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Abstract In the context of gradient-free multi-modal
optimization, numerous algorithms are based on restart-
ing evolution strategies. Such an algorithm classically
performs many local searches, for finding all the global
optima of the objective function. The strategy used to
select the restarting points (i.e. the initial points of the
local searches) is a crucial step of the method. In previ-
ous works, a strategy based on reinforcement learning
has been proposed: the search space is partitioned and
a multi-armed bandit algorithm is used to select an in-
teresting region to sample. This strategy significantly
improves the main optimization algorithm but is lim-
ited to small dimensional problems.

In this paper, we propose an algorithm tackling this
problem. The main contributions are (1) a tree-based
scheme for hierarchically partition the search-space and
(2) a multi-armed bandit strategy for traversing this
tree. Thus, a node in the tree corresponds to a region of
the search-space, and its children partition this region
according to one dimension. The multi-armed bandit
strategy is used to traverse the tree by selecting inter-
esting children recursively. We have experimented our
algorithm on difficult multi-modal functions, with small
and large dimensions. For small dimensions, we observe
performances comparable to previous state-of-the-art
algorithms. For large dimensions, we observe better re-
sults as well as lower memory consumption.
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1 Introduction

Multi-Modal Optimization (MMO) is used in numer-
ous engineering applications and scientific fields, includ-
ing machine learning (Mason et al., 2018; Rapin and
Teytaud, 2018), for solving real world problems, which
often have multiple solutions. The goal is to find all
the optima of a given function, in a minimum number
of function evaluations. More formally, given a func-
tion f : [0, 1]

D → R, we need to find all the points
x such that f(x) = y∗ where y∗ is an optimum value
of f . Many algorithms have been proposed for solving
MMO problems, using different approaches or different
hypothesis about the function to optimize.

In this paper, we consider the general case of multi-
dimensional continuous black-box functions, i.e. which
can be optimized by derivative-free algorithms only.
In this context, Evolution Strategies (ES) have shown
their robustness and their efficiency (Beyer, 2001; Rapin
and Teytaud, 2018; Rechenberg, 1973). ES belong to
the family of evolutionary algorithms, which are biolog-
ically inspired. The principle of an Evolution Strategy
is to generate a population of individuals (i.e., initial
points), then mutate the population (i.e., apply a ran-
dom variation to the points) and select the best individ-
uals according to the environment pressure (i.e., func-
tion evaluation on the points). After several successive
mutation/selection iterations, the population converges
to a solution. This solution may contain local optima
or miss some global optima, but the method can be
improved by including a niching technique (Li, 2016).
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In real world applications, the function to optimize
can be very difficult: large dimensionality, heteroge-
neous distribution of the optima. . . These functions
are difficult to optimize: MMO algorithms need a huge
number of function evaluations and find only a few
of the optima. To handle this problem, we propose a
new algorithm which partitions the search-space recur-
sively and estimates the interesting regions thanks to
a reinforcement learning technique. This algorithm can
be seen as an Evolution Strategy which uses an Up-
per Confidence Tree (Kocsis and Szepesvári, 2006) as a
niching technique. Our experiments, using several diffi-
cult functions, show that the proposed algorithm learns
the interesting regions of the function to optimize. As
a result, our algorithm can, with the same number of
evaluations, finds more optima than the other methods
that we have compared. Our algorithm can also handle
functions with a larger dimensionality than our previ-
ous algorithm Dubois et al. (2018).

The rest of this paper is organized as follows. In
Section 2, we present state-of-the-art MMO algorithms
based on ES with niching, or based on a partition of
the search-space. In Section 3, we detail the proposed
algorithm. In Section 4, we present the experimental
results of our algorithm, for several functions, and com-
pare them with the results of the previous algorithms.
Finally, we conclude in Section 5.

2 Related work

Evolution Strategies for Multi-Modal Optimization have
been widely studied. Most of the proposed algorithms
implement a niching technique (Li, 2016; Preuss, 2015),
such as crowding (De Jong, 1975; Mahfoud, 1995; Meng-
shoel et al., 1999), sharing (Goldberg et al., 1987), clear-
ing (Petrowski, 1996; Singh and Deb Dr, 2006) and
restarting (Ahrari et al., 2017; Auger and Hansen, 2005;
Kadioglu et al., 2017; Teytaud and Teytaud, 2016).
Here, the niching technique is very important because
it enables the population to evolve and to find niches
that contain optima.

In (Schoenauer et al., 2011), Schoenauer et al. pro-
pose an ES algorithm with a restarting strategy as a
niching technique. The algorithm performs decreasing
step-size local searches and restart successive searches
from random (or quasi-random) initial points. This al-
gorithm reaches good performances compared to previ-
ous niching techniques. However, it does not take into
account the landscape of the function, since the restart-
ing points are randomly sampled in the whole search-
space. Thus, for difficult functions (large dimension,
heterogeneous distribution of the optima. . . ), the algo-

rithm may need a great number of function evaluations
to find all the optima.

For difficult functions, the restart strategy, i.e. the
choice of the initial point for a new local search, can
greatly impact the global performance of the algorithm.
In (Dubois et al., 2018), we proposed an improved al-
gorithm to learn the interesting regions for sampling
initial points. In that work, we partition the search-
space in regular regions and model the choice of a region
(to sample restarting points) as a Multi-Armed Bandit
problem. Thus, the algorithm automatically learns the
interesting regions of the function and outperforms clas-
sic restarting-based algorithms. However, the partition
scheme is constant during the execution of the algo-
rithm so the algorithm can only roughly learn the land-
scape of the function. Moreover, the number of bandit
arms (i.e., regions of the search-space) grows exponen-
tially with the dimension, which limits the algorithm
to small dimensions only. The contributions proposed
in the next sections are a continuation of this work.

In (Munos, 2011), Munos proposes a determinis-
tic tree-based algorithm for mono-modal optimization
problems. This algorithm searches the global optimum
of the function by incrementally building a hierarchical
partitioning of the search-space. At each iteration, it se-
lects the current best leaf node (according to the fitness
of the function at the mid-point of the corresponding
region), then it expands the selected node (i.e., parti-
tions the corresponding region). The algorithm can find
the global optimum with no knowledge of the smooth-
ness of the function but it has poor performances on
complex functions or when the required precision is
high (Preux et al., 2014). In (Valko et al., 2013), Valko
et al. propose a modification of the algorithm, where
the nodes are selected using a stochastic method that
constructs upper confidence bounds over the partitions
of the search-space. However, the algorithm does not
implement a local search in the sampled regions and
does not handle multi-modal optimization problems.

Finally, other algorithms, such as Ant Colony Op-
timization and Particle Search Optimization, have also
been used for Multi-Modal Optimization (Deng et al.,
2019; Deng et al., 2019; Deng et al., 2017; Zhao et al.,
2019, 2020).

3 Model and algorithm

In this section, we first recall the Random restarts with
Decreasing Step-size algorithm (RDS). Then, we present
the reinforcement learning model considered in this pa-
per and the Upper Confidence Tree method (UCT).
Finally, we detail the proposed algorithm (UCT-RDS)
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which uses the UCT method to improve the RDS algo-
rithm, for Multi-Modal Optimization problems.

3.1 Random restarts with Decreasing Step-size

Random restarts with Decreasing Step-size (Schoenauer
et al., 2011) is an Evolution-Strategy-based Multi-Modal
Optimization algorithm which uses the restarting tech-
nique. It consists in a single-optimum local search, con-
trolled by a restart strategy.

Algorithm 1: SearchDS
{Search an optimum using a Decreasing Step-size }
Input:
f : function to optimize
σ0: initial step-size
εσ : threshold value of the step-size
y∗: maximum fitness of the function
εy : threshold value of the fitness
x: initial position for the search
εx: threshold value of the position
X̂: set of previously found optima

Output:
X̂: updated set of optima

1 begin
2 y ← f(x)
3 σ ← σ0
4 repeat

{mutation}
5 x′ ← N (x, σ)
6 y′ ← f(x′)

{selection with 1/5th adaptation}
7 if y′ > y then
8 x← x′

9 σ ← 2σ

10 else
11 σ ← 2−1/4σ

{discard search if optimum already known}
12 if ∃x̂ ∈ X̂, ‖x− x̂‖ < εx then
13 break

{store found optimum}
14 if ‖y − y∗‖ < εy then
15 X̂← X̂ ∪ {x}
16 break

17 until σ < εσ or max nb of function evaluations
reached

The local search is a simple (1+1)-ES with the 1/5

adaptation rule (see Algorithm 1). This algorithm evolves
candidate solutions iteratively: it generates a new point
by mutating the current point (using a normal distri-
bution with standard deviation σ) and selects the best
of these two points. If the new mutated point is better,
the step-size σ is increased because this means that the
current point is far from the solution, so the search must

be extended to a larger neighborhood. Otherwise, σ is
decreased because this means that the current point
is close to the solution, so the search must focus on
a smaller neighborhood. The search is terminated if
the current point is converging to an optimum already
found in a previous search or when the current point
has converged to a new optimum (and, in this case,
the new optimum is stored). Here, we consider that the
value of the global optima is known but it is very easy
to modify the algorithm if this value is unknown.

Algorithm 2: RDS
{Random restarts with Decreasing Step-size}
Input: f, σ0, εσ , y∗, εy , εx
Output: X̂

1 begin
2 X̂← ∅
3 repeat
4 x← sample search-space
5 X̂← SearchDS(f, σ0, εσ , y∗, εy ,x, εx, X̂)

6 until all optima found or max nb of function
evaluations reached

Using this local search algorithm, a restart strategy
is simple to implement (see Algorithm 2): at each itera-
tion, an initial point is chosen in the search-space and is
used as the starting point of a local search. When a lo-
cal search is terminated, a new local search is started,
if all the optima are not found and if the maximum
number of function evaluations is not reached.

In (Schoenauer et al., 2011), Schoenauer et al. com-
pare two algorithms: Random restarts with Decreasing
Step-size (RDS) and Quasi-Random restarts with De-
creasing Step-size (QRDS). They show that sampling
restarting points according to a quasi-random sequence
rather than a purely random sequence is more efficient.

In this paper, we propose an algorithm that learns
the interesting regions to sample. This algorithm is based
on reinforcement learning as explained below.

3.2 Reinforcement learning

Reinforcement learning is a field of machine learning
that considers how agents can take actions in an en-
vironment. The main idea is to reward the actions of
the agent. This can be modeled as a Markov Decision
Process M = (S,A, P,R), where:

– S is the set of states,
– A is the set of actions,
– Pa(s, s′) = P(st+1 = s′|st = s, at = a) is the proba-

bility of transition from state s to s′ under action a
(at discrete time step t),
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– Ra(s, s′) is the reward after transition from s to s′

with action a.

The action selection of the agent is modeled by the
policy π : S × A → [0, 1]. This policy gives the proba-
bility of making action a when the agent is in state s,
i.e. π(s, a) = P(at = a|st = s).

The return Rt is the cumulative reward, for the cur-
rent episode, from time t until a final state is reached,
at time T (Gelly and Silver, 2007).

Rt =

T∑
k=t+1

rk (1)

Value-based reinforcement learning methods attempt
to find the best policy, i.e. with maximum expected re-
turn, by computing an intermediate action value func-
tion.

Qπ(s, a) = Eπ[Rt|st = s, at = a] (2)

In other words, this function estimates the return
when the agent takes action a in state s and uses policy
π for taking all subsequent actions.

The action value function is generally estimated us-
ing an iterative algorithm: an estimation of the function
can be used to improve the policy and therefore com-
pute a new estimation of the function. At each step
of this process, the algorithm has to choose an action
to consider, i.e. the well-known tradeoff between ex-
ploitation (selecting the maximum value action) and
exploration (selecting a random action). This tradeoff
is a classic Multi-Armed Bandit problem (Auer et al.,
2002a).

3.3 Upper Confidence Tree

The Upper Confidence Tree (UCT) algorithm is a value-
based reinforcement learning algorithm (Silver, 2009)
(Kocsis and Szepesvári, 2006). It is the most famous
implementation of Monte-Carlo Tree Search (MCTS).

The UCT algorithm estimates an action value func-
tionQUCT (s, a) by building a search tree where the root
node corresponds to the start state and the subtrees
correspond to the subsequent visited states. In other
words, the tree T ⊆ S ×A is a subset of all the (state,
action) pairs. The value of each node is estimated by
Monte Carlo simulation.

The policy used in the UCT algorithm is based on
the UCB algorithm (Auer et al., 2002a), i.e. a Multi-
Armed Bandit algorithm, designed to solve the exploita-
tion versus exploration problem. For a current state s,

if all actions are in the tree (∀a ∈ A(s), (s, a) ∈ T ) then
the tree-policy is applied and the action that maximises
the Upper Confidence Bound on QUCT (a, s) is selected:

πUCT (s) = arg max
a

QUCT (s, a) +kUCT

√
logN(s)

N(s, a)
(3)

where N(s, a) is the number of times action a has been
selected from state s, N(s) is total number of selections
of s (N(s) =

∑
a∈A(s)N(s, a)) and kUCT is a parameter

of the algorithm. If any action from the current state
is not in the tree (Ā(s) = {a|(s, a) /∈ T } is not empty)
then a random action is selected in Ā(s) and a new
node is added in the tree.

Finally, at the end of the episode, each visited node
is updated using the return of the episode:

N(st, at)← N(st, at) + 1

QUCT (st, at)← QUCT (st, at) +
Rt −QUCT (st, at)

N(st, at)

(4)

New nodes are simply initialized with the return Rt.
Thus, after many episodes, we obtain an unbalanced

tree where the more interesting nodes have been more
frequently visited (therefore more precisely estimated).

3.4 Planning random restarts with UCT

We propose a derivative-free Multi-Modal Optimization
algorithm called UCT-RDS (Upper Confidence Tree for
Random restarts with Decreasing Step-size). This algo-
rithm is an improvement of the RDS algorithm that
learns which region of the search-space is interesting
to sample for restarting a local search. This is imple-
mented by a UCT reinforcement learning method which
computes a hierarchical partitioning of the search-space.

As the RDS algorithm and the QRDS algorithm,
UCT-RDS iteratively computes local searches (see Al-
gorithm 1) until all the optima have been found or until
the maximum number of function evaluations has been
reached. However, the restarting points, for these local
searches, are not sampled in the whole search-space but
into subregions.

The main objective of the algorithm is to select in-
teresting regions while still exploring the whole search
space. Moreover, it should be usable for large dimen-
sional functions, i.e. the number of regions should not
grows exponentially with the dimension. To this end, we
use a hierarchical partitioning similar to (Munos, 2011):
the algorithm iteratively selects a region and splits it in
K subregions according to one dimension (see Fig. 1a).
These successive splits form a hierarchical partitioning
of the search-space that can be modeled with a tree (see
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Fig. 1b). Thus, if we traverse the tree to a leaf, we get a
region that we can sample, for restarting a local search.
To select an interesting region while exploring the whole
search-space, the UCT-RDS algorithm implements this
tree as an Upper Confidence Tree.

The UCT-RDS algorithm is detailed in Algorithm 3.
It is a classic UCT algorithm where the states corre-
spond to regions of the search-space and the default-
policy is a local search. Initially, a root node, corre-
sponding to the whole search-space, is created then the
tree is built iteratively by repeating the four following
steps. In the selection step, the tree is traversed to a leaf
node by applying the tree-policy. In the expansion step,
a new node is created and the selected region is split. In
the simulation step, the local search is performed. Fi-
nally, in the backpropagation step, all the visited nodes
are updated according to the result of the simulation
step.

For example in Fig 1, the initialization of the al-
gorithm partitions the search-space horizontally, giving
the nodes 1, 2 and 3. Then, the first iteration of the
loop traverses the tree, selects the node 1 and splits
its search-space vertically, giving the nodes 11, 12 and
13. Finally, the second iteration of the loop traverses
the tree, selects the node 12 and splits its search-space
horizontally, giving the nodes 121, 122 and 123. During
this process, a local search is performed when a new
node is created.

4 Experiments

In order to evaluate the efficiency of our improvement,
we have experimented the proposed algorithm UCT-
RDS on three multi-modal functions and compared with
the QRDS algorithm. In fact, we have also considered
various simple synthetic functions such as sphere, cigar
and sinus. In this paper, we present our results on more
realistic functions (fHump, fHumpSin and fIcop) since they
represent more faithfully real-world problems, where
the optima are not regularly distributed in the search-
space. Moreover, these functions are often used in the
litterature (Dubois et al., 2018; Lacroix et al., 2017;
Schoenauer et al., 2011; Singh and Deb Dr, 2006), which
enables us to compare the proposed algorithm to exist-
ing ones.

4.1 Multi-modal functions

The first function we used in our experiments, fHump, is
a simplified version of the function presented in (Singh
and Deb Dr, 2006), where all the random peaks have
the same shape (see Eq. 5 and Fig. 2a).

Algorithm 3: UCT-RDS
{Upper Confidence Tree for Random restarts with
Decreasing Step-size}

Input: f, σ0, εσ , y∗, εy , εx
Output: X̂

1 begin
2 X̂← ∅
3 { initialization }
4 s0 ← create root node (corresponding to the whole

search-space)
5 Ā(s0)← split the region of s0 according to one

dimension
6 { UCT episodes }
7 repeat
8 { selection }
9 st ← s0

10 while Ā(st) = ∅ do
11 st ←

arg max
a

QUCT (st, a) + kUCT

√
logN(st)
N(st,a)

12 at ← the selected a

13 { expansion }
14 sT ← create a child node of st from any

at ∈ Ā(st)
15 Ā(sT )← split the region of sT according to one

dimension
16 { simulation }
17 x← sample the region of sT
18 X̂← SearchDS(f, σ0, εσ , y∗, εy ,x, εx, X̂)
19 { backpropagation }
20 rT ← 1 if a new optima has been found, 0

otherwise
21 repeat
22 Nst,at ← Nst,at + 1
23 QUCT (st, at)←

QUCT (st, at) + Rt−QUCT (st,at)
N(st,at)

24 st ← parent node of st
25 until st = s0
26 until all optima found or max nb of function

evaluations reached

fHump(x) = hmax

[
0, 1−

(
minq∈Q ‖x− xq‖

r

)α ]
(5)

Here, α defines the (inverse) sharpness of the peaks,
r the radius of the peaks and Q the number of peaks
(and therefore the number of optima). The points xq

define the centers of the peaks and are randomly drawn
in [0, 1]

D. Following (Dubois et al., 2018; Schoenauer
et al., 2011; Singh and Deb Dr, 2006), we use h = 1,
r = 1.45 and α = 1 in all our experiments. A strong ad-
vantage of this function is that, due to its randomness,
it cannot be overfitted.

The second function, fHumpSin, has been proposed
in (Dubois et al., 2018). It is a variation of fHump where
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(a) (b)

Fig. 1: Illustration of the UCT-RDS partitioning, for a 2D search-space and a local split into K = 3 regions. The
algorithm partitions a region according to one dimension, hierarchically (a) and builds a corresponding tree (b).

the peaks have a more complicated shape. The ran-
domness advantage of fHump is kept, but instead of
having simple single-optimum peaks, fHumpSin have D-
dimensional sine peaks (see Eq. 6, Eq. 7 and Fig. 2b).

fHumpSin(x) =

{
fSin(x−xz+r

2r ) if ‖x− xz‖∞ < r

0 otherwise
(6)

fSin(x) =
1

D

D∑
d=1

sin2s(pπxd) (7)

In the definition of fHumpSin, z is the number of local
peak zones, and r the radius of the zones. The points
xz define the centers of the zones and are randomly
drawn. In the local D-dimensional sine function fSin,
p is the number of peaks (i.e. optima) per zone. The
total number of optima of fHumpSin is then z×pD. This
function is then far more difficult than fHump, and is a
real challenge for MMO algorithms. In our experiments,
we use p = 2.

The last function, fIcop, comes from (Lacroix et al.,
2017). It defines a class of optimization problems with
tunable landscape features (see Eq. 8 and Fig. 2c).

fIcop(x) =

ui if ∃i, ||x− xi|| ≈ 0∑Ω
i=1

ui
||x−xi||p∑Ω

i=1
1

||x−xi||p
otherwise

(8)

To create a fIcop function, we generate Ω global op-
tima xi, with respective fitnesses ui. If we want a multi-
modal function, we can set half of the xi as global op-
tima (i.e. ui = 1) and the other half as local optima
(i.e. 0 ≤ ui ≤ ul < 1). The purpose of Icop functions
is to have a generic and tunable class of optimization
problems:

– Ω: number of optima (local or global),
– ui: fitness of the i-th global optimum,
– ul: maximum fitness allowed for local optima,
– p: influence of nearby seed solutions on the interpo-

lation.

In our experiments, we use ui = 1, p = 1, and we have
tested different values for Ω and ul.

4.2 Results

We have compared the proposed algorithm, UCT-RDS,
with QRDS (Schoenauer et al., 2011), a state-of-the-
art multi-modal optimization algorithm, using the func-
tions defined in the previous section. Each experiment
has been performed 100 times. The number of eval-
uations allocated to each function is 106. For the lo-
cal searches, the threshold value of the fitness is εy =

0.00001 and the threshold value of the position is εx =

0.001. To adjust the parameters of the proposed algo-
rithm, we have carried out an empirical study and we
have selected the parameters giving the best perfor-
mance. The results reported below correspond to the
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(a) fHump with α = 1.0, r = 0.1, Q = 4 (see Eq. 5).
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(b) fHumpSin with s = 4, p = 2, z = 2 and r = 0.2 (see Eq. 6).
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(c) fIcop with ui = 1.0, Ω = 20, p = 1.0 (see Eq. 8).

Fig. 2: Multi-modal functions used in our experiments (depicted in 2D).
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average and the standard error ε, defined as ε = σ/
√
n,

where σ is the standard deviation and n the number of
runs (in our experiments, n = 100).

The first set of experiments consists in finding the
maximum number of optima within a given number of
function evaluations (see Table 1). First, on the fIcop
function, the results with our UCT-RDS algorithm are
at least as good as the results with the QRDS algo-
rithm. It is important to note that fIcop is a test of
robustness for our algorithm: by definition, there is no
predefined area which should be more important than
another one, as the global optima are randomly drawn.
Our algorithm is then quite robust since it reaches the
performances of QRDS. UCT-RDS is even better on
some sets of parameters, because if a group of optima
is drawn in a same area, then UCT can learn that this
area is important.

Similar results are seen on the fHump function. We
have tested a really hard set of parameters (dimension
35 and 50 optima) and found better results for UCT-
RDS which has found 7 more optima than QRDS, in
average.

On the fHumpSin function, the results are very signif-
icant. We recall that this function is very difficult and
that previous algorithms are very limited on it (Dubois
et al., 2018). With UCT-RDS, we are able to find 314
of the 2048 optima, in dimension 5, whereas QRDS is
only able to find 12 optima, in average. In dimension 8,
with somehow easier parameters, UCT-RDS is able to
find twice as many optima as QRDS (67.5 vs 32.9, in
average).

Finally, in Fig. 3, we study the influence of the pa-
rameters of UCT-RDS, on the fHumpSin function in
dimension 8. This algorithm has two parameters: the
number of subregions K a region is split and the explo-
ration vs exploitation trade-off kUCT . First, we can see
that the number of subregions is important. In our ex-
periments, we have noticed that K has to slowly grow
with the dimension. Second, the kUCT parameter is very
important. A large parameter tends to explore more,
while a small one tends to exploit more. It is known
that the optimal strategy is somewhere between ex-
treme exploration and extreme exploitation, which is
also verified in our experiments.

5 Conclusion

In this paper, we proposed a derivative-free Multi-Modal
Optimization algorithm. This algorithm implements an
Upper Confidence Tree that hierarchically partitions
the search-space and computes a local Decreasing Step-
size search. We model the successive selections of the

subregion to search as a Multi-Armed Bandit problem.
This enables the algorithm to learn which subregions of
the search-space are interesting, in order to spend more
function evaluations on it (local search). We experi-
mented our algorithm on three strongly multi-modal
functions and verify the robustness of our method re-
gardless the dimension and the function landscape. Com-
pared to previous approaches, we observed significantly
better results on all the tested functions for both small
and large dimensions.

This method requires the tuning of two parame-
ters, kUCT (exploration vs exploitation trade-off) and
K (number of subregions in which a region must be
split). As future work, we will focus on tuning these two
parameters automatically. The tuning of kUCT should
be done thanks to the UCB-Tuned strategy (Auer et al.,
2002b). Automatically choosing a good value of K is
another challenge: using the variance of the subregion
may be an appropriate solution. Adding improvements,
such as using the local smoothness properties of func-
tions (Bubeck et al., 2011), may also improve the per-
formances of our algorithm.
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