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Maximal local time of randomly biased random
walks on a Galton-Watson tree

Xinxin Chen*, Loic de RaphélisJr
September 28, 2020

Abstract

We consider a recurrent random walk on a rooted tree in random environment given
by a branching random walk. Up to the first return to the root, its edge local times form
a Multi-type Galton-Watson tree with countably infinitely many types. When the walk is
the diffusive or sub-diffusive, by studying the maximal type of this Galton-Watson tree,
we establish the asymptotic behaviour of the largest local times of this walk during n
excursions, under the annealed law.

Keywords: Branching random walk, Randomly biased random walk, Multi-type Galton-Watson
tree

1 Introduction: Models and results

1.1 Branching random walk and randomly biased random walk

Let us first introduce a branching random walk on the real line, whose reproduction law is
given by the law of C, a point process on IR. The construction is as follows.

We start with one vertex at time 0, which is called the root, denoted by p and positioned
at V(p) = 0. At time 1, the root gives birth to some children whose positions constitute a
point process distributed as C. These children form the first generation. Recursively, for any
n > 0, at time nn + 1, every vertex u of the n-th generation produces its children independently
of the other vertices so that the displacements of its children with respect to its position are
distributed as C. All children of the vertices of the n-th generation form the (1 4 1)-th gener-
ation.

We hence get the genealogical tree T. For any vertex u € T, let V() denote its position
and |u| denote its generation with |p| = 0. For two vertices u,v € T, write u < v if u is an
ancestor of v and write u < v if u < v but u # v. Denote by P the law of the branching
random walk £ = (T, (V(u)),eT), which serves as the environment.
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Given & = (T, (V(u))yet), the randomly biased random walk (X}, ),,>¢ is a nearest-neighbour
random walk on T started from Xy = p, and with transition probabilities as follows: Vx € T \ {p},

e V(u) e —
_V(u)_’_zz:(?:ue—v(z) 1f u =0
(1.1) PE (X1 = 0| Xy = u) =
—V(v .
e V) it =u

—V(u) +Zz:?:u e—V(z)

where U represents the parent of u € T \ {p}. To define the transition probabilities for x = p
in a proper way, we add artificially a parent ? to the root p and suppose that (1.1) holds for
u=p and that P€ (X, 1 = p|X, = ) = 1. The quenched law of the random walk (X;),>0
on T U {0 } is denoted by IP. Its annealed law is denoted by PP = [PE(-)P(dE).

Note that the law of the environment £ is characterised by the law of C Let us introduce
the Laplace transform of C defined by

P(t) = [ ) etv(”)] =E {/ e_th(dx)] ,Vt € R.

In this paper, we assume

Assumption 1.1. (0) > 1, E[¥,— |V (u)|e=VW)] < coand

(1.2) ¥(1):=E [ Y. e‘/(”)] =1, ¢'(1):= —E

ju[=1

Y. V(u)ev(”)] <0.
|u]=1

Note that y(0) > 1 means that the Galton-Watson tree T is supercritical.
Let us introduce the quantity

=inf{t >1:¢(1) > 1}
with convention that inf @ = co. We also require the following assumptions.

Assumption 1.2. Either there exists some k € (1,00) with (k) = 1; or k = co and P(t) < 1 for all
t>1.

Assumption 1.3. The support of C is non-lattice.
Assumption 1.4. If x € (1,00), there exists some § > 0 such that

K+6
(1.3) P(t) < oo, ¥Vt € (1—06,x+0), and E (Ze ) < oo.

If k = oo, there exists some 6 > 0 such that

2446
(1.4) E ( Y e‘/(“)) < 0.

u|=1
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In [15], a criterion for recurrence/transience is established. So, from (1.2), it is known that
min,c(oq) P(t) = ¥(1) = 1 and that the random walk is recurrent. More precisely, Faraud
showed with some extra-conditions that if ¢(1) = 1 and ¢'(1) < 0 then the random walk
(X1n)n>0 is null recurrent. Moreover, under Assumptions 1.1 and 1.2, when x € (1, 2], it has
been proved in [11] and [7] that the random walk is sub-diffusive; and when x > 2, the walk is
diffusive and satisfies an invariance principle, see [1] and [9]. More precisely, Aidékon and de
Raphélis also proved in [1] that for ¥ > 2, the tree visited by the walk up to time 7, after being
rescaled by a factor n'/2, converges in law to the Brownian forest. Then in [7] similar result
is obtained for « € (1,2], but in a stable regime. Next, Chen, de Raphélis and Hu studied the
localisation of the most visited sites in [5].

In this paper, we are interested in the most visited edges and want to know how many
times the walk crosses them up to some fixed or random time.

Let us introduce the edge local times L, (1), n > 1, u € T defined by

n

(1.5 Ly = 1 =%, Xe=u}
) (u) }; {X 1= Xp=u}

Define a sequence of stopping times (T, ),>0 by
Ty = mf{k > Ty—q - Xk—l = ?/Xk = p},Vn >1

with 19 := 0. Note that 7, — 1 is the n-th return to ? of the random walk and that 7y < oo,
IP-a.s., as the walk is recurrent. Usually, we call the walk up to 7 the first excursion and the
n-th excursion means the walk from 7,,_1 to 7.

Then observe that (L, (1)), is @ multi-type Galton-Watson tree with root of type 1, un-
der IP, according to Lemma 3.1 of [1]. Its detailed reproduction distributions will be given in
(4.1). We are initially interested in the tail distribution of the maximal local time during the
tirst excursion:

P L >
(r:lnea% o (1) > x) ,

as x — oo. The order of this tail has been considered in Theorem 1.5 of [5]. We obtain the

precise tail and use it to study the asymptotic of max, et L, (1) under P and eventually under
IPe.

1.2 Main results

Let us state the main results of this paper. For the branching random walk, let us define

W, = Z e V() vy > 0.

|u|=n

Obviously, by (1.2), (Wy),>0 is a P-martingale with respect to the filtration of sigma-fields
{FV :=0c((u,V(u)); |u| < n)}uso- Itis usually called the additive martinale. It is immediate
that W, converges P-a.s. to a nonnegative limit W,. Under assumptions 1.1, 1.4, it converges
also in L! (see for instance [14]).



Denote by f(x) ~ g(x) as x — xg if limy_y, f(x)/g(x) = 1. Then it is known in [13] that
if k¥ < oo, there exists a constant Cy € (0, o) such that

(1.6) P(We > x) ~ Cox™ ¥, as x — oo.

Moreover, according to Theorem 2.1 of [13], for any p € (1,x), E[Wg)] < oo if and only if
B[] < o
LetM := inf,c V(u) be the minimum of the branching random walk and let

V) = exp(—M).

e:=Ssupe
ueT

Then the assumption 1.2 implies thatM € IR, P-a.s. We have the following theorem on the joint
tal]. Of (Woo, Me)

Theorem 1.5. Under the assumptions 1.1, 1.2, 1.3 and 1.4, if k € (1, 00), there exists an decreasing
continuous function 7y : [0,00) — (0,00) such that v(0) > 0, lim,—e y(a) = 0 and that for any
a>0,

(1.7) P(We > ax, M, > x) ~ y(a)x™*, as x — oo,
where vy will be given later in (3.6). In particular, fora = 0, as x — oo,
P(M,>x)~cux "
with cy = (0).
This result brings out the following theorem on the randomly biased random walk (X}, ),;>0.
Theorem 1.6. Under the assumptions 1.1, 1.2, 1.3 and 1.4, there exists c; € (0, 00) such that
1. ifx e (1,2),

(1.8) P (maxfrl(u) > x) ~cix L as x — 0.
ueT
2. ifx =2,
(1.9) P (maxf (u) > x) . as x — o0
' uel T xy/logx’ '

3. ifx € (2,00),

(1.10) P (maj%(ffl(u) > x) ~ cix T2 s x — oo.
ue

4. ifx = oo, forany p > 1,

ueT

(1.11) E {(maxfﬁ(u))p] < oo.



In addition, as a corollary of Theorem 1.6, we have the following result on the maximal
edge local time up to time T,.

Theorem 1.7. Under Assumptions 1.1, 1.2, 1.3 and 1.4,
1. ifx € (1,2), under the annealed probability P,

maX, et Ly, (1) (4)

n n—00

(1.12) y Xy,

where X, is a positive random variable of distribution function E eGP M, < t] (which
stochastically dominates M,).

2. if k > 2, under the annealed probability IP,

maXyeT Z'lf'n (1/[) in 1P \

n n—s00

(1.13) M.

Remark 1.8. In fact, it is known from Theorem 1.1 in [5] that if k > 2, even without Assumption 1.3,

max,e L, (1) P—as.

(1.14) M,;
n n—oo
and that if k € (1,2], P-a.s.,
(1.15) lim inf PXueT Lo () _ 0
n—00 n

Moreover, Proposition 5.1 of [5] says that when k € (1,2), P(-|#T = o0)-a.s.,

L
(1.16) lim sup maxuer L, (1) = 00

n—00 n

Remark 1.9. Notice that if one defines the vertex local times as Ln(u) := Yj_q1{x,—uy, then

Lr,(u) = L, (u) + Y4 _, Lr,(v). Thus, the behaviour of vertex local times is closely related to
that of edge local times, and we expect our result to hold for vertex local times. However, vertex local
times are less convenient to manipulate, and our method would not apply without several technical
adjustments.

A natural question is then to study max,ct L,(1) under P and under P¢. In fact, the
asymptotic behaviour of 7, under the quenched probability IP¢ has been considered by Hu
[10]. The quenched and joint asymptotic of (T, max,et L+, (1)) will be treated in an upcoming
paper.

The organisation of this paper is as follows. Sections 3 and 5.1 deal with the branching
random walk and are self-contained for the proof of Theorem 1.5. In Section 2, we prove
Theorems 1.6 and 1.7 by use of Proposition 2.1. In Section 4, we prove Proposition 2.1 from
Theorem 1.5 by use of two changes of measures. Section 5.2 contains the proofs of the lemmas
in Section 4.

Throughout the paper, (c;);>o and (C;);>o denote positive constants. We say that a,, ~ b,
asn — oo iflimy 0 3> = 1. Weset Yoy = 0and []p = 1. Forx,y € R, weletx Ay := min(x, y)
and x V y := max(x,y).



2 Maximal edge local time: proofs of Theorems 1.6 and 1.7

In this section, we consider {L, (u);u € T}. In fact, for x € T with children {y : Y =x},and
for any s, € [0,1],
e—kV(x)

5 =x (770 + g a(1 = 5y)ev W)

o Vk>1.

In other words, (L (v))4 —» has negative multinomial distribution with parameters L (%)

X

and (e*VW)jLeZ‘;(y:)x —vi7 ) = In particular, if x is of type Ly, (x) = 0, then all its descendants

are of type 0. According to Lemma 3.1 of [1], for any k > 1, under the annealed probability I,
{L+ (u);u € T} is a multi-type Galton Watson tree with types taking values in N, whose root
p is of type k.

We denote by ¢ = {&;;i > 1} its offspring distribution. Here ¢; stands for the offspring
law of a vertex of type i. For any k > 1, denote by P the law of a multi-type GW tree with
offspring ¢ and initial type k. From now on, we use (f(u), u € T) to represent this multi-type
GW tree. So, P(maxyet L, (1) € ) = Py(maxyer B(u) € -).

Now define

(2.1) Li1:={xeT:B(x)=1, min B(y) > 2}.

p<y<x

and By := {x € T : min,y<x B(y) > 2} U {p}. For convenience, we sometimes write u < L4
foru € By, and u < L4 for u € By \ £1. Observe that

2.2 = ’ '
@2 e P = maxtng P a2 P}

As (B(u))yeT is a multi-type Galton-Watson tree with root of type 1 under Py, by Markov
property at the stopping line £1, {maxe.y<y B(v) }uer, areii.d. and distributed as max, et B(u)
under P, and independent of (B(u),u € B1). Let

(2.3) Ly := Card(L1), M;:= 333)1(’8(”)' M* = max B(u).

So we rewrite the equation (2.2) as follows: under Py,

(2.4) M@ max{M;, max M}}

1<i<l,

where M*,i > 1 arei.i.d. copies of M*, independent of (Mj, L;). Thus the tail of max,ct B(u)
under IP; depends mainly on the joint tail of (My, Ly).

Proposition 2.1. Under the assumptions 1.1, 1.2, 1.3 and 1.4, and assuming x € (1, 00), there exists
a constant Co € (0, 00) such that for any a > 0,

(2.5) P1(Ly > ax, My > x) ~ Cooy(a)x™ ", as x — oo,
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where Co is defined in equation (4.40). In particular, P(M; > x) ~ Cey(0)x*. Moreover, there
exists c;, € (0,00) such that
Py(L; > x) ~cpx ¥, as x — oo,

where c; = CpCeo.

The proof of Proposition 2.1 is postponed to Section 4. Here we use the result to obtain the
tail of M* = max, et B(u) under IP;.

Proof of Theorem 1.6. If x € (1,00), given equation (2.4), Proposition 2.1 allows us to apply
Corollary 1.4 of [6] which yields Theorem 1.6.
If x = oo, given equation (2.4), as x — o,

P (maxle(u) > x) ~ ciy/Pi(My > x),
ucT

because L has finite variance according to Lemma 4.6. Moreover, M; has moments of all
orders by Lemma 4.6, which concludes that max,cr L, (1) also has moments of all orders. [

Proposition 2.2. Under the assumptions 1.1, 1.2, 1.3 and 1.4, for any « € (0,x — 1), we have as
n— oo,

L M
(2.6) E, [|71—woo|1+“+ 171—/\/14”“} 0.

The proof will be postponed in Section 4. Now we are ready to prove Theorem 1.7.
Proof of Theorem 1.7. When x € (1,2), Theorem 1.6 tells us that IPy(max,c f(1) > x) ~ % as
x — 0o. Observe that for any ¢ > 0,

P, (Iblllea% B(u) < tn) =P, (umgagiﬁ(u) < tn,ggz Z{I{l};;({ﬁ(v) < tn)

By Markov property at L, it follows that

P, (max,B(u) < tn) =E, | [ ] P(max B(v) < tn|B(u) =1);max f(u) < tn

>
ucT lueg, vz u<ly

Ly
=E, (1 — IP1(max B(v) > tn)) ;M <tn
veT

_E, |e- R0, 01, < tn]

L M
n’ n

Proposition 2.2 implies that under P, (
hence deduce that

) converges in probability to (We, M,). We

lim P, (maxﬁ(u) < tn) =E [e‘cﬁwifo;/\/lg < t] .
n— 00 ueT

7



One can easily check that F(t) := E [e"’;% ;M < t} with F(0) := 0 is a distribution func-

tion. Therefore, under P,
distribution function F.
When « > 2, as Py (max,c B(u1) > x) ~ O"J(Cl), similar arguments yield that for any ¢ > 0,

max et L, (1 . . .
%T”() converges in law to some random variable X, with

P, (maxﬁ(u) < tn) =E,

ueT -

Ly
(1 — P(maxB(v) > tn)) ,Mp <tn
veT

:En[ Ly M1<tn]

maXy, e ZTn (u)

which converges to P(M, < t). As a result, under P,
Moreover, one could show that for any € > 0,

converges in law to M,.

P, (|%Tﬁ(”>_wte\ zs> <on(1) + Py (\ — M.| 25/2) = 0,(1).
This suffices to conclude the convergence in probability of —maX”EEZT” ®) under P. O

3 Tail behaviours of the branching random walk

This section is devoted to proving Theorem 1.5.
Let us first consider We,, the almost sure limit of the additive martingale W,, = Z‘ z|=n€
According to [4], under assumptions 1.1 and 1.4, W, > 0 if and only if T is infinite. Immedi-

ately, one sees that P-a.s.,
Wo= Y eV W)

|z[=1

—V(z),

where W ), |z| = 1 are martingale limits associated with the subtree rooted at z, respectively,
which are therefore i.i.d. copies of Wy and are independent of (V(z),|z| = 1). We will
generalise this decomposition.

For any u € T such that |u| = n, let (o, uy,- - - , uy) be its ancestral line. For any z € T, let
Q)(z) be the set of all brothers of z, i.e.,

(3.1) Qz)={veT:% =%,0#£2}.
Then, observe that

:i Z e*V(z)Wg)—|—e*V(”)W§§’),P-a.S.
k=1 zeQ(uy)

To deal with (W, M,), recall that M = inf,c1 V(1) and M, = e ™. Let us take u* € T such
that V(u*) = M, if there exist several choices, one chooses u* at random among the youngest
ones. So, P-a.s.

—MZ Z )+—MW()

k=1zeQ(ujf)



One sees hence that

N
(3.2) WH = MW, = uz Yo vEwE pwl,
k=1zeQ(uy)

Observe that the joint law of (W, M,) is totally given by the joint law of (WW",M). Let us
state the following theorem, which is largely inspired by [16] in which the boundary case is
treated.

Theorem 3.1. Suppose that the assumptions 1.1,1.2, 1.3 and 1.4 are all fulfilled. Assume that x €
(1,00). Then there exists a constant cy € (0,00) such that as x — oo,

(3.3) PM < —x) ~ cue ™.

Further, conditionally on {M < —x}, the following convergence in law holds as x — oo:
(3.4) (W M+ x) = (WY, —U)

where U is an exponential random variable with parameter x, independent of WL,
Lemma 3.2. Under the assumptions 1.1,1.2, 1.3 and 1.4, if x € (1, 00), we have

(3.5) lim sup lim sup x*P(We < ex, M > x) = 0.

el0 X—r00

The proof of Lemma 3.2 is given in Subsection 5.1.2. We prove that Theorem 1.5 is a direct
consequence of Theorem 3.1 (whose proof is postponed to the next section) in the following.

Proof of Theorem 1.5. For any a > 0 and x > 0, observe that
P(We > ax, M, > x) =P(Ws > ax,M < —logx)
:P(e*M*IngWM > a,M+logx <0).
Let x — oo, as a consequence of Theorem 3.1,
lim x*P(Weo > ax, M, > x) = lim P(e MO8V > gM 4 log x < 0)P(M < — log x)x*
=P(UWY > ) xh_r)r;o P(M < —logx)x"
=7(a),
with
WEN"
(3.6) y(a) = cMP(eUV\/g[o >a) = cyE {(1 A T"o) } ,Va > 0.
Notice that by Lebesgue’s dominated convergence thereom, -y is continuous on R . Fora = 0,
(3.3) implies directly that
P(M,>x) =PM < —logx) ~ cux".
Here v(0) = cy = lim,_,¢ y(a) by Lemma 3.2 hence v is also continuous in 0. O

Remark 3.3. Note that as cy = lim,_,gy(a), Lemma 3.2 also implies that P(Wh > 0) = 1.
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3.1 Proof of Theorem 3.1
First we state the following lemma which gives a rough estimate on the tail of M.

Lemma 3.4. Under the assumptions of Theorem 3.1, there exist 0 < ¢ < 1 such that
(3.7) cre ™ <PM< —x) <e ™, Vx>1.

Its proof is postponed to Section 5.
Recall that WM = "W, = Z'” | Yeea(u; MVEAWSE L W) Tts truncated version is
defined for 0 < t < |u*| by

|u”|
Wu*,gt — Z Z +W( ")
k=|u*|—t zeQ(uj)
|u”|
(38) = uz eV(u*)—V(uiil) Z e_[v(z)_v(”]tfﬂ]wo(j)_i_wo(c’)’l*).
k= |t zeQ(uf)

Let us state the following results for the truncated random variable.

Lemma 3.5. Let t be a fixed integer. Under the assumptions of Theorem 3.1, for any continuous and
bounded function ¢ : R — Ry, the following limit exists.

(3.9) lim ¢*E [(P(W”*,St)l{MS—x}} = 51}((]))

X—00
The explicit expression of E(¢p) will be given in Section 5.1 by equation (5.24).

Lemma 3.6. Under the assumptions of Theorem 3.1, for any § > 0, we have

(3.10) lim sup (WM —WHEE > gl < —x> =0.

t—o0 R,
The next lemma states the tightness of the law of W" conditionally on M < —x.

Lemma 3.7. Under the assumptions of Theorem 3.1, we have

(3.11) lim sup PIW" > MM < —x] = 0.

M—re0 x€ER

Let us prove Theorem 3.1 by these lemmas.

Proof of Theorem 3.1. By taking ¢ = 1, the tail (3.3) of M follows from Lemma 3.5 with cy =
Eo(1). We have cy € (0,00) because of Lemma 3.4.

One sees from Lemmas 3.7 and 3.4 that the joint distribution of (W",M + x) conditionally
on {M < —x} is tight. By the classical Lévy’s theorem, it suffices to prove that for any 6,6, €
R4, the following limit

(3.12) lim E[e” V' +004) |y < _y]

X—00 -

10



exists.

First, as given in (3.8), 0 < WH* =t < WM, So, the tightness of (WW", M + x) conditionally on
{M < —x} yields also tightness of (W""<f,M + x) conditionally on {M < —x}. On the other
hand, it follows from Lemma 3.5 that,

. g s E(e ) « (e ™) «
1 1 E (204% t+62(M+x) M< — — f —
(313 lim Ele M < —] &) x+6, &) x+6,

where & (e~%") > 0 by the tightness.
Next, observe that t — W""=t is increasing. So t — &£;(e~%") is decreasing and positive.
Consequently,

(3.14) lim &)

ist di itive.
o 80(1) X+ 62 eXI1sts and 1s positve

We then are going to show that

—0;-
: —91WM+92(M+X) < _ — 1i 81—(6 ) K
(3.15) Jim Ele M< =)= lim = e o
In fact, by (3.13) and (3.14), it suffices to show that
(3.16) lim lim sup E[e‘glwu*'§t+92(M+x) — e VIR Iy < _y] = 0,

f=00 y oo

Note that for any € > 0,

0 SE[ef(JlW”*'gt+92(M+x) - 3*91WM+92(M+X)|M < _x]
<E[(e 8" — om0V (Mhx) M St < i < —x] + POV — WSt > gln < —x)
<bre + POV — WSt > el < —x).

By Lemma 3.6, we obtain that for any ¢ > 0,

lim sup lim sup E[efelwu*'gtw?m”) — e VIR Iy < 5] < fre,

t—00 X—00

which is what we need to conclude the theorem. O

4 Edge local times of the randomly biased random walk

As stated in Section 2, we are going to study the multi-type GW tree {f(u), u € T} under P,
which describes the annealed distribution of edge local times up to T,.

In what follows, we introduce a new probability measure IP* on a marked multi-type GW
tree.

11



4.1 Change of measures and spinal decomposition under P

Let us define

Zp:=Y_ PB(u),Vn>0.

|u|=n

Then under Py, {Z,;n > 0} is a martingale with respect to the natural filtration {]-",f ;n >0}
where 7% is the sigma-field generated by {(u, f(u)); |u| < n}. We are hence ready to define
the new probability measure P*.

Recall that under PP, the offspring law of (T, B) is given by ¢ = {&;;i > 1}. More precisely,
foranyn > 0, forany ky,--- ,k, € N, forany u € T,

4.1)
itk k) =P ({039 = u} = {u,- - un}; Bal) = ki, -+, Bun) = ko |B() = i)
kV(u) 71 ki (uf)
_E ( ?—1kj+k—1) e e . ;Y 1=mn
kll e /kl’llk —1 (e_V(u) —+ 27:1 e_v(”j))zle kj+k 050 =u
As E;[Z1] = i, we can define & = {&;i > 1} to be another collection of offsprings such that
- ok .

foranyi > 1,¢;(ky, -+ kn) = Zfzil L&:(k1,- - ,ky). The probability measure IP* on multi-type

Galton-Watson tree with a marked ray (T, B, (wy)>0) is defined as follows.
1. For the root p, let B(p) = i and wy = p.

2. For any n > 0, suppose that the process up to the n-th generation with the spine
(wk)o<k<n has been constructed. The vertex w;, produces its children, independently
of the others, according to the offspring g B(wy)- All other vertices u of the n-th genera-
tion produce independently their children according to the offspring ¢g,,), respectively.
The children of all vertices of the n-th generation form the (n + 1)-th generation. We

choose w,; among the children of w,, each y child of w, being chosen with probabil-

: By)

Usually we call the marked ray (w;,),>o the spine. Denote by IP; the marginal law of (T, )
constructed above. We state the following proposition from [12].

Proposition 4.1. Let i € IN*. Then {Z, /i},>0 is a nonnegative P-martingale, and the following
assertions hold.

1.
- - > (.
d]P,' ]-',‘? i ¥ 20

2. For any u € T of the n-th generation,

@2) P (wn = ulFf) = B

12



3. Under ]lAjz.", {B(wy);k > 0} is a recurrent Markov chain taking values in IN*, started from i,
with transition probabilities p; ; such that

 (i+j-1 e V() .

Moreover, we observe that this Markov chain (B(wy);k > 0) admits an invariant law
(71;)j>1 whose expression can be found in Section 6.1 of [1]. Point 2 of Proposition 4.1 yields
the multi-type many-to-one lemma as follows:

Lemma 4.2. Foralln € N, let ¢ : N"*1 — R be a positive measurable function and X, a positive
.7-"5 -measurable random variable, then

Ei| X B)g(Blp), Blun), Blu), ., Blun)) Xu| = B |g(B(ew0), Blwr), B(w2), -, Bn)) Xa .

|u|=n

4.2 Second construction of P*

In this subsection, we introduce another construction of P* which was borrowed from [7].
Recall that the environment £ = {(u, V(u));u € T} is given by a branching random walk
for which Wy, := Y, —, eV is a P-martingale with respect to the filtration {F,/;n > 0}.
We first define another probability Q* on branching random walk with a marked spine £* :=
(T, V,(wn)n>0)- Then on the new environment £*, we introduce the associated biased ran-
dom walks and their edge local times to reconstruct the marked multi-type GW tree under
P*.

4.2.1 Change of measures and spinal decomposition: Q*

Recall that under P, the branching random walk is constructed by use of the point process
C. Let us introduce a probability measure Q* of a branching random walk with a spine:
{(V(u);u € T), (wn, V(wn))n>0}- First, as E[ [ e~*C(dx)] = 1, let C be a point process with
Radon-Nykodim derivative [ e~*C(dx) with respect to the law of C. We use C and C to con-
struct {(V(u);u € T), (wn, V(wy))n>0} under Qf for any x € R as follows.

1. For the root p, let V(p) = x and wy = p. wy gives birth to its children according to
the point process C (i.e., the relative positions of its children with respect to V(wy) are
distributed as C).

2. For any n > 0, suppose that the process with the spine (wy )<<, has been constructed
up to the n-th generation. All vertices of the n-th generation, except w;,, produce in-
dependently their children according to the law of C. Yet, the vertex w, produces its
children, independently of the others, according to the law of C. All the children of the
vertices of the n-th generation form the (n + 1)-th generation, whose positions are de-

noted by V(-). And among the children of w,, we choose w,;1 = u with probability
—V(u)
Ez;;:wn eV

13



We denote by Q, the marginal distribution of (T, (V(u),u € T)). For simplicity, write Q*
and Q for Q; and Qg respectively. Let us state the following proposition given in Lyons [14].

Proposition 4.3. 1. Foranyn > 0,and x € R,

de|}_V _ ean — Z e~ u +x’

|u|=n
where F, denotes the sigma-field generated by ((u, V(u)); |u| < n).
2. For any vertex u € T of the n-th generation,
V()
Wi

e

Q:(wn = ulF)) =

3. Under Q, (V(wy);n > 0) is a random walk with i.i.d. increments and started from x.

Since according to [4] ,under our assumptions, the additive martingale W, converges in
L! to Wy under P, one has dQ = W..dP, and Wy, is also Q-a.s. the limit of W,,.

4.2.2 Reconstruction of P* on biased environment Q*

Let us introduce another interpretation of the multi-type Galton-Watson tree under IlA’i‘ which
was first given and proved in Proposition 5 of [7]. Given the marked environment £* :=

(T, V, (wn)n>0), we denote by {X; (Lewoi) g > 0}i>0 and {X; @) g > 0}i>0 two i.i.d. sequence

of killed nearest—nelghbour random walks as follows. For any i > 0 fixed, {X (L), ;k >0} is

a random walk on T U { p } started at w; such that before hitting w; 1 (with w_; := p), the
transition probabilities are

—V(x) o
@ X =Y
e v (Lw) _ i (Lw) oy e
P (Xn+1 = y| X =x) =
giV(y) o — _
e*V(x)_FZZ:(;:xe lf y x

When it reaches w;_1, it is killed instantly. Let

21{ ) _g U _ }V]G{l .2},

n>0 - n+1
and ,
=Y Bl(u),¥j € {1,2}.
i>0
Finally, let
(4.4) B(u) = B (u) + B (1) + 13i>0u—w;}
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Then, according to Proposition 5 of [7], the marked tree {T, (B(u),u € T), (wy),>0} under
PE" x Q*(dE*) has the same law as (T, B, (wy),>0) under P}. With the convention, we still
use ]lA’T to represent the annealed probability IP€" x Q*(d£*), and we will use the notation
for both constructions.

This fact sums up in the following diagram.

Proposition 4.3

& under P E* under QF

Pe | (1.1) Process of local times (4.4)

Proposition 4.1

(T, B) under IP; (T, B, (wn)n>0) under P

4.3 Proof of Proposition 2.1: joint tail of (L;, M)
In fact, the joint tail of (L1, M) under IP; follows from the following results.

Lemma 4.4. Under the assumptions of Proposition 2.1, one has

4.5) lim lim sup x*IP1 (L1 < ax, M; > x) = 0.

al0  x—oo

Lemma 4.5. Under the assumptions of Proposition 2.1, there exist a decreasing continuous function
11 :[0,00) — (0, 00) such that for any a > 0, as x — oo,

1131‘ (Ly > ax,M; > x) ~ ql(a)x_("_l);
Proof of Proposition 2.1. Let us first show that
(4.6) E1[Ly; Ly > ax, My > x] = P} (Ly > ax, My > x).
Observe that by Proposition 4.1,
IEl[Ll;Ll > le,Ml > x] :IE1 (Z Z 1{u€£1}>1{L12ax,M12x}

k>1 ‘u|:k

=Y Ei | Y LpueryP(Ly > ax, My > x| FP)

k>1 _\u|—k
_ 1
=Y Ei | ¥ o ey P(Ly > ax, My > x| FP)
k>1 |u|=k



which by (4.2), is equal to

Y B B[y | FLIP(Ly > ax, My > x| 7))
k>1

= Z I/E'.ik |:1{wk€£1}]P(L1 > ax, M1 > x|]—"f)}
k>1

Note that given {wy € £1}, P(L; > x, M; > ax|}"ﬁ) P*(Ly > x, M; > ax|gf) where gf
denotes the sigma-field generated by ((u, [S(u))‘u|<k, (w;)i<k)- Therefore,

IEl[Ll;Ll 2 ax,M1 2 x] = Z ]/ET [l{wkeﬁl}ﬁs*(l‘l Z ax,M1 2 x\gf)]
k>1

=Y Pj [wy € £1,L; > ax, M; > ]
k>1

Recall also that the spine (B(wy); k > 0) is a recurrent Markov chain under P?. So, Y > 1 (wely) =
1. We hence conclude (4.6).
By Lemma 4.5, one obtains that for any a > 0,

Eq[L1; Ly > ax, My > x| ~ 771(51)367(7(71),

as x — oo. Let Py(ax,x) := Eq[L{; L1 > ax, M; > x] for any & > 0. One sees that for x > 0
and a > 0,

1 Lq
aPl(ax,x) — Py(ax, x) ]El[(— —1);Ly > ax, My > x|

Li d
=E; [Ll/ 1—‘17{;L1 >ax,My > x
ax Y
©1 du
— -p jadad
/a » 1(xu,x)u2

which implies

Py(ax,x) = W — % /aoo Pl(xu,x)i—z.
Note that for all x > 0, x*~1P; (ux, x) — 11(u). Moreover, for x sufficiently large and u > a >
v x*~1Py (ax, x) 1+ 171(a)

u? - u?

x”flpl(ux,x)m <

7

which is integrable on [a, 00). By dominated convergence theorem, for any a > 0, as x — oo,

o du
x*P1(Ly > ax, My > x) = x*Py(ax, x) — / (m(a) —n1(u)) 7
a
Because of Lemma 4.4, we also obtain that Py (M; > x) ~ x~ fo (11(0) — n1(u)) ‘i—é’. O

In the next subsections, we prove Lemma 4.5 and 4.4.
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4.4 Joint tail of (L;, M;) under ]lA’f: proof of Lemma 4.5

We are going to show that for any a > 0, as x — oo,

4.7) Pi (Ly > ax, My > x) ~ 51 (a)x~ <,

The main idea follows that of Section 4.2 of [7] where the author shows that ]lA’T(Ll > x) ~
e x™** for x € (1,2]. In fact, this joint tail largely depends on the joint tail of (Weo, M,)
on the marked environment £*, which will be stated and proved in the following. We also

prove Proposition 2.2 which will be needed to obtain (4.7).

4.4.1 Joint tail of (W, M,) under Q*

By Theorem 1.5, one has P(We > ax, M, > x) ~ (a)x " with y(a) = cuE[(1 A WTg")"] The
change of measures given in Section 4.2.1 and the non-triviality of We imply that

Q" (Weo > ax, M, > x) =Q(Weo > ax, M, > x)
:E[Wool{woozax,/\/lezx}]

=axP(We > ax, M, > x) + x/ P(Ws > xu, M, > x)du
a

Note that for x large enoughand u > a > 0

X*P(Weo > xt, M, > x) < X*"P(Weo > xu) < (Co+1)u™ "

By dominated convergence theorem, one obtains that

;cll_{{}oxK 1o* (Weo > ax, M, > x) = avy(a +/
Some simple calculations yield that for any a > 0, as x — oo,
(4.8) Q*(Weo > ax, M, > x) ~ p(a)x "1
with p(a) := ex ZHE[WE (1 A W7g°)"*l] for any a > 0.

4.4.2 Proof of Proposition 2.2

Let us state the following result on the moments of L; and Mj.

Lemma 4.6. Ifx € (1,00), forany « € [0,k — 1), there exists a constant C, €

anyi>1,

4.9) E; L] < G
and that

(4.10) E; [M}“‘] < it

Further, if k = oo, (4.10) holds for all « > 0 and (4.9) holds also for a € [0, 1].
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We postpone the proof of this lemma in Section 5.2. Now we are ready to prove Proposi-
tion 2.2, mainly inspired by the arguments in Section 4.2.1 of [7].

Proof of Proposition 2.2. For any M € (0, oo) and for any k >0, let M=K .= sup|u|gk e V() and
MERM = MEFA M. Similarly, write W = (Cpu=re” V()Y A M and M— = maXy|<ku<r, B(1).
And for any u € By, let

(4.11) Lgu) =Y 1iver,) and M% “) .= max B(v)1go<ryy-

>
V0>U viuZu

Observe that forany t,s > 0and k > ¢ > 1,

412) F, e—fu—W%)—s(Aﬁl—Mf‘/M)] <E,

<k
L My LM
ot W) —s(S— M >]

M=k

t (u)
:En e—S 711 En 1 /\ e{_n (Z|u|:k1{u<ﬁl}L1 +Z|M|§k l{uEﬁl}) } )Fﬁ FV tWM—|—SM<EM

|u|=ku<Llq

M
<E, |e= ( [ En {eXp (——L )(Fﬁ,fk} /\1) W%+SM55'M].

Ase ¥ <1—x+4xltr< e X fora € (0,x —1) and x > 0, one has

E, [exp <—%Lgu)) ‘.7:5, .7:,:/} A1 <E, [1 — %Lgu) + (iLgu)

n

)1+"‘|}"ﬁ,.7-",§/] A1

t u t
= (1= SR R+ (MR L) A

(1=t () o) o

L M
E. e—f“—W%)—s(,,l—Mf“M)}

_ MzF T+a
<Ey o7 ( I (1—fﬁ<u>+(i) Caﬁ(u)”"‘)/u) etw%sM:f/M]
< o+ (!
|M‘:k,1/l<£1

<E, e ( (= Do B 1 ey +1Co Dg e 55 1 ) /\1) e *SM:&M] .

Plugging it into (4.12) yields that

Note that given the environment &, for any k > 0 fixed, by the law of large number,




One can refer to the proof of Proposition 6 [7] for more details for this convergence. Moreover,

Y (B y1ve in S, Y (V)

=k " u|=k
and —
Mz u in P¢
—L_ = max MI{KQ} 2 maxe™ V) = pMEF,
n lu|<k N |u| <k

By dominated convergence theorem,

(413) limsupE, {et@w%)smglM;«M)}

n—oo
=" {esj\ﬁk (exp (th G 2 e(lﬂ)vw) A 1) etW‘MJrSM;é’M]
|lul=k

Notice that by definition of x and thanks to the many-to-one lemma, },,_ e~ (1Ha)V() con-
verges towards 0 almost surely, for « € (0;x — 1). Letting k — oo implies that

(4.14) limsup E, {et(%wéw)s(ﬂﬁlMﬂM)} <E [e*S(MfMeg'M)*t(Wm*WZM)}

n—oo

On the other hand, let us define

~ 1 u
T max (M, max 5B(u)e’)}, and ;= Nulmtue, AMY < Blu)eV ) /2}.

Observe that on E;, M; < ]\711§k . Consequently,

E, e—t(%}—W%)—s(%—M?"M)] > E,

<k
L 1T <{,M
et W) —s(T—MF >1Ek]

415)  >E, |e R

Mlgk MSZ,M M-sM
T T MET) | MM (ECY

Here, note that by Markov inequality, for any « € (0,x — 1),

]Pn(E;i) <E, Z 1{M£”)>ﬁ(u)ev(“)/2}]

|u|=k,u<Lq

“E,| Y P, <M§”)zﬁ(u)e””>/2|fﬁ,f,§/)

|u|=k,u<lq

[ E [MlJrlX]
1+a Bu) 71
<Ey, Z 2 ‘B(u)1+o¢e(l+oc)V(u)

|u|=ku<Ly
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By (4.10), one sees that

Py (Ef) < cE | Y e (V| =g, (1).

Write ngk = Yju|<k Luer,}- Going back to (4.15), by Jensen’s inequality, for any k > l,

E, e—t(%—wg%—sdﬁl—ME&M)]

>IE7’I IEn |:e_:l(L1<k+2|u|_k1{u<£1}L§u))_Z]\ka

FF } Wit s M W} +0x(1)

—%IEH )

(W | B v
tZ\u\:kl u<l Ll ]:k’]:k:| tr<k_syr<k M <{(M
SE, |e {u<ty} LT R MTHWHSMER o ()

[t tr<k s ip<k M <t(M
:]En e VlZ‘”‘zkl{u<£1}ﬁ(u)e_ﬁl‘1 —%Ml +tWé +sM; :|_|_Ok(1)

<k

Observe that clearly, under P, Mrf > 1. Note also that given the environment &£,

; E
max LR vy Pl 1 v
lu|=ku<ly 2 N |u|=k
M=K in PE

— <
and —— — max,|<e V) = MsEM go,

7 <k
M:" inP§
—L 5 MM

<k 12

Besides, % LN according to the arguments of the proof of Proposition 6 of [7]. Again,

by dominated convergence theorem,

IiminflE, n

L oMy M1 <M _ _ <k,M M <{,M
m in {e G = W) —s(5H - M )] >E [e W —s M7+t s Me ]—i—Ok(l)

Letting k — oo implies that

(4:16) hnlganE‘n |:e—t(Lnl_W/M)_S(Z\;Il_MB§Z/M):| Z E [e—S(Me—MeS&M)—t(Woo—W}A)} .
n—o00

We hence deduce the convergence in law of (% - WM, % — MMy towards (Weo — WM, M, —

M ;Z’M). Repeating the arguments in [7], we then conclude from Lemma 4.6 that

L

n—o00
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4.4.3 Proof of Lemma 4.5

Let us consider (T, B, (wy),>0) defined on the biased environment £* = (T, V, (wy)n>0)-
Note that under P}, { B(w,); n > 0} is a recurrent Markov chain started from 1. Let

7 :=min{k > 1: B(wy) =1}, oq:=min{k > 0: B(wy) > A},VA > 1,

and recall from (4.11) the notation

Lgu) = Z 1{‘0651}/ M§u) = max ﬁ( )1{v§£1},Vu € Bj.

—— 0:u<v
Let also

chou) ;= lim Z E-V@-VW) Mé”) = max e~ (V@-VW) vy e T.

e v:u<v,|v|=|ul+n
Moreover, for any u € T, let
(TA—l
B4 (u) := Y (Bi(u) + Br(u)).

k=0
Clearly, B(wy,) = p7(ws,) + 1 and p74(v) = 0 for any v > wz. The decomposition along
the spine (wy k > ) gives
Z ) L )41, and M; = max{M%”);u € U,flzlﬂ(wk)} Vmax{B(wi);1 <k <7}
=lueQ(wy)
Similarly as in Section 4.2.2 of [7], we will study
Py (ax,x) = Pj(L; > ax, My > x)

fora > 0,x > 1land x € (1,00) in three steps. In the end, we will obtain that P;(ax, x) ~

]P*(,B‘TA(wUA)W( ) > ax, f74 (we, )/\/l( “a) > x, 04 < T1) where (W( UA),MngA)) is inde-
pendent of f%4(w,, ) and distributed as (We, M) under Q*. This implies (4.7).
Let us first state some facts which will be used in the proof.

Lemma4.7. 1. Ifx € (1,00), forany A > 1 fixed,

k—1
(4.17) (Zl{ﬁwk D<Al Y L ) < 0.

ueQ(wy)

2. Ifx € (1,00), for any A > 1 fixed,

(4.18) Ej [(5(WUA))K_1 1{0A<?1}] € (0, 00).
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3. For ({;)1<i<p i.i.d. random variables with E[1] = 0 and E[|(1|*] < oo for some o > 1, then
there exists C1(a) > 0 depending only on «, such that

- e Cl(a)n“/zE[|§1|"‘], if(x > 2
(419) E [|Z:2161| ] S {an[|€1|a], ifoc c [1’2]

4. If under P, ({;)1<i<n is a random vector with negative multinomial distribution of parameters

n and (ﬁ)lgig\], then for any a € [1,00), there exists Cp(a) > 0 depending only on «,
il

such that for any (z1,--- ,zn) € RY,
(4.20)

N N
E||) zigi—n) Aizl"
i-1 i-1

Equation (4.19) collects two inequalities from [8] for « > 2 and from (2.6.20) of [18] for
a € [1,2]. Note that it is immediate from (4.18) that for any A > 1 fixed,

la—1] N N N

< Cy(a)n®/?1 [ Y () Aizi)k(;AiZ?k) + () Aiz)”

k=0 i=1 i=1

(4.21) Ka =B [(B™(w0,)" 1gycry] < o0,

In (4.20), we finally see that by convexity, (YN, A;z;))F < (XN, A)F1(EN, A;ZF) for any
k > 1. The proof of Lemma 4.7 is postponed in Section 5.2.
Let us start analysing P, (ax, x). We let " := x — 1.

Stepl Let

T
=y oy L,

k=04+1ueQ(wy)
and M; ™ := max{M; """, M7 74"} with
t 71 ,
4.22) M= max{Mgu);u € UI?:UAQ(wkH)}, M7 = max{p(wi) 1y, <k<z} }-
Lemma 4.8. Foranye > 0, A > 1and as x — oo,

(4.23) PH(L774 > ax, M7 > x, 04 < T1) < Py (ax, x
1L 1
<Pi(L7™ > (a—e)x, M{™ > x, 04 <T1) +0(x ™).
Proof. Notice that
oA
L-L7=1+Y Y L
k=1 ueQ(wy)

The proof of Lemma 16 of [7] applies to show that for any ¢ > 0, A > 0,

P / ~ JA /
(4.24) P (L1 > ex, Ty <o) =o(x) and Pi(). ) Lgu) >ex, 04 <T) =o0(x7"),
k=1 ueQ(wk)
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excepted that for x > 2 we use (4.17) of Lemma 4.7 to show the finiteness of the quantity
o~ = x’
E} [(21?:1 Lep(ae_1) <A} Lue(wy) Lgu)> } - Now if we show that

/

(4.25) Pj(My — M;% > ex,04 < 71) = 0(x "),
then the union bound together with (4.24) will conclude the lemma. To prove (4.25), we
simply adjust the proof of Lemma 16 of [7]. First, Markov’s inequality yields

P;(My — M7 > ex,04 < %) < (ex) " Ej {(Ml - M) 1{‘7A<?1}1{M17M1>0A >ex}]

—x! % x (u)\x/
< (ex) " By Lfgf}(a§>;1(1{5<wk_l></x}max(ﬁ(Wk—l) e (Mi7) )1{M1M1>UA>SX}}

< (595)_K/1/E>1k [(AK/+< Z Ly 1)<A} Z Mgu))K>1{M1Ml>‘TA>sx}] :
1<k<ty ueQ)(wy)

But since the indicator function in this last expectation tends to 0 a.s. when x — oo, itis enough
~ /
to show the finiteness of E} [( Y1 Lg(wy_y) <A} LucO(wy) Mg”))K ] to conclude. Proving this

is similar to proving (4.17), with M§”) instead of Lgu). Indeed the only fact we need on Lgu) in

this proof is that E? [(Lg“) ) |B(u)] < CwB(u)¥ for a certain constant Cr, a domination which
is also satisfied by the Mg”) according to Lemma 4.6. O

Step 2 Recall the notation of the beginning of this Subsection 4.4.3. Let also for any u € T,
AV (1) :=V(u) = V().
The aim of this step is to get the following lemma.

Lemma 4.9. For all e > 0 small enough, for all A > A, large enough, for all x > 0 large enough,

(4.26) Py((a+3¢)x, (1+5¢)x; A) — 8ex Ky +o(x™™)
< Py(ax,x) < P((a—3e)x, (1 —5¢)x; A) + 8ex N K + o(x_"’),
where Py (ax,x; A) := ]f)’l‘(ﬁ‘TA(ng)Wéong) > ax, ,B‘TA(ng)Mf(zw”A) >x, 04 < 7).

Notice that the quantity K4 = E*[(%4 (wy,))*'1 {oa<7y] for any A > 1is finite according
to Lemma 4.7.

Actually, we will divide the proof in two parts, one dealing with L; and the other with M;.
The following two lemmas will immediately yield Lemma 4.9.

Lemma 4.10. For all ¢ > 0 small enough, for all A > A, large enough, for all x > 0 large enough,
4.27) i (|Ly — B4 (w0, )WL | > 3ex, oq < 1) < 3ex K4 +o(x~).
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Lemma 4.11. For all ¢ > 0 small enough, for all A > A large enough, for all x > 0 large enough,

(w

(4.28) P (M — B (we, ) M, JA)| > 5ex, 04 < 7)) < 5ex *Ky4 +o0(x7F).

Proof of Lemma 4.10. For x < 2, Lemmas 16, 18, 19 and 20 of [7] put together yield the result.
Actually the proofs of Lemmas 16, 18, 19 and 20 of [7] can be adjusted to the case ¥ > 2. Let
us detail this.

e For Lemma 16, it is the lemma we just proved in Step 1, Lemma 4.8.

e Let us now follow the lines of Lemma 18. Let Q := Ul Q(wy), and (Z,)uecq a fam-
ily of i.i.d. random variables admitting a finite moment of order «x’. This ensures that the
Y ue(wy) e~AV(1) 7, also have a finite moment of order «':

]/ET ( Z e—AV(u)Zu)K’ < ]/Eik Z e_Av(u)(Zu)K/( Z e—AV(u))K’—l
ueQ(wy) | ve (wy) ueQ(wy)
(4.29) —E | Y e V(Y eV = 77 < o,
[ [u|=1 v#uU

where the first inequality is obtained by convexity of x ~ x*, and where Z is a generic
random variable of same law as the (Z,),cn. Now we replace the inequality (4.26) by the
following (using (4.20) with N = 1 and z; = 1):

{187 ) — B (o) V0V O | B, 4V )
< C3(p4 (wE_l))K//z(e_AV(W) +e—K’AV(w€))

for a certain constant C3 > 0, and we can reach the same conclusion on f,4(x). Finally, we
have to replace (4.30) by

(4.30)
;| 2( | (B4 (1) — 7 (wr_1)e 2V N Z, [ | B (wy_1)]
ueQ(wy
[’ —1]
<Co(B(w 1)) PEL] Y (YD emAVUIZ k(YD e AVIIZETRy (Y e AV Z, )]

k=0 ueQ(wy) ueQ(wy) ueQ(wy)
/ -~ LK/_IJ /

<Ca(B™(we-)"PEf | Y (1 eI () e )Y max B{[ZMET (2N,

k=0 ueO(wy) ueQ(wy) 0<k<|x']
The second inequality comes from (4.20). The third one comes from the convexity of x ~— x*
(as explained in the remark after Lemma 4.7), and the linearity of the expectation. The finite-
ness of the first expectation comes from the many-to-one lemma and assumption 1.4. We
conclude following the lines of Lemma 18 of [7], by use of (5.31).
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e The proof of Lemma 19 of [7] adjusts to the case x > 2, as its arguments boil down to
those of the proof of Lemma 18 that we just showed adjust to the case ¥ > 2.

e Finally, let us deal with Lemma 20 of [7]. The finiteness E;|[( Yuea(wy) e*AV(M)Yu)K/]
is obtained similarly to (4.29). The last point is equation (4.37), which can be dominated as
explained in the lines that follow it, let appart that we use the convexity inequality rather than
Jensen’s inequality. O

Proof of Lemma 4.11. First, Lemma 4.8 yields that
(4.31) P; (

max B(wy) V max M >ex, 04 < T1) =0 x ).
1gk<aAﬁ( k) 1<k<os, ueQ(wy) A<T)=o(x7")

Recall from (4.22) the notation
M1>‘TA’Jr = max{M%u);u € Ul/?:;iQ(ZUk_i_l)}, M7 = max{B(wy);0a <k <7 }.
We will first deal with vertices outside the spine. We first want to prove that

(4.32)

P} (|M1>‘7A’Jr — (B2 (w max e_(V(”)_V(w”A)Mgu)H > Bex, 04 < T1) <3ex Ky,

UA) =
oa+1<k<7, MEQ(wk)

As we have shown before, Lemmas 16, 18, 19 and 20 of [7] apply to any ¥ > 1 for L;. We will
adjust them to get the same dominations on M;.

e Since B(u) — p74(u) > 0 for any u € T, we have

i Z (ﬁ(u) - ,BUA (M))Mgu) > max max (ﬁ(u) — ﬁUA (u))_/\/lgu),

k=0 a+1 MEQ(‘aJk) oa+1<k<my ueQ(wk)
and therefore the proof of Lemma 19 of [7] (with Z,, = Mg”)) yields
4.33 P max u) — B (u /\/l(”) >ex, 04 <T ) < ex MKy,
a3 (| max  max () — B ()M 4 <) <ex Ky
e Lemma 20 of [7] can also be reformulated. Indeed, it is shown in the proof that the two

terms of the sum in the right-part of the inequality (4.34) can be made smaller than ex ' K4

for A and x large enough. Replacing (Lgu), W )) by (Mg”), Mg”)) (which satisfies the same
hypotheses, as shown in Proposition 2.2) does not change the result. As a sum of positive
terms is larger than their maximum, we get that

P

_ %

( max  max |,B(u)/\/l£u) — Mg”)] > ex, 04 < ?1)

oA+1<k<my MEQ(wk)

(1)
P m M
< P* o4 (w)y V4 R
=h (UAJrlgl){(Sﬁ uea?zk)ﬁ (WM. B(u) | >ex/2,04 < T1>

()
P _ RYA (”)_Ml ~
P (mffgaﬁgﬁugg)?;k)(ﬁ(u) B (1)) | M ﬁ(u)w/mq)

(4.34) <ex MKy
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for A and x large enough.
e Finally, it remains to adjust Lemma 18. We will show that for A and x large enough,
(4.35) P; (|Mss)| > ex,04 < 7)) < ex K.

where

M(4.35) = ( max max IBUA (M)Mgu)> — (IBUA (wUA) max max e(V(”)V(waA))Mgu)) )

oA+1<k<my MEQ(ZUk) oA+1<k<Ty ueQ(wk)

To prove this, we follow the lines of the proof and replace the sums by maxima. The only
delicate point is when bounding g 4 in equation (4.29). We proceed as follows. We let

_— _ £ ~
£ale) = i (s, g 1720 =B eVl > e <)

If x > 2, Markov’s inequality yields

gA(x)S(gx)*"/]ET Y, X (ﬁ"‘*(u)ﬁ"A(wk1)€AV(”))Zu"/1{0A<a}]

k>0 4+1 ueQ(wy)

€ | Wk | / % !
< (50 "Ei Yo (B (wi1)" Py, eny | Ei[(Z0)"]
Lk>04+1
xGE; (Y ey 4(y eV
ucQ(wy) ueQ)(wy)

where the second inequality is due to (4.20) with N = 1. Using (5.31), we get
ga(x) < Cox M Ef[(B™ (we, ) 11, <5y] < CoA™™ 20 E{[(B7 (w0,)) 1o, <2,

which is smaller than %x"‘/ K4 for A large enough. If x < 2, we write

x'/2
ga(x) < (Ex)_"/lﬁi‘ E* [ Y Y 1B u) — B (wer)e AV Z Py, o2y ﬁUA(waA)]

k> a+1 ueQ(wy)
and we can use the same reasoning as in the case ¥ > 2.
Equations (4.33), (4.34) and (4.35) yield (4.32).
Let us now deal with the vertices on the spine. We want to prove that

(4.36) P (‘M1>0A’* — (B (wo, ) nax. ei(V(Wk)iV(waA))H > 2ex, 04 < Tp) < 2ex " Ky4.
oA<k<my
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First, the same reasoning as that at the beginning of the proof of Lemma 19 of [7] yields
that if one shows the existence of a constant Cg € (0; c0) such that

(4.37) Pi( X Bh(wi) > x) < Cox 7,
k>1
then R /
Pi( L (Blwe) — p(we) > ex, 04 < 1) < ex VKa,

kZO’A

which would yield

(4.38) f’f(max(ﬁ(wk) — B4 (wy)) > ex, 04 < ?1> <ex MKyu
k>04

as B(wy) — 7 (wg) > 0 for all k > o4. But showing (4.37) is similar to showing the dom-
ination of g(x) in the proof of Lemma 19 of [7], after replacing },cq(w,) e AV z, by 1,
hence (4.38) stands.

Finally, the same reasoning as that made for the domination of f4 in the proof of Lemma 18
of [7] but replacing Z, by 1 gives

439) P ( max_ |74 (wy) — B (we, e~ V@ TV@r))| 5 ey, 0y < ?1) <ex YKy
oa<k<my
Equation (4.38) together with (4.39) yield (4.36).
Combining equations (4.31), (4.36) and (4.32) concludes the proof of the lemma.
0

(thA

Step 3 Because of the independence between (874(w, ), 1(s,<71) and (W(SOWUA),ME

we only need to consider the joint tail P} (WgowUA) > ax, Mﬁw”/*) > x), which equals Q* (Wx
ax, M, > x). It then follows from (4.8) that as x — oo,

)
),
>

~ . _ D (woy) _r (o) YR
P1(ﬂx, X; A) =P (WOO = a,BUA (waA)lMe = poa (w‘TA)

~u(a)x ¥ K.

;04 < 7T)

So, letting x — 00, ¢ | 0 then A 1 oo in (4.26) implies that
Pi(ax,x) ~ 71(a)x ™ = u(a)Coox ™,

where

(4.40) Coo := lim Ky € (0, c0).
A—o00

The positivity of Ce can be obtained by use of Lemma 4.1 in [5]. By Lemma 4.5, one sees that

(4.41) IPy(Ly > ax, My > x) ~ n(a)x™,
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where o
7(a) = ouCoB[(1 A 2]

If we only use the tail of Wy, similar arguments imply that IP1(L; > x) ~ c x™* with
= CypCe. However, we could not deduce the tail of M; under Py as I/I\’i‘(Ml > x) =
HA’T(Ll >1,M; > x) =E; [L1; L1 > 1, M > x|. In the next subsection, we study the tail of M.

4.5 Tail of M; under IP;: proof of Lemma 4.4

It is immediate from Lemma 4.4 and (4.41) that as x — 0.
Py(My > x) ~5(0)x™",
with 77(0) = cuCeo. Let us prove Lemma 4.4 here, which mainly follows from Lemma 3.2.

Proof of Lemma 4.4. Let us consider P1(L; < er,M; > r) for e € (0,1) small and r > 1. Let
X = Yyer 1{ﬁ(u)2r>maxpg—u<uﬁ(v),minpq,g,/s(v)zz} for any r > 2. Obviously, {M; > r} = {%, >
1}. Moreover, for any u < L1, one has

|ul

=Y Y L1y +LY > L= Z Y LP1pep,

J=1z€Q(u)) j=1z€Q(u;)

Then observe that

Py (Ml >, Ll < 57) < ]El [Zrl{L1<sr}} < ]El erl{ﬁ U)>r>maxp<o<y [%(v),minp<z,<uﬁ(U)ZZ}l{Ll/”gsr}
uec

which by change of measures, is bounded by
n;llEl |: wn)l{n—0'7<:(\1}1{L{wn§£r}:|

So, one sees that forany 2 < A <,

1
IP (Ml > v, Ll < 87‘ S Z T 1{n=0'r<’/l’\1}1{L1/wn<8r}:|
n>1 =

lﬁ
1
[ {U'r<Tl} {Z] e ZZEQ ( )<£I’}]

As in the previous subsection, under P}, we can approximate L by B4 (we )ev(w”'A)_V(z) Wéf ),
and along the spine (wy)i>¢,, B(wk) can be approximated by B4 (w UA)e_(V(wk)_V(w”A)). In
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fact, we have

Py(My > 1Ly <er)

~ 1
S]Eik 1 0y <TH 1 z - z
Blwo) TSI Eacauy L7 =7 g, ) o)V OWD e

I/E\:* —1 211 —(V(wy) =V (w
T [,B(wm) tor <t {maXoAgkgﬂ [B(wg) =7 (g e~ V07 ”A)>|>”}]

%
TU,)l{MTl}l{ﬁ"A (wUA)Z\ﬁ}l{maxtrAgkg?l |B(aw) —p7A (w(rA)e(V(wk)V(w‘TA)><sr}:| + Eya)

I ~ 1
442) Ej ) =E] | ——
( ) 442) 1 ﬁ(wgr) {(71'<71} {2] 1 ZzeQ w ﬁ A(LUO—A)EV(WUA)_V(Z)W(&?SZ&T; 'BVA (wg-A)<\/7j}

x 1 _ _
{max,, <k<e, |B(wi) —B7A (wg, e~V V(‘““A>)<er}}

Notice that the third term of the sum is smaller than

. 1
Bt g <00 o 20 1)

<z <ﬁ‘7A(wU_A) > \r, o4 < T, Z e~ (V(wn)=V(we,) > (1 _g);))>

1
r n>oy4 ﬁUA (w‘TA
1~ Il
< ~B7 [ Lgon 207} Lioa <) Cro (87 (w0, )" r |
where the inequality is due to Fact 2.2(1) of [5] and the Markov property applied at time 4.
Moreover, one sees that

o~ o~ i 1
Ef, 4 <E] .
6o SEL VL By o Aty <v7) (D oty B o eV 904) Y O <2er

I’l:UA—I—l

X 1 —(V(w)—V(w
{maxe,, <k<ar |B(we) =B (g, e VRV A | <er <ep(we ) |

ad 14+¢

Yo~ (V(wn) =V (we,)) T o<y, B4 (w0, ) <vPE {37 (g e V)V 00D 5 (1-0)r)
A

<Ej
n=cy+1 ,BJA (wa

x 1 1 —(V(w) =V (w
{5ty Dt B9 o e VW) <0y | o 000 <14}
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Letry := log(m). We get that
eV(wn)fV(ng)

{,BUA Woy )<V/T, 0’A<T1} o Wl{V(wn)—V(waA)S—fA—IOg(l—E)}

1E(4 oy <(1+ e)E}

x 1
{27:0A+1 Zzeﬂ(w- e

]) (V(Z)V<ZUUA))W£§)<253"A}l{minth<k<”(V(wk)V(waA))>rA10g(l+€)}]

Consequently, for ¢ € (0,1/3) sufficiently small,
(4.43) Py(My > 1, Ly <er)

<= ]P1 ( Z Y. [L BT (we, JeV @)=V W) > er)

J=oa+1 zeQ(wj)

+107 (max [B() — 7 gy Je VYO 2 o)

- @E* [(ﬁ (waA))K_ll{ﬁm(wU.A>zw}1{aA<ﬁ}] + (1+ ) Efy 4
where
(4.44)

oV (@) =V (@)

o . T 1
{ﬁ A(ng)<\/?,UA<T1} Z Boa (ng) {27:17A+1 Y.co

n>oa+1

(wj) e*(V(z)*V(waA))Wg) <2¢exp(ry) }

X 1{minaA§k<n(V(wk)—V(ng))>—rA—s; (V(wn)—V(ng))g—rA—kze}] ’

with r4 > log(r)/2. According to the Subsection 4.4.3, one sees from (4.43) that for A > 2
fixed and r > 1,

(4.45) Py (M > r,Ly < er) < Cryer ™+ 0,(1)r " + 2E(, 4.

Here for I/E:la 11y, by Markov property at time 04, one has

IEEZ.ALLL) = Ej

1{ % . T
B7A (wo, ) <V/TTA<TL } _(4.46)
Y Eq. (& 74)

where for any 61,6, > 0,

(4. 46)
(4'46) EQ* ngl EQ* [6‘ )1{V(w,,)§—rA+28, ming <g<y_1 V(wk)>—rA—£}

) e—V(z)Wg) <2eexp(ry) }] ’

x 1
{27:1 ZzeQ(w
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Let us claim that
(4.47) lim sup lim sup e”ES;%) (e,7) = 0.

el0 r—»00

It mainly follows from Lemma 3.2. We postpone its proof in the Subsection 5.2. Then (4.47)
implies that

0e,r(1)
rK

1{15‘7/‘ (o, )<VTroaA<T } o—KrA

B4 (woy,)
Plugging it in (4.45) yields that

Efup) = Ef Os,rA(l)] < E [(ﬁ"A(waA))"‘l;aA < ?1] :

limsup limsup r*IP;(M; > r,L; < er) = 0.
el0 r—00

5 Proofs of the technical lemmas

5.1 Proofs of the technical lemmas in Section 3

Recall that ¥(1) = ¢(x) = 1 and ¢(—1 — ) + P(x + ) < oo for some § > 0. We have the
well-known many-to-one lemma.

Lemma 5.1 (Many-to-one). Assume (1.2) and (1.3). For any n > 1, x € R and any measurable
function g : R" — R,
(5.1) E, [ Z g(V(zl), e ,V(zn)>] = E, [65”_"g(51,--- ,Sn)] ,

where (Sy) is a random walk with i.i.d. increments such that

E[S)] = E

). V(Z)ev(z)] >0, Ele® DS =1, E[e’ +¢ (1105 < oo,
|z|=1

In particular, under Q%, (V(w;);1 < i < n) has the same distribution as (S;;1 < i < n) under P,
where Py(Sg = x) = 1. Similarly, as ¢(x) = 1 and ' (x) > 0, we have
(5.2) E, [Z g(V(Zl), . ,V(zn)>] —E |:eK(5£,K)—x)g(S§K),,.. ,S,(f)) ,
z|=n
where (S,(f)) is a random walk with i.i.d. increments such that
E[s{Y] =E [Z V(z)eKV<Z>] <0, E[1+08" o051 < oo,

|z|=1
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Moreover,
(x) K K
(5.3) Ex [9(S1,- -+, Su)] = Ey [e DS —g(sid ... gy

Before proving the lemmas, let us state some classic results on random walks (S, ),>0 and
(S8 )nzo.

5.1.1 Renewal theory for one-dimensional random walk

Forany 0 <j < n,let

Sljn] = max Sk S S[jn] —Jg;{lgn Sk, and V (wy; ) = max, V(w), V.(wp ) :—]glgn‘/(wk)

(x), %+

For the random walk (S,(:())nzo, we define the renewal measures Ug
the strict ascending/descending ladder process by

corresponding to

T(©F_1
(5.4) U (o, x [ ): 1{iS }],szo.

with 70+ .= inf{k > 1 : S]EK) >0} and 79~ ;= inf{k > 1: S,EK) < 0}. And the renewal
measures corresponding to the weak ascending/descending ladder process are defined as
follows:

#(6)F 1
UL(UK)’:E([ [ Z 1{is }] ,Vx > 0.

with 09+ .= inf{k > 1: S]((K >0} and )~ ;= inf{k > 1: S ) < 0}.

As usual, we set the strict renewal functions to be R{")"* (x) := UF([0,x]). Then itis known
that there exist constants C3* € (0, c0) such that for any & > 0, as x — oo,

RYT (x) = ' and UM ((x = h,x]) — 7 h,

As E[S%K)] < 0, its strict descending process, denoted by (f,ﬁ“)", A,(f)’_

strict ascending ladder process, define the epochs by

)n>0, is proper. For the

77" = inf{k > {97 5 > 81 ), vn > 1,
Th-1
with fék)’Jr :=0. On {%,ﬁ"“ < oo}, let Aot = gl 2 . Then

R (x) = B Y L0 <) and R _Elzl{ A }]

k>0 k>0

Write I(x) for (—x — 1, —x].
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Lemma 5.2. Under the assumptions of Lemma 5.1, for any a > 0, as x — oo,

Z eSk-l—Kx N e(K—l)al —e" CS(K)/* uz(UK),Jr([O; [Z)),
& {S[lk <0,Sc€l(x)} X

(5.5) E_, [

In addition, there exists a constant cy > 0 such that for any x > Oand a > 0,

(5.6) L;O eI {S[lk <0,Sx€l(x )}] < ol +a)e™

Proof. Let us consider

(5.7) -yr a( Y <0,5/" > x),Va,xZO.
j>0

Note that (SZ(K) )1<i<;j has the same distribution as (S}K) — S}i)i)lgig j- As a consequence, for
any a > 0,

ZP <aS]()>a—x)

j>0
— () ( ) ()
JE=

As the associated descending ladder process is proper, this implies that

26)—_q
n+1
R , = E 1 i )
(x,a) nz>0 j_%)’ {S<)<a+5f0) " S(>>a7x}
— i—;g;jr)ii_l
= E 1. B 1 A ) ’
né%) - {Hy(lK)' >—X}] fZVEK“), {a—x<5;")<a+Hr(lK)f }

which by Markov property at time 7, ”  equals to

Y E { () x}uz(;‘)* <(a —x— Hﬁ“”‘,a))}

n>0
= BE[1ns g ©0)] - D100, Ul (002 A7)

This means that for any 2 > 0 and x > 0,

68 R(xa) = UL ([0,0) R ()~ [ g™ (10,0 — x + u)) UL (du).

[(x—a)+,x]
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As U (R) = ct e (0,00), one sees that there exists some constant c3 > 0 such that for
any x > 0,

59 Y P, [ <0,5" e I(x)} — R(x+1,a) — R(x,a) < c3(1+a),Va > 0.
k>0

Moreover, for any b > 0, as x — oo,
(5.10) R(x +b,a) — R(x,a) — UXT ([0,a)) .
It follows from Lemma 5.1 that

Si+x _ (k—1)a
[Ze"” {Sun0sicic >}] ‘ Ea[D st <ostein)

k>0 k>0

Clearly, we have

Lgf)eskﬂx {50 <0SEl(x )}] < e (R(x+1a) = R(x,a)) <c3(1+a)e”.

Moreover, for any a > 0,

E : Sk—|—Kx
e

0,5yl
[k>0 {SpK<0Scel(x )}]

et [y e (5195 0,50 < 0,50 € (~x—1, -] du
k>0

1
—e(*" V"X (R(x 4+ 1,a) — R(x,a)) 4+ e DA / ke “(R(x+t,a) — R(x,a))dt
0
which, by (5.10), converges towards

1
elk=1)a (e"‘ +/ Kte_"tdt) CS(K)’fl,IZ(UK)’Jr([O,a)),
0
as x — oo. Here e " + fol kte *dt = (1 —e %) /x. O

5.1.2 Proofs of lemmas 3.4, 3.5, 3.6, 3.7 and 3.2

Proof of Lemma 3.4. The upper bound is quite easy. In fact, observe immediately that {M <
—x} implies that {}_, ct 1{V(u)§—x<minp<v<u V(o)) > 1} So, by Markov inequality then by (5.2),

P(M < —x) <E 1 E <-x< st
( []021 |§k {V )< —x<minp<y<y V(0) ] k>21 |: 1<1’11’1<1]1<’1 1!
e ™Y P(S < —x< S( x)
e
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For the lower bound, let us introduce the following events for any u € T:

|ul

E,:={V(u) € I(x),V(u) < min V(z)}, and FL = {Z Z A+ < L}, VL > 1.
p=z<u k=1zeQ(uy)
Define
N(x) = Y Lg,y NL(x) o= ) Lpylpy-
ueT ueT

Then, by Paley-Zygmund inequality, one sees that

E[Np(x)]?
(5.11) P(M < —x) > P(N(x) > 1) > m

Let us estimates the first and the second moments of N (x). Note that by many-to-one lemma,

ZE|:21{V )<V (ujg 1)

n>1

. ad )=
—E Lg;)ex ¢ 1{1:115")'_61(36)}]

e UM ([, x +1)) <E[N(x)] < e UM ([x,x +1)).

Consequently, there exist 0 < ¢4 < c5 < oo such that for any x > 0,

=) E { s 1{ <5t ],s,(f)el(x)}

n>1 =[0n-1

So,

(5.12) cge” ™ < E[N(x)] < cse™™.

Note that E[NL(x)] = E[N(x)] — E[¥,cT I{Eu}l{(%)c}]. Let us bound E[Y_, ot I{Eu}l{(%)c}].
In fact, by Proposition 4.3,

1 1 Eo- n1 1
[u;'[ {E } { FL ] Z Q |: {V wy )<V (w Wio,n— 1])V(wn)el(x)} {Zzzl ZMEQ(wk) e*K(V(u)+x)>L}

Observe that L > Y/ 4 2k2 It follows that

e[S tetgnn)

< Eo+
Z Q [ 1{V (wn) <V (wyg —1]),V (wn) €I (x } Z 1{Zu60(wk) e—Kk(V(u)+x)~ ___ 6L 2}]

= L1 i

n=1 =1 m2(n—k+1)
6Le"*
i W) e ,—kV(wg_1)
< 1121 kz: Eq [ {V(ZUn)<Z(w[0,n71])/V(wn)el(x)} Ak i (n—k+1) }
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where Af = },c0w,) e~ *AV() | From the fact that (AV(wy), A} )1<k<n have the same law as

(Av(wn—k+l)/ Aen_k+1)1§k§n/ one sees that (V(wk)/ Ai)lgkgn and (V(wn) - V(wn—k)/ AZ_H_k)lgkgn
have the same law. As a consequence,

E 1 1 c
[;r AR }]

Wy e xV (w,_ —xV (wy, 6Ler
< Z ZEQ* |:eV( )I{V(w[lrn])<O,V(wn)€I(X)};Aﬂ*kJrle V(wy k1) —xV (wn) > :|

”221’; m2(n —k+1)?
< o n E V(wn)l i\ kV (wy) > 6L
> 1h=1 o+ |€ {V(w[lrn])<O,V(wn)€[(x)}, € > W

n= =

K

— s ¥ e s Sn—k _

k;EQ [1 {V(w[l/k])@,_v(wk) SlogAk+21nk71n<6L/n2>} n:kEV(Wk) [e 1{5[1,nk}<0'5nk€1(x)}i|] '
where the last equality follows from the Markov property at wy. Note that {V(w;);1 < i <
j — 1} which is distributed as (S;1 < i < j—1), is independent of (AV(wj),Af). Let us

introduce a new couple (g, A°) which under P is distributed as (AV(wy ), A{) under Q* and is
independent of the random walk (Si). By (5.6),

(5.13) E[u;rl{Eu}l{%)C}]

1
k=1 [ {V('w[l,k])<0,7V(wk)S X

(o]
<cpe ™ Z EQ* In A¢ +2Ink—log(6L/72) } (1 - V(wk))e_K V(wk)]

00 A€ ’ /
<cee X 1 ; 1+1Ink)(14Ing —)e ¥ S%-1e7KE |
=Ce€ k:zl [ {S[l,k1]<0,5k—1§§+W}( o )( e CL)e ‘ :|

Observe that for A € (0,«’), we have a) := —log E[eAS%K)] > 0. Thus, for any a < b,

E [1 = e*"/sk]
{S[l,k]<0' ﬂ<—5k§b}

— o
:P <SE§}<] < O,[Z < _S]EK) S b) S e/\bE |:e/\sl(< :| < e)\b—a/\k.

It hence follows that

prr cL

A (ANME e
ZH (= (A=x)¢
(1+1Ing cL)(cL) e ] :

| S et | <o B mones e o
uc

A [ AN\ME ,
= (A=x")C
(1+Iny cL) ( ) e ]

<cge ™E
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Now observe that by Many-to-one lemma,

E [(1 +In, Ae)(Ae)/\/Ke(A—K’)g]

Ak
=Eqo- A=)V (wy) ( eKV(Z)) (1+ln+ ( Z eKV(z)))
z€Q(wy) z€Q(wq)
[ MK
<E Z e(A—K)V(u) ( Z eKV(H)) (1—|—h’l+ ( Z eKV(u)))
ul=1 lu[=1 |u|=1
: K—A Ak
<E ( Z eV(u)) ( Z eKV(”)) (1 +1ny ( 2 e;d/(u)))
lu|=1 lu|=1 u[=1

where the last inequality holds as k — A > 1. By Cauchy-Schwartz inequality, one has hence

E [(1 +Ins Ae) (Ae)/\/xe(/\—;c’)g}

Kk (k—A)/x k/AT A
. [( 3 um) ] ' ( 3 eKv<u>) (1+1n+ ( 3 ewi)) .
lu|=1 |u]=1 lu|=1

by Assumption 1.4. As a result, E [Zue"ﬂ" 1{Eu}1{(1:15)c}i| =or(l)e™andforL > 1,x > 1,
coe ™ < E[Np(x)] < cppe ™.

For the second moment,

E[NL(x)*] = E[NL(x)] +E

Z l{EuﬂF[;}l{EvﬁFvL}]

u,veT;u#v

+E

—E[N,(x)] +E [ Lo Yeorleor)

u,oeTuv;urve{u,v} u,veTu£v;urvé{u,v}

Z 1{E1,0F£}1{EUOFUL}]

§C10€ + 2E —+ E

Z l{E nEk} < Z l{Ev}>

ueT vIo>U

=cioe " +2 ) E [ ). 1{15 nFL} ( Y. L, }>

n>1 |u| 0:0>U

1zeQ(uy) viv>z

Z 1{}5 nFE} (i Z Z 1{Ev})]

+ZE[Z 1{Eu FL (Z Z Z 1{Ev}>]

n>1 |u| 1zeQ(uy) viv>z
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which conditionally on FY or on o ( (1, V(ur))1<k<u|), is bounded by

cloe” ™ +2 Z E ! Z l{EuﬂFL}E[ (x+ V(”))W(”)]]

n>1 |u|=n

+ZE[Zl{ENL} (i Y. E[N(x+V( ))V(z)])].

n>1 |u|=n k=1zeO(uy)

In view of (5.12), for L > 1, we have

E[NL(X)Z] =C1p0€ KX +C11 Z E [ Z 1{Eu —x(V(u )‘HC)]

n>1 |u|=n

et p ]

|u|=n 1zeQ(uy)
Scloe K + CllE[N(X)] + anE[N(x)] < ClzL(Z X
Therefore, for L sufficiently large and fixed, we conclude from (5.11) that

P(M < —x) > cpze ™.

+cnn ) E

n>1

O
Let us introduce some notation here. For any k > 0, let
Mg := inf V
ei= nf Viu).

Forany u € T\ {p}, recall that AV (u) := V(u) — V(%). Let
M@ = inf (V(0) = V(u)), andM == inf  (V(0) = V(u)).

vio>u vio>u,|v|<|u|+k

Write «’ for x — 1.

Proof of Lemma 3.5. In fact, we only need to show the convergence of ¢**E [47()/\/”*'9)1 {Me I(x)}] .

Recall that u* is chosen at random among the youngest individuals attaining M. Then,
observe that

u*,< _ 1 u,
E [4’(W *t)l{Mel(x)}} —k;E RS T |M|Z_kl{V(u)—M,V(u)GI(x)}(P(W <t)]

:ZE 1

=1 |k Zlol=k Ly @)=vw}
(5.14)

:ZE 1

=1 | ek Hll=k Ly e)=v}

Lva=m<m1,v(er()} Ying, v(z)>v(u)}4’(W”’<t)]

Livw=m<m v(ner) [{mf‘zbkv >V(u }<P(W”<t)lfk]
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Notice that
WSt — st 4 Wi

where W= 1= Y V0V 00y 0 e VAW with AV(z) = V(z) - V(T). This
yields

E {1 fintyp Vv (0} POV | FY ] — E[pW=t 4 Wi quws0} | Fi 1 |Z_k]’[#u F(V(u) - V(2))

oWy x T E(V() - V(o)

|v|=k,v#£u
where F(t) = P(M > t), and
®(a) := E[p(a + Weo)Liy>01], Va > 0.

Since ¢ is continuous and bounded, so is ®. By the many-to-one lemma, equation (5.14)
becomes

(5.15)

E [<P(W”*’St)1{mez(x)}}

ev(wk) <t —
=) Eo: 1 _ Wy =) x  [] F(V(wx)— V(v
k>zl Q Z‘v|:k1{v(v)zv(wk)} {V(wk) Mk<Mk,1,V(wk)€I(x)} ( 0 ) ‘U|:k’v;éw]( ( ( k) ( ))
Y E - e?t) 1 oW x T 1
— * _ X v .
& Q Y |k 1y (o) =V ()} {V (wp) =M <M1,V (wy)€I(x)} e+ {MO+V (0) >V (wy) }

Here, one sees that

Y Lyve)= wk}—1+2 Y Y lwe=v)

|v|=k J=1zeQ(wj) [v|=kv>z

The event {V(wy) = M < Mg_1} N ﬂ|v|:k,v;éwk{M(v) + V(v) > V(wy)} can be rewritten as

V(wy) < Vo) | N V@ +47 > Vi), Viz) + 45 > V(wy)}
zeu;‘zlﬁ(wj)

Then, (5.15) becomes
[4’(Wu =uer() ] Y Xk

k>1
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where

eV(wk)]{V(wk)eI (x) }1{V (wi) <V(wior— U)}

1+Zk 1Ey€Q ) Lio|=ko>y L{v(0)=v(wy)}

Xk == Eg DW=

X 1 @) :
Ezeln—(le) {AV(Z)—i—M,FFl>V(wk)—V(wj_1),AV(z)+M< )ZV(wk)—V(wj_l)}

To simplify this expression, we observe that only sufficiently large kK make contributions to
the sum. Let us first prove the following result. For any b > 1,

(5.16) lim ** Z Eq- [ (wk);V(wk) € I(x), V(wg) < Z(w[O,k—l])] =0,

X—>r00 k<b
which means that as x — oo,

(5.17) E [¢OV" )1 periey| = 1 a0+ 0(e™).
k>b

In fact, by many-to-one lemma,

e Y Eqg [ev(wk); V(wg) € I(x), V(wy) < Z(w[o,k—l])}
k<b

<ex 2 E |:€KS;(<K);SI£K) < —x, SI((K) [Ok 1]:| 2 P ( )

k<b

Recall that E[e~%° gx)] < oo for some 6 > 0. Then, by Markov inequality,

erk‘L;t?EQ* [eV(wk);V(wk) < I(x), V(wk) < K(w[o,kfl])} < kg}:]e—ME[e_(ssg")]k _ Ox(l),

as x — oo for any b > 1 fixed. This implies that

(5.18) Y e xp = 0x(1).
k<b

So it suffices to study xj for k sufficiently large. Next, for any integer k > b; > 1, let us
introduce the event

Ex(by) = {Vj <k —b1,Vz € Q(w)), V(z) +M&) > V(wy) +1}.
We claim that
(5.19)  lim lim e Y Eg [e @), v (wy) € I(x), V(wy) < Z(w[O,k—l])}Ek(bl)c] =0.

b2>b1—>00 X—00 k>b2
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Let EI(<5.19) denote the expectation in (5.19), observe that

k—b;
EI((5.19) < Z% Eq- [ev(wk)l{V(wk)el( V() <V (s 1)V :dz € Q(w]) V(z) + M3 < V(wy) + 1}
]:

k—b,
= L Bor [y et viw <viog ) @ (32 € Q@) Vi) +4E) < Viw) +1177) |
j=1

where F{* := o{(w;, V(w;) )1<i<k, (V(1), u € Q(w;))1<i<k }- Given the spine, one sees that
Q* (32 € Q(wj), V(z) + M3 < V(wy) + 1‘;,3’) <IA[ Y PM< X))y vio
zeQ(wj)
which by Lemma 3.4 is bounded by
1A ( Y eK(V(wk)V(Z)H)) — 1A (eK(V(wk)_V(wj—l))"‘lA;’) ,

z€Q(wj)
where A;? = Zzeﬂ(w],) e *AV(2) Tt then follows that

k—by

(5.19) V(wg)—V(wi—1)) e\ .V (wy)
k;b i <k>zb ]Z Eo | (14" ) Ly i) ) <V 1))
2 2

T V(Wi i) v (wy)
Zk;b ]; Eq- [(1 AT ]+1) - l{V(wk)eI(x),V(w[Lk])<0}}
U2 J—
k JE—
=Y Y Bo [(1AeV@A) V)V (wy) € 1(x), Viwpg) < 0]
k>by j=b1+1

where the equality follows from the fact that (AV (w}), Z,cqw ) 0V (z ))j=1,-- k are i.id. and
has the same distribution as (AV(w}), C.cqw ) 0av(z 2))j=kk-1,. 1- By the Markov property at
time j and (5.6), one sees that

k
2 E]((5'19) S Z Z EQ* [(1 AeKV(W])A;) 1{V(W[1,J])<O}Ev(w]) |:€Sk_j1{Sk7jel(x)r§[1,k7j]<0}:|:|

k>by k>by ]:b1+1

14 e Sk_i
= Z Eo [(1/\6K (w])A) {V(wp,;)<0} £ ZEV [ k jl{skfef(x%su,kﬁo}]]

j=b1+1

< et bz Eor (1A eVE8) 1, eV (1= V(w)]
J=b1+
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Moreover, observe that forany L > Oand a > 0,1 A eKV(wf)A]e. < eltk—a)V(wy) 4 1{
So,

lnAj.’ZL—th(wj)}'

(1 A eKWwJ')A;) e V) (1 - V(w)))

SOV (1 -V )+ (= Ve
n = — w]

It hence follows that

(5.19) I ©— 1—
(5.20) k;; B, <cpe bz Eq: | (1— V/(wj))el =V LTy, <o}]
>by j=b1+1

+te Y Eg {(1 — V(w;))e V@1

j=b1+1 {V(w]‘)f(lnA]e.L)/a;V(w[l,j])<0}:|

Note that {V(w;);1 < i < j— 1} which is distributed as (S;;1 < i < j— 1), is independent of
(AV(wj), Af). Therefore, the first sum on the right hand side of (5.20) is

eL Z EQ* [(1 . V(w]-))6(1_“)V(wf)1{V(w[1,j])<0}]

j=b1+1

= N B[t g gy | = cton 1),
j=b1+1
because } 2 ) E [(1 - Sj)e(lfa)sjl{g[ljﬁo}] = [ 1+ x)e~ =03 (dx) < oo for any a €

(0,%). Let us take « = 1. Then, similarly as (5.13), the second sum on the right hand side of
(5.20) is

i B —«'V(w;) B
; §+1 EQ |: 1 ( ))e : 1{—V(w]-)g(lnA;:’—L)/tx;V(w[l/j])<0}:|

<cE [ C(1+1InA° )Lin >y E [Ze KSfl{ Sj<{+InAc—
>0

Here E[Y ;> e_K/Sjl{—S-<x,§1 4 <0}] = u- [0,x] < cgr(1+x)forany x > 0and cg > 0. Asa
consequence, I

e 'V (wj) 7
(5.21) ]§+1EQ {1 V(wj))e ]1{V(wj‘)<(1nA]B‘L)/O‘;V(w[l,j])<0}]

§C14E [eiKlg(l + ll’lAe)l{lnAezL} (1 + €+ +In A¢ — L)]

<cpE [e_K/g(l + (InA)? + Cz)l{lnAsz}}
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which is

ueQ(wq)

c1Eq- |:e"'V(w1)(1+(ln( Z eKV(M)))2+V(wl)z)l{ln(zueg(wl)eKV(u))>L}]

<cuE [Ai(l +In Ai)Zl{mAgzL}] +E [(SgK))zl{lnAiZL}}

where AG 1= Y, e *V(), By Assumption 1.4, E [A% (1 +1nA%)?] +E [(ng)y] < 0. We
hence deduce that

. _ —«'V(w;) B _
]%159 (A= V@D )| = o0

Therefore, } >, e"xE,(f'lg) < elo,, (1) + 0r(1). Recall that by > by. Letting by — oo then L — oo
leads to (5.19), i.e.,

lim erE(5.19) 0.
by2by =0 53 k
Let
ev(wk)]_
{V(w)el(x)} wy, <t
xk(b1) :=Eq d(Wy=hH1
1 +Zk k—b;+1 ZyEQ ZU] Z|U| kv>y 1{V( ) (wk)} {V Wk <V( [Okfl])}

k

X 1 (2) : ,
]kl—bllﬂzelﬂ—(Iw]) {AV 2)+M >V(w)-V(w ~,1),AV(Z)+M<)ZV(wk)—V(w],l)}

In view of (5.18) and (5.19), it suffices to study the convergence of

(5.22) Y e x(br).
k>by

Letforu € T, E(u) := (v, V(v) — V(u))p>yu. Observe that for by > t, as the random variables
(AV(w;), Cue(w) O(av(u),ew)))1<i<k are i.i.d. hence exchangeable,

eV(wk)l V(w
)<0,V (wy) €1 (x) —
Xk(bl) :EQ bl { [1,k] k } q)(WOSt)l{Ebl}
T+ Y it Lyeow)) ve"ll" {v )=AV(y)}
where
t+1
Woét — V" V(W) Y e MVEAWE and Vy(v) = V(v) = V(y), Yo >y,

j=1 zeQ(wj)

) ._ ) _ ; .
T ={oeT:v2y o =|y[+j} and1sz y:= H [T 1{ )2V () AV (2) >V (w) AV ()}

=1zeQ( w]
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By the Markov property at time b, > b; and Lemma 5.1, one gets that

V(wy,) Sptxxq
Z - eV (W, 1{?( Wi p ]<0)}Ev(z¢w2) [Zkzoe k 1{5[1/,( <o,skel(x)}} <I>()</_V<t)1
A TR 0 o)
k>by 1+ Ebl . ZyeQ UGT {V AV(y)} { bl}
where by (5.5),

—V(w 1—e7% — )
EV(sz ZeSk+Kx {S[1k<0 s.c1(x )}] e V(wy,) ( )CS(K) qu;K)+([0/_V(wb2))),

k>0 K

as x — oo. Therefore, with C, := (%) CS(K)'*,
(2=1)V(wp, ) 7).+ _
e 2/ Uy " (10, V(wbz)))l{v(w[1 b2]<0)}
lim Z erXk bl) CKEQ by
X—»00 k>b, 1 + Z =1 ZyEQ ZJET {V AV(y)}

%
q)(WOSt)l{Ehl}

Note that Y 1~} e xx(b71) is non-increasing in b; and by. We thus deduce that
k>b, € X &

(5.23) lim e E [V <) Lerey | = (1—¢)EH(9)

X—>r00
with

e(Z—K)V(whz) uz(UK),-F ( [0, —V(wb2 ) ) )1{V(

K w[l by] <O) }

E(p) := lim lim

1 lim —"—Eq b
bi—ooby—o0 1 — €~ T+ Y0 Yyen(w, UGT {v V(w)-AV(y)}

( by

<t

5.24 Sd(W5 1

( ) x )Ezelﬂ_([wj) {M(Z)zv( wj) —AV(z) M (>2>V(w1) AV(Z)}

Similarly, for any j > 0, one could prove that

lim ¢*'E [‘P(Wu*’gt)l{MeI(xﬂ)}] =(1- e_K)e_Kjgt(fP)

X—>00

which implies Lemma 3.5.

Proof of Lemma 3.6. In fact, it suffices to show that for any 6 > 0,

|u*|—t
(5.25) lim sup P ( Y, ) MVEWE > S, Me I(x)) =0.
+
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Again by change of measures, one has

(M*Zt Y e E>smel(x ))

1 zeO(ug)

< Z e*E [ Z l{u:u* V(u)el

1
s X _ _ z
k>t+1 |u|=k (W)l(x)} {Z;(:{ Zze()(uj)eM V<Z)W£o)>f5}]

< ¢“Eg |eV (@1 1 .
_kZ;'_l Q [ {V(wk)<Z(w[Ork,1]),V(wk)el(x)} {Z}(;ltzzen(wj)eV(wk)—V(z)W(Z)>5}

One sees that conditionally on the spine /¥, by Markov’s inequality,
21
wk > w < -
(Z Y. e WG (5.7-")_1/\(2 Y. e 5),
j=1ze0)(w;)) j=1z€Q(w;)

since E[Ws] = 1. Note that if we write A]‘? = Yee0(w)) e~2V(3), then Yze0(w)) eV(w)-V(z) —

eV(wH*V(wJ‘fl)A;’ with V(wy) € I(x). So,

k—t 1 k—t [ V(W) —V(wj1)Ae
A Z Z VW)=V 2 ) < Z N
J=1zeQ(wj) 0 j=1 Y

k—tl k—t
<Y e (V@) -V(w)(1-a) )
—]:156 ] +]Zil{wza<v<wj D=V(w) |

It follows that

1 zeQ(uf)

(526) P (Zt Yy e ) >6Me I(x ))

—tq .
= Z xEQ* [e (we) 1{V (wy) <V (wio 1)),V (wy)€l(x 23 V(@) =V DC)]
k>t+1 =1

k

—t
KX V(wy)
+ k>;+1 e EQ* [e k 1{V(Wk)<Z(ZU[0/k_1]),V(wk)EI(x)} ]; 1{1{1 A;ZD((V(wjl)V(ZUk))}]

We only need to prove that the right hand side of (5.26) is 0¢(1) as t — co. For the first sum of
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the right hand side, by time reversing then the Markov property,

Z erEQ* [ Vo 1{V (wy <V(w[0k 1 V(wy)el(x }Z € V()= Vi ))(104)]

k>t+1
Sg+xx (1—04)5}
k>§1] ;1 5" [ Lspy<0sie1()} ]

1-4)S; 68
5'5 [( Wity <0} ; ZES T, <osiels )}]]
]>t+1
which by (5.6) and for « € (0, 1) is bounded by
®)S; —«'S;] _
2 B[i g 15 =)

]>t+1

since } ° ) E [(1 - S]-)e(lfzx)sjeﬂc Sjl{g[l,j]<0}] — [P+ x)e*(lf"‘)xus(")’_(dx) < o
On the other hand, for the second sum on the right hand side of (5.26),

k—t
kxg | oV (wk) )
k;rle Eq [e l{v(wk)<Z(w[0,k_1]),v(wk)el(x)} ]; 1{1nA]¢iza(—v(wk)+V(wj1))}]

k
— V(we)q
- Z Z Eq- [6 ¢ 1{V(w[l,k])<0,V(wk)€I(X)}1{1nA]?2ocV(wj)}}

k>t+1 j=t+1
- ¥ Eo |1, ; Ev [e1,5 |

Again by (5.6), one gets that

k—t
k>§r1 "Eq [ 1{V (i) <V (wio 1)),V (w) €1 (x) } El{lnA]%a(V(wk)+V(wj1))}]

< . - i . N ,—K'V(w;)
< Z Eg {I{V(w[w])<O,lnA]“»>—tXV(wj)}(1 V(wj))e ;}

Suppose that under P, (7, A°) is independent of the random walk (S;) and is distributed as
(AV(wj), A]‘f ) under Q*. Similarly as (5.21), one sees that

Z1EQ* { [V(wy,)<0in &> —aV(w )}(1 - V(wj))e_K/V(Wj)} <ci5E [e_'{/g(“r (1n5€)2+52)} '
]>

Here E [ —*e(1 + -3 L (InA®)? + QZ)] < o0 by Assumption 1.4. This means that

KXE « ( 1 1 _ 1 .
kg_le Q {V Wi <V( Wok— ] wk GI } Z { (wk)+V(w] 1))}] Ot( )
This suffices to conclude Lemma 3.6. -
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Proof of Lemma 3.7. Observe that forany M > 1 and x > 0,
PIW" > MM < —x] <c146™P ("Weo > M, M < —x)
<166 P(Wo > Me")
Recall that P(Weo > 1) ~ Cor™*. Itis immediate thatsup ., PPDV" > MM < —x] = opy(1). O
Proof of Lemma 3.2. For small ¢ € (0,1), let us consider P(r) := P(We < €', M < —r) for
r > 1 and prove that

lim sup lim sup "' P,(r) = 0.
el0 r—>00

Observe that by change of measure (Proposition 4.3),

(5.27) eP(r) < ) ¢"E [ Y 1{V(u)M<Mn1,V(u)<r}l{Woo<ee’}]

n>1

Kr V(wy)
< rge EQ* [e 1{V(wn)g—r,V(wn)<K(w[1/n_1])}}

+ " Eq | eV (W1 1
ngrl Q [ {V(wn)S—T,V(wn)<Z(w[1,n71])} {2;1:1 ZZEQ(ZU]') e*V(z)WtE:)SSer}
=:Eq1(r) + Ex(7).

It is proved in (5.16) that E1(r) = o0,(1) for any fixed b > 1. Note that g := P(We > 0) > 0,
and that P(min|,|_; V(u) < K) > 0 for any K € R sufficiently large. Consequently,

(5.28)

Kr V(wy) <
Ez(i’) < Z € EQ* [e ¢ 1{V(wn)S—T/V(wn)<v(w[1,n—1])}]__l;[bl{iﬂzeﬁ(wj):AV(z)gKandW£)>O}]

n>b+1

KR, | oV (Wn)
+ n>Zb—:|—1 ¢ EQ |ie 1{V(wn)§—r,V(w,,)<Z(w[1ln,1])}1{W; minn,bgjgn EV(ZUH>V(wj_1>K§S}1

=: Ep(r, extinction) + Ex(r, survival)

where W, is distributed as P(We € :|We > 0) and is independent of F¥. First by time
reversing then by the Markov property, one obtains that

Ey(r, extinction)

b+1
_ —Ki V(wy)+x(r+i) _
=), ), ¢ "Eg [e 1{V(wn)61(r+i),V(w[1,n])<0} E l{ﬂzeﬂ(wj):AV(z)SK and w£§>>o}]

i>0n>b+1
b+1
=) Eg H IT (=1ve<9) (Ve <0}
i>0 j= 1zeQ(w])

Sp_p_1+x(r+i _
X Z EV(wb+1)[e el 1)1{5[1,nb1]<015nb161(7+i)}]]
n>b+1
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which by (5.6) is bounded by

b+1
Bor ¢ MR T () Vg ]

b+1 1/2
< Eq- {eMZﬁl Zzeﬂ(wf)1{AV(Z)<K}€_K/V(WH1)} Eg: [(1 - V(wbﬂ))26_K/V(Wb+1)1{7(w[1 b+1])<0}] -
, b+1)/2 1/2
— EQ* |:e_25/2ze()(wl) l{AV(z)SK}e_K V(wl):|( 1/ EQ* |:(1 — V(wb+1))2 —x'V( (Wp11) 1{ 1h+1 <0}:| /
(b+1)/2
=E| Y e Ve 2 itz avio <k E {(1 - 51(;+)1)21{ <0}}

< e—C17(b+1)E |:(1 S( K) )21{ }:| < C18(1 +b)26_517(b+1)_
bt

<0
since E[(SgK))Z] < co. The constant c is positive because E [Z‘le oKV (1) o720 Ljz|=1,2u 1{AV(Z>SK}] <
E [szl e*KV(“)] = 1 Therefore,

(5.29) Ey(r, extinction) = op(1).

It remains to bound E;(r, survival). For convenience, under P, let W be still distributed as
P(Ws € -|We > 0) and is independent of the random walk (S;),>0. Then by time reversing,
one has

; _ Kr S
Ey(r, survival) —ng_le E [e nl{SnS—r,5n<§[1,n71}}1{W; min,_pjc esnsj1<eeK}:|

_ —Kj Sptx(r+j)q _
_];)n;le E [e ! 1{5[1”<0,SneI(r+j)}1{W;565[1,b+1]<86K}1

B o Sp+x(r+
_Ze E [ {W+ S[1b+1]<seK} {Slb+1 <0} Sb+1 [Ze N ])1{5[1n]<0,5;1€1(r+]')}]]

>0 n>0

by the Markov property at time b + 1. It follows from (5.6) that
. 'S
Ealrsurofoal) <cE (1= Sy)e g o s
E[(1 418 De ™ e oy | +E (14 [SpaDe ™01 ]

(0 S P )+ 14155y, )

where E [(1 + |S£’_€21\)} < ¢19(1 4 b). By Cauchy-Schwartz inequality,

B[4 1805, e k) < (B [0 15E007] P () < —K),
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with \/E [(1 + \52?1])2} < ¢20(1 + b). We hence deduce that

Ey(r, survival) < cp1(1 4 b)[oe(1) + \/P (gff)bﬂ] < —K)].

Plugging it and (5.29) into (5.28) implies that

B2(r) = 0y(1) + e (1 + B)lac(1) + /P (85}, < —K))

It then follows from (5.27) that

limsup limsup " Pe(r) < 0p(1) + co1(1 + b)\/P (Q(K) < —K).

el0 r—00

Letting K — oo then b — oo yields what we need.

5.2 Proofs of the technical lemmas in Section 4

Recall that under P*, the spine B(wy),k > 0 is a Markov chain on IN*, with transition proba-

bilities given by
i+j-1\g e V) Vi1

For the function f (i) := M withi > 1and ¢ € (0,x — 1), it is known (in Appendix of [5])
that there exists d € (0,1) such that for any i > iy large enough,

(5.30) Y piif () < df (D).
j:1

As a consequence of Theorem 15.3.3 of [17], there exists C; > 0 such that for any r € (1, %)
and foranyi > 1,

Tk
IEi

;ilfw(wk))rk] < C/f(),

where 7] = inf{k > 1: B(wy) = 1} < oo. As we can take d sufficiently close to (1 + 7) and

f(i) ~ i7" for i — oo, we conclude that for any 7y € (0,x — 1), there exists ¢, > 0 such that for
any r € (1,@) andi > 1,

(5.31) o

Z(ﬁ(wk))"yrk] < e



Further, Jensen’s inequality implies that for any p > 0, forany i > 1,
Iﬁf[fff] < ¢ logp(l + l)

Let us turn to prove the technical facts in Section 4.
Proof of Lemma 4.6. In fact, (4.9) has been proven in [7] (see Lemmas 11 and 14) when
k < 2. Let us prove (4.9) for k > 2 using the idea borrowed from the proof of Lemma 5 in [2].

Proof of (4.9). We treat the IE;[L™"] for integer a and non-integer a separately. First for m €
IN* satisfying m < «, let us show by recurrence that there exists some constant C;;, > 0 such
that IE;[L]"] < Cy,i™ for any i > 1. Recall that for m = 1, E;[L1] = i. Suppose that V1 < k < m
and Vi > 1,

E;[L}] < Cyi.

Let us bound E; [L%*m] for 1 4+ m < k. Note that by change of measures,

Ej[L}*") =i [L]]

~ ?1 "
=iE; [[1+Y ¥ L
k=1ueQ(wy)

where 71 = inf{k > 1 : B(wy) = 1} and Lgu) = Y ow>u Ljoer,) forany u € By. Set Xy :=
Zueg(wk) Lgu) fork > 1and Xy := 1. And write

~

1
Xi=) L V0<I<7,
k=l

with xz 41 := 0. Apparently, L; = xo under P As x! = Zl o X" — xJ'1), it follows that

! !
E[Lit") =iEf | Y (" — xlia) | = [ Y (Gasa +Z0)™ — xf'ha)
_1:0 =0
N T m—1 L L m—1 _ T L L
6532) =87 |1 1 (FJabas ™| e DB | Dabasi |
=0 k=0 k=0 1=0

Here by the Markov property at time /, one sees that forany 0 <k <m —1and![ > 1,

E; [1{13%1}X§+1Z§n_k] =E; [1{171<a}2 S [Xﬂ}
<E} [1{1,1@1}27’* E;(wl)[Lm
<GB} [1q11cq) =" B(w)f],

where Ef[Lf] = TE[LY] < Gi* ! for k > 1 and Ef[LY] = 1 for k = 0. Again, by the Markov
property at time | — 1, for any [ > 1, one has

(5.33) Ef [Lpcayah 2] < GBF [ 1m1ca) B, (51 5B(@1)") |
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Now for any ¢ > 1, let us estimate E} [ZT‘kﬁ(wl)k]. Observe that given (B(w1); B(u),u €

Q(wy)), (Lgu), u € Q(wy)) are independent and Lgu) is distributed as L, under Ppg(,. For any
0<k<m-—1(e,1<m—k <m), by convexity,

TOAN mo1k NG
m—k __ 1
21 - (“EQZ(wl)ﬁ ‘B( )) : (MGQZ(M)‘B(“)) MGQZ(wl)IB(u) <ﬁ(u)>

As a consequence,

]/E? [Z;n_kﬁ(wl)k} ZI/E\:; [ﬁ(wl)k]ﬁ; [ZT_k’(wlr,B(wl)) ( :B( ))MGQ wl)”

m—1—k
<E} | B(w1) ( Y. Blu ) Y. Blu

ucQ(w) ueQ(wy)

s [(2) ]|

where ]Ei[L’lﬂ_k] < Cp_xi" ¥ for any i > 1 as supposed above. Therefore, by Lemma A.1, for
any/>1land0<k<m-—-1,

m—k
]/E\‘:}f [ZT_k‘B(wl)k} < Cmfklﬁz w1 Z ﬁ < C25€m.
ueQ(w)
Applying it in (5.33) implies that forany i > 1and ] > 1,
E; [1{13%1}?(;‘“271_1‘] < c6lE} [l{l—1<?1}:3(wl—1)m]

where for | = 0, E} [1{&%1})(;‘“2;“_1‘- = Ef [xf] < C* by hypothesis. Plugging this in-
equality into (5.32) yields that _

m—1 0
Ei{Li") <cari Y EF | Y Lp<ayxin =)
k=0  |i=0

m—1 ) m—1 _
<coyi Z Cit" + co7i Z IE.I*
k=0 k=0

) 1{11<%1}/5(w1—1)m]
=1

m+1 I ok
<cogl + co7imlE;

-1
Y ﬁ(wz)m] :

I=0
By (5.31), we hence end up with
]EZ[L%_H“] < Cm+1im+1,
as long as m + 1 < k. We deduce by recurrence that for any integer 1 < m < [x]| — 1,

E;[L"] < Cpi™, Vi > 1.
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It remains to consider E;[L7 ] for2 < m < [x] —1and 6 € (0, (x — m) A1). Write m — 1 +
0 =m(1 —1) for some 7 € (0,1). Observe that by (5.32),

7T m—1 o
IEi[LT—HS] :ﬂﬁ;« [LT‘1+‘5] = i]ﬁj [(L’lﬂ)l—n] = ilﬁ? [(Z Z ( ) l+12m k) ]

0 k=0

m—1 :El
T k(1— k) (1—
(5.34) <cy Y iE] ZXZJ(rl U)Zl(m )(1=7)
k= 1=0

It is proven for integer 0 < k < m — 1 that forany i > 1,
Ej[x1) < Ef[Ly] < Gd"
When! =0, forany 0 <k <m —1,

1-7)

B [Lgemyagyy "z O] < By U] < B [Xﬂ( < capi 171,

For | > 1, by Markov property at time | then by Jensen’s inequality, one sees that for any
0<k<m-—1,

o k(1— m—k)(1— . m—k *
& [1{&?1})(1& ;7)21( )(1 77):| i [1{1—1<a}2( )(1- ”)]E [ 1 k(1— 17)]}
=~y m—k
<E; [1{1—1<?1}Z( - [Xl]l ﬂ
<caok} [1-1cr) " )“*“(ﬁ(wz))k“-’”} -

Asa consequence,

m—1
) m+-0 e
]Ei[LT—i— ] §C311m+ + 31 E Z]E;-k
k=0

D 1{1—1<?1}(,B(wl))k(l—’?)zl(m—k)(l—ﬂ)]

I>1

For the integer k such that (m —k)(1 — ) > 1, by convexity, the similar arguments as above
show that

o _ m—k)(1— % m(1—
]Ei [1{1_1<?1}(ﬁ(w1))k(1 17)21( )a 17)] SCC—SZ]EZ' [1{1—1<f1}:6(w171) a ﬂ)}

For the integer k such that (m — k)(1 — ) < 1, by Markov property at time [ — 1,
IE; [1{1<?1}(ﬁ(w1))k(1 Mg 17)} < CiEE; [1{1—1<?1}]E/3(w171) (Zg M1 B o)k '”)]

Here applying Jensen’s inequality to E} [ng_k)(l_”) ‘B(wl)k(l—ﬂ)} yields that
]Ez [ngfk)(lfﬂ)ﬁ(wl)k(l—n)} :]Ez< _ﬁ(wl)k(liq)lﬁi [ngik)(liﬂ)‘(wllﬁ(wl));(u/ﬁ(u))ueﬂ(wi)}]

<EB; |l OB [£1] (B (0 Bucn] |

(m—k)(1-1n)
<E; /5(w1)k(177)< Y. ﬁ(”)) < cgzfm1),
)

ueQ(wy
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Still, we see that for the integer k such that (m —k)(1—17) <1,

E; [1{l<ﬂ}(lg(wl))k(l—ﬂ)zl(m—k)(l—’?)} < ey B [1{1_1<?1}[3(w171)m(1—'7)] .

It follows that
m—1 - [T
]EZ'[LT_HS] §C31im+5 + C31C34 Z Z']E;k Z(ﬁ(wl))m(l—vy)
k=0 =
m—1 R [ T
=cqi" 0+ czcas Y B | Y (B(wy))" 0!
k=0 =
since m + 6 < K. O

Proof of (4.10). Note that foranyi € Nand r > i,

Pi(My > 1) =P ( Y gy > 1)
ueB
which by Markov inequality yields that

). l{ﬁ(u)zr}]

uehy

= Z E;
n=1

P;(M; > r) <E;

Z 1{/3(u)>r>maxp<v<uﬁ(v),minp<v<u/3(v)>2}] .

|u|=n

By change of measures and Proposition 4.1, one sees that

P;(M; >r) < ’;Ef [m,ﬁ(wn) >r > 1Sr}1(f1§a’i<_1ﬁ(wk),1§rlfl§i£1_1/3(wn) > 2}

<0B; (max plon) = 7)),

r 0<k<m

where 71 = inf{k > 1: B(wy) = 1}. According to Lemma 4.2 of [5], for any « € (0,x — 1),
there exists some constant ¢, € (1, 0),

AN
. i

P max B(wy) >r ) <cu | -] .
’(%k@ﬁ( k)_>_“<r>

(Notice that in fact, the proof of this inequality holds also for k = ©0). As a result, for any
r>i,

i lX+1
P(M; > 1) < ca (;) |
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Therefore, for any « € [0,k — 1), we take 7 € (a,x — 1) so that P;(M; > r) < ¢,(i/r)TTL.
Consequently,

E;[M] ] :/o (14 a)r*P;(My > r)dr
i 00 i n+1
§/ (1+0¢)r“dr-|—/ (1+a)rcy, (;) dr
0 i
<Cuit e,

Proof of Lemma 4.7. (4.17) is a special case of (4.9) and it holds in a similar way.

Proof of (4.17). We prove (4.17) in a similar way as in the proof of (4.9). Observe that

~ x—1 ~ x—1
1 0
Sk (“) _ ok
Ej (kzll{mwkw} Y. )L1 ) = Ej [(lgl{ﬁwkw}zk) ]

ueQ(wy

Its finiteness has been proven in [7] for ¥ € (1,2]. Assume now that x > 2. Let us prove its
tiniteness by recurrence.
It is known from (4.9) that forany 0 < a <x —land anyi > 1,

(=)

If x > 2 is an integer, It follows from (5.32) that for m = x — 2,

E; < Cui®.

~ m-+1 ~ = k
R T mflA* T . T
E] [(Zl{ﬁ<wk1><A}Zk) ] <czo ) BT |} Lpay y)<ar T "( )3 Zfl{ﬁ(Wj1)<A}> ]
k=1 k=0 =1 =111

m—1 00
(5.35) <cse Y Bi | Y 1<z g )<ar 2l X
=0 Li=1

where
B [1ren) g )<y x| < Bl [1pmcay gy <ay Bl 1)"]
Consequently,

1

?1 erl H—
Ej (Z 1{ﬁ<wk1><A}Zk> <css ) Ej
k=1

)y 1{11<%1}1{ﬁ(wl1)<A}ﬁ(wl—1)m]
P

Zq%gﬂﬂET

711
> l{ﬁ(wz)<A}5(wl)m] < 0.
1=0
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If x > 2 is not an integer, for m = |x] andd =k —m € (0,1), writek —1 =m -1+ =
m(1 —#) for some 57 € (0,1). Similarly as (5.34), one sees that

m—1 T
= k(1=1) s (m—k)(1-n)
<c39 kZ IEy IZ; L, 1)<} X131 ! ) ! ]

0

where
E* k(1 —k)(1— T _
B L) g g<atinn 5" 00| < Bt (1o ca)y gty <a Bl) ")

Therefore,

T Kk—1 N
~ ! N 7
Ei [(Zl{ﬁ<wk1><A}Zk> ] <cqmlE; Zl{ﬁw,1><A}ﬁ(wz_1)’”“‘”>]
k=1 =

(-1

:C’41771]/E\:i< Z l{ﬁ(wl)<A},B(wl>K_1] < C42}’I1AK_1]ET[%\1] < o0,
L =0

[
Proof of (4.18). Let us prove the finiteness of E} [(‘B(ng))K_l 1{0A<?1}} . Note that
?1—1 k—1
K1 K—1 P(wi)
(B(we,))"  Lg,cqy <A k_zl 148wy 1)<A} (,B(wk—l)) :
It follows that
G x—1
T k—1 Kk—175% lg(wk)
IE] [(ﬁ(wm)) 1{aA<a}} <A"E] k_Z;ll{ﬁ(wklkA} (,B(wk—l)) ]
=AE] i 1{k71<?1};11ﬁ;§(w ) [ﬁ(wl)x_l}
= B(wy_1)*~ k-
where by Lemma A1,
1 Tk -1
Blwr )T b ) [5(“’1)7{ } < Cg3 < 00,
As Ef[7] < oo, one ends up with
B [(B(we,))  g,cny| < cnaA™ ' Ef[0] < .
[
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Proof of (4.20). Note that from the negative multinomial distribution, one has the generating
function of Zf\il z;(; as follows

1 n
ElsTi iG] — ,Vs € (0,1].
I ] <1+Zf\i1Ai(1—SZ")> s ol

Apparently, YN, z,7; can be viewed as sum of 7 i.i.d. random variables of mean YN ; A;z;.
According to (4.19), it suffices to prove (4.20) for n = 1. In fact we only need to show that

(5.36) E [(iizigiY] < Cy(a [LZZ:J iAz Z ZAZ

=1

Let us prove it by recurrence. Fix n = 1, we now have
1

N N N
E 7G| = VE[Y zilil =) Az,
[HZ I, Al sy T = A

i=1
and Var(YN,z0) = YN, Aiz2 + (2N, Aiz;)? So, (5.36) holds for « = 1 and & = 2. For
a € (1,2), proving (5.36) means proving

N o N N
E [(Z Zi@') ] < CZ(“) (Z Aizi)a + Z Aiz? ’
i=1 i=1 i=1

Write &« = 1 4 ¢ with some ¢ € (0,1). Observe that

()] o) ()] e (o)

N 5
2, PB[gi x I§] + ) zE [Cz’ Z%C;) ] :

—_

(5.37)

I
=

I
—_

1

i=1 j#i
Foranyi € {1,---,N}, let us introduce a biased probability by

1 S SR ¢

P E[gi] A

Then under P}, the generating functions of {; and of )j+izjCj are

1 7 1 e
E}[s%] = —CE[gisf], and B} [s5%5] = —E [gsb770 ).
1

1
By simple calculations, one sees that

S

Ay~ st and B [shr ] = Bfste 6 e

Bs¢] =
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where under P, (C )1<i<N is an independent copy of ({;)1<i<n. Consequently,

E[Gi x {0 =AEHE)] = AE[(1+ i + D))
SAE[L+G+ ) < A+ 2477

(};ngj>1 = AE K;ngH;ng;)é]

o
(ZZ]'C]' + szg;r)] < 2Ai(2 A]'Zj)5

j#i j#i j#i

Similarly, by Jensen’s inequality,

5
E (i (ZZ]C]') =AE]
J#i

Going back to (5.37), we obtain that

o 6
E [(%z@-) ] <22z1+5 A+ AfT) +22Azl (ZA z]>
i=1

i=1 i=1 j#i
N 146 N
<4 (Z AiZi> +2 Z AiZZ-l—HS,
i=1 i=1

as Yoy % T < (Tien %) for x; > 0.
Suppose now that for some k > 2, (5.36) holds for any « € [1,k]. Let us prove (5.36) for
1+ a with a € [1,k]. Similarly as above, observe that as (x +y)* < 2871 (x* + ),

) o) ()] e o ()]

1+ g+ )" (ZZJC/ +ZZJ§J) ]

j#i j#i

N
(5.38) =271y zA;E]

i=1
Izt + (Z%‘) ] =E
j#i
§C44Z;'X(1 —|—E[§Z + cy4E [(22 €1> ] .

j#i

where

As (5.36) is assumed to be true for a, taking z; = 0 yields that

N @ la—1] N N
EKZZZ.Q)]«Z [2 (X AzH(Y Azt ) + (1 Agzi)®

i =0 ji i7i i
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while taking z; = 0 for any j # i yields that

14+ E[gf] < 1+ Co(a)[A; + AT+ -+ AM 4 A%) < cas(@) (1 + AD).

As a result,

« la—1] N N
Tl <ZZJ'C]'> ] < cap()zi (1 + A7) + cap(a [k;) ZAZz (;Aizf‘k)Jr(;AiZi)“

j#i

Plugging it into (5.38) implies that

N Ita I la-1] N N N
E {(Zzi@) ] <cgr () Zzl+aA 1+AH+ ). (M A Zi)kH(Z AR + » Ayz;) T
i=1

=1 k=0 i=1 i=1 i=1
[ o]

Z

N

N
<eus(w) | (0 Am) (L A=) + (1 Am)
k=0 i=1 i—1 i—1
We hence obtain (5.36) for 1 4- a. By recurrence, we conclude (5.36) for any a > 1. O

Proof of (4.47). Note that

eKrAE(S%%)(&VA) < Z EQ* [eV(wn)—FKrAl

—~ {—rA —e<V(wy)<—ra+2¢, minj<f<p—1 V(wk)>—rA—s}]
n=

n>1

KTAE V(wn)
+ Z e “Eq [e 1{V(wn)§—rA—8, V(wp)<minj <<, 1 V(wk)}l{zjnl Yec0(w) eV(Z)W§§><3srA}]
- ; <

The second sum of the righthand side is in fact E;(r) (see (5.27)), which has been treated in
the the proof of Lemma 3.2. We hence get that

eT4Eq. [V ()1 , 1 = 0g(1).
ng_l Q [ {V(wn)g—rA—s, V(wy)<ming<g<,—1 V(wk)} {27:1Zzeﬂ(w-) e*V(Z>Wo(§)S3£rA} €( )

On the other hand, by Lemma 5.1 and time reversing for the random walk (S ,(CK) ;0<k<n),

KrAE(4 46) < Z TAR { { "

n>1

}] +0:(1)

e[ rA—€—1A+2¢e]ming <<, S > —rp—¢

< Z s <max S( A < 0,5, € (—ra —5¢,—rx —e])

n>1 1<k<n
e C " 4eUW ([0, 3€)) + 0:(1),

asr4 — oo by (5.10). It is then immediate to conclude (4.47). O
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A Appendix

Lemma A.1. Fora > 0, B > Osuch that a + < k', there exists some constant cg9 > 0 depending
only on « + B such that for any ¢ > 1, we have

B
(A.1) E; |B(w:) ( Y. Bu ) < cgol™tP.

MEQ(wl)

Proof. Note that by change of measures and Proposition 4.1,

p p
(A.2) ¢ < E} |B(wr) ( Yo Bu ) =, Z,B(u)"‘“( Y ﬁ(z))
ueQ(wy) |u|=1 |z|=1,z#u

a+1 B
<E, || ) B(u) (Z ﬁ(z))

|u|=1 |z]=1

a+p+1

=E, | [ ) B(u)

|u[=1

Here under IPy, -, -1 f(u) is sum of ¢ random variables which are not independent but all
distributed as Y7, —; B(1) under P1. By convexity of t — t**F*1 we have for any t; > 0,

; a+p+1 /
(Zh‘) < B (Zt?—’_ﬁ—i_l) _
i=1 i=1

a+B+1 a+p+1
( > ﬁ(@) < (PR, ( 2 ﬁ(u))

Therefore,

|u[=1 |u[=1

Plugging it into (A.2) yields that

B a+p+1
(A.3) B} | B(wr) (2 B(u ) < P (Zﬁ(w)) :

ueQ(wy) |u|=1

where under P§, (B(u))y)=1 is of negative multinomial distribution with parameter 1 and
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gfv(“)

)juj=1- By (4.20), one sees that

TH o e V@
a+pB+1 N
Ef || X A(w) <ES || Y Blu)— Y e Vet | 4 V)
|ul=1 |u|=1 lu|=1 u=1
la+p+1] k atp+1
<cso | ), e Vi | 4 Y e V(u)
k=1 ul=1 lu|=1

So, by Assumption 1.4, fora + B +1 <,

a+p+1 et p+1] k
Ey [ | ) B(u) <csE| ) e VW | +
=1 =1 \ =1 |

Plugging it into (A.3) implies that

=
Il

B
E; ﬁ(wl)“( Y. 5(”)) < cgol* P
1)
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