-shrubby 0,43- 

0,57 

0,33-0,45 0,3-0,4 Glacial 

valley 
mixed grass 

meadows 

0,57-0.34 0,6-0,75 0,25-0,35 

wet meadow 0,43-0.5 0,40-0,52 0,3-0,35 

willow shrubs 0,23-0.5 0,3-0,45 0,3-0,35 Mounta

in  

slope 
larch forest moss 0,34-0.65 0,5-0,55 0,34-0,45 

tussock meadow 0,15-0.2 0,15-0,25 0,12-0,2 

subalpine-lichen 

with juniper 

thickets 

0,15-0,3 0,05-0,3 0,05-0,3 

alpine meadow 0,1-0.2 0,14-0,25 0,1-0,2 Mounta

in tops dryads alpine 0,67-0.72 0,6-0,75 0,6-0,74 

epilithic-lichen 0,05-0,15 0,05-0,2 0,05-0,2 

larch forest low-

terraced 

0,67-0.72 0,5-0,65 0,5-0,56 Low 

terrace 

valley mixed 

forests 

0,6-0,67 0,6-0,75 0,35-0,55 

willow shrub low-

terraced 

0,43-0.46 0,46-0,55 0,2-0,45 
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algorithm of the minimum Euclidean distance with 17 

training areas (Fig. 4). These categories enable to 

differentiate between the types of frozen and thawed soils and 

to characterize the frozen state of the landscape. 

 

4. CONCLUSION 

 

Synergistic use of remote sensing image processing and GIS 

modeling creates unprecedent opportunities for the mapping 

and accurate observation of changes of mountain permafrost 

landscape of Verkhoyansk region. This article presents an 

application of the Milkov’s theory based on remote sensing 

to the characterization and categorization of the mountain 

permafrost landscapes. The methodology developed is based 

on the multi-fusion data modeling of the summertime 

vegetation association mapping by Sentinel 2A visible and 

near infrared bands with landform types generated by ASTER 

GDEM. The model identifies 15 vegetation associations. The 

implementation of the LST obtained from the Landsat 8 TIRS 

sensor calculus according to the brightness temperature and 

the land surface emissivity creates acceptable results for the 

modeling permafrost characteristics in Arctic mountainous 

territories.  
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