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Maximal local time of randomly biased random
walks on a Galton-Watson tree

Xinxin Chen∗ , Loı̈c de Raphélis†

September 28, 2020

Abstract

We consider a recurrent random walk on a rooted tree in random environment given
by a branching random walk. Up to the first return to the root, its edge local times form
a Multi-type Galton-Watson tree with countably infinitely many types. When the walk is
the diffusive or sub-diffusive, by studying the maximal type of this Galton-Watson tree,
we establish the asymptotic behaviour of the largest local times of this walk during n
excursions, under the annealed law.
Keywords: Branching random walk, Randomly biased random walk, Multi-type Galton-Watson
tree

1 Introduction: Models and results

1.1 Branching random walk and randomly biased random walk

Let us first introduce a branching random walk on the real line, whose reproduction law is
given by the law of C, a point process on R. The construction is as follows.

We start with one vertex at time 0, which is called the root, denoted by ρ and positioned
at V(ρ) = 0. At time 1, the root gives birth to some children whose positions constitute a
point process distributed as C. These children form the first generation. Recursively, for any
n ≥ 0, at time n+ 1, every vertex u of the n-th generation produces its children independently
of the other vertices so that the displacements of its children with respect to its position are
distributed as C. All children of the vertices of the n-th generation form the (n + 1)-th gener-
ation.

We hence get the genealogical tree T. For any vertex u ∈ T, let V(u) denote its position
and |u| denote its generation with |ρ| = 0. For two vertices u, v ∈ T, write u ≤ v if u is an
ancestor of v and write u < v if u ≤ v but u 6= v. Denote by P the law of the branching
random walk E = (T, (V(u))u∈T), which serves as the environment.
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†UPMA-ENS Lyon (France).
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Given E = (T, (V(u))u∈T), the randomly biased random walk (Xn)n≥0 is a nearest-neighbour
random walk on T started from X0 = ρ, and with transition probabilities as follows: ∀x ∈ T \ {ρ},

(1.1) PE (Xn+1 = v|Xn = u) =


e−V(u)

e−V(u)+∑z:←−z =u e−V(z) if←−u = v

e−V(v)

e−V(u)+∑z:←−z =u e−V(z) if←−v = u

where←−u represents the parent of u ∈ T \ {ρ}. To define the transition probabilities for x = ρ
in a proper way, we add artificially a parent←−ρ to the root ρ and suppose that (1.1) holds for
u = ρ and that PE (Xn+1 = ρ|Xn = ←−ρ ) = 1. The quenched law of the random walk (Xn)n≥0
on T∪ {←−ρ } is denoted by PE . Its annealed law is denoted by P(·) :=

∫
PE (·)P(dE).

Note that the law of the environment E is characterised by the law of C. Let us introduce
the Laplace transform of C defined by

ψ(t) := E

 ∑
|u|=1

e−tV(u)

 = E
[∫

e−txC(dx)
]

, ∀t ∈ R.

In this paper, we assume

Assumption 1.1. ψ(0) > 1, E[∑|u|=1 |V(u)|e−V(u)] < ∞ and

(1.2) ψ(1) := E

 ∑
|u|=1

e−V(u)

 = 1, ψ′(1) := −E

 ∑
|u|=1

V(u)e−V(u)

 < 0.

Note that ψ(0) > 1 means that the Galton-Watson tree T is supercritical.
Let us introduce the quantity

κ := inf{t > 1 : ψ(1) ≥ 1}

with convention that inf ∅ = ∞. We also require the following assumptions.

Assumption 1.2. Either there exists some κ ∈ (1, ∞) with ψ(κ) = 1; or κ = ∞ and ψ(t) < 1 for all
t > 1.

Assumption 1.3. The support of C is non-lattice.

Assumption 1.4. If κ ∈ (1, ∞), there exists some δ > 0 such that

(1.3) ψ(t) < ∞, ∀t ∈ (1− δ, κ + δ), and E


 ∑
|u|=1

e−V(u)

κ+δ
 < ∞.

If κ = ∞, there exists some δ > 0 such that

(1.4) E


 ∑
|u|=1

e−V(u)

2+δ
 < ∞.
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In [15], a criterion for recurrence/transience is established. So, from (1.2), it is known that
mint∈[0;1] ψ(t) = ψ(1) = 1 and that the random walk is recurrent. More precisely, Faraud
showed with some extra-conditions that if ψ(1) = 1 and ψ′(1) < 0 then the random walk
(Xn)n≥0 is null recurrent. Moreover, under Assumptions 1.1 and 1.2, when κ ∈ (1, 2], it has
been proved in [11] and [7] that the random walk is sub-diffusive; and when κ > 2, the walk is
diffusive and satisfies an invariance principle, see [1] and [9]. More precisely, Aı̈dékon and de
Raphélis also proved in [1] that for κ > 2, the tree visited by the walk up to time n, after being
rescaled by a factor n1/2, converges in law to the Brownian forest. Then in [7] similar result
is obtained for κ ∈ (1, 2], but in a stable regime. Next, Chen, de Raphélis and Hu studied the
localisation of the most visited sites in [5].

In this paper, we are interested in the most visited edges and want to know how many
times the walk crosses them up to some fixed or random time.

Let us introduce the edge local times Ln(u), n ≥ 1, u ∈ T defined by

(1.5) Ln(u) :=
n

∑
k=1

1{Xk−1=
←−u ,Xk=u}.

Define a sequence of stopping times (τn)n≥0 by

τn := inf{k > τn−1 : Xk−1 =←−ρ , Xk = ρ}, ∀n ≥ 1

with τ0 := 0. Note that τn − 1 is the n-th return to←−ρ of the random walk and that τ1 < ∞,
P-a.s., as the walk is recurrent. Usually, we call the walk up to τ1 the first excursion and the
n-th excursion means the walk from τn−1 to τn.

Then observe that (Lτ1(u))u∈T is a multi-type Galton-Watson tree with root of type 1, un-
der P, according to Lemma 3.1 of [1]. Its detailed reproduction distributions will be given in
(4.1). We are initially interested in the tail distribution of the maximal local time during the
first excursion:

P

(
max
u∈T

Lτ1(u) ≥ x
)

,

as x → ∞. The order of this tail has been considered in Theorem 1.5 of [5]. We obtain the
precise tail and use it to study the asymptotic of maxu∈T Lτn(u) under P and eventually under
PE .

1.2 Main results

Let us state the main results of this paper. For the branching random walk, let us define

Wn := ∑
|u|=n

e−V(u), ∀n ≥ 0.

Obviously, by (1.2), (Wn)n≥0 is a P-martingale with respect to the filtration of sigma-fields
{FV

n := σ((u, V(u)); |u| ≤ n)}n≥0. It is usually called the additive martinale. It is immediate
that Wn converges P-a.s. to a nonnegative limit W∞. Under assumptions 1.1, 1.4, it converges
also in L1 (see for instance [14]).
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Denote by f (x) ∼ g(x) as x → x0 if limx→x0 f (x)/g(x) = 1. Then it is known in [13] that
if κ < ∞, there exists a constant C0 ∈ (0, ∞) such that

(1.6) P(W∞ ≥ x) ∼ C0x−κ, as x → ∞.

Moreover, according to Theorem 2.1 of [13], for any p ∈ (1, κ), E[Wp
∞] < ∞ if and only if

E[Wp
1 ] < ∞.

Let M := infu∈T V(u) be the minimum of the branching random walk and let

Me := sup
u∈T

e−V(u) = exp(−M).

Then the assumption 1.2 implies that M ∈ R, P-a.s. We have the following theorem on the joint
tail of (W∞,Me).

Theorem 1.5. Under the assumptions 1.1, 1.2, 1.3 and 1.4, if κ ∈ (1, ∞), there exists an decreasing
continuous function γ : [0, ∞) → (0, ∞) such that γ(0) > 0, lima→∞ γ(a) = 0 and that for any
a ≥ 0,

(1.7) P (W∞ ≥ ax,Me ≥ x) ∼ γ(a)x−κ, as x → ∞,

where γ will be given later in (3.6). In particular, for a = 0, as x → ∞,

P (Me ≥ x) ∼ cMx−κ.

with cM = γ(0).

This result brings out the following theorem on the randomly biased random walk (Xn)n≥0.

Theorem 1.6. Under the assumptions 1.1, 1.2, 1.3 and 1.4, there exists c?κ ∈ (0, ∞) such that

1. if κ ∈ (1, 2),

(1.8) P

(
max
u∈T

Lτ1(u) ≥ x
)
∼ c?κ x−1, as x → ∞.

2. if κ = 2,

(1.9) P

(
max
u∈T

Lτ1(u) ≥ x
)
∼ c?κ

x
√

log x
, as x → ∞.

3. if κ ∈ (2, ∞),

(1.10) P

(
max
u∈T

Lτ1(u) ≥ x
)
∼ c?κ x−κ/2, as x → ∞.

4. if κ = ∞, for any p > 1,

(1.11) E

[(
max
u∈T

Lτ1(u)
)p]

< ∞.
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In addition, as a corollary of Theorem 1.6, we have the following result on the maximal
edge local time up to time τn.

Theorem 1.7. Under Assumptions 1.1, 1.2, 1.3 and 1.4,

1. if κ ∈ (1, 2), under the annealed probability P,

(1.12)
maxu∈T Lτn(u)

n
(d)−−−→

n→∞
X∗,

where X∗ is a positive random variable of distribution function E
[
e−c?κ

W∞
t ;Me ≤ t

]
(which

stochastically dominatesMe).

2. if κ ≥ 2, under the annealed probability P,

(1.13)
maxu∈T Lτn(u)

n
in P−−−→

n→∞
Me.

Remark 1.8. In fact, it is known from Theorem 1.1 in [5] that if κ > 2, even without Assumption 1.3,

(1.14)
maxu∈T Lτn(u)

n
P−a.s.−−−→
n→∞

Me;

and that if κ ∈ (1, 2], P-a.s.,

(1.15) lim inf
n→∞

maxu∈T Lτn(u)
n

=Me.

Moreover, Proposition 5.1 of [5] says that when κ ∈ (1, 2), P(·|#T = ∞)-a.s.,

(1.16) lim sup
n→∞

maxu∈T Lτn(u)
n

= ∞.

Remark 1.9. Notice that if one defines the vertex local times as Ln(u) := ∑n
k=1 1{Xk=u}, then

Lτn(u) = Lτn(u) + ∑←−v =u Lτn(v). Thus, the behaviour of vertex local times is closely related to
that of edge local times, and we expect our result to hold for vertex local times. However, vertex local
times are less convenient to manipulate, and our method would not apply without several technical
adjustments.

A natural question is then to study maxu∈T Ln(u) under P and under PE . In fact, the
asymptotic behaviour of τn under the quenched probability PE has been considered by Hu
[10]. The quenched and joint asymptotic of (τn, maxu∈T Lτn(u)) will be treated in an upcoming
paper.

The organisation of this paper is as follows. Sections 3 and 5.1 deal with the branching
random walk and are self-contained for the proof of Theorem 1.5. In Section 2, we prove
Theorems 1.6 and 1.7 by use of Proposition 2.1. In Section 4, we prove Proposition 2.1 from
Theorem 1.5 by use of two changes of measures. Section 5.2 contains the proofs of the lemmas
in Section 4.

Throughout the paper, (ci)i≥0 and (Ci)i≥0 denote positive constants. We say that an ∼ bn
as n→ ∞ if limn→∞

an
bn

= 1. We set ∑∅ = 0 and ∏∅ = 1. For x, y ∈ R, we let x∧ y := min(x, y)
and x ∨ y := max(x, y).
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2 Maximal edge local time: proofs of Theorems 1.6 and 1.7

In this section, we consider {Lτ1(u); u ∈ T}. In fact, for x ∈ T with children {y :←−y = x}, and
for any sy ∈ [0, 1],

EE

 ∏
y:←−y =x

(sy)
Lτ1 (y)

∣∣∣Lτ1(x) = k

 =
e−kV(x)(

e−V(x) + ∑y:←−y =x(1− sy)e−V(y)
)k ∀k ≥ 1.

In other words, (Lτ1(y))←−y =x has negative multinomial distribution with parameters Lτ1(x)

and ( e−V(y)

e−V(u)+∑←−z =x e−V(z) )←−y =x. In particular, if x is of type Lτ1(x) = 0, then all its descendants

are of type 0. According to Lemma 3.1 of [1], for any k ≥ 1, under the annealed probability P,
{Lτk(u); u ∈ T} is a multi-type Galton Watson tree with types taking values in N, whose root
ρ is of type k.

We denote by ξ = {ξi; i ≥ 1} its offspring distribution. Here ξi stands for the offspring
law of a vertex of type i. For any k ≥ 1, denote by Pk the law of a multi-type GW tree with
offspring ξ and initial type k. From now on, we use (β(u), u ∈ T) to represent this multi-type
GW tree. So, P(maxu∈T Lτn(u) ∈ ·) = Pn(maxu∈T β(u) ∈ ·).

Now define

(2.1) L1 := {x ∈ T : β(x) = 1, min
ρ<y<x

β(y) ≥ 2}.

and B1 := {x ∈ T : minρ<y<x β(y) ≥ 2} ∪ {ρ}. For convenience, we sometimes write u ≤ L1
for u ∈ B1, and u < L1 for u ∈ B1 \ L1. Observe that

(2.2) max
u∈T

β(u) = max{max
u∈B1

β(u), max
u∈L1

max
v:u≤v

β(v)}.

As (β(u))u∈T is a multi-type Galton-Watson tree with root of type 1 under P1, by Markov
property at the stopping lineL1, {maxv:u≤v β(v)}u∈L1 are i.i.d. and distributed as maxu∈T β(u)
under P1, and independent of (β(u), u ∈ B1). Let

(2.3) L1 := Card(L1), M1 := max
u∈B1

β(u), M? := max
u∈T

β(u).

So we rewrite the equation (2.2) as follows: under P1,

(2.4) M? (d)
= max{M1, max

1≤i≤L1
M?

i }

where M?
i , i ≥ 1 are i.i.d. copies of M?, independent of (M1, L1). Thus the tail of maxu∈T β(u)

under P1 depends mainly on the joint tail of (M1, L1).

Proposition 2.1. Under the assumptions 1.1, 1.2, 1.3 and 1.4, and assuming κ ∈ (1, ∞), there exists
a constant C∞ ∈ (0, ∞) such that for any a ≥ 0,

(2.5) P1(L1 ≥ ax, M1 ≥ x) ∼ C∞γ(a)x−κ, as x → ∞,
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where C∞ is defined in equation (4.40). In particular, P(M1 ≥ x) ∼ C∞γ(0)x−κ. Moreover, there
exists cL ∈ (0, ∞) such that

P1(L1 ≥ x) ∼ cLx−κ, as x → ∞,

where cL = C0C∞.

The proof of Proposition 2.1 is postponed to Section 4. Here we use the result to obtain the
tail of M? = maxu∈T β(u) under P1.

Proof of Theorem 1.6. If κ ∈ (1, ∞), given equation (2.4), Proposition 2.1 allows us to apply
Corollary 1.4 of [6] which yields Theorem 1.6.

If κ = ∞, given equation (2.4), as x → ∞,

P

(
max
u∈T

Lτ1(u) ≥ x
)
∼ c?κ

√
P1(M1 ≥ x),

because L1 has finite variance according to Lemma 4.6. Moreover, M1 has moments of all
orders by Lemma 4.6, which concludes that maxu∈T Lτ1(u) also has moments of all orders.

Proposition 2.2. Under the assumptions 1.1, 1.2, 1.3 and 1.4, for any α ∈ (0, κ − 1), we have as
n→ ∞,

(2.6) En

[
|L1

n
−W∞|1+α + |M1

n
−Me|1+α

]
→ 0.

The proof will be postponed in Section 4. Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. When κ ∈ (1, 2), Theorem 1.6 tells us that P1(maxu∈T β(u) > x) ∼ c?κ
x as

x → ∞. Observe that for any t > 0,

Pn

(
max
u∈T

β(u) ≤ tn
)
= Pn

(
max
u≤L1

β(u) ≤ tn, max
u∈L1

max
v:v≥u

β(v) ≤ tn
)

By Markov property at L1, it follows that

Pn

(
max
u∈T

β(u) ≤ tn
)
=En

[
∏

u∈L1

P(max
v:v≥u

β(v) ≤ tn|β(u) = 1); max
u≤L1

β(u) ≤ tn

]

=En

[(
1−P1(max

v∈T
β(v) > tn)

)L1

; M1 ≤ tn

]

=En

[
e−c?κ

L1
tn (1+on(1)); M1 ≤ tn

]
Proposition 2.2 implies that under Pn, ( L1

n , M1
n ) converges in probability to (W∞,Me). We

hence deduce that

lim
n→∞

Pn

(
max
u∈T

β(u) ≤ tn
)
= E

[
e−c?κ

W∞
t ;Me ≤ t

]
.
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One can easily check that F(t) := E
[
e−c?κ

W∞
t ;Me ≤ t

]
with F(0) := 0 is a distribution func-

tion. Therefore, under P, maxu∈T Lτn (u)
n converges in law to some random variable X∗ with

distribution function F.
When κ ≥ 2, as P1(maxu∈T β(u) > x) ∼ ox(1)

x , similar arguments yield that for any t > 0,

Pn

(
max
u∈T

β(u) ≤ tn
)
=En

[(
1−P1(max

v∈T
β(v) > tn)

)L1

, M1 ≤ tn

]

=En

[
e−L1

on(1)
n ; M1 ≤ tn

]
which converges to P(Me ≤ t). As a result, under P, maxu∈T Lτn (u)

n converges in law toMe.
Moreover, one could show that for any ε > 0,

Pn

(
|maxu∈T β(u)

n
−Me| ≥ ε

)
≤on(1) + Pn

(
|M1

n
−Me| ≥ δ/2

)
= on(1).

This suffices to conclude the convergence in probability of maxu∈T Lτn (u)
n under P.

3 Tail behaviours of the branching random walk

This section is devoted to proving Theorem 1.5.
Let us first consider W∞, the almost sure limit of the additive martingale Wn = ∑|z|=n e−V(z).

According to [4], under assumptions 1.1 and 1.4, W∞ > 0 if and only if T is infinite. Immedi-
ately, one sees that P-a.s.,

W∞ = ∑
|z|=1

e−V(z)W(z)
∞ ,

where W(z)
∞ , |z| = 1 are martingale limits associated with the subtree rooted at z, respectively,

which are therefore i.i.d. copies of W∞ and are independent of (V(z), |z| = 1). We will
generalise this decomposition.

For any u ∈ T such that |u| = n, let (ρ, u1, · · · , un) be its ancestral line. For any z ∈ T, let
Ω(z) be the set of all brothers of z, i.e.,

(3.1) Ω(z) := {v ∈ T :←−v =←−z , v 6= z}.

Then, observe that

W∞ =
n

∑
k=1

∑
z∈Ω(uk)

e−V(z)W(z)
∞ + e−V(u)W(u)

∞ , P-a.s.

To deal with (W∞,Me), recall that M = infu∈T V(u) andMe = e−M. Let us take u∗ ∈ T such
that V(u∗) = M, if there exist several choices, one chooses u∗ at random among the youngest
ones. So, P-a.s.

W∞ = e−M
|u∗|

∑
k=1

∑
z∈Ω(u∗k )

eM−V(z)W(z)
∞ + e−MW(u∗)

∞ .
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One sees hence that

(3.2) WM := eMW∞ =
|u∗|

∑
k=1

∑
z∈Ω(u∗k )

eM−V(z)W(z)
∞ + W(u∗)

∞ .

Observe that the joint law of (W∞,Me) is totally given by the joint law of (WM, M). Let us
state the following theorem, which is largely inspired by [16] in which the boundary case is
treated.

Theorem 3.1. Suppose that the assumptions 1.1,1.2, 1.3 and 1.4 are all fulfilled. Assume that κ ∈
(1, ∞). Then there exists a constant cM ∈ (0, ∞) such that as x → ∞,

(3.3) P(M ≤ −x) ∼ cMe−κx.

Further, conditionally on {M ≤ −x}, the following convergence in law holds as x → ∞:

(3.4) (WM, M+ x) =⇒ (WM
∞,−U)

where U is an exponential random variable with parameter κ, independent ofWM
∞.

Lemma 3.2. Under the assumptions 1.1,1.2, 1.3 and 1.4, if κ ∈ (1, ∞), we have

(3.5) lim sup
ε↓0

lim sup
x→∞

xκP(W∞ ≤ εx,M≥ x) = 0.

The proof of Lemma 3.2 is given in Subsection 5.1.2. We prove that Theorem 1.5 is a direct
consequence of Theorem 3.1 (whose proof is postponed to the next section) in the following.

Proof of Theorem 1.5. For any a > 0 and x > 0, observe that

P(W∞ ≥ ax,Me ≥ x) =P(W∞ ≥ ax, M ≤ − log x)

=P(e−M−log xWM ≥ a, M+ log x ≤ 0).

Let x → ∞, as a consequence of Theorem 3.1,

lim
x→∞

xκP(W∞ ≥ ax,Me ≥ x) = lim
x→∞

P(e−M−log xWM ≥ a|M+ log x ≤ 0)P(M ≤ − log x)xκ

=P(eUWM
∞ ≥ a) lim

x→∞
P(M ≤ − log x)xκ

=γ(a),

with

(3.6) γ(a) := cMP(eUWM
∞ ≥ a) = cME

[(
1∧ W

M
∞

a

)κ]
, ∀a > 0.

Notice that by Lebesgue’s dominated convergence thereom, γ is continuous on R∗+. For a = 0,
(3.3) implies directly that

P(Me ≥ x) = P(M ≤ − log x) ∼ cMx−κ.

Here γ(0) = cM = lima→0 γ(a) by Lemma 3.2 hence γ is also continuous in 0.

Remark 3.3. Note that as cM = lima→0 γ(a), Lemma 3.2 also implies that P(WM
∞ > 0) = 1.
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3.1 Proof of Theorem 3.1

First we state the following lemma which gives a rough estimate on the tail of M.

Lemma 3.4. Under the assumptions of Theorem 3.1, there exist 0 < c1 ≤ 1 such that

(3.7) c1e−κx ≤ P(M ≤ −x) ≤ e−κx, ∀x ≥ 1.

Its proof is postponed to Section 5.
Recall that WM = eMW∞ = ∑|u

∗|
k=1 ∑z∈Ω(u∗k )

eM−V(z)W(z)
∞ + W(u∗)

∞ . Its truncated version is
defined for 0 ≤ t < |u∗| by

Wu∗,≤t :=
|u∗|

∑
k=|u∗|−t

∑
z∈Ω(u∗k )

eM−V(z)W(z)
∞ + W(u∗)

∞

=
|u∗|

∑
k=|u∗|−t

eV(u∗)−V(u∗k−1) ∑
z∈Ω(u∗k )

e−[V(z)−V(u∗k−1)]W(z)
∞ + W(u∗)

∞ .(3.8)

Let us state the following results for the truncated random variable.

Lemma 3.5. Let t be a fixed integer. Under the assumptions of Theorem 3.1, for any continuous and
bounded function φ : R→ R+, the following limit exists.

(3.9) lim
x→∞

eκxE
[
φ(Wu∗,≤t)1{M≤−x}

]
:= Et(φ)

The explicit expression of Et(φ) will be given in Section 5.1 by equation (5.24).

Lemma 3.6. Under the assumptions of Theorem 3.1, for any δ > 0, we have

(3.10) lim
t→∞

sup
x∈R+

P
(
WM −Wu∗,≤t ≥ δ|M ≤ −x

)
= 0.

The next lemma states the tightness of the law ofWM conditionally on M ≤ −x.

Lemma 3.7. Under the assumptions of Theorem 3.1, we have

(3.11) lim
M→∞

sup
x∈R+

P[WM ≥ M|M ≤ −x] = 0.

Let us prove Theorem 3.1 by these lemmas.

Proof of Theorem 3.1. By taking φ ≡ 1, the tail (3.3) of M follows from Lemma 3.5 with cM =
E0(1). We have cM ∈ (0, ∞) because of Lemma 3.4.

One sees from Lemmas 3.7 and 3.4 that the joint distribution of (WM, M+ x) conditionally
on {M ≤ −x} is tight. By the classical Lévy’s theorem, it suffices to prove that for any θ1, θ2 ∈
R+, the following limit

(3.12) lim
x→∞

E[e−θ1WM+θ2(M+x)|M ≤ −x]

10



exists.
First, as given in (3.8), 0 ≤ Wu∗,≤t ≤ WM. So, the tightness of (WM, M+ x) conditionally on

{M ≤ −x} yields also tightness of (Wu∗,≤t, M+ x) conditionally on {M ≤ −x}. On the other
hand, it follows from Lemma 3.5 that,

(3.13) lim
x→∞

E[e−θ1Wu∗ ,≤t+θ2(M+x)|M ≤ −x] =
Et(e−θ1·)

Et(1)
κ

κ + θ2
=
Et(e−θ1·)

E0(1)
κ

κ + θ2
,

where Et(e−θ1·) > 0 by the tightness.
Next, observe that t 7→ Wu∗,≤t is increasing. So t 7→ Et(e−θ1·) is decreasing and positive.

Consequently,

(3.14) lim
t→∞

Et(e−θ1·)

E0(1)
κ

κ + θ2
exists and is positive.

We then are going to show that

(3.15) lim
x→∞

E[e−θ1WM+θ2(M+x)|M ≤ −x] = lim
t→∞

Et(e−θ1·)

E0(1)
κ

κ + θ2
.

In fact, by (3.13) and (3.14), it suffices to show that

(3.16) lim
t→∞

lim sup
x→∞

E[e−θ1Wu∗ ,≤t+θ2(M+x) − e−θ1WM+θ2(M+x)|M ≤ −x] = 0.

Note that for any ε > 0,

0 ≤E[e−θ1Wu∗ ,≤t+θ2(M+x) − e−θ1WM+θ2(M+x)|M ≤ −x]

≤E[(e−θ1Wu∗ ,≤t − e−θ1WM

)eθ2(M+x);WM −Wu∗,≤t ≤ ε|M ≤ −x] + P(WM −Wu∗,≤t ≥ ε|M ≤ −x)

≤θ1ε + P(WM −Wu∗,≤t ≥ ε|M ≤ −x).

By Lemma 3.6, we obtain that for any ε > 0,

lim sup
t→∞

lim sup
x→∞

E[e−θ1Wu∗ ,≤t+θ2(M+x) − e−θ1WM+θ2(M+x)|M ≤ −x] ≤ θ1ε,

which is what we need to conclude the theorem.

4 Edge local times of the randomly biased random walk

As stated in Section 2, we are going to study the multi-type GW tree {β(u), u ∈ T} under Pn,
which describes the annealed distribution of edge local times up to τn.

In what follows, we introduce a new probability measure P̂∗ on a marked multi-type GW
tree.

11



4.1 Change of measures and spinal decomposition under P̂∗

Let us define
Zn := ∑

|u|=n
β(u), ∀n ≥ 0.

Then under Pk, {Zn; n ≥ 0} is a martingale with respect to the natural filtration {F β
n ; n ≥ 0}

where F β
n is the sigma-field generated by {(u, β(u)); |u| ≤ n}. We are hence ready to define

the new probability measure P̂∗.
Recall that under P, the offspring law of (T, β) is given by ξ = {ξi; i ≥ 1}. More precisely,

for any n ≥ 0, for any k1, · · · , kn ∈N, for any u ∈ T,

(4.1)

ξi(k1, · · · , kn) = P
(
{v :←−v = u} = {u1, · · · , un}; β(u1) = k1, · · · , β(un) = kn

∣∣∣β(u) = i
)

= E

( ∑n
j=1 k j + k− 1

k1, · · · , kn, k− 1

) e−kV(u) ∏n
j=1 e−kjV(uj)

(e−V(u) + ∑n
j=1 e−V(uj))∑n

j=1 kj+k
; ∑

v:←−v =u

1 = n

 .

As Ei[Z1] = i, we can define ξ̂ = {ξ̂i; i ≥ 1} to be another collection of offsprings such that

for any i ≥ 1, ξ̂i(k1, · · · , kn) =
∑n

j=1 kj
i ξi(k1, · · · , kn). The probability measure P̂∗i on multi-type

Galton-Watson tree with a marked ray (T, β, (wn)n≥0) is defined as follows.

1. For the root ρ, let β(ρ) = i and w0 = ρ.

2. For any n ≥ 0, suppose that the process up to the n-th generation with the spine
(wk)0≤k≤n has been constructed. The vertex wn produces its children, independently
of the others, according to the offspring ξ̂β(wn). All other vertices u of the n-th genera-
tion produce independently their children according to the offspring ξβ(u), respectively.
The children of all vertices of the n-th generation form the (n + 1)-th generation. We
choose wn+1 among the children of wn, each y child of wn being chosen with probabil-
ity β(y)

∑v:←−v =wn β(v) .

Usually we call the marked ray (wn)n≥0 the spine. Denote by P̂i the marginal law of (T, β)
constructed above. We state the following proposition from [12].

Proposition 4.1. Let i ∈ N∗. Then {Zn/i}n≥0 is a nonnegative P-martingale, and the following
assertions hold.

1.
dP̂i

dPi

∣∣∣
F β

n
=

Zn

i
, ∀n ≥ 0.

2. For any u ∈ T of the n-th generation,

(4.2) P̂∗i (wn = u|F β
n ) =

β(u)
Zn

.
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3. Under P̂∗i , {β(wk); k ≥ 0} is a recurrent Markov chain taking values in N∗, started from i,
with transition probabilities pi,j such that

(4.3) pi,j =

(
i + j− 1

i

)
E

 ∑
|u|=1

e−jV(u)

(1 + e−V(u))i+j

 , ∀i, j ≥ 1.

Moreover, we observe that this Markov chain (β(wk); k ≥ 0) admits an invariant law
(πj)j≥1 whose expression can be found in Section 6.1 of [1]. Point 2 of Proposition 4.1 yields
the multi-type many-to-one lemma as follows:

Lemma 4.2. For all n ∈ N, let g : Nn+1 → R+ be a positive measurable function and Xn a positive
F β

n -measurable random variable, then

Ei

[
∑
|u|=n

β(u)g(β(ρ), β(u1), β(u2), . . . , β(un))Xn

]
= iÊ∗i

[
g(β(w0), β(w1), β(w2), . . . , β(wn))Xn

]
.

4.2 Second construction of P̂∗

In this subsection, we introduce another construction of P̂∗ which was borrowed from [7].
Recall that the environment E = {(u, V(u)); u ∈ T} is given by a branching random walk
for which Wn := ∑|u|=n e−V(u) is a P-martingale with respect to the filtration {FV

n ; n ≥ 0}.
We first define another probability Q∗ on branching random walk with a marked spine E∗ :=
(T, V, (wn)n≥0). Then on the new environment E∗, we introduce the associated biased ran-
dom walks and their edge local times to reconstruct the marked multi-type GW tree under
P̂∗.

4.2.1 Change of measures and spinal decomposition: Q∗

Recall that under P, the branching random walk is constructed by use of the point process
C. Let us introduce a probability measure Q∗ of a branching random walk with a spine:
{(V(u); u ∈ T), (wn, V(wn))n≥0}. First, as E[

∫
e−xC(dx)] = 1, let Ĉ be a point process with

Radon-Nykodim derivative
∫

e−xC(dx) with respect to the law of C. We use Ĉ and C to con-
struct {(V(u); u ∈ T), (wn, V(wn))n≥0} under Q∗x for any x ∈ R as follows.

1. For the root ρ, let V(ρ) = x and w0 = ρ. w0 gives birth to its children according to
the point process Ĉ (i.e., the relative positions of its children with respect to V(w0) are
distributed as Ĉ).

2. For any n ≥ 0, suppose that the process with the spine (wk)0≤k≤n has been constructed
up to the n-th generation. All vertices of the n-th generation, except wn, produce in-
dependently their children according to the law of C. Yet, the vertex wn produces its
children, independently of the others, according to the law of Ĉ. All the children of the
vertices of the n-th generation form the (n + 1)-th generation, whose positions are de-
noted by V(·). And among the children of wn, we choose wn+1 = u with probability

e−V(u)

∑z:←−z =wn e−V(z) .
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We denote by Qx the marginal distribution of (T, (V(u), u ∈ T)). For simplicity, write Q∗

and Q for Q∗0 and Q0 respectively. Let us state the following proposition given in Lyons [14].

Proposition 4.3. 1. For any n ≥ 0, and x ∈ R,

dQx

dPx
|FV

n
= exWn = ∑

|u|=n
e−V(u)+x,

where FV
n denotes the sigma-field generated by ((u, V(u)); |u| ≤ n).

2. For any vertex u ∈ T of the n-th generation,

Q∗x(wn = u|FV
n ) =

e−V(u)

Wn
.

3. Under Q∗x, (V(wn); n ≥ 0) is a random walk with i.i.d. increments and started from x.

Since according to [4] ,under our assumptions, the additive martingale Wn converges in
L1 to W∞ under P, one has dQ = W∞dP, and W∞ is also Q-a.s. the limit of Wn.

4.2.2 Reconstruction of P̂∗ on biased environment Q∗

Let us introduce another interpretation of the multi-type Galton-Watson tree under P̂∗1 which
was first given and proved in Proposition 5 of [7]. Given the marked environment E∗ :=
(T, V, (wn)n≥0), we denote by {X(1,wi)

k ; k ≥ 0}i≥0 and {X(2,wi)
k ; k ≥ 0}i≥0 two i.i.d. sequence

of killed nearest-neighbour random walks as follows. For any i ≥ 0 fixed, {X(1,wi)
k ; k ≥ 0} is

a random walk on T ∪ {←−ρ } started at wi such that before hitting wi−1 (with w−1 := ρ), the
transition probabilities are

PE
∗
(X(1,wi)

n+1 = y|X(1,wi)
n = x) =


e−V(x)

e−V(x)+∑z:←−z =x e−V(z) if←−x = y

e−V(y)

e−V(x)+∑z:←−z =x e−V(z) if←−y = x.

When it reaches wi−1, it is killed instantly. Let

β̃
j
i(u) := ∑

n≥0
1{

X
(j,wi)
n =←−u ,X

(j,wi)
n+1 =u

}, ∀j ∈ {1, 2},

and
β̃j(u) = ∑

i≥0
β

j
i(u), ∀j ∈ {1, 2}.

Finally, let

(4.4) β̃(u) = β̃1(u) + β̃2(u) + 1{∃i≥0:u=wi}
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Then, according to Proposition 5 of [7], the marked tree {T, (β̃(u), u ∈ T), (wn)n≥0} under
PE

∗ ×Q∗(dE∗) has the same law as (T, β, (wn)n≥0) under P̂∗1 . With the convention, we still
use P̂∗1 to represent the annealed probability PE

∗ ×Q∗(dE∗), and we will use the notation β
for both constructions.

This fact sums up in the following diagram.

E under P

(T, β) under P1

E∗ under Q∗

(T, β, (wn)n≥0) under P̂∗1

PE (1.1)

Proposition 4.1

Proposition 4.3

Process of local times (4.4)

4.3 Proof of Proposition 2.1: joint tail of (L1, M1)

In fact, the joint tail of (L1, M1) under P1 follows from the following results.

Lemma 4.4. Under the assumptions of Proposition 2.1, one has

(4.5) lim
a↓0

lim sup
x→∞

xκP1(L1 ≤ ax, M1 ≥ x) = 0.

Lemma 4.5. Under the assumptions of Proposition 2.1, there exist a decreasing continuous function
η1 : [0, ∞)→ (0, ∞) such that for any a > 0, as x→ ∞,

P̂∗1 (L1 ≥ ax, M1 ≥ x) ∼ η1(a)x−(κ−1);

Proof of Proposition 2.1. Let us first show that

(4.6) E1[L1; L1 ≥ ax, M1 ≥ x] = P̂∗1 (L1 ≥ ax, M1 ≥ x) .

Observe that by Proposition 4.1,

E1[L1; L1 ≥ ax, M1 ≥ x] =E1

( ∑
k≥1

∑
|u|=k

1{u∈L1}

)
1{L1≥ax,M1≥x}


= ∑

k≥1
E1

 ∑
|u|=k

1{u∈L1}P(L1 ≥ ax, M1 ≥ x|F β
k )


= ∑

k≥1
Ê1

 ∑
|u|=k

1
Zn

1{u∈L1}P(L1 ≥ ax, M1 ≥ x|F β
k )


15



which by (4.2), is equal to

∑
k≥1

Ê1

[
Ê∗1 [1{wk∈L1}|F

β
k ]P(L1 ≥ ax, M1 ≥ x|F β

k )
]

= ∑
k≥1

Ê∗1

[
1{wk∈L1}P(L1 ≥ ax, M1 ≥ x|F β

k )
]

Note that given {wk ∈ L1}, P(L1 ≥ x, M1 ≥ ax|F β
k ) = P̂∗(L1 ≥ x, M1 ≥ ax|Gβ

k ) where Gβ
k

denotes the sigma-field generated by ((u, β(u))|u|≤k, (wi)i≤k). Therefore,

E1[L1; L1 ≥ ax, M1 ≥ x] = ∑
k≥1

Ê∗1

[
1{wk∈L1}P̂

∗(L1 ≥ ax, M1 ≥ x|Gβ
k )
]

= ∑
k≥1

P̂∗1 [wk ∈ L1, L1 ≥ ax, M1 ≥ x]

Recall also that the spine (β(ωk); k ≥ 0) is a recurrent Markov chain under P̂∗1 . So, ∑k≥1 1{w1∈L1} =
1. We hence conclude (4.6).

By Lemma 4.5, one obtains that for any a > 0,

E1[L1; L1 ≥ ax, M1 ≥ x] ∼ η1(a)x−(κ−1),

as x → ∞. Let Pα(ax, x) := E1[Lα
1 ; L1 ≥ ax, M1 ≥ x] for any α ≥ 0. One sees that for x > 0

and a > 0,

1
ax

P1(ax, x)− P0(ax, x) =E1[(
L1

ax
− 1); L1 ≥ ax, M1 ≥ x]

=E1

[
L1

∫ L1

ax

dy
y2 ; L1 ≥ ax, M1 ≥ x

]
=
∫ ∞

a

1
x

P1(xu, x)
du
u2

which implies

P0(ax, x) =
P1(ax, x)

ax
− 1

x

∫ ∞

a
P1(xu, x)

du
u2 .

Note that for all x > 0, xκ−1P1(ux, x)→ η1(u). Moreover, for x sufficiently large and u ≥ a >
0,

xκ−1P1(ux, x)
1
u2 ≤

xκ−1P1(ax, x)
u2 ≤ 1 + η1(a)

u2 ,

which is integrable on [a, ∞). By dominated convergence theorem, for any a > 0, as x → ∞,

xκP1(L1 ≥ ax, M1 ≥ x) = xκP0(ax, x)→
∫ ∞

a
(η1(a)− η1(u))

du
u2 .

Because of Lemma 4.4, we also obtain that P1(M1 ≥ x) ∼ x−κ
∫ ∞

0 (η1(0)− η1(u)) du
u2 .

In the next subsections, we prove Lemma 4.5 and 4.4.
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4.4 Joint tail of (L1, M1) under P̂∗1: proof of Lemma 4.5

We are going to show that for any a > 0, as x → ∞,

(4.7) P̂∗1 (L1 ≥ ax, M1 ≥ x) ∼ η1(a)x−(κ−1).

The main idea follows that of Section 4.2 of [7] where the author shows that P̂∗1(L1 ≥ x) ∼
κ

κ−1 cLx−κ+1 for κ ∈ (1, 2]. In fact, this joint tail largely depends on the joint tail of (W∞,Me)
on the marked environment E∗, which will be stated and proved in the following. We also
prove Proposition 2.2 which will be needed to obtain (4.7).

4.4.1 Joint tail of (W∞,Me) under Q∗

By Theorem 1.5, one has P(W∞ ≥ ax,Me ≥ x) ∼ γ(a)x−κ with γ(a) = cME[(1 ∧ W
M
∞

a )κ]. The
change of measures given in Section 4.2.1 and the non-triviality of W∞ imply that

Q∗(W∞ ≥ ax,Me ≥ x) =Q(W∞ ≥ ax,Me ≥ x)
=E[W∞1{W∞≥ax,Me≥x}]

=axP(W∞ ≥ ax,Me ≥ x) + x
∫ ∞

a
P(W∞ ≥ xu,Me ≥ x)du

Note that for x large enough and u ≥ a > 0

xκP(W∞ ≥ xu,Me ≥ x) ≤ xκP(W∞ ≥ xu) ≤ (C0 + 1)u−κ.

By dominated convergence theorem, one obtains that

lim
x→∞

xκ−1Q∗(W∞ ≥ ax,Me ≥ x) = aγ(a) +
∫ ∞

a
γ(u)du.

Some simple calculations yield that for any a > 0, as x → ∞,

(4.8) Q∗(W∞ ≥ ax,Me ≥ x) ∼ µ(a)x−κ+1

with µ(a) := cM κ
κ−1E[WM

∞(1∧ W
M
∞

a )κ−1] for any a > 0.

4.4.2 Proof of Proposition 2.2

Let us state the following result on the moments of L1 and M1.

Lemma 4.6. If κ ∈ (1, ∞), for any α ∈ [0, κ − 1), there exists a constant Cα ∈ (0, ∞) such that for
any i ≥ 1,

(4.9) Ei

[
L1+α

1

]
≤ Cαi1+α;

and that

(4.10) Ei

[
M1+α

1

]
≤ Cαi1+α.

Further, if κ = ∞, (4.10) holds for all α ≥ 0 and (4.9) holds also for α ∈ [0, 1].
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We postpone the proof of this lemma in Section 5.2. Now we are ready to prove Proposi-
tion 2.2, mainly inspired by the arguments in Section 4.2.1 of [7].

Proof of Proposition 2.2. For any M ∈ (0, ∞) and for any k ≥ 0, letM≤k
e := sup|u|≤k e−V(u) and

M≤k,M
e :=M≤k

e ∧M. Similarly, write WM
k := (∑|u|=k e−V(u))∧M and M≤k

1 := max|u|≤k,u≤L1
β(u).

And for any u ∈ B1, let

(4.11) L(u)
1 := ∑

v:v≥u
1{v∈L1} and M(u)

1 := max
v:v≥u

β(v)1{v≤L1}.

Observe that for any t, s > 0 and k ≥ ` ≥ 1,

En

[
e−t( L1

n −WM
` )−s( M1

n −M
≤`,M
e )

]
≤ En

[
e−t( L1

n −WM
` )−s(

M≤k
1
n −M

≤`,M
e )

]
(4.12)

=En

e−s
M≤k

1
n En

1∧ e

{
− t

n

(
∑|u|=k 1{u<L1}L(u)

1 +∑|u|≤k 1{u∈L1}

)}∣∣∣F β
k ,FV

k

 etWM
` +sM≤`,M

e


≤En

e−s
M≤k

1
n

 ∏
|u|=k,u<L1

En

[
exp

(
− t

n
L(u)

1

) ∣∣∣F β
k ,FV

k

]
∧ 1

 etWM
` +sM≤`,M

e

 .

As e−x ≤ 1− x + x1+α ≤ e−x+x1+α
for α ∈ (0, κ − 1) and x ≥ 0, one has

En

[
exp

(
− t

n
L(u)

1

) ∣∣∣F β
k ,FV

k

]
∧ 1 ≤En

[
1− t

n
L(u)

1 + (
t
n

L(u)
1 )1+α|F β

k ,FV
k

]
∧ 1

=

(
1− t

n
En[L

(u)
1 |F

β
k ,FV

k ] + (
t
n
)1+αEn[(L(u)

1 )1+α|F β
k ,FV

k ]

)
∧ 1

≤
(

1− t
n

β(u) +
(

t
n

)1+α

Cαβ(u)1+α

)
∧ 1.

Plugging it into (4.12) yields that

En

[
e−t( L1

n −WM
` )−s( M1

n −M
≤`,M
e )

]

≤En

e−s
M≤k

1
n

 ∏
|u|=k,u<L1

(
1− t

n
β(u) +

(
t
n

)1+α

Cαβ(u)1+α

)
∧ 1

 etWM
` +sM≤`,M

e


≤En

[
e−s

M≤k
1
n

(
e
(
−∑|u|=k t β(u)

n 1{u<L1}+t1+αCα ∑|u|=k(
β(u)

n )1+α1{u<L1}
)
∧ 1
)

etWM
` +sM≤`,M

e

]
.

Note that given the environment E , for any k ≥ 0 fixed, by the law of large number,

∑
|u|=k

β(u)
n

1{u<L1}
in PE−−−→ ∑

|u|=k
e−V(u).
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One can refer to the proof of Proposition 6 [7] for more details for this convergence. Moreover,

∑
|u|=k

(
β(u)

n
)1+α in PE−−−→ ∑

|u|=k
e−(1+α)V(u)

and
M≤k

1
n

= max
|u|≤k

β(u)
n

1{u<L1}
in PE−−−→ max

|u|≤k
e−V(u) =M≤k

e .

By dominated convergence theorem,

(4.13) lim sup
n→∞

En

[
e−t( L1

n −WM
` )−s( M1

n −M
≤`,M
e )

]

≤ E

e−sM≤k
e

exp

−tWk + Cαt1+α ∑
|u|=k

e−(1+α)V(u)

 ∧ 1

 etWM
` +sM≤`,M

e


Notice that by definition of κ and thanks to the many-to-one lemma, ∑|u|=k e−(1+α)V(u) con-
verges towards 0 almost surely, for α ∈ (0; κ − 1). Letting k→ ∞ implies that

(4.14) lim sup
n→∞

En

[
e−t( L1

n −WM
` )−s( M1

n −M
≤`,M
e )

]
≤ E

[
e−s(Me−M≤`,M

e )−t(W∞−WM
` )
]

On the other hand, let us define

M̃≤k
1 := max{M≤k

1 , max
|u|=k,u<L1

1
2

β(u)eV(u)}, and Ek := ∩|u|=k,u<L1
{M(u)

1 ≤ β(u)eV(u)/2}.

Observe that on Ek, M1 ≤ M̃≤k
1 . Consequently,

En

[
e−t( L1

n −WM
` )−s( M1

n −M
≤`,M
e )

]
≥ En

[
e−t( L1

n −WM
` )−s(

M̃≤k
1
n −M

≤`,M
e )1Ek

]

≥En

[
e−t( L1

n −WM
` )−s(

M̃≤k
1
n −M

≤`,M
e )

]
− etM+sMPn(Ec

k).(4.15)

Here, note that by Markov inequality, for any α ∈ (0, κ − 1),

Pn(Ec
k) ≤En

 ∑
|u|=k,u<L1

1{
M(u)

1 ≥β(u)eV(u)/2
}


=En

 ∑
|u|=k,u<L1

Pn

(
M(u)

1 ≥ β(u)eV(u)/2
∣∣∣F β

k ,FV
k

)
≤En

 ∑
|u|=k,u<L1

21+α
Eβ(u)[M

1+α
1 ]

β(u)1+αe(1+α)V(u)


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By (4.10), one sees that

Pn(Ec
k) ≤ cE

 ∑
|u|=k

e−(1+α)V(u)

 = ok(1).

Write L≤k
1 := ∑|u|≤k 1{u∈L1}. Going back to (4.15), by Jensen’s inequality, for any k ≥ `,

En

[
e−t( L1

n −WM
` )−s( M1

n −M
≤`,M
e )

]
≥En

[
En

[
e
− t

n

(
L≤k

1 +∑|u|=k 1{u<L1}L(u)
1

)
− s

n M̃≤k
1
∣∣∣F β

k ,FV
k

]
etWM

` +sM≤`,M
e

]
+ ok(1)

≥En

e
− 1

n En

[
t ∑|u|=k 1{u<L1}L(u)

1

∣∣∣F β
k ,FV

k

]
e−

t
n L≤k

1 −
s
n M̃≤k

1 +tWM
` +sM≤`,M

e

+ ok(1)

=En

[
e
− t

n ∑|u|=k 1{u<L1}β(u)
e−

t
n L≤k

1 −
s
n M̃≤k

1 +tWM
` +sM≤`,M

e

]
+ ok(1)

Observe that clearly, under Pn, M≤k
1
n ≥ 1. Note also that given the environment E ,

max
|u|=k,u<L1

1
2

β(u)
n

eV(u) in PEn−−−→ max
|u|=k

1
2

e−V(u)eV(u) =
1
2

and M≤k
1
n

in PEn−−−→ max|u|≤k e−V(u) =M≤k,M
e . So,

M̃≤k
1

n
in PEn−−−→M≤k,M

e .

Besides, L≤k
1
n

in PEn−−−→ 0 according to the arguments of the proof of Proposition 6 of [7]. Again,
by dominated convergence theorem,

lim inf
n→∞

En

[
e−t( L1

n −WM
` )−s( M1

n −M
≤`,M
e )

]
≥ E

[
e−tWk−sM≤k,M

e +tWM
` +sM≤`,M

e
]
+ ok(1)

Letting k→ ∞ implies that

(4.16) lim inf
n→∞

En

[
e−t( L1

n −WM
` )−s( M1

n −M
≤`,M
e )

]
≥ E

[
e−s(Me−M≤`,M

e )−t(W∞−WM
` )
]

.

We hence deduce the convergence in law of ( L1
n −WM

` , M1
n −M

≤`,M
e ) towards (W∞−WM

` ,Me−
M≤`,M

e ). Repeating the arguments in [7], we then conclude from Lemma 4.6 that

lim
n→∞

En

[
|L1

n
−W∞|1+α + |M1

n
−Me|1+α

]
= 0.
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4.4.3 Proof of Lemma 4.5

Let us consider (T, β, (wn)n≥0) defined on the biased environment E∗ = (T, V, (wn)n≥0).
Note that under P̂∗1 , {β(wn); n ≥ 0} is a recurrent Markov chain started from 1. Let

τ̂1 := min{k ≥ 1 : β(wk) = 1}, σA := min{k ≥ 0 : β(wk) > A}, ∀A ≥ 1,

and recall from (4.11) the notation

L(u)
1 := ∑

v:u≤v
1{v∈L1}, M(u)

1 := max
v:u≤v

β(v)1{v≤L1}, ∀u ∈ B1.

Let also

W(u)
∞ := lim

n→∞ ∑
v:u≤v,|v|=|u|+n

E−(V(v)−V(u)), M(u)
e := max

v:u≤v
e−(V(v)−V(u)), ∀u ∈ T.

Moreover, for any u ∈ T, let

βσA(u) :=
σA−1

∑
k=0

(β1
k(u) + β2

k(u)).

Clearly, β(wσA) = βσA(wσA) + 1 and βσA(v) = 0 for any v ≥ wτ̂1
. The decomposition along

the spine (wk; k ≥ 0) gives

L1 =
τ̂1

∑
k=1

∑
u∈Ω(wk)

L(u)
1 + 1, and M1 = max{M(u)

1 ; u ∈ ∪τ̂1
k=1Ω(wk)} ∨max{β(wk); 1 ≤ k ≤ τ̂1}.

Similarly as in Section 4.2.2 of [7], we will study

P1(ax, x) = P̂∗1(L1 ≥ ax, M1 ≥ x)

for a ≥ 0, x � 1 and κ ∈ (1, ∞) in three steps. In the end, we will obtain that P1(ax, x) ≈
P̂∗1(βσA(wσA)W

(wσA )
∞ ≥ ax, βσA(wσA)M

(wσA )
e ≥ x, σA < τ̂1) where (W

(wσA )
∞ ,M(wσA )

e ) is inde-
pendent of βσA(wσA) and distributed as (W∞,Me) under Q∗. This implies (4.7).

Let us first state some facts which will be used in the proof.

Lemma 4.7. 1. If κ ∈ (1, ∞), for any A ≥ 1 fixed,

(4.17) Ê∗1


 τ̂1

∑
k=1

1{β(wk−1)<A} ∑
u∈Ω(wk)

L(u)
1

κ−1
 < ∞.

2. If κ ∈ (1, ∞), for any A ≥ 1 fixed,

(4.18) Ê∗1

[
(β(wσA))

κ−1 1{σA<τ̂1}

]
∈ (0, ∞).
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3. For (ζi)1≤i≤n i.i.d. random variables with E[ζ1] = 0 and E[|ζ1|α] < ∞ for some α ≥ 1, then
there exists C1(α) > 0 depending only on α, such that

(4.19) E

[
|

n

∑
i=1

ζi|α
]
≤
{

C1(α)nα/2E[|ζ1|α], if α ≥ 2
2nE[|ζ1|α], if α ∈ [1, 2].

4. If under P, (ζi)1≤i≤N is a random vector with negative multinomial distribution of parameters
n and ( Ai

1+∑N
j=1 Aj

)1≤i≤N, then for any α ∈ [1, ∞), there exists C2(α) > 0 depending only on α,

such that for any (z1, · · · , zN) ∈ RN
+ ,

(4.20)

E

[
|

N

∑
i=1

ziζi − n
N

∑
i=1

Aizi|α
]
≤ C2(α)nα/2∨1

[bα−1c

∑
k=0

(
N

∑
i=1

Aizi)
k(

N

∑
i=1

Aizα−k
i ) + (

N

∑
i=1

Aizi)
α

]
.

Equation (4.19) collects two inequalities from [8] for α ≥ 2 and from (2.6.20) of [18] for
α ∈ [1, 2]. Note that it is immediate from (4.18) that for any A ≥ 1 fixed,

(4.21) KA := Ê∗1

[
(βσA(wσA))

κ−1 1{σA<τ̂1}

]
< ∞.

In (4.20), we finally see that by convexity, (∑N
i=1 Aizi)

k ≤ (∑N
i=1 Ai)

k−1(∑N
i=1 Aizk

i ) for any
k ≥ 1. The proof of Lemma 4.7 is postponed in Section 5.2.

Let us start analysing P1(ax, x). We let κ′ := κ − 1.

Step1 Let

L>σA
1 :=

τ̂1

∑
k=σA+1

∑
u∈Ω(wk)

L(u)
1 ,

and M>σA
1 := max{M>σA,†

1 , M>σA,?
1 } with

(4.22) M>σA,†
1 := max{M(u)

1 ; u ∈ ∪τ̂1−1
k=σA

Ω(wk+1)}, M>σA,?
1 := max{β(wk)1{σA≤k≤τ̂1}}.

Lemma 4.8. For any ε > 0, A ≥ 1 and as x→ ∞,

(4.23) P̂∗1(L>σA
1 ≥ ax, M>σA

1 ≥ x, σA < τ̂1) ≤ P1(ax, x)

≤ P̂∗1(L>σA
1 ≥ (a− ε)x, M>σA

1 ≥ x, σA < τ̂1) + o(x−κ′).

Proof. Notice that

L1 − L>σA
1 = 1 +

σA

∑
k=1

∑
u∈Ω(wk)

L(u)
1 .

The proof of Lemma 16 of [7] applies to show that for any ε > 0, A > 0,

(4.24) P̂∗1
(

L1 > εx, τ̂1 ≤ σA
)
= o(x−κ′) and P̂∗1

( σA

∑
k=1

∑
u∈Ω(wk)

L(u)
1 > εx, σA < τ̂1

)
= o(x−κ′),
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excepted that for κ > 2 we use (4.17) of Lemma 4.7 to show the finiteness of the quantity

Ê∗1

[(
∑τ̂1

k=1 1{β(wk−1)<A} ∑u∈Ω(wk)
L(u)

1

)κ′
]

. Now if we show that

(4.25) P̂∗1
(

M1 −M>σA
1 > εx, σA < τ̂1

)
= o(x−κ′),

then the union bound together with (4.24) will conclude the lemma. To prove (4.25), we
simply adjust the proof of Lemma 16 of [7]. First, Markov’s inequality yields

P̂∗1
(

M1 −M>σA
1 > εx, σA < τ̂1

)
≤ (εx)−κ′Ê∗1

[(
M1 −M>σA

1

)κ′1{σA<τ̂1}1
{

M1−M
>σA
1 >εx

}]
≤ (εx)−κ′Ê∗1

[
max

1≤k≤τ̂1
(1{β(wk−1)<A}max(β(wk−1)

κ′ , max
u∈Ω(wk)

(M(u)
1 )κ′)1{

M1−M
>σA
1 >εx

}]

≤ (εx)−κ′Ê∗1

(Aκ′ +
(

∑
1≤k≤τ1

1{β(wk−1)<A} ∑
u∈Ω(wk)

M(u)
1

)κ′
)

1{
M1−M

>σA
1 >εx

}
 .

But since the indicator function in this last expectation tends to 0 a.s. when x → ∞, it is enough

to show the finiteness of Ê∗1

[(
∑τ1

k=1 1{β(wk−1)<A} ∑u∈Ω(wk)
M(u)

1

)κ′
]

to conclude. Proving this

is similar to proving (4.17), with M(u)
1 instead of L(u)

1 . Indeed the only fact we need on L(u)
1 in

this proof is that Ê∗1 [(L(u)
1 )κ′ |β(u)] ≤ Cκ′β(u)κ′ for a certain constant Cκ′ , a domination which

is also satisfied by the M(u)
1 according to Lemma 4.6.

Step 2 Recall the notation of the beginning of this Subsection 4.4.3. Let also for any u ∈ T,

∆V(u) := V(u)−V(←−u ).

The aim of this step is to get the following lemma.

Lemma 4.9. For all ε > 0 small enough, for all A ≥ Aε large enough, for all x > 0 large enough,

(4.26) P̂1((a + 3ε)x, (1 + 5ε)x; A)− 8εx−κ′KA + o(x−κ′)

≤ P1(ax, x) ≤ P̂1((a− 3ε)x, (1− 5ε)x; A) + 8εx−κ′KA + o(x−κ′),

where P̂1(ax, x; A) := P̂∗1(βσA(wσA)W
(wσA )
∞ ≥ ax, βσA(wσA)M

(wσA )
e ≥ x, σA < τ̂1).

Notice that the quantity KA = Ê∗1 [(βσA(wσA))
κ′1{σA<τ̂1}] for any A ≥ 1 is finite according

to Lemma 4.7.
Actually, we will divide the proof in two parts, one dealing with L1 and the other with M1.

The following two lemmas will immediately yield Lemma 4.9.

Lemma 4.10. For all ε > 0 small enough, for all A ≥ Aε large enough, for all x > 0 large enough,

(4.27) P̂∗1
(
|L1 − βσA(wσA)W

(wσA )
∞ | > 3εx, σA < τ̂1

)
≤ 3εx−κKA + o(x−κ′).
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Lemma 4.11. For all ε > 0 small enough, for all A ≥ Aε large enough, for all x > 0 large enough,

(4.28) P̂∗1
(
|M1 − βσA(wσA)M

(wσA )
e | > 5εx, σA < τ̂1

)
≤ 5εx−κKA + o(x−κ′).

Proof of Lemma 4.10. For κ ≤ 2, Lemmas 16, 18, 19 and 20 of [7] put together yield the result.
Actually the proofs of Lemmas 16, 18, 19 and 20 of [7] can be adjusted to the case κ > 2. Let
us detail this.
• For Lemma 16, it is the lemma we just proved in Step 1, Lemma 4.8.
• Let us now follow the lines of Lemma 18. Let Ω := ∪τ̂1

k=1Ω(wk), and (Zu)u∈Ω a fam-
ily of i.i.d. random variables admitting a finite moment of order κ′. This ensures that the
∑u∈Ω(wk)

e−∆V(u)Zu also have a finite moment of order κ′:

Ê∗1

( ∑
u∈Ω(wk)

e−∆V(u)Zu
)κ′

 ≤ Ê∗1

 ∑
u∈Ω(wk)

e−∆V(u)(Zu)
κ′( ∑

u∈Ω(wk)

e−∆V(u))κ′−1


= E1

 ∑
|u|=1

e−V(u)( ∑
v 6=u

e−V(v))κ′

 Ê∗1
[
Zκ′] < ∞,(4.29)

where the first inequality is obtained by convexity of x 7→ xκ′ , and where Z is a generic
random variable of same law as the (Zu)u∈Ω. Now we replace the inequality (4.26) by the
following (using (4.20) with N = 1 and z1 = 1):

Ê∗1 [|βσA(w`)− βσA(w`−1)e−(V(w`)−V(w`−1))|κ′ | βσA(w`−1), ∆V(w`)]

≤ C3(βσA(w`−1))
κ′/2(e−∆V(w`) + e−κ′∆V(w`))

for a certain constant C3 > 0, and we can reach the same conclusion on fA(x). Finally, we
have to replace (4.30) by

Ê∗1
[
| ∑

u∈Ω(wk)

(
βσA(u)− βσA(wk−1)e−∆V(u))Zu|κ

′ | βσA(wk−1)
](4.30)

≤C4(βσA(wk−1))
κ′/2Ê∗1

[ bκ′−1c

∑
k=0

( ∑
u∈Ω(wk)

e−∆V(u)Zu)
k( ∑

u∈Ω(wk)

e−∆V(u)Zκ′−k
u ) + ( ∑

u∈Ω(wk)

e−∆V(u)Zu)
κ′]

≤C4(βσA(wk−1))
κ′/2Ê∗1

bκ′−1c

∑
k=0

( ∑
u∈Ω(wk)

e−∆V(u))k+1 + ( ∑
u∈Ω(wk)

e−∆V(u))κ′

× max
0≤k≤bκ′c

Ê∗1 [Z
k]Ê∗[Zκ′−k].

The second inequality comes from (4.20). The third one comes from the convexity of x 7→ xk

(as explained in the remark after Lemma 4.7), and the linearity of the expectation. The finite-
ness of the first expectation comes from the many-to-one lemma and assumption 1.4. We
conclude following the lines of Lemma 18 of [7], by use of (5.31).
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• The proof of Lemma 19 of [7] adjusts to the case κ > 2, as its arguments boil down to
those of the proof of Lemma 18 that we just showed adjust to the case κ > 2.

• Finally, let us deal with Lemma 20 of [7]. The finiteness Ê∗1
[(

∑u∈Ω(wk)
e−∆V(u)Yu

)κ′]
is obtained similarly to (4.29). The last point is equation (4.37), which can be dominated as
explained in the lines that follow it, let appart that we use the convexity inequality rather than
Jensen’s inequality.

Proof of Lemma 4.11. First, Lemma 4.8 yields that

(4.31) P̂∗1
(

max
1≤k<σA

β(wk) ∨ max
1≤k≤σA, u∈Ω(wk)

M(u)
1 > εx, σA < τ̂1

)
= o(x−κ′).

Recall from (4.22) the notation

M>σA,†
1 := max{M(u)

1 ; u ∈ ∪τ̂1−1
k=σA

Ω(wk+1)}, M>σA,?
1 := max{β(wk); σA ≤ k ≤ τ̂1}.

We will first deal with vertices outside the spine. We first want to prove that

P̂∗1
(
|M>σA,†

1 − (βσA(wσA) max
σA+1≤k≤τ̂1, u∈Ω(wk)

e−(V(u)−V(wσA )M(u)
e )| > 3εx, σA < τ̂1

)
≤3εx−κKA.

(4.32)

As we have shown before, Lemmas 16, 18, 19 and 20 of [7] apply to any κ > 1 for L1. We will
adjust them to get the same dominations on M1.

• Since β(u)− βσA(u) ≥ 0 for any u ∈ T, we have
τ̂1

∑
k=σA+1

∑
u∈Ω(wk)

(β(u)− βσA(u))M(u)
e ≥ max

σA+1≤k≤τ̂1
max

u∈Ω(wk)
(β(u)− βσA(u))M(u)

e ,

and therefore the proof of Lemma 19 of [7] (with Zu =M(u)
e ) yields

(4.33) P̂∗1

(
max

σA+1≤k≤τ̂1
max

u∈Ω(wk)
(β(u)− βσA(u))M(u)

e > εx, σA < τ̂1

)
≤ εx−κ′KA.

• Lemma 20 of [7] can also be reformulated. Indeed, it is shown in the proof that the two
terms of the sum in the right-part of the inequality (4.34) can be made smaller than εx−κ′KA

for A and x large enough. Replacing (L(u)
1 , W(u)

∞ ) by (M(u)
1 ,M(u)

e ) (which satisfies the same
hypotheses, as shown in Proposition 2.2) does not change the result. As a sum of positive
terms is larger than their maximum, we get that

P̂∗1

(
max

σA+1≤k≤τ̂1
max

u∈Ω(wk)
|β(u)M(u)

e −M(u)
1 | > εx, σA < τ̂1

)

≤ P̂∗1

(
max

σA+1≤k≤τ̂1
max

u∈Ω(wk)
βσA(u)|M(u)

e −
M(u)

1
β(u)

| > εx/2, σA < τ̂1

)

+ P̂∗1

(
max

σA+1≤k≤τ̂1
max

u∈Ω(wk)
(β(u)− βσA(u))|M(u)

e −
M(u)

1
β(u)

| > εx/2, σA < τ̂1

)
≤ εx−κ′KA(4.34)

25



for A and x large enough.

• Finally, it remains to adjust Lemma 18. We will show that for A and x large enough,

(4.35) P̂∗1
(
|M(4.35)| > εx, σA < τ̂1

)
≤ εx−κ′KA.

where

M(4.35) :=
(

max
σA+1≤k≤τ̂1

max
u∈Ω(wk)

βσA(u)M(u)
e

)
−
(

βσA(wσA) max
σA+1≤k≤τ̂1

max
u∈Ω(wk)

e−(V(u)−V(wσA ))M(u)
e

)
.

To prove this, we follow the lines of the proof and replace the sums by maxima. The only
delicate point is when bounding gA in equation (4.29). We proceed as follows. We let

gA(x) := P̂∗1

(
max

k≥σA+1
max

u∈Ω(wk)
|(βσA(u)− βσA(wk−1)e−∆V(u))Zu| >

ε

2
x, σA < τ̂1

)
.

If κ ≥ 2, Markov’s inequality yields

gA(x) ≤ (
ε

2
x)−κ′Ê∗1

 ∑
k≥σA+1

∑
u∈Ω(wk)

|(βσA(u)− βσA(wk−1)e−∆V(u))Zu|κ
′
1{σA<τ̂1}


≤ (

ε

2
x)−κ′Ê∗1

[
∑

k≥σA+1
(βσA(wk−1))

κ′/21{σA<τ̂1}

]
Ê∗1 [(Zu)

κ′ ]

× C7Ê∗1

( ∑
u∈Ω(wk)

e−∆V(u)) + ( ∑
u∈Ω(wk)

e−∆V(u))κ′

 ,

where the second inequality is due to (4.20) with N = 1. Using (5.31), we get

gA(x) ≤ C8x−κ′Ê∗1 [(βσA(wσA))
κ′/21{σA<τ̂1}] ≤ C8A−κ/2x−κ′Ê∗1 [(βσA(wσA))

κ′1{σA<τ̂1}]

which is smaller than ε
2 x−κ′KA for A large enough. If κ < 2, we write

gA(x) ≤ (
ε

2
x)−κ′Ê∗1

Ê∗

 ∑
k≥σA+1

∑
u∈Ω(wk)

|(βσA(u)− βσA(wk−1)e−∆V(u))Zu|21{σA<τ̂1}

∣∣∣βσA(wσA)

κ′/2


and we can use the same reasoning as in the case κ ≥ 2.

Equations (4.33), (4.34) and (4.35) yield (4.32).

Let us now deal with the vertices on the spine. We want to prove that

(4.36) P̂∗1
(
|M>σA,?

1 − (βσA(wσA) max
σA≤k≤τ̂1

e−(V(wk)−V(wσA )))| > 2εx, σA < τ̂1
)
≤ 2εx−κ′KA.
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First, the same reasoning as that at the beginning of the proof of Lemma 19 of [7] yields
that if one shows the existence of a constant C9 ∈ (0; ∞) such that

(4.37) P̂∗1

(
∑
k≥1

β1
0(wk) > x

)
≤ C9x−κ′ ,

then
P̂∗1

(
∑

k≥σA

(β(wk)− βσA(wk)) > εx, σA < τ̂1

)
≤ εx−κ′KA,

which would yield

(4.38) P̂∗1

(
max
k≥σA

(β(wk)− βσA(wk)) > εx, σA < τ̂1

)
≤ εx−κ′KA

as β(wk) − βσA(wk) ≥ 0 for all k ≥ σA. But showing (4.37) is similar to showing the dom-
ination of g(x) in the proof of Lemma 19 of [7], after replacing ∑u∈Ω(wk)

e−∆V(u)Zu by 1,
hence (4.38) stands.

Finally, the same reasoning as that made for the domination of fA in the proof of Lemma 18
of [7] but replacing Zw`

by 1 gives

(4.39) P̂∗1

(
max

σA≤k≤τ̂1

∣∣βσA(wk)− βσA(wσA)e
−(V(wk)−V(wσA ))

∣∣ > εx, σA < τ̂1

)
≤ εx−κ′KA.

Equation (4.38) together with (4.39) yield (4.36).
Combining equations (4.31), (4.36) and (4.32) concludes the proof of the lemma.

Step 3 Because of the independence between (βσA(wσA), 1{σA<τ̂1}) and (W
(wσA )
∞ ,M(wσA )

e ),

we only need to consider the joint tail P̂∗1(W
(wσA )
∞ ≥ ax,M(wσA )

e ≥ x), which equals Q∗(W∞ ≥
ax,Me ≥ x). It then follows from (4.8) that as x → ∞,

P̂1(ax, x; A) =P̂∗1(W
(wσA )
∞ ≥ a

x
βσA(wσA)

,M(wσA )
e ≥ x

βσA(wσA)
; σA < τ̂1)

∼µ(a)x−κ′KA.

So, letting x → ∞, ε ↓ 0 then A ↑ ∞ in (4.26) implies that

P1(ax, x) ∼ η1(a)x−κ′ = µ(a)C∞x−κ′ ,

where

(4.40) C∞ := lim
A→∞

KA ∈ (0, ∞).

The positivity of C∞ can be obtained by use of Lemma 4.1 in [5]. By Lemma 4.5, one sees that

(4.41) P1(L1 ≥ ax, M1 ≥ x) ∼ η(a)x−κ,
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where

η(a) = cMC∞E[(1∧ W
M
∞

a
)κ].

If we only use the tail of W∞, similar arguments imply that P1(L1 ≥ x) ∼ cLx−κ with
cL = C0C∞. However, we could not deduce the tail of M1 under P1 as P̂∗1(M1 ≥ x) =

P̂∗1(L1 ≥ 1, M1 ≥ x) = E1[L1; L1 ≥ 1, M ≥ x]. In the next subsection, we study the tail of M1.

4.5 Tail of M1 under P1: proof of Lemma 4.4

It is immediate from Lemma 4.4 and (4.41) that as x → ∞.

P1(M1 ≥ x) ∼ η(0)x−κ,

with η(0) = cMC∞. Let us prove Lemma 4.4 here, which mainly follows from Lemma 3.2.

Proof of Lemma 4.4. Let us consider P1(L1 ≤ εr, M1 ≥ r) for ε ∈ (0, 1) small and r � 1. Let
Σr := ∑u∈T 1{β(u)≥r>maxρ≤v<u β(v),minρ<v<u β(v)≥2} for any r > 2. Obviously, {M1 ≥ r} = {Σr ≥
1}. Moreover, for any u < L1, one has

L1 =
|u|

∑
j=1

∑
z∈Ω(uj)

L(z)
1 1{z∈B1} + L(u)

1 ≥ L/u
1 :=

|u|

∑
j=1

∑
z∈Ω(uj)

L(z)
1 1{z∈B1}.

Then observe that

P1(M1 ≥ r, L1 ≤ εr) ≤ E1

[
Σr1{L1≤εr}

]
≤ E1

[
∑

u∈T

1{β(u)≥r>maxρ≤v<u β(v),minρ<v<u β(v)≥2}1{L/u
1 ≤εr}

]

which by change of measures, is bounded by

∑
n≥1

Ê∗1

[
1

β(wn)
1{n=σr<τ̂1}1

{
L/wn

1 ≤εr
}]

So, one sees that for any 2 ≤ A < r,

P1(M1 ≥ r, L1 ≤ εr) ≤ ∑
n≥1

Ê∗1

[
1

β(wn)
1{n=σr<τ̂1}1

{
L/wn

1 ≤εr
}]

≤Ê∗1

 1
β(wσr)

1{σr<τ̂1}1
{

∑σr
j=σA+1 ∑z∈Ω(wj)

L(z)
1 ≤εr

}


As in the previous subsection, under P̂∗1 , we can approximate L(z)
1 by βσA(wσA)e

V(wσA )−V(z)W(z)
∞ ,

and along the spine (wk)k≥σA , β(wk) can be approximated by βσA(wσA)e
−(V(wk)−V(wσA )). In
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fact, we have

P1(M1 ≥ r, L1 ≤ εr)

≤Ê∗1

 1
β(wσr)

1{σr<τ̂1}1
{
|∑σr

j=σA+1 ∑z∈Ω(wj)
[L(z)

1 −βσA (wσA )e
V(wσA )−V(z)W(z)

∞ ]|≥εr
}


+ Ê∗1

[
1

β(wσr)
1{σr<τ̂1}1

{
maxσA≤k≤τ̂1

|β(wk)−βσA (wσA )e
−(V(wk)−V(wσA ))|≥εr

}]
+ Ê∗1

[
1

β(wσr)
1{σr<τ̂1}1{βσA (wσA )≥

√
r}1{

maxσA≤k≤τ̂1
|β(wk)−βσA (wσA )e

−(V(wk)−V(wσA ))|<εr
}]+ Ê∗(4.42),

where

(4.42) Ê∗(4.42) := Ê∗1

 1
β(wσr)

1{σr<τ̂1}1
{

∑σr
j=σA+1 ∑z∈Ω(wj)

βσA (wσA )e
V(wσA )−V(z)W(z)

∞ ≤2εr; βσA (wσA )<
√

r
}

× 1{
maxσA≤k≤τ̂1

|β(wk)−βσA (wσA )e
−(V(wk)−V(wσA ))|<εr

}]
Notice that the third term of the sum is smaller than

Ê∗1

[
1

β(wσr)
1{σr<τ̂1}1{βσA (wσA )≥

√
r}1{

βσA (wσA )e
−(V(wσr )−V(wσA )≥(1−ε)r

}]
≤ 1

r
P̂∗1

(
βσA(wσA) ≥

√
r, σA < τ̂1, ∑

n≥σA

e−(V(wn)−V(wσA ) ≥ (1− ε)
r

βσA(wσA)
)

)

≤ 1
r

Ê∗1

[
1{βσA (wσA )≥

√
r}1{σA<τ̂1}C10(βσA(wσA))

κ′r−κ′
]

,

where the inequality is due to Fact 2.2(1) of [5] and the Markov property applied at time σA.
Moreover, one sees that

Ê∗(4.42) ≤Ê∗1

 ∞

∑
n=σA+1

1
β(wσr)

1{σr=n<τ̂1, βσA (wσA )<
√

r}1{
∑n

j=σA+1 ∑z∈Ω(wj)
βσA (wσA )e

V(wσA )−V(z)W(z)
∞ ≤2εr

}

× 1{
maxσA≤k≤σr |β(wk)−βσA (wσA )e

−(V(wk)−V(wσA ))|<εr≤εβ(wσr )
}]

≤Ê∗1

[
∞

∑
n=σA+1

1 + ε

βσA(wσA)e
−(V(wn)−V(wσA ))

1{σr=n<τ̂1, βσA (wσA )<
√

r}1{
βσA (wσA )e

−(V(wn)−V(wσA ))≥(1−ε)r
}

× 1{
∑n

j=σA+1 ∑z∈Ω(wj)
βσA (wσA )e

V(wσA )−V(z)W(z)
∞ ≤2εr

}1{
maxσA≤k<n βσA (wσA )e

−(V(wk)−V(wσA ))<(1+ε)r
}
 .
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Let rA := log( r
βσA (wσA )

). We get that

Ê∗(4.42) ≤(1 + ε)Ê∗1

[
1{βσA (wσA )<

√
r, σA<τ̂1} ∑

n≥σA+1

eV(wn)−V(wσA )

βσA(wσA)
1{V(wn)−V(wσA )≤−rA−log(1−ε)}

× 1{
∑n

j=σA+1 ∑z∈Ω(wj)
e−(V(z)−V(wσA ))W(z)

∞ ≤2εerA

}1{minσA≤k<n(V(wk)−V(wσA ))>−rA−log(1+ε)}


Consequently, for ε ∈ (0, 1/3) sufficiently small,

P1(M1 ≥ r, L1 ≤ εr)(4.43)

≤1
r

P̂∗1

 τ̂1

∑
j=σA+1

| ∑
z∈Ω(wj)

[L(z)
1 − βσA(wσA)e

V(wσA )−V(z)W(z)
∞ ]| ≥ εr


+

1
r

P̂∗1

(
max

σA≤k≤τ̂1
|β(wk)− βσA(wσA)e

−(V(wk)−V(wσA ))| ≥ εr
)

+
C10

rκ
Ê∗1

[
(βσA(wσA))

κ−11{βσA (wσA )≥
√

r}1{σA<τ̂1}

]
+ (1 + ε)Ê∗(4.44)

where

(4.44)

Ê∗(4.44) =: Ê∗
[

1{βσA (wσA )<
√

r;σA<τ̂1} ∑
n≥σA+1

e(V(wn)−V(wσA ))

βσA(wσA)
1{

∑n
j=σA+1 ∑z∈Ω(wj)

e−(V(z)−V(wσA ))W(z)
∞ ≤2ε exp(rA)

}

× 1{minσA≤k<n(V(wk)−V(wσA ))>−rA−ε; (V(wn)−V(wσA ))≤−rA+2ε}

]
,

with rA ≥ log(r)/2. According to the Subsection 4.4.3, one sees from (4.43) that for A ≥ 2
fixed and r � 1,

(4.45) P1(M1 ≥ r, L1 ≤ εr) ≤ C11εr−κ + or(1)r−κ + 2Ê∗(4.44).

Here for Ê∗(4.44), by Markov property at time σA, one has

Ê∗(4.44) = Ê∗1

[
1{βσA (wσA )<

√
r;σA<τ̂1}

βσA(wσA)
E(4.46)

Q∗ (ε, rA)

]
where for any δ1, δ2 > 0,

(4.46) E(4.46)
Q∗ (ε, rA) =: ∑

n≥1
EQ∗

[
eV(wn)1{V(wn)≤−rA+2ε, min1≤k≤n−1 V(wk)>−rA−ε}

× 1{
∑n

j=1 ∑z∈Ω(wj)
e−V(z)W(z)

∞ ≤2ε exp(rA)

}].
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Let us claim that

(4.47) lim sup
ε↓0

lim sup
r→∞

eκrE(4.46)
Q∗ (ε, r) = 0.

It mainly follows from Lemma 3.2. We postpone its proof in the Subsection 5.2. Then (4.47)
implies that

Ê∗(4.44) = Ê∗1

[
1{βσA (wσA )<

√
r;σA<τ̂1}

βσA(wσA)
e−κrA oε,rA(1)

]
≤ oε,r(1)

rκ
E
[
(βσA(wσA))

κ−1; σA < τ̂1

]
.

Plugging it in (4.45) yields that

lim sup
ε↓0

lim sup
r→∞

rκP1(M1 ≥ r, L1 ≤ εr) = 0.

5 Proofs of the technical lemmas

5.1 Proofs of the technical lemmas in Section 3

Recall that ψ(1) = ψ(κ) = 1 and ψ(−1− δ) + ψ(κ + δ) < ∞ for some δ > 0. We have the
well-known many-to-one lemma.

Lemma 5.1 (Many-to-one). Assume (1.2) and (1.3). For any n ≥ 1, x ∈ R and any measurable
function g : Rn → R+,

(5.1) Ex

 ∑
|z|=n

g
(

V(z1), · · · , V(zn)
) = Ex

[
eSn−xg(S1, · · · , Sn)

]
,

where (Sn) is a random walk with i.i.d. increments such that

E[S1] = E

 ∑
|z|=1

V(z)e−V(z)

 > 0, E[e−(κ−1)S1 ] = 1, E[eδS1 + e−(κ−1+δ)S1 ] < ∞.

In particular, under Q∗x, (V(wi); 1 ≤ i ≤ n) has the same distribution as (Si; 1 ≤ i ≤ n) under Px
where Px(S0 = x) = 1. Similarly, as ψ(κ) = 1 and ψ′(κ) > 0, we have

(5.2) Ex

 ∑
|z|=n

g
(

V(z1), · · · , V(zn)
) = E

[
eκ(S(κ)

n −x)g(S(κ)
1 , · · · , S(κ)

n )

]
,

where (S(κ)
n ) is a random walk with i.i.d. increments such that

E[S(κ)
1 ] = E

 ∑
|z|=1

V(z)e−κV(z)

 < 0, E[e(κ−1+δ)S(κ)
1 + e−δS(κ)

1 ] < ∞.
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Moreover,

(5.3) Ex [g(S1, · · · , Sn)] = Ex

[
e(κ−1)(S(κ)

n −x)g(S(κ)
1 , · · · , S(κ)

n )

]
Before proving the lemmas, let us state some classic results on random walks (Sn)n≥0 and

(S(κ)
n )n≥0.

5.1.1 Renewal theory for one-dimensional random walk

For any 0 ≤ j < n, let

S[j,n] := max
j≤k≤n

Sk, S[j,n] := min
j≤k≤n

Sk, and V(w[j,n]) := max
j≤k≤n

V(wk), V(w[j,n]) := min
j≤k≤n

V(wk).

For the random walk (S(κ)
n )n≥0, we define the renewal measures U(κ),±

s corresponding to
the strict ascending/descending ladder process by

(5.4) U(κ),±
s ([0, x]) := E

[
τ(κ),∓−1

∑
k=0

1{±S(κ)
k ≤x

}
]

, ∀x ≥ 0.

with τ(κ),+ := inf{k ≥ 1 : S(κ)
k ≥ 0} and τ(κ),− := inf{k ≥ 1 : S(κ)

k ≤ 0}. And the renewal
measures corresponding to the weak ascending/descending ladder process are defined as
follows:

U(κ),±
w ([0, x]) := E

[
τ̂(κ),∓−1

∑
k=0

1{±S(κ)
k ≤x

}
]

, ∀x ≥ 0.

with τ̂(κ),+ := inf{k ≥ 1 : S(κ)
k > 0} and τ̂(κ),− := inf{k ≥ 1 : S(κ)

k < 0}.
As usual, we set the strict renewal functions to be R(κ),±

s (x) := U±s ([0, x]). Then it is known
that there exist constants C±s ∈ (0, ∞) such that for any h > 0, as x → ∞,

R(κ),+
s (x)→ C(κ),+

s and U(κ),−
s ((x− h, x])→ C(κ),−

s h.

As E[S(κ)
1 ] < 0, its strict descending process, denoted by (τ̂

(κ),−
n , Ĥ(κ),−

n )n≥0, is proper. For the
strict ascending ladder process, define the epochs by

τ̂
(κ),+
n := inf{k > τ̂

(κ),+
n−1 : S(κ)

k > S(κ)

τ̂
(κ),+
n−1

}, ∀n ≥ 1,

with τ̂
(κ),+
0 := 0. On {τ̂(κ),+

n < ∞}, let Ĥ(κ),+
n := S(κ)

τ̂
(κ),+
n

. Then

R(κ),+
s (x) = E

[
∑
k≥0

1{
τ̂
(κ),+
k <∞,Ĥ(κ),+

k ≤x
}
]

and R(κ),−
s (x) = E

[
∑
k≥0

1{
Ĥ(κ),−

k ≥−x
}
]

Write I(x) for (−x− 1,−x].
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Lemma 5.2. Under the assumptions of Lemma 5.1, for any a > 0, as x → ∞,

(5.5) E−a

[
∑
k≥0

eSk+κx1{S[1,k]<0,Sk∈I(x)}

]
→ e(κ−1)a 1− e−κ

κ
C(κ),−

s U(κ),+
w ([0, a)),

In addition, there exists a constant c2 > 0 such that for any x ≥ 0 and a > 0,

(5.6) E−a

[
∑
k≥0

eSk+κx1{S[1,k]<0,Sk∈I(x)}

]
≤ c2(1 + a)eκ′a.

Proof. Let us consider

(5.7) R(x, a) := ∑
j≥0

P−a

(
S(κ)
[1,j] < 0, S(κ)

j > −x
)

, ∀a, x ≥ 0.

Note that (S(κ)
i )1≤i≤j has the same distribution as (S(κ)

j − S(κ)
j−i)1≤i≤j. As a consequence, for

any a > 0,

R(x, a) = ∑
j≥0

P(S(κ)
[1,j] < a, S(κ)

j > a− x)

= ∑
j≥0

P
(

S(κ)
j < a + S(κ)

[0,j−1], S(κ)
j > a− x

)
As the associated descending ladder process is proper, this implies that

R(x, a) = ∑
n≥0

E

τ̂
(κ),−
n+1 −1

∑
j=τ̂

(κ),−
n

1{
S(κ)

j <a+S(κ)
[0,j−1],S

(κ)
j >a−x

}


= ∑
n≥0

E

1{
Ĥ(κ),−

n ≥−x
} τ̂

(κ),−
n+1 −1

∑
j=τ̂

(κ),−
n

1{
a−x<S(κ)

j <a+Ĥ(κ),−
n

}
 ,

which by Markov property at time τ
(κ),−
n equals to

∑
n≥0

E
[

1{
Ĥ(κ),−

n ≥−x
}U(κ),+

w

(
(a− x− Ĥ(κ),−

n , a)
)]

= ∑
n≥0

E
[

1{
Ĥ(κ),−

n ≥−x
}U(κ),+

w ([0, a))
]
− ∑

n≥0
E
[

1{
Ĥ(κ),−

n ≥−x
}U(κ),+

w

(
[0, a− x− Ĥ(κ),−

n ]
)]

This means that for any a > 0 and x ≥ 0,

(5.8) R(x, a) = U(κ),+
w ([0, a)) R(κ),−

s (x)−
∫
[(x−a)+,x]

U(κ),+
w ([0, a− x + u])U(κ),−

s (du).
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As U(κ),+
w (R) = C(κ),+

w ∈ (0, ∞), one sees that there exists some constant c3 > 0 such that for
any x ≥ 0,

(5.9) ∑
k≥0

P−a

[
S(κ)
[1,k] < 0, S(κ)

k ∈ I(x)
]
= R(x + 1, a)− R(x, a) ≤ c3(1 + a), ∀a > 0.

Moreover, for any b > 0, as x → ∞,

(5.10) R(x + b, a)− R(x, a)→ U(κ),+
w ([0, a))C(κ),−

s b.

It follows from Lemma 5.1 that

E−a

[
∑
k≥0

eSk+κx1{S[1,k]<0,Sk∈I(x)}

]
= e(κ−1)aE−a

[
∑
k≥0

eκ(S(κ)
k +x)1{

S(κ)
[1,k]<0,S(κ)

k ∈I(x)
}
]

Clearly, we have

E−a

[
∑
k≥0

eSk+κx1{S[1,k]<0,Sk∈I(x)}

]
≤ eκ′a(R(x + 1, a)− R(x, a)) ≤ c3(1 + a)eκ′a.

Moreover, for any a > 0,

E−a

[
∑
k≥0

eSk+κx1{S[1,k]<0,Sk∈I(x)}

]

=e(κ−1)a+κx
∫ −x

−∞
κeκu ∑

k≥0
P−a

(
S(κ)

k > u, S(κ)
[1,k] < 0, S(κ)

k ∈ (−x− 1,−x]
)

du

=e(κ−1)a−κ(R(x + 1, a)− R(x, a)) + e(κ−1)a
∫ 1

0
κe−κt(R(x + t, a)− R(x, a))dt

which, by (5.10), converges towards

e(κ−1)a
(

e−κ +
∫ 1

0
κte−κtdt

)
C(κ),−

s U(κ),+
w ([0, a)),

as x → ∞. Here e−κ +
∫ 1

0 κte−κtdt = (1− e−κ)/κ.

5.1.2 Proofs of lemmas 3.4, 3.5, 3.6, 3.7 and 3.2

Proof of Lemma 3.4. The upper bound is quite easy. In fact, observe immediately that {M ≤
−x} implies that {∑u∈T 1{V(u)≤−x<minρ<v<u V(v)} ≥ 1} So, by Markov inequality then by (5.2),

P(M ≤ −x) ≤E

∑
k≥1

∑
|u|=k

1{V(u)≤−x<minρ<v<u V(v)}

 = ∑
k≥1

E
[

eκS(κ)
k ; S(κ)

k ≤ −x < min
1≤i≤k−1

S(κ)
i

]
≤e−κx ∑

k≥1
P(S(κ)

k ≤ −x < min
1≤i≤k−1

S(κ)
i )

=e−κx.
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For the lower bound, let us introduce the following events for any u ∈ T:

Eu := {V(u) ∈ I(x), V(u) < min
ρ≤z<u

V(z)}, and FL
u := {

|u|

∑
k=1

∑
z∈Ω(uk)

e−κ(V(z)+x) ≤ L}, ∀L ≥ 1.

Define
N(x) := ∑

u∈T

1{Eu}, NL(x) := ∑
u∈T

1{Eu}1{FL
u }.

Then, by Paley-Zygmund inequality, one sees that

(5.11) P(M ≤ −x) ≥ P(NL(x) ≥ 1) ≥ E[NL(x)]2

E[NL(x)2]
.

Let us estimates the first and the second moments of NL(x). Note that by many-to-one lemma,

E[N(x)] = ∑
n≥1

E

 ∑
|u|=n

1{V(u)<V(u[0,n−1]),V(u)∈I(x)}

 = ∑
n≥1

E
[

eκS(κ)
n 1{

S(κ)
n <S(κ)

[0,n−1],S
(κ)
n ∈I(x)

}]

=E

[
∞

∑
k=0

eκĤ(κ),−
k 1{

Ĥ(κ),−
k ∈I(x)

}
]

So,
e−κx−κU(κ),−

s ([x, x + 1)) ≤ E[N(x)] ≤ e−κxU(κ),−
s ([x, x + 1)).

Consequently, there exist 0 < c4 < c5 < ∞ such that for any x ≥ 0,

(5.12) c4e−κx ≤ E[N(x)] ≤ c5e−κx.

Note that E[NL(x)] = E[N(x)]− E[∑u∈T 1{Eu}1{(FL
u )c}]. Let us bound E[∑u∈T 1{Eu}1{(FL

u )c}].
In fact, by Proposition 4.3,

E

[
∑

u∈T

1{Eu}1{(FL
u )c}

]
= ∑

n≥1
EQ∗

[
eV(wn)1{V(wn)<V(w[0,n−1]),V(wn)∈I(x)}1{

∑n
k=1 ∑u∈Ω(wk)

e−κ(V(u)+x)>L
}]

Observe that L ≥ ∑n
k=1

6L
π2k2 = ∑n

k=1
6L

π2(n−k+1)2 . It follows that

E

[
∑

u∈T

1{Eu}1{(FL
u )c}

]

≤ ∑
n≥1

EQ∗

eV(wn)1{V(wn)<V(w[0,n−1]),V(wn)∈I(x)}
n

∑
k=1

1{
∑u∈Ω(wk)

e−κ(V(u)+x)> 6L
π2(n−k+1)2

}


≤
∞

∑
n=1

n

∑
k=1

EQ∗

[
eV(wn)1{V(wn)<V(w[0,n−1]),V(wn)∈I(x)}; ∆e

ke−κV(wk−1) ≥ 6Leκx

π2(n− k + 1)2

]
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where ∆e
k := ∑u∈Ω(wk)

e−κ∆V(u). From the fact that (∆V(wk), ∆e
k)1≤k≤n have the same law as

(∆V(wn−k+1), ∆e
n−k+1)1≤k≤n, one sees that (V(wk), ∆e

k)1≤k≤n and (V(wn)−V(wn−k), ∆e
n+1−k)1≤k≤n

have the same law. As a consequence,

E

[
∑

u∈T

1{Eu}1{(FL
u )c}

]

≤ ∑
n≥1

n

∑
k=1

EQ∗

[
eV(wn)1{V(w[1,n])<0,V(wn)∈I(x)}; ∆e

n−k+1eκV(wn−k+1)−κV(wn) ≥ 6Leκx

π2(n− k + 1)2

]
≤

∞

∑
n=1

n

∑
k=1

EQ∗

[
eV(wn)1{V(w[1,n])<0,V(wn)∈I(x)}; ∆e

keκV(wk) ≥ 6L
π2k2

]

=
∞

∑
k=1

EQ∗

1{
V(w[1,k])<0,−V(wk)≤

log ∆e
k+2 ln k−ln(6L/π2)

κ

} ∞

∑
n=k

EV(wk)

[
eSn−k1{S[1,n−k]<0,Sn−k∈I(x)}

] ,

where the last equality follows from the Markov property at wk. Note that {V(wi); 1 ≤ i ≤
j − 1} which is distributed as (Si; 1 ≤ i ≤ j − 1), is independent of (∆V(wj), ∆e

j). Let us
introduce a new couple (ζ, ∆e) which under P is distributed as (∆V(w1), ∆e

1) under Q∗ and is
independent of the random walk (Sk). By (5.6),

E

[
∑

u∈T

1{Eu}1{(FL
u )c}

]
(5.13)

≤c2e−κx
∞

∑
k=1

EQ∗

1{
V(w[1,k])<0,−V(wk)≤

ln ∆e
k+2 ln k−log(6L/π2)

κ

}(1−V(wk))e−κ′V(wk)


≤c6e−κx

∞

∑
k=1

E

1{
S[1,k−1]<0,−Sk−1≤ζ+

ln ∆e
k+2 ln k−ln(cL)

κ

}(1 + ln k)(1 + ln+
∆e

cL
)e−κ′Sk−1e−κ′ζ

 .

Observe that for λ ∈ (0, κ′), we have aλ := − log E[eλS(κ)
1 ] > 0. Thus, for any a < b,

E
[
1{S[1,k]<0, a<−Sk≤b}e−κ′Sk

]
=P

(
S(κ)
[1,k] < 0, a < −S(κ)

k ≤ b
)
≤ eλbE

[
eλS(κ)

k

]
≤ eλb−aλk.

It hence follows that

E

[
∑

u∈T

1{Eu}1{(FL
u )c}

]
≤c7e−κx

∞

∑
k=0

(1 + ln+ k)(k + 1)2λ/κe−aλkE

[
(1 + ln+

∆e

cL
)

(
∆e

cL

)λ/κ

e(λ−κ′)ζ

]

≤c8e−κxE

[
(1 + ln+

∆e

cL
)

(
∆e

cL

)λ/κ

e(λ−κ′)ζ

]
.
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Now observe that by Many-to-one lemma,

E
[
(1 + ln+ ∆e)(∆e)λ/κe(λ−κ′)ζ

]
=EQ∗

e(λ−κ′)V(w1)

 ∑
z∈Ω(w1)

e−κV(z)

λ/κ 1 + ln+

 ∑
z∈Ω(w1)

e−κV(z)




≤E

 ∑
|u|=1

e(λ−κ)V(u)

 ∑
|u|=1

e−κV(u)

λ/κ 1 + ln+

 ∑
|u|=1

e−κV(u)




≤E


 ∑
|u|=1

e−V(u)

κ−λ ∑
|u|=1

e−κV(u)

λ/κ 1 + ln+

 ∑
|u|=1

e−κV(u)




where the last inequality holds as κ − λ > 1. By Cauchy-Schwartz inequality, one has hence

E
[
(1 + ln+ ∆e)(∆e)λ/κe(λ−κ′)ζ

]

≤E

 ∑
|u|=1

e−V(u)

κ(κ−λ)/κ

E


 ∑
|u|=1

e−κV(u)

1 + ln+

 ∑
|u|=1

e−κV(u)

κ/λ


λ/κ

< ∞,

by Assumption 1.4. As a result, E
[
∑u∈T 1{Eu}1{(FL

u )c}
]
= oL(1)e−κx and for L� 1, x ≥ 1,

c9e−κx ≤ E[NL(x)] ≤ c10e−κx.

For the second moment,

E[NL(x)2] = E[NL(x)] + E

[
∑

u,v∈T;u 6=v
1{Eu∩FL

u }1{Ev∩FL
v }

]

=E[NL(x)] + E

 ∑
u,v∈T;u 6=v;u∧v∈{u,v}

1{Eu∩FL
u }1{Ev∩FL

v }

+ E

 ∑
u,v∈T;u 6=v;u∧v/∈{u,v}

1{Eu∩FL
u }1{Ev∩FL

v }


≤c10e−κx + 2E

[
∑

u∈T

1{Eu∩FL
u }

(
∑

v:v>u
1{Ev}

)]
+ E

∑
u∈T

1{Eu∩FL
u }

 |u|∑
k=1

∑
z∈Ω(uk)

∑
v:v≥z

1{Ev}


=c10e−κx + 2 ∑

n≥1
E

 ∑
|u|=n

1{Eu∩FL
u }

(
∑

v:v>u
1{Ev}

)+ ∑
n≥1

E

 ∑
|u|=n

1{Eu∩FL
u }

 n

∑
k=1

∑
z∈Ω(uk)

∑
v:v≥z

1{Ev}


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which conditionally on FV
n or on σ((uk, V(uk))1≤k≤|u|), is bounded by

c10e−κx + 2 ∑
n≥1

E

 ∑
|u|=n

1{Eu∩FL
u }E[N(x + V(u))|V(u)]


+ ∑

n≥1
E

 ∑
|u|=n

1{Eu∩FL
u }

 n

∑
k=1

∑
z∈Ω(uk)

E[N(x + V(z))|V(z)]

 .

In view of (5.12), for L ≥ 1, we have

E[NL(x)2] =c10e−κx + c11 ∑
n≥1

E

 ∑
|u|=n

1{Eu∩FL
u }e−κ(V(u)+x)


+ c11 ∑

n≥1
E

 ∑
|u|=n

1{Eu∩FL
u }

 n

∑
k=1

∑
z∈Ω(uk)

e−κV(z)−κx


≤c10e−κx + c11E[N(x)] + c11LE[N(x)] ≤ c12Le−κx.

Therefore, for L sufficiently large and fixed, we conclude from (5.11) that

P(M ≤ −x) ≥ c13e−κx.

Let us introduce some notation here. For any k ≥ 0, let

Mk := inf
|u|≤k

V(u).

For any u ∈ T \ {ρ}, recall that ∆V(u) := V(u)−V(←−u ). Let

M(u) := inf
v:v≥u

(V(v)−V(u)), and M
(u)
k := inf

v:v≥u,|v|≤|u|+k
(V(v)−V(u)).

Write κ′ for κ − 1.

Proof of Lemma 3.5. In fact, we only need to show the convergence of eκxE
[
φ(Wu∗,≤t)1{M∈I(x)}

]
.

Recall that u∗ is chosen at random among the youngest individuals attaining M. Then,
observe that

E
[
φ(Wu∗,≤t)1{M∈I(x)}

]
= ∑

k≥1
E

 1
∑|v|=k 1{V(v)=M}

∑
|u|=k

1{V(u)=M,V(u)∈I(x)}φ(Wu,≤t)


= ∑

k≥1
E

 ∑
|u|=k

1
∑|v|=k 1{V(v)=V(u)}

1{V(u)=Mk<Mk−1,V(u)∈I(x)}1{inf|z|>k V(z)≥V(u)}φ(Wu,≤t)



= ∑
k≥1

E

 ∑
|u|=k

1
∑|v|=k 1{V(v)=V(u)}

1{V(u)=Mk<Mk−1,V(u)∈I(x)}E
[
1{inf|z|>k V(z)≥V(u)}φ(Wu,≤t) | FV

k

] .

(5.14)
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Notice that
Wu,≤t =Wu,≤t

0 + W(u)
∞ ,

whereWu,≤t
0 := ∑k

j=k−t eV(u)−V(uj−1) ∑z∈Ω(uj)
e−∆V(z)W(z)

∞ with ∆V(z) = V(z)− V(←−z ). This
yields

E
[
1{inf|z|>k V(z)≥V(u)}φ(Wu,≤t) | FV

k

]
= E[φ(Wu,≤t

0 + W(u)
∞ )1{M(u)≥0} | F

V
k ]× ∏

|z|=k,z 6=u
F(V(u)−V(z))

= Φ(Wu,≤t
0 )× ∏

|v|=k,v 6=u
F(V(u)−V(v)),

where F(t) = P(M ≥ t), and

Φ(a) := E[φ(a + W∞)1{M≥0}], ∀a ≥ 0.

Since φ is continuous and bounded, so is Φ. By the many-to-one lemma, equation (5.14)
becomes

E
[
φ(Wu∗,≤t)1{M∈I(x)}

](5.15)

= ∑
k≥1

EQ∗

 eV(wk)

∑|v|=k 1{V(v)=V(wk)}
1{V(wk)=Mk<Mk−1,V(wk)∈I(x)}Φ(Wwk,≤t

0 )× ∏
|v|=k,v 6=wk

F(V(wk)−V(v))


= ∑

k≥1
EQ∗

 eV(wk)

∑|v|=k 1{V(v)=V(wk)}
1{V(wk)=Mk<Mk−1,V(wk)∈I(x)}Φ(Wwk,≤t

0 )× ∏
|v|=k,v 6=wk

1{M(v)+V(v)≥V(wk)}

 .

Here, one sees that

∑
|v|=k

1{V(v)=V(wk)} = 1 +
k

∑
j=1

∑
z∈Ω(wj)

∑
|v|=k,v≥z

1{V(v)=V(wk)},

The event {V(wk) = Mk < Mk−1} ∩
⋂
|v|=k,v 6=wk

{M(v) + V(v) ≥ V(wk)} can be rewritten as

{V(wk) < V(w[0,k−1])} ∩

 ⋂
z∈∪k

j=1Ω(wj)

{V(z) + M
(z)
k−j−1 > V(wk), V(z) + M(z) ≥ V(wk)}

 .

Then, (5.15) becomes
E
[
φ(Wu∗,≤t)1{M∈I(x)}

]
= ∑

k≥1
χk,
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where

χk := EQ∗

 eV(wk)1{V(wk)∈I(x)}1{V(wk)<V(w[0,k−1])}
1 + ∑k

j=1 ∑y∈Ω(wj) ∑|v|=k,v≥y 1{V(v)=V(wk)}
Φ(Wwk,≤t

0 )

×
k

∏
j=1

∏
z∈Ω(wj)

1{
∆V(z)+M(z)

k−j−1>V(wk)−V(wj−1),∆V(z)+M(z)≥V(wk)−V(wj−1)
}
 .

To simplify this expression, we observe that only sufficiently large k make contributions to
the sum. Let us first prove the following result. For any b ≥ 1,

(5.16) lim
x→∞

eκx ∑
k≤b

EQ∗
[
eV(wk); V(wk) ∈ I(x), V(wk) < V(w[0,k−1])

]
= 0,

which means that as x → ∞,

(5.17) E
[
φ(Wu∗,≤t)1{M∈I(x)}

]
= ∑

k≥b
χk + o(e−κx).

In fact, by many-to-one lemma,

eκx ∑
k≤b

EQ∗
[
eV(wk); V(wk) ∈ I(x), V(wk) < V(w[0,k−1])

]
≤eκx ∑

k≤b
E
[

eκS(κ)
k ; S(κ)

k ≤ −x, S(κ)
k < S(κ)

[0,k−1]

]
≤ ∑

k≤b
P
(

S(κ)
k ≤ −x

)
,

Recall that E[e−δS(κ)
1 ] < ∞ for some δ > 0. Then, by Markov inequality,

eκx ∑
k≤b

EQ∗
[
eV(wk); V(wk) ≤ I(x), V(wk) < V(w[0,k−1])

]
≤ ∑

k≤b
e−δxE[e−δS(κ)

1 ]k = ox(1),

as x → ∞ for any b ≥ 1 fixed. This implies that

(5.18) ∑
k≤b

eκxχk = ox(1).

So it suffices to study χk for k sufficiently large. Next, for any integer k ≥ b1 ≥ 1, let us
introduce the event

Ek(b1) := {∀j ≤ k− b1, ∀z ∈ Ω(wj), V(z) + M(z) ≥ V(wk) + 1}.

We claim that

(5.19) lim
b2≥b1→∞

lim
x→∞

eκx ∑
k≥b2

EQ∗
[
eV(wk); V(wk) ∈ I(x), V(wk) < V(w[0,k−1]); Ek(b1)

c
]
= 0.
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Let E(5.19)
k denote the expectation in (5.19), observe that

E(5.19)
k ≤

k−b1

∑
j=1

EQ∗
[
eV(wk)1{V(wk)∈I(x),V(wk)<V(w[0,k−1])}; ∃z ∈ Ω(wj), V(z) + M(z) < V(wk) + 1

]
=

k−b1

∑
j=1

EQ∗
[
eV(wk)1{V(wk)∈I(x),V(wk)<V(w[0,k−1])}Q∗

(
∃z ∈ Ω(wj), V(z) + M(z) < V(wk) + 1|Fw

k

)]
where Fw

k := σ{(wi, V(wi))1≤i≤k, (V(u), u ∈ Ω(wi))1≤i≤k}. Given the spine, one sees that

Q∗
(
∃z ∈ Ω(wj), V(z) + M(z) < V(wk) + 1

∣∣∣Fw
k

)
≤ 1∧

 ∑
z∈Ω(wj)

P(M ≤ x)|x=V(wk)−V(z)+1


which by Lemma 3.4 is bounded by

1∧

 ∑
z∈Ω(wj)

eκ(V(wk)−V(z)+1)

 = 1∧
(

eκ(V(wk)−V(wj−1))+1∆e
j

)
,

where ∆e
j = ∑z∈Ω(wj)

e−κ∆V(z). It then follows that

∑
k≥b2

E(5.19)
k ≤ ∑

k≥b2

k−b1

∑
j=1

EQ∗
[(

1∧ eκ(V(wk)−V(wj−1))∆e
j

)
eV(wk)1{V(wk)∈I(x),V(wk)<V(w[0,k−1])}

]
= ∑

k≥b2

k−b1

∑
j=1

EQ∗
[(

1∧ eκV(wk−j+1)∆e
k−j+1

)
eV(wk)1{V(wk)∈I(x),V(w[1,k])<0}

]
= ∑

k≥b2

k

∑
j=b1+1

EQ∗
[(

1∧ eκV(wj)∆e
j

)
eV(wk); V(wk) ∈ I(x), V(w[1,k]) < 0

]
where the equality follows from the fact that (∆V(wj), ∑z∈Ω(wj)

δ∆V(z))j=1,··· ,k are i.i.d. and
has the same distribution as (∆V(wj), ∑z∈Ω(wj)

δ∆V(z))j=k,k−1,··· ,1. By the Markov property at
time j and (5.6), one sees that

∑
k≥b2

E(5.19)
k ≤ ∑

k≥b2

k

∑
j=b1+1

EQ∗
[(

1∧ eκV(wj)∆e
j

)
1{V(w[1,j])<0}EV(wj)

[
eSk−j1{Sk−j∈I(x),S[1,k−j]<0}

]]
≤

∞

∑
j=b1+1

EQ∗

[(
1∧ eκV(wj)∆e

j

)
1{V(w[1,j])<0}∑

k≥j
EV(wj)

[
eSk−j1{Sk−j∈I(x),S[1,k−j]<0}

]]

≤ c2e−κx
∞

∑
j=b1+1

EQ∗
[(

1∧ eκV(wj)∆e
j

)
1{V(w[1,j])<0}e−κ′V(wj)(1−V(wj))

]
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Moreover, observe that for any L > 0 and α > 0, 1∧ eκV(wj)∆e
j ≤ eL+(κ−α)V(wj)+ 1{

ln ∆e
j≥L−αV(wj)

}.

So, (
1∧ eκV(wj)∆e

j

)
e−κ′V(wj)(1−V(wj))

≤eL+(1−α)V(wj)(1−V(wj)) + (1−V(wj))e−κ′V(wj)1{
ln ∆e

j≥L−αV(wj)
}

It hence follows that

∑
k≥b2

eκxE(5.19)
k ≤c2eL

∞

∑
j=b1+1

EQ∗
[
(1−V(wj))e(1−α)V(wj)1{V(w[1,j])<0}

]
(5.20)

+ c2

∞

∑
j=b1+1

EQ∗

[
(1−V(wj))e−κ′V(wj)1{−V(wj)≤(ln ∆e

j−L)/α;V(w[1,j])<0
}]

Note that {V(wi); 1 ≤ i ≤ j− 1} which is distributed as (Si; 1 ≤ i ≤ j− 1), is independent of
(∆V(wj), ∆e

j). Therefore, the first sum on the right hand side of (5.20) is

eL
∞

∑
j=b1+1

EQ∗
[
(1−V(wj))e(1−α)V(wj)1{V(w[1,j])<0}

]
=eL

∞

∑
j=b1+1

E
[
(1− Sj)e(1−α)Sj1{S[1,j]<0}

]
= eLob1(1),

because ∑∞
j=0 E

[
(1− Sj)e(1−α)Sj1{S[1,j]<0}

]
=
∫ ∞

0 (1 + x)e−(κ−α)xU(κ),−
s (dx) < ∞ for any α ∈

(0, κ). Let us take α = 1. Then, similarly as (5.13), the second sum on the right hand side of
(5.20) is

∞

∑
j=b1+1

EQ∗

[
(1−V(wj))e−κ′V(wj)1{−V(wj)≤(ln ∆e

j−L)/α;V(w[1,j])<0
}]

≤cE

[
e−κ′ζ(1 + ln ∆e)1{ln ∆e≥L}E

[
∑
j≥0

e−κ′Sj1{−Sj≤ζ+ln ∆e−L;S[1,j]<0}
∣∣∣ζ, ∆e

]]

Here E[∑j≥0 e−κ′Sj1{−Sj≤x,S[1,j]<0}] = U(κ),−
s [0, x] ≤ cR(1 + x) for any x ≥ 0 and cR > 0. As a

consequence,

∞

∑
j=b1+1

EQ∗

[
(1−V(wj))e−κ′V(wj)1{−V(wj)≤(ln ∆e

j−L)/α;V(w[1,j])<0
}](5.21)

≤c14E
[
e−κ′ζ(1 + ln ∆e)1{ln ∆e≥L}(1 + ζ+ + ln ∆e − L)

]
≤c14E

[
e−κ′ζ(1 + (ln ∆e)2 + ζ2)1{ln ∆e≥L}

]
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which is

c14EQ∗

e−κ′V(w1)(1 + (ln( ∑
u∈Ω(w1)

e−κV(u)))2 + V(w1)
2)1{

ln(∑u∈Ω(w1)
e−κV(u))≥L

}


≤c14E
[
∆e
+(1 + ln ∆e

+)
21{ln ∆e

+≥L}
]
+ E

[
(S(κ)

1 )21{ln ∆e
+≥L}

]
where ∆e

+ := ∑|u|=1 e−κV(u). By Assumption 1.4, E
[
∆e
+(1 + ln ∆e

+)
2]+ E

[
(S(κ)

1 )2
]
< ∞. We

hence deduce that
∞

∑
j=b1+1

EQ∗

[
(1−V(wj))e−κ′V(wj)1{−V(wj)≤(ln ∆e

j−L)/α;V(w[1,j])<0
}] = oL(1).

Therefore, ∑k≥b2
eκxE(5.19)

k ≤ eLob1(1) + oL(1). Recall that b2 ≥ b1. Letting b1 → ∞ then L→ ∞
leads to (5.19), i.e.,

lim
b2≥b1→∞

∑
k≥b2

eκxE(5.19)
k = 0.

Let

χk(b1) :=EQ

[
eV(wk)1{V(wk)∈I(x)}

1 + ∑k
j=k−b1+1 ∑y∈Ω(wj) ∑|v|=k,v≥y 1{V(v)=V(wk)}

Φ(Wwk,≤t
0 )1{V(wk)<V(w[0,k−1])}

×
k

∏
j=k−b1+1

∏
z∈Ω(wj)

1{
∆V(z)+M(z)

k−j−1>V(wk)−V(wj−1),∆V(z)+M(z)≥V(wk)−V(wj−1)
}
 .

In view of (5.18) and (5.19), it suffices to study the convergence of

(5.22) ∑
k≥b2

eκxχk(b1).

Let for u ∈ T, E(u) := (v, V(v)−V(u))v≥u. Observe that for b1 > t, as the random variables
(∆V(wi), ∑u∈Ω(wi)

δ(∆V(u),E(u)))1≤i≤k are i.i.d. hence exchangeable,

χk(b1) =EQ

 eV(wk)1{V(w[1,k])<0,V(wk)∈I(x)}
1 + ∑b1

j=1 ∑y∈Ω(wj) ∑v∈T
(y)
j−1

1{V(y)(v)=V(wj)−∆V(y)}
Φ(
←−W≤t

0 )1{Ξb1}


where

←−W≤t
0 =

t+1

∑
j=1

eV(wj) ∑
z∈Ω(wj)

e−∆V(z)W(z)
∞ , and Vy(v) =: V(v)−V(y), ∀v ≥ y,

and

T
(y)
j := {v ∈ T : v ≥ y, |v| = |y|+ j}, and 1{Ξb1}

:=
b1

∏
j=1

∏
z∈Ω(wj)

1{
M(z)≥V(wj)−∆V(z),M(z)j−2>V(wj)−∆V(z)

}.

43



By the Markov property at time b2 ≥ b1 and Lemma 5.1, one gets that

∑
k≥b2

eκxχk(b1) =EQ

 eV(wb2
)1{

V(w[1,b2]
<0)

}EV(wb2
)

[
∑k≥0 eSk+κx1{S[1,k]<0,Sk∈I(x)}

]
1 + ∑b1

j=1 ∑y∈Ω(wj) ∑v∈T
(y)
j−1

1{V(y)(v)=V(wj)−∆V(y)}
Φ(
←−W≤t

0 )1{Ξb1}

 ,

where by (5.5),

EV(wb2
)

[
∑
k≥0

eSk+κx1{S[1,k]<0,Sk∈I(x)}

]
→ e−κ′V(wb2

)
(

1− e−κ

κ

)
C(κ),−

s U(κ),+
w ([0,−V(wb2))),

as x → ∞. Therefore, with Cκ :=
(

1−e−κ

κ

)
C(κ),−

s ,

lim
x→∞ ∑

k≥b2

eκxχk(b1) =CκEQ

 e(2−κ)V(wb2
)U(κ),+

w ([0,−V(wb2)))1
{

V(w[1,b2]
<0)

}
1 + ∑b1

j=1 ∑y∈Ω(wj) ∑v∈T
(y)
j−1

1{V(y)(v)=V(wj)−∆V(y)}
Φ(
←−W≤t

0 )1{Ξb1}


Note that ∑k≥b2

eκxχk(b1) is non-increasing in b1 and b2. We thus deduce that

(5.23) lim
x→∞

eκxE
[
φ(Wu∗,≤t)1{M∈I(x)}

]
= (1− e−κ)Et(φ)

with

Et(φ) := lim
b1→∞

lim
b2→∞

Cκ

1− e−κ
EQ

 e(2−κ)V(wb2
)U(κ),+

w ([0,−V(wb2)))1
{

V(w[1,b2]
<0)

}
1 + ∑b1

j=1 ∑y∈Ω(wj) ∑v∈T
(y)
j−1

1{V(y)(v)=V(wj)−∆V(y)}

×Φ(
←−W≤t

0 )
b1

∏
j=1

∏
z∈Ω(wj)

1{
M(z)≥V(wj)−∆V(z),M(z)j−2>V(wj)−∆V(z)

}
(5.24)

Similarly, for any j ≥ 0, one could prove that

lim
x→∞

eκxE
[
φ(Wu∗,≤t)1{M∈I(x+j)}

]
= (1− e−κ)e−κ jEt(φ)

which implies Lemma 3.5.

Proof of Lemma 3.6. In fact, it suffices to show that for any δ > 0,

(5.25) lim
t→∞

sup
x∈R+

eκxP

|u∗|−t

∑
k=1

∑
z∈Ω(u∗k )

eM−V(z)W(z)
∞ ≥ δ, M ∈ I(x)

 = 0.
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Again by change of measures, one has

eκxP

|u∗|−t

∑
k=1

∑
z∈Ω(u∗k )

eM−V(z)W(z)
∞ ≥ δ, M ∈ I(x)


≤ ∑

k≥t+1
eκxE

 ∑
|u|=k

1{u=u∗,V(u)∈I(x)}1{
∑k−t

j=1 ∑z∈Ω(uj)
eM−V(z)W(z)

∞ ≥δ

}


≤ ∑
k≥t+1

eκxEQ∗

eV(wk)1{V(wk)<V(w[0,k−1]),V(wk)∈I(x)}1{
∑k−t

j=1 ∑z∈Ω(wj)
eV(wk)−V(z)W(z)

∞ ≥δ

}
 .

One sees that conditionally on the spine Fw
k , by Markov’s inequality,

Q∗

k−t

∑
j=1

∑
z∈Ω(wj)

eV(wk)−V(z)W(z)
∞ ≥ δ|Fw

k

 ≤ 1∧

k−t

∑
j=1

∑
z∈Ω(wj)

eV(wk)−V(z) 1
δ

 ,

since E[W∞] = 1. Note that if we write ∆̃e
j = ∑z∈Ω(wj)

e−∆V(z), then ∑z∈Ω(wj)
eV(wk)−V(z) =

eV(wk)−V(wj−1)∆̃e
j with V(wk) ∈ I(x). So,

1∧

k−t

∑
j=1

∑
z∈Ω(wj)

eV(wk)−V(z) 1
δ

 ≤ k−t

∑
j=1

 eV(wk)−V(wj−1)∆̃e
j

δ
∧ 1


≤

k−t

∑
j=1

1
δ

e−(V(wj−1)−V(wk))(1−α) +
k−t

∑
j=1

1{
ln ∆̃e

j≥α(V(wj−1)−V(wk))
}.

It follows that

eκxP

|u∗|−t

∑
k=1

∑
z∈Ω(u∗k )

eM−V(z)W(z)
∞ ≥ δ, M ∈ I(x)

(5.26)

≤ ∑
k≥t+1

eκxEQ∗

[
eV(wk)1{V(wk)<V(w[0,k−1]),V(wk)∈I(x)}

k−t

∑
j=1

1
δ

e−(V(wj−1)−V(wk))(1−α)

]

+ ∑
k≥t+1

eκxEQ∗

[
eV(wk)1{V(wk)<V(w[0,k−1]),V(wk)∈I(x)}

k−t

∑
j=1

1{
ln ∆̃e

j≥α(V(wj−1)−V(wk))
}]

We only need to prove that the right hand side of (5.26) is ot(1) as t→ ∞. For the first sum of
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the right hand side, by time reversing then the Markov property,

∑
k≥t+1

eκxEQ∗

[
eV(wk)1{V(wk)<V(w[0,k−1]),V(wk)∈I(x)}

k−t

∑
j=1

1
δ

e−(V(wj−1)−V(wk))(1−α)

]

= ∑
k≥t+1

k

∑
j=t+1

1
δ

E
[
eSk+κx1{S[1,k]<0,Sk∈I(x)}e(1−α)Sj

]
= ∑

j≥t+1

1
δ

E

[
e(1−α)Sj1{S[1,j]<0} ∑

k≥0
ESj [e

Sk+κx1{S[1,k]<0,Sk∈I(x)}]
]

,

which by (5.6) and for α ∈ (0, 1) is bounded by
c2

δ ∑
j≥t+1

E
[
e(1−α)Sj1{S[1,j]<0}(1− Sj)e−κ′Sj

]
= ot(1),

since ∑∞
j=0 E

[
(1− Sj)e(1−α)Sj e−κ′Sj1{S[1,j]<0}

]
=
∫ ∞

0 (1 + x)e−(1−α)xU(κ),−
s (dx) < ∞.

On the other hand, for the second sum on the right hand side of (5.26),

∑
k≥t+1

eκxEQ∗

[
eV(wk)1{V(wk)<V(w[0,k−1]),V(wk)∈I(x)}

k−t

∑
j=1

1{
ln ∆̃e

j≥α(−V(wk)+V(wj−1))
}]

= ∑
k≥t+1

k

∑
j=t+1

EQ∗

[
eV(wk)1{V(w[1,k])<0,V(wk)∈I(x)}1{

ln ∆̃e
j≥−αV(wj)

}]

= ∑
j≥t+1

EQ∗

[
1{

V(w[1,j])<0,ln ∆̃e
j≥−αV(wj)

} ∑
k≥0

EV(wj)

[
eSk1{S[1,k]<0,Sk∈I(x)}

]]
Again by (5.6), one gets that

∑
k≥t+1

eκxEQ∗

[
eV(wk)1{V(wk)<V(w[0,k−1]),V(wk)∈I(x)}

k−t

∑
j=1

1{
ln ∆̃e

j≥α(−V(wk)+V(wj−1))
}]

≤ ∑
j≥t+1

EQ∗

[
1{

V(w[1,j])<0,ln ∆̃e
j≥−αV(wj)

}(1−V(wj))e−κ′V(wj)

]
Suppose that under P, (ζ, ∆̃e) is independent of the random walk (Sj) and is distributed as
(∆V(wj), ∆̃e

j) under Q∗. Similarly as (5.21), one sees that

∑
j≥1

EQ∗

[
1{

V(w[1,j])<0,ln ∆̃e
j≥−αV(wj)

}(1−V(wj))e−κ′V(wj)

]
≤c15E

[
e−κ′ζ(1 + (ln ∆̃e)2 + ζ2)

]
.

Here E
[
e−κ′ζ(1 + 1

α2 (ln ∆̃e)2 + ζ2)
]
< ∞ by Assumption 1.4. This means that

∑
k≥t+1

eκxEQ∗

[
eV(wk)1{V(wk)<V(w[0,k−1]),V(wk)∈I(x)}

k−t

∑
j=1

1{
ln ∆̃e

j≥α(−V(wk)+V(wj−1))
}] = ot(1).

This suffices to conclude Lemma 3.6.
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Proof of Lemma 3.7. Observe that for any M ≥ 1 and x ≥ 0,

P[WM ≥ M|M ≤ −x] ≤c16eκxP
(
eMW∞ ≥ M, M ≤ −x

)
≤c16eκxP(W∞ ≥ Mex)

Recall that P(W∞ ≥ r) ∼ C0r−κ. It is immediate that supx≥0 P[WM ≥ M|M ≤ −x] = oM(1).

Proof of Lemma 3.2. For small ε ∈ (0, 1), let us consider Pε(r) := P(W∞ ≤ εer, M ≤ −r) for
r � 1 and prove that

lim sup
ε↓0

lim sup
r→∞

eκrPε(r) = 0.

Observe that by change of measure (Proposition 4.3),

eκrPε(r) ≤ ∑
n≥1

eκrE

 ∑
|u|=n

1{V(u)=M<Mn−1,V(u)≤−r}1{W∞≤εer}

(5.27)

≤
b

∑
n=1

eκrEQ∗
[
eV(wn)1{V(wn)≤−r,V(wn)<V(w[1,n−1])}

]

+ ∑
n≥b+1

eκrEQ∗

eV(wn)1{V(wn)≤−r,V(wn)<V(w[1,n−1])}1{
∑n

j=1 ∑z∈Ω(wj)
e−V(z)W(z)

∞ ≤εer
}


=:E1(r) + E2(r).

It is proved in (5.16) that E1(r) = or(1) for any fixed b ≥ 1. Note that q := P(W∞ > 0) > 0,
and that P(min|u|=1 V(u) ≤ K) > 0 for any K ∈ R sufficiently large. Consequently,

E2(r) ≤ ∑
n≥b+1

eκrEQ∗

[
eV(wn)1{V(wn)≤−r,V(wn)<V(w[1,n−1])}

n

∏
j=n−b

1{@z∈Ω(wj):∆V(z)≤K and W(z)
∞ >0

}
](5.28)

+ ∑
n≥b+1

eκrEQ∗

[
eV(wn)1{V(wn)≤−r,V(wn)<V(w[1,n−1])}1{

W+
∞ minn−b≤j≤n eV(wn)−V(wj−1)−K≤ε

}]
=: E2(r, extinction) + E2(r, survival)

where W+
∞ is distributed as P(W∞ ∈ ·|W∞ > 0) and is independent of Fw

n . First by time
reversing then by the Markov property, one obtains that

E2(r, extinction)

= ∑
i≥0

∑
n≥b+1

e−κiEQ∗

[
eV(wn)+κ(r+i)1{V(wn)∈I(r+i),V(w[1,n])<0}

b+1

∏
j=1

1{@z∈Ω(wj):∆V(z)≤K and W(z)
∞ >0

}
]

= ∑
i≥0

EQ∗

b+1

∏
j=1

∏
z∈Ω(wj)

(
1− 1{∆V(z)≤K}q

)
1{Vw[0,b+1]<0}

× ∑
n≥b+1

EV(wb+1)
[eSn−b−1+κ(r+i)1{S[1,n−b−1]<0,Sn−b−1∈I(r+i)}]

]
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which by (5.6) is bounded by

EQ∗

[
e
−q ∑b+1

j=1 ∑z∈Ω(wj)
1{∆V(z)≤K}(1−V(wb+1))e−κ′V(wb+1)1{V(w[1,b+1])<0}

]
≤ EQ∗

[
e
−2q ∑b+1

j=1 ∑z∈Ω(wj)
1{∆V(z)≤K}e−κ′V(wb+1)

]1/2

EQ∗
[
(1−V(wb+1))

2e−κ′V(wb+1)1{V(w[1,b+1])<0}
]1/2

= EQ∗
[
e−2q ∑z∈Ω(w1)

1{∆V(z)≤K}e−κ′V(w1)
](b+1)/2

EQ∗
[
(1−V(wb+1))

2e−κ′V(wb+1)1{V(w[1,b+1])<0}
]1/2

= E

 ∑
|u|=1

e−κV(u)e−2q ∑|z|=1,z 6=u 1{∆V(z)≤K}

(b+1)/2

E
[
(1− S(κ)

b+1)
21{

S(κ)
b+1<0

}]

≤ e−c17(b+1)E
[
(1− S(κ)

b+1)
21{

S(κ)
b+1<0

}] ≤ c18(1 + b)2e−c17(b+1).

since E[(S(κ)
1 )2] < ∞. The constant c is positive because E

[
∑|u|=1 e−κV(u)e−2q ∑|z|=1,z 6=u 1{∆V(z)≤K}

]
<

E
[
∑|u|=1 e−κV(u)

]
= 1 Therefore,

(5.29) E2(r, extinction) = ob(1).

It remains to bound E2(r, survival). For convenience, under P, let W+
∞ be still distributed as

P(W∞ ∈ ·|W∞ > 0) and is independent of the random walk (Sn)n≥0. Then by time reversing,
one has

E2(r, survival) = ∑
n≥b+1

eκrE
[

eSn1{Sn≤−r,Sn<S[1,n−1]}1{
W+

∞ minn−b≤j≤n eSn−Sj−1≤εeK
}]

= ∑
j≥0

∑
n≥b+1

e−κ jE
[

eSn+κ(r+j)1{S[1,n]<0,Sn∈I(r+j)}1{
W+

∞ e
S[1,b+1]≤εeK

}]

= ∑
j≥0

e−κ jE

[
1{

W+
∞ e

S[1,b+1]≤εeK
}1{S[1,b+1]<0}ESb+1

[
∑
n≥0

eSn+κ(r+j)1{S[1,n]<0,Sn∈I(r+j)}

]]

by the Markov property at time b + 1. It follows from (5.6) that

E2(r, survival) ≤cE
[
(1− Sb+1)e−κ′Sb+11{S[1,b+1]<0}1{

W+
∞ e

S[1,b+1]≤εeK
}]

≤E
[
(1 + |Sb+1|)e−κ′Sb+11{W+

∞≤εe2K}
]
+ E

[
(1 + |Sb+1|)e−κ′Sb+11{S[1,b+1]≤−K}

]
=E

[
(1 + |S(κ)

b+1|)
]

P(W+
∞ ≤ εe2K) + E

[
(1 + |S(κ)

b+1|)1{S[1,b+1]≤−K}
]

,

where E
[
(1 + |S(κ)

b+1|)
]
≤ c19(1 + b). By Cauchy-Schwartz inequality,

E
[
(1 + |S(κ)

b+1|)1{S[1,b+1]≤−K}
]
≤
√

E
[
(1 + |S(κ)

b+1|)2
]√

P
(

S(κ)
[1,b+1] ≤ −K

)
,
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with
√

E
[
(1 + |S(κ)

b+1|)2
]
≤ c20(1 + b). We hence deduce that

E2(r, survival) ≤ c21(1 + b)[oε(1) +
√

P
(

S(κ)
[1,b+1] ≤ −K

)
].

Plugging it and (5.29) into (5.28) implies that

E2(r) = ob(1) + c21(1 + b)[oε(1) +
√

P
(

S(κ)
[1,b+1] ≤ −K

)
].

It then follows from (5.27) that

lim sup
ε↓0

lim sup
r→∞

eκrPε(r) ≤ ob(1) + c21(1 + b)
√

P
(

S(κ)
[1,b+1] ≤ −K

)
.

Letting K → ∞ then b→ ∞ yields what we need.

5.2 Proofs of the technical lemmas in Section 4

Recall that under P̂∗, the spine β(wk), k ≥ 0 is a Markov chain on N∗, with transition proba-
bilities given by

pi,j =

(
i + j− 1

i

)
E

 ∑
|u|=1

e−jV(u)

(1 + e−V(u))i+j

 , ∀i, j ≥ 1.

For the function f (i) := Γ(i+γ)
i with i ≥ 1 and γ ∈ (0, κ − 1), it is known (in Appendix of [5])

that there exists d ∈ (0, 1) such that for any i ≥ i0 large enough,

(5.30)
∞

∑
j=1

pi,j f (j) ≤ d f (i).

As a consequence of Theorem 15.3.3 of [17], there exists C f > 0 such that for any r ∈ (1, 1
d )

and for any i ≥ 1,

Ê∗i

[
τ̂1

∑
k=1

f (β(wk))rk

]
≤ C f f (i),

where τ̂1 = inf{k ≥ 1 : β(wk) = 1} < ∞. As we can take d sufficiently close to ψ(1 + γ) and
f (i) ∼ iγ for i → ∞, we conclude that for any γ ∈ (0, κ − 1), there exists cγ > 0 such that for
any r ∈ (1, 1

ψ(1+γ)
) and i ≥ 1,

(5.31) Ê∗i

[
τ̂1

∑
k=1

(β(wk))
γrk

]
≤ cγiγ.
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Further, Jensen’s inequality implies that for any p > 0, for any i ≥ 1,

Ê∗i [τ̂
p
1 ] ≤ c22 logp(1 + i).

Let us turn to prove the technical facts in Section 4.
Proof of Lemma 4.6. In fact, (4.9) has been proven in [7] (see Lemmas 11 and 14) when

κ ≤ 2. Let us prove (4.9) for κ > 2 using the idea borrowed from the proof of Lemma 5 in [2].

Proof of (4.9). We treat the Ei[L1+α
1 ] for integer α and non-integer α separately. First for m ∈

N∗ satisfying m < κ, let us show by recurrence that there exists some constant Cm > 0 such
that Ei[Lm

1 ] ≤ Cmim for any i ≥ 1. Recall that for m = 1, Ei[L1] = i. Suppose that ∀1 ≤ k ≤ m
and ∀i ≥ 1,

Ei[Lk
1] ≤ Ckik.

Let us bound Ei[L1+m
1 ] for 1 + m < κ. Note that by change of measures,

Ei[L1+m
1 ] =iÊ∗i [L

m
1 ]

=iÊ∗i

1 +
τ̂1

∑
k=1

∑
u∈Ω(wk)

L(u)
1

m
where τ̂1 = inf{k ≥ 1 : β(wk) = 1} and L(u)

1 = ∑v:v≥u 1{v∈L1} for any u ∈ B1. Set Σk :=

∑u∈Ω(wk)
L(u)

1 for k ≥ 1 and Σ0 := 1. And write

χl :=
τ̂1

∑
k=l

Σk, ∀0 ≤ l ≤ τ̂1,

with χτ̂1+1 := 0. Apparently, L1 = χ0 under P̂∗i . As χm
0 = ∑τ̂1

l=0(χ
m
l − χm

l+1), it follows that

Ei[L1+m
1 ] =iÊ∗i

[
τ̂1

∑
l=0

(χm
l − χm

l+1)

]
= iÊ∗i

[
τ̂1

∑
l=0

((χl+1 + Σl)
m − χm

l+1)

]

=iÊ∗i

[
τ̂1

∑
l=0

m−1

∑
k=0

(
m
k

)
χk

l+1Σm−k
l

]
≤ c23i

m−1

∑
k=0

Ê∗i

[
τ̂1

∑
l=0

χk
l+1Σm−k

l

]
.(5.32)

Here by the Markov property at time l, one sees that for any 0 ≤ k ≤ m− 1 and l ≥ 1,

Ê∗i

[
1{l≤τ̂1}χ

k
l+1Σm−k

l

]
=Ê∗i

[
1{l−1<τ̂1}Σ

m−k
l Ê∗β(wl)

[χk
1]
]

≤Ê∗i

[
1{l−1<τ̂1}Σ

m−k
l Ê∗β(wl)

[Lk
1]
]

≤CkÊ∗i

[
1{l−1<τ̂1}Σ

m−k
l β(wl)

k
]

,

where Ê∗i [L
k
1] =

1
i Ei[Lk

1] ≤ Ckik−1 for k ≥ 1 and Ê∗i [L
k
1] = 1 for k = 0. Again, by the Markov

property at time l − 1, for any l ≥ 1, one has

(5.33) Ê∗i

[
1{l≤τ̂1}χ

k
l+1Σm−k

l

]
≤ CkÊ∗i

[
1{l−1<τ̂1}Ê

∗
β(wl−1)

(
Σm−k

1 β(w1)
k
)]
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Now for any ` ≥ 1, let us estimate Ê∗`

[
Σm−k

1 β(w1)
k
]
. Observe that given (β(w1); β(u), u ∈

Ω(w1)), (L(u)
1 , u ∈ Ω(w1)) are independent and L(u)

1 is distributed as L1 under Pβ(u). For any
0 ≤ k ≤ m− 1 (i.e., 1 ≤ m− k ≤ m), by convexity,

Σm−k
1 =

 ∑
u∈Ω(w1)

β(u)
L(u)

1
β(u)

m−k

≤

 ∑
u∈Ω(w1)

β(u)

m−1−k

∑
u∈Ω(w1)

β(u)

(
L(u)

1
β(u)

)m−k

As a consequence,

Ê∗`

[
Σm−k

1 β(w1)
k
]
=Ê∗`

[
β(w1)

kÊ∗`

[
Σm−k

1

∣∣∣(w1, β(w1)); (u, β(u))u∈Ω(wi)

]]
≤Ê∗`

β(w1)
k

 ∑
u∈Ω(w1)

β(u)

m−1−k

∑
u∈Ω(w1)

β(u)Eβ(u)

[(
L1

β(u)

)m−k
] ,

where Ei[Lm−k
1 ] ≤ Cm−kim−k for any i ≥ 1 as supposed above. Therefore, by Lemma A.1, for

any ` ≥ 1 and 0 ≤ k ≤ m− 1,

Ê∗`

[
Σm−k

1 β(w1)
k
]
≤ Cm−kÊ∗`

β(w1)
k

 ∑
u∈Ω(w1)

β(u)

m−k
 ≤ c25`

m.

Applying it in (5.33) implies that for any i ≥ 1 and l ≥ 1,

Ê∗i

[
1{l≤τ̂1}χ

k
l+1Σm−k

l

]
≤ c26Ê∗i

[
1{l−1<τ̂1}β(wl−1)

m
]

where for l = 0, Ê∗i

[
1{l≤τ̂1}χ

k
l+1Σm−k

l

]
= Ê∗i

[
χk

1
]
≤ Ckik by hypothesis. Plugging this in-

equality into (5.32) yields that

Ei[L1+m
1 ] ≤c27i

m−1

∑
k=0

Ê∗i

[
∞

∑
l=0

1{l≤τ̂1}χ
k
l+1Σm−k

l

]

≤c27i
m−1

∑
k=0

Ckik + c27i
m−1

∑
k=0

Ê∗i

[
∞

∑
l=1

1{l−1<τ̂1}β(wl−1)
m

]

≤c28im+1 + c27imÊ∗i

[
τ̂1−1

∑
l=0

β(wl)
m

]
.

By (5.31), we hence end up with

Ei[L1+m
1 ] ≤ Cm+1im+1,

as long as m + 1 < κ. We deduce by recurrence that for any integer 1 ≤ m ≤ dκe − 1,

Ei[Lm
1 ] ≤ Cmim, ∀i ≥ 1.
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It remains to consider Ei[Lm+δ
1 ] for 2 ≤ m ≤ dκe − 1 and δ ∈ (0, (κ −m) ∧ 1). Write m− 1 +

δ = m(1− η) for some η ∈ (0, 1). Observe that by (5.32),

Ei[Lm+δ
1 ] =iÊ∗i

[
Lm−1+δ

1

]
= iÊ∗i

[
(Lm

1 )
1−η
]
= iÊ∗i

( τ̂1

∑
l=0

m−1

∑
k=0

(
m
k

)
χk

l+1Σm−k
l

)1−η


≤c29

m−1

∑
k=0

iÊ∗i

[
τ̂1

∑
l=0

χ
k(1−η)
l+1 Σ(m−k)(1−η)

l

]
.(5.34)

It is proven for integer 0 ≤ k ≤ m− 1 that for any i ≥ 1,

Ê∗i [χ
k
1] ≤ Ê∗i [L

k
1] ≤ Ckik.

When l = 0, for any 0 ≤ k ≤ m− 1,

Ê∗i

[
1{l≤τ̂1}χ

k(1−η)
l+1 Σ(m−k)(1−η)

l

]
≤ Ê∗i

[
χ

k(1−η)
1

]
≤ Ê∗i

[
χk

1

](1−η)
≤ c30ik(1−η).

For l ≥ 1, by Markov property at time l then by Jensen’s inequality, one sees that for any
0 ≤ k ≤ m− 1,

Ê∗i

[
1{l≤τ̂1}χ

k(1−η)
l+1 Σ(m−k)(1−η)

l

]
=Ê∗i

[
1{l−1<τ̂1}Σ

(m−k)(1−η)
l Ê∗β(wl)

[χ
k(1−η)
1 ]

]
≤Ê∗i

[
1{l−1<τ̂1}Σ

(m−k)(1−η)
l Ê∗β(wl)

[χk
1]

1−η
]

≤c30Ê∗i

[
1{l−1<τ̂1}Σ

(m−k)(1−η)
l (β(wl))

k(1−η)
]

.

As a consequence,

Ei[Lm+δ
1 ] ≤c31im+δ + c31

m−1

∑
k=0

iÊ∗i

[
∑
l≥1

1{l−1<τ̂1}(β(wl))
k(1−η)Σ(m−k)(1−η)

l

]
For the integer k such that (m− k)(1− η) ≥ 1, by convexity, the similar arguments as above
show that

Ê∗i

[
1{l−1<τ̂1}(β(wl))

k(1−η)Σ(m−k)(1−η)
l

]
≤ c32Ê∗i

[
1{l−1<τ̂1}β(wl−1)

m(1−η)
]

For the integer k such that (m− k)(1− η) ≤ 1, by Markov property at time l − 1,

Ê∗i

[
1{l<τ̂1}(β(wl))

k(1−η)Σ(m−k)(1−η)
l

]
≤ CkÊ∗i

[
1{l−1<τ̂1}Ê

∗
β(wl−1)

(
Σ(m−k)(1−η)

1 β(w1)
k(1−η)

)]
Here applying Jensen’s inequality to Ê∗`

[
Σ(m−k)(1−η)

1 β(w1)
k(1−η)

]
yields that

Ê∗`

[
Σ(m−k)(1−η)

1 β(w1)
k(1−η)

]
=Ê∗`

[
β(w1)

k(1−η)Ê∗`

[
Σ(m−k)(1−η)

1

∣∣∣(w1, β(w1)); (u, β(u))u∈Ω(wi)

]]
≤Ê∗`

[
β(w1)

k(1−η)Ê∗`

[
Σ1

∣∣∣(w1, β(w1)); (u, β(u))u∈Ω(wi)

](m−k)(1−η)
]

≤Ê∗`

β(w1)
k(1−η)

 ∑
u∈Ω(w1)

β(u)

(m−k)(1−η)
 ≤ c33`

m(1−η).
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Still, we see that for the integer k such that (m− k)(1− η) ≤ 1,

Ê∗i

[
1{l<τ̂1}(β(wl))

k(1−η)Σ(m−k)(1−η)
l

]
≤ c34Ê∗i

[
1{l−1<τ̂1}β(wl−1)

m(1−η)
]

.

It follows that

Ei[Lm+δ
1 ] ≤c31im+δ + c31c34

m−1

∑
k=0

iÊ∗i

[
τ̂1

∑
l=0

(β(wl))
m(1−η)

]

=c31im+δ + c31c34

m−1

∑
k=0

iÊ∗i

[
τ̂1

∑
l=0

(β(wl))
m+δ−1

]
≤c35im+δ

since m + δ < κ.

Proof of (4.10). Note that for any i ∈N and r > i,

Pi(M1 ≥ r) = Pi

(
∑

u∈B1

1{β(u)≥r} ≥ 1

)

which by Markov inequality yields that

Pi(M1 ≥ r) ≤Ei

[
∑

u∈B1

1{β(u)≥r}

]

=
∞

∑
n=1

Ei

 ∑
|u|=n

1{β(u)≥r>maxρ<v<u β(v),minρ<v<u β(v)≥2}

 .

By change of measures and Proposition 4.1, one sees that

Pi(M1 ≥ r) ≤ ∑
n≥1

Ê∗i

[
i

β(wn)
; β(wn) ≥ r > max

1≤k≤n−1
β(wk), min

1≤k≤n−1
β(wn) ≥ 2

]
≤ i

r
P̂∗i

(
max

0≤k<τ̂1
β(wk) ≥ r

)
,

where τ̂1 = inf{k ≥ 1 : β(wk) = 1}. According to Lemma 4.2 of [5], for any α ∈ (0, κ − 1),
there exists some constant cα ∈ (1, ∞),

P̂∗i

(
max

0≤k<τ̂1
β(wk) ≥ r

)
≤ cα

(
i
r

)α

.

(Notice that in fact, the proof of this inequality holds also for κ = ∞). As a result, for any
r ≥ i,

Pi(M1 ≥ r) ≤ cα

(
i
r

)α+1

.
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Therefore, for any α ∈ [0, κ − 1), we take η ∈ (α, κ − 1) so that Pi(M1 ≥ r) ≤ cη(i/r)η+1.
Consequently,

Ei[M1+α
1 ] =

∫ ∞

0
(1 + α)rαPi(M1 ≥ r)dr

≤
∫ i

0
(1 + α)rαdr +

∫ ∞

i
(1 + α)rαcη

(
i
r

)η+1

dr

≤Cαi1+α.

Proof of Lemma 4.7. (4.17) is a special case of (4.9) and it holds in a similar way.

Proof of (4.17). We prove (4.17) in a similar way as in the proof of (4.9). Observe that

Ê∗1


 τ̂1

∑
k=1

1{β(wk−1)<A} ∑
u∈Ω(wk)

L(u)
1

κ−1
 = Ê∗1

( τ̂1

∑
k=1

1{β(wk−1)<A}Σk

)κ−1
 .

Its finiteness has been proven in [7] for κ ∈ (1, 2]. Assume now that κ > 2. Let us prove its
finiteness by recurrence.

It is known from (4.9) that for any 0 ≤ α < κ − 1 and any i ≥ 1,

Ê∗i

[(
τ̂1

∑
k=1

Σk

)α]
< Cαiα.

If κ > 2 is an integer, It follows from (5.32) that for m = κ − 2,

Ê∗1

( τ̂1

∑
k=1

1{β(wk−1)<A}Σk

)m+1
 ≤c36

m−1

∑
k=0

Ê∗1

 τ̂1

∑
l=1

1{β(wl−1)<A}Σ
m−k
l

(
τ̂1

∑
j=l+1

Σj1{β(wj−1)<A}

)k


≤c36

m−1

∑
k=0

Ê∗1

[
∞

∑
l=1

1{l≤τ̂1}1{β(wl−1)<A}Σ
m−k
l χk

l+1

]
(5.35)

where

Ê∗1

[
1{l≤τ̂1}1{β(wl−1)<A}Σ

m−k
l χk

l+1

]
≤ c37Ê∗1

[
1{l−1<τ̂1}1{β(wl−1)<A}β(wl−1)

m
]

.

Consequently,

Ê∗1

( τ̂1

∑
k=1

1{β(wk−1)<A}Σk

)m+1
 ≤c38

m−1

∑
k=0

Ê∗1

[
∞

∑
l=1

1{l−1<τ̂1}1{β(wl−1)<A}β(wl−1)
m

]

=c38mÊ∗1

[
τ̂1−1

∑
l=0

1{β(wl)<A}β(wl)
m

]
< ∞.
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If κ > 2 is not an integer, for m = bκc and δ = κ −m ∈ (0, 1), write κ − 1 = m− 1 + δ =
m(1− η) for some η ∈ (0, 1). Similarly as (5.34), one sees that

Ê∗1

( τ̂1

∑
k=1

1{β(wk−1)<A}Σk

)κ−1
 =Ê∗1

( τ̂1

∑
k=1

1{β(wk−1)<A}Σk

)m(1−η)


≤c39

m−1

∑
k=0

Ê∗1

[
τ̂1

∑
l=1

1{β(wl−1)<A}χ
k(1−η)
l+1 Σ(m−k)(1−η)

l

]

where

Ê∗1

[
1{l≤τ̂1}1{β(wl−1)<A}χ

k(1−η)
l+1 Σ(m−k)(1−η)

l

]
≤ c40Ê∗1

[
1{l−1<τ̂1}1{β(wl−1)<A}β(wl−1)

m(1−η)
]

.

Therefore,

Ê∗1

( τ̂1

∑
k=1

1{β(wk−1)<A}Σk

)κ−1
 ≤c41mÊ∗1

[
τ̂1

∑
l=1

1{β(wl−1)<A}β(wl−1)
m(1−η)

]

=c41mÊ∗1

[
τ̂1−1

∑
l=0

1{β(wl)<A}β(wl)
κ−1

]
≤ c42mAκ−1Ê∗1 [τ̂1] < ∞.

Proof of (4.18). Let us prove the finiteness of Ê∗1

[
(β(wσA))

κ−1 1{σA<τ̂1}

]
. Note that

(β(wσA))
κ−1 1{σA<τ̂1} ≤ Aκ−1

τ̂1−1

∑
k=1

1{β(wk−1)<A}

(
β(wk)

β(wk−1)

)κ−1

.

It follows that

Ê∗1

[
(β(wσA))

κ−1 1{σA<τ̂1}

]
≤Aκ−1Ê∗1

[
τ̂1

∑
k=1

1{β(wk−1)<A}

(
β(wk)

β(wk−1)

)κ−1
]

=Aκ−1Ê∗1

[
∞

∑
k=1

1{k−1<τ̂1}
1

β(wk−1)κ−1 Ê∗β(wk−1)

[
β(w1)

κ−1
]]

where by Lemma A.1,

1
β(wk−1)κ−1 Ê∗β(wk−1)

[
β(w1)

κ−1
]
≤ c43 < ∞.

As Ê∗1 [τ̂1] < ∞, one ends up with

Ê∗1

[
(β(wσA))

κ−1 1{σA<τ̂1}

]
≤ c43Aκ−1Ê∗1 [τ̂1] < ∞.
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Proof of (4.20). Note that from the negative multinomial distribution, one has the generating
function of ∑N

i=1 ziζi as follows

E[s∑N
i=1 ziζi ] =

(
1

1 + ∑N
i=1 Ai(1− szi)

)n

, ∀s ∈ [0, 1].

Apparently, ∑N
i=1 ziζi can be viewed as sum of n i.i.d. random variables of mean ∑N

i=1 Aizi.
According to (4.19), it suffices to prove (4.20) for n = 1. In fact we only need to show that

(5.36) E

[(
N

∑
i=1

ziζi

)α]
≤ C2(α)

[bα−1c

∑
k=0

(
N

∑
i=1

Aizi)
k(

N

∑
i=1

Aizα−k
i ) + (

N

∑
i=1

Aizi)
α

]
.

Let us prove it by recurrence. Fix n = 1, we now have

E

[
N

∏
i=1

sziζi
i

]
=

1
1 + ∑N

i=1 Ai(1− szi
i )

, E[
N

∑
i=1

ziζi] =
N

∑
i=1

Aizi,

and Var(∑N
i=1 ziζi) = ∑N

i=1 Aiz2
i + (∑N

i=1 Aizi)
2. So, (5.36) holds for α = 1 and α = 2. For

α ∈ (1, 2), proving (5.36) means proving

E

[(
N

∑
i=1

ziζi

)α]
≤ C2(α)

[
(

N

∑
i=1

Aizi)
α +

N

∑
i=1

Aizα
i

]
,

Write α = 1 + δ with some δ ∈ (0, 1). Observe that

E

[(
N

∑
i=1

ziζi

)α]
= E

( N

∑
i=1

ziζi

)(
N

∑
i=1

ziζi

)δ
 ≤ N

∑
i=1

ziE

[
ζi

(
zδ

i ζδ
i + (∑

j 6=i
zjζ j)

δ

)]

=
N

∑
i=1

z1+δ
i E[ζi × ζδ

i ] +
N

∑
i=1

ziE

ζi

(
∑
j 6=i

zjζ j

)δ
 .(5.37)

For any i ∈ {1, · · · , N}, let us introduce a biased probability by

dP†
i

dP
=

ζi

E[ζi]
=

ζi

Ai
.

Then under P†
i , the generating functions of ζi and of ∑j 6=i zjζ j are

E†
i [s

ζi ] =
1
Ai

E[ζis
ζ
i ], and E†

i [s
∑j 6=i zjζ j ] =

1
Ai

E
[
ζis∑j 6=i zjζ j

]
.

By simple calculations, one sees that

E†
i [s

ζi ] =
s

(1 + Ai(1− s))2 = E[s1+ζi+ζ†
i ] and E†

i [s
∑j 6=i zjζ j ] = E[s∑j 6=i zjζ j+∑j 6=i zjζ

†
j ]
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where under P, (ζ†
i )1≤i≤N is an independent copy of (ζi)1≤i≤N. Consequently,

E[ζi × ζδ
i ] =AiE†

i [ζ
δ
i ] = AiE[(1 + ζi + ζ†

i )
δ]

≤AiE[1 + ζi + ζ†
i ]

δ ≤ Ai + 2A1+δ
i .

Similarly, by Jensen’s inequality,

E

ζi

(
∑
j 6=i

zjζ j

)δ
 =AiE†

i

(∑
j 6=i

zjζ j

)δ
 = AiE

(∑
j 6=i

zjζ j + ∑
j 6=i

zjζ
†
j

)δ


≤AiE

[(
∑
j 6=i

zjζ j + ∑
j 6=i

zjζ
†
j

)]δ

≤ 2Ai(∑
j 6=i

Ajzj)
δ

Going back to (5.37), we obtain that

E

[(
N

∑
i=1

ziζi

)α]
≤2

N

∑
i=1

z1+δ
i (Ai + A1+δ

i ) + 2
N

∑
i=1

Aizi

(
∑
j 6=i

Ajzj

)δ

≤4

(
N

∑
i=1

Aizi

)1+δ

+ 2
N

∑
i=1

Aiz1+δ
i ,

as ∑i≤N x1+δ
i ≤ (∑i≤N xi)

1+δ for xi ≥ 0.
Suppose now that for some k ≥ 2, (5.36) holds for any α ∈ [1, k]. Let us prove (5.36) for

1 + α with α ∈ [1, k]. Similarly as above, observe that as (x + y)α ≤ 2α−1(xα + yα),

E

( N

∑
i=1

ziζi

)1+α
 = E

[(
N

∑
i=1

ziζi

)
×
(

N

∑
i=1

ziζi

)α]
≤2α−1

N

∑
i=1

ziE

[
ζi ×

(
zα

i ζα
i +

(
∑
j 6=i

zjζ j

)α)]

=2α−1
N

∑
i=1

zi AiE†
i

[
zα

i ζα
i +

(
∑
j 6=i

zjζ j

)α]
(5.38)

where

E†
i

[
zα

i ζα
i +

(
∑
j 6=i

zjζ j

)α]
=E

[
zα

i (1 + ζi + ζ†
i )

α +

(
∑
j 6=i

zjζ j + ∑
j 6=i

zjζ j

)α]

≤c44zα
i (1 + E[ζα

i ]) + c44E

[(
N

∑
j 6=i

ziζi

)α]
.

As (5.36) is assumed to be true for α, taking zi = 0 yields that

E

[(
N

∑
j 6=i

ziζi

)α]
≤ C2(α)

[bα−1c

∑
k=0

(∑
j 6=i

Aizi)
k(

N

∑
j 6=i

Aizα−k
i ) + (

N

∑
j 6=i

Aizi)
α

]
,
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while taking zj = 0 for any j 6= i yields that

1 + E[ζα
i ] ≤ 1 + C2(α)[Ai + A2

i + · · ·+ Abαci + Aα
i ] ≤ c45(α)(1 + Aα

i ).

As a result,

E†
i

[
zα

i ζα
i +

(
∑
j 6=i

zjζ j

)α]
≤ c46(α)zα

i (1 + Aα
i ) + c46(α)

[bα−1c

∑
k=0

(
N

∑
i=1

Aizi)
k(

N

∑
i=1

Aizα−k
i ) + (

N

∑
i=1

Aizi)
α

]
.

Plugging it into (5.38) implies that

E

( N

∑
i=1

ziζi

)1+α
 ≤c47(α)

[
N

∑
i=1

z1+α
i Ai(1 + Aα

i ) +
bα−1c

∑
k=0

(
N

∑
i=1

Aizi)
k+1(

N

∑
i=1

Aizα−k
i ) + (

N

∑
i=1

Aizi)
1+α

]

≤c48(α)

[ bαc
∑
k=0

(
N

∑
i=1

Aizi)
k(

N

∑
i=1

Aizα+1−k
i ) + (

N

∑
i=1

Aizi)
1+α

]
.

We hence obtain (5.36) for 1 + α. By recurrence, we conclude (5.36) for any α ≥ 1.

Proof of (4.47). Note that

eκrAE(4.46)
Q∗ (ε, rA) ≤ ∑

n≥1
EQ∗

[
eV(wn)+κrA1{−rA−ε≤V(wn)≤−rA+2ε, min1≤k≤n−1 V(wk)>−rA−ε}

]
+ ∑

n≥1
eκrAEQ∗

[
eV(wn)1{V(wn)≤−rA−ε, V(wn)<min1≤k≤n−1 V(wk)}1{

∑n
j=1 ∑z∈Ω(wj)

e−V(z)W(z)
∞ ≤3εrA

}]

The second sum of the righthand side is in fact E2(r) (see (5.27)), which has been treated in
the the proof of Lemma 3.2. We hence get that

∑
n≥1

eκrAEQ∗

[
eV(wn)1{V(wn)≤−rA−ε, V(wn)<min1≤k≤n−1 V(wk)}1{

∑n
j=1 ∑z∈Ω(wj)

e−V(z)W(z)
∞ ≤3εrA

}] = oε(1).

On the other hand, by Lemma 5.1 and time reversing for the random walk (S(κ)
k ; 0 ≤ k ≤ n),

eκrAE(4.46)
Q∗ (ε, rA) ≤ ∑

n≥1
eκrAE

[
eκS(κ)

n 1{
S(κ)

n ∈[−rA−ε,−rA+2ε],min1≤k≤n S(κ)
k ≥−rA−ε

}]+ oε(1)

≤ ∑
n≥1

e2κεP−3ε

(
max

1≤k≤n
S(κ)

k < 0, Sn ∈ (−rA − 5ε,−rA − ε]

)
→e2κεC(κ),−

s 4εU(κ),+
w ([0, 3ε)) + oε(1),

as rA → ∞ by (5.10). It is then immediate to conclude (4.47).
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A Appendix

Lemma A.1. For α ≥ 0, β ≥ 0 such that α + β ≤ κ′, there exists some constant c49 > 0 depending
only on α + β such that for any ` ≥ 1, we have

(A.1) Ê∗`

β(w1)
α

 ∑
u∈Ω(w1)

β(u)

β
 ≤ c49`

α+β.

Proof. Note that by change of measures and Proposition 4.1,

`× Ê∗`

β(w1)
α

 ∑
u∈Ω(w1)

β(u)

β
 =E`

 ∑
|u|=1

β(u)α+1

 ∑
|z|=1,z 6=u

β(z)

β
(A.2)

≤E`


 ∑
|u|=1

β(u)

α+1 ∑
|z|=1

β(z)

β


=E`


 ∑
|u|=1

β(u)

α+β+1


Here under P`, ∑|u|=1 β(u) is sum of ` random variables which are not independent but all
distributed as ∑|u|=1 β(u) under P1. By convexity of t 7→ tα+β+1, we have for any ti ≥ 0,(

`

∑
i=1

ti

)α+β+1

≤ `α+β

(
`

∑
i=1

tα+β+1
i

)
.

Therefore,

E`


 ∑
|u|=1

β(u)

α+β+1
 ≤ `α+β+1E1


 ∑
|u|=1

β(u)

α+β+1
 .

Plugging it into (A.2) yields that

(A.3) Ê∗`

β(w1)
α

 ∑
u∈Ω(w1)

β(u)

β
 ≤ `α+βE1


 ∑
|u|=1

β(u)

α+β+1
 ,

where under PE1 , (β(u))|u|=1 is of negative multinomial distribution with parameter 1 and
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( e−V(u)

1+∑|v|=1 e−V(v) )|u|=1. By (4.20), one sees that

EE1


 ∑
|u|=1

β(u)

α+β+1
 ≤EE1

| ∑
|u|=1

β(u)− ∑
|u|=1

e−V(u)|α+β+1

+

 ∑
|u|=1

e−V(u)

α+β+1

≤c50

bα+β+1c

∑
k=1

 ∑
|u|=1

e−V(u)

k

+

 ∑
|u|=1

e−V(u)

α+β+1


So, by Assumption 1.4, for α + β + 1 ≤ κ,

E1


 ∑
|u|=1

β(u)

α+β+1
 ≤ c50E

bα+β+1c

∑
k=1

 ∑
|u|=1

e−V(u)

k

+

 ∑
|u|=1

e−V(u)

α+β+1
 =: c49.

Plugging it into (A.3) implies that

Ê∗`

β(w1)
α

 ∑
u∈Ω(w1)

β(u)

β
 ≤ c49`

α+β.
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