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Résumé. Dans un contexte d’inversion Bayésienne de modeles physiques, on souhaite
effectuer une analyse de sensibilité pour comprendre et ajuster le modele. Pour ce faire,
on introduit des indicateurs inspirés des indices de Sobol, mais visant le modele inverse.
Comme le modele inverse n’a en général pas d’expression analytique, on propose d’utiliser
un modele paramétrique pour 'approximer. Les parametres de ce modele peuvent étre
estimés par un algorithme EM. On peut ensuite exploiter 'expression analytique de la
postérieur par une intégration numérique de type Monte-Carlo, ce qui permet une esti-
mation efficace de ces pseudo indices de Sobol.

Mots-clés. Analyse de sensibilité, indices de Sobol, probleme inverse, régression,
apprentissage statistique

Abstract. In a bayesian inverse problem context, we aim at performing sensitivity
analysis to help understand and adjust the physical model. To do so, we introduce
indicators inspired by Sobol indices but focused on the inverse model. Since this inverse
model is not generally available in closed form, we propose to use a parametric surrogate
model to approximate it. The parameters of this model may be estimated via standard EM
inference. Then we can exploit its tractable form and perform Monte-Carlo integration
to efficiently estimate these pseudo Sobol indices.

Keywords. Sensitivity analysis, Sobol indices, inverse problem, regression, statistical
learning

1 Introduction

A wide class of problems from medical imaging [Mesejo et al., 2016, Lemasson et al.,
2016, Nataraj et al., 2018] to astrophysics [Deleforge et al., 2015, Schmidt and Fernando,
2015] can be formulated as inverse problems [Tarantola, 2005, Giovannelli and Idier, 2015].
An inverse problem refers to a situation where one aims at determining the causes of a
phenomenon from experimental observations of its effects. Such a resolution generally
starts by the so-called direct or forward modelling of the phenomenon. It theoretically



describes how input parameters x are translated into effects y. Then from experimental
observations of these effects, the goal is to estimate the parameters values that best explain
the observed measures.

Typical features or constraints that can occur in practice are that 1) both direct and
inverse relationships are (highly) non-linear, e.g. the direct model is available but is a
(complex) series of ordinary differential equations as in [Mesejo et al., 2016, Hovorka
et al., 2004]; 2) the observations y are high-dimensional because they represent signals
in time or spectra, as in [Schmidt and Fernando, 2015, Bernard-Michel et al., 2009, Ma
et al., 2013]; 3) many such high-dimensional observations are available and the application
requires a very large number of inversions, e.g. [Deleforge et al., 2015, Lemasson et al.,
2016]; 4) the vector of parameters x to be predicted is itself multi-dimensional with
correlated dimensions so that predicting its components independently is sub-optimal,
e.g. when there are known constraints such as their sum is one like for concentrations or
probabilities, [Deleforge et al., 2015, Bernard-Michel et al., 2009].

A common issue when dealing with inverse problems is to be sure that the problem is
well defined. In this regard some natural questions arise. Is the direct model one-to-one ?
And if it’s the case, are the output sensitive enough to the parameters 7 If not, small noise
in the observations may lead to high errors in predictions (high variance in probabilistic
settings), making the model barely usable in practice. To answer these questions, one may
use Sensitivity Analysis, which aims at providing qualitative or quantitative indicators
on the variation of the output y with respect to the input x. Sensitivity analysis may
be useful on its own, to gain inner knowledge on the forward model. Besides, sensitivity
analysis of the inverse model (variation of the output x with respect to y) can help choosing
the measurements to perform for an optimal determination of the model parameters.

Among various methods, we focus in this paper on Sobol sensitivity analysis, applied
to an inverse problem setup. We aim at computing what we call pseudo Sobol indices
for the inverse model. We propose to use a surrogate model, estimated via a regression
approach and exploited via numerical integration.

2 Sobol indices for an inverse problem

We start by specifying the notations for our inverse problem, before introducing the so-
called Gaussian Locally-Linear Mapping model (GLLiM) ([Deleforge et al., 2015]) as a
surrogate model, and proposing an efficient way to estimate inverse Sobol indices.

2.1 Context

The parameters and observations are assumed to be random variables X € RY and Y €
R of dimension L and D respectively where D is usually much greater than L. The
forward model is then described by a likelihood function linking parameters values x to



the probability of observing some y and denoted by L4(y) = p(y | X = x) . We will further
assume that the relationship between x and y is described by a known function £ and
that the uncertainties on the theoretical model are independent on the input parameter
X. In other words,

Y = F(X) +e¢ (1)

where € is a random variable. For instance € can be assumed to be a centered Gaussian
variable with covariance matrix X, so that Lx(y) = N (y; F(x),X), where N( . ; F(x),X)
denotes the Gaussian pdf with mean F'(x) and covariance . We denote the prior density
on X by p(x).
Sensitivity analysis often deals with the forward model. Thus, first order Sobol indices
are defined as VarlEYy|X1]
ar dlA\
Sig=—F——7— 2
b Var[Yy] )
As we will show later on, our approach also yields estimation of Sobol indices for F.
However, we mainly propose in this paper to study the sensitivity of the inverse model.
It’s challenging because it requires the expression of F'~! which is not available. Reversing
the role of X and Y, we propose to define the inverse Sobol indices as
Var[E[X;|Yy]]
Sy =——— 3
! Var[X)] (3)
We propose in the next section a model which enables the computation of S* by
exploiting an explicit density.

2.2 Surrogate model

We propose to use a learning approach. We approximate (X,Y) by a Gaussian Locally-
Linear Mapping model (GLLiM) which builds upon Gaussian Mixture Models to approx-
imate non linear functions ([Deleforge et al., 2015]). This is modeled by introducing a
latent variable Z € {1,..., K} such that

K

k=1

where 1 is the indicator function, A, a D x L matrix and by, a vector of RP that define
an affine transformation. Variable €, corresponds to an error term which is assumed to
be zero-mean and not correlated with X capturing both the observation noise and the
reconstruction error due to the affine approximation.

In order to keep the posterior tractable, we assume that €, ~ A(0,X;) and X is a
mixture of K Gaussians : p(x|Z = k) = N(x;¢, Tx) and p(Z = k) = mz. The GLLIM
model is thus characterized by the parameters @ = {my, cx, I, Ag, bi, Zi fo=1.5
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This model can be learned against a training set, sampled along the prior on X and the
likelihood defined in (1), via an EM algorithm. More specifically, we sample a dictionary
(Xpn, Yn)n=1.n where x, are realizations of the prior p(x) and y, = F(x,) + €,. We
then run the EM algorithm on (x,,y,)n=1. 5 to estimate 8 and use the resulting GLLIM
distribution denoted by pg (and depending on 6) as a surrogate model for the pdf of
(X,Y)

2.3 Sobol indices for the GLLiM model

We have shifted the computation of Sobol indices from the real model to an approximated
one, and in this section (X,Y) will thus denote random variables following the GLLiM
distribution. The purpose is to exploit the tractable density ps given by the GLLiM
model. Indeed, from pg, the conditional distribution is available in closed form :

K
pa(x[Y =y,60) => wi(y)N(x; Ajy + b;, =) (5)
k=1
ﬂ-kN(Y7 0;;7 I‘Z)
Zjl'(:l TN (y; cj, I‘;)

J

with w;(y) =

A new parametrization 8* = {c;, I}, Aj, bi, X} }i—1.x is used to illustrate the similarity
between the two conditional distributions. The parameters 68" are easily deduced from 6
as follows:

¢, =Akc; + by
Iy =% + AT A]
o= (05t + A3 Ay (6)
A; =i Al
b, =%; (T ek — A 3, 'by)
To compute E[X;|Y,] as required in (3), we observe that (X, Y;) still follows a GLLIM
distribution, with D =1 and

AD = Ad, ] (row d)
béd) = by[d] (coefficient d) (7)

Z;d) = Xy[d,d] (coefficient in row and column d)
Since (5) is a Gaussian mixture, E[X;|Y; = y,4] is easy to compute from (5), with 0
adjusted as in (7) :

K

falya) == BIXi|Ya = ya) = Y wi(ya) (Ajya + b}) (8)



Unfortunately, the variance of f;(Yy) is not straightforward. Thus, we propose to
compute it via Monte-Carlo integration. It can be shown that Y follows a Gaussian
mixture model, with parameters (m, €5, Tt re1.x © pa(y]0) = i, mN(y; ¢t TF), from
which we can efficiently produce samples.

Finally, since X is also a mixture of Gaussian distributions, its variance has a closed

form :
K K K T
Cov(X) = Zﬂ'k [I‘k + ckckT] — (Z chk> (Z Wka)
k=1 k=1

k=1
To sum up, given a GLLiIM model characterized b?f 0, we propose to compute the
Sobol indices of the inverse problem Sj; by sampling (ydn))nzlu ~ according to its mixture
of Gaussian distributions and estimating vgq := Var(fs(Yy)) with Monte-Carlo integration

using samples (yc(ln))nzl__ ~- The index S}, can be then computed by

Vq

* __ e

Sd’l COU(X)U

3 Illustration on a photometric model

We apply the proposed approach to the Hapke’s model, a highly-non linear model used in
remote sensing. It is a semi-empirical photometric model that relates physically meaning-
ful parameters to the reflectivity of a granular material for a given geometry of illumination
and viewing. A geometry denoted by G is described by three angles (6y, 6, ¢). Thus, our
forward model takes the form F(x) = (frapke,cy (X), -, frapke.cp (X)) where D is the num-
ber of geometries, and x = (w, 0, b, ¢) are the physical parameters. The exact expression
of frapke may be found for example in [Schmidt and Fernando, 2015]. The figure 1 plots

the inverse Sobol indices for the three parameters (w, 0, ¢), with respect to the geometries.
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Figure 1: D = 36 geometries, with fixed incidence fy = 30°. Radial coordinate is #, polar angular
coordinate is ¢.



4 Conclusion

We proposed an efficient computation of sensitivity indicators inspired by Sobol indices
using a surrogate model. We focused on the Sobol indices for inverse models. Regarding
forward models, a surrogate model is not usually needed as the forward model is often
available in closed form. Still, our approach also yields direct Sobol indices, by reversing
the role of X and Y. It could be used in a setup where only a dictionary of samples (x,y)
is available, and not the functional model F'.

So far, we have implicitly assumed that Y components where independent, which is a
common assumption when using Sobol indices. If it is wrong, Sobol indices are still well
defined, but the property of variance decomposition does not hold anymore. Studies on
sensitivity analysis in the dependent case suggest to use generalized Sobol indices, which
take into account the dependency between components. For instance, a future work could
be to apply the methodology proposed in [Chastaing et al., 2014].
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