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Introduction

Multi-Modal Optimization (MMO) is used in numerous engineering applications and scientific fields, including machine learning [START_REF] Mason | Maze navigation using neural networks evolved with novelty search and differential evolution[END_REF][START_REF] Rapin | Nevergrad -A gradient-free optimization platform[END_REF], for solving real world problems, which often have multiple solutions. The goal is to find all the optima of a given function, in a minimum number of function evaluations. More formally, given a function f : [0, 1] D → R, we need to find all the points

x such that f (x) = y * where y * is an optimum value of f . Many algorithms have been proposed for solving MMO problems, using different approaches or different hypothesis about the function to optimize.

In this paper, we consider the general case of multidimensional continuous black-box functions, i.e. which can be optimized by derivative-free algorithms only. In this context, Evolution Strategies (ES) have shown their robustness and their efficiency [START_REF] Beyer | The Theory of Evolution Strategies[END_REF][START_REF] Rapin | Nevergrad -A gradient-free optimization platform[END_REF][START_REF] Rechenberg | Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution[END_REF]. ES belong to the family of evolutionary algorithms, which are biologically inspired. The principle of an Evolution Strategy is to generate a population of individuals (i.e., initial points), then mutate the population (i.e., apply a random variation to the points) and select the best individuals according to the environment pressure (i.e., function evaluation on the points). After several successive mutation/selection iterations, the population converges to a solution. This solution may contain local optima or miss some global optima, but the method can be improved by including a niching technique [START_REF] Li | Multimodal Optimization using Niching Methods[END_REF].

In real world applications, the function to optimize can be very difficult: large dimensionality, heterogeneous distribution of the optima. . . These functions are difficult to optimize: MMO algorithms need a huge number of function evaluations and find only a few of the optima. To handle this problem, we propose a new algorithm which partitions the search-space recursively and estimates the interesting regions thanks to a reinforcement learning technique. This algorithm can be seen as an Evolution Strategy which uses an Upper Confidence Tree [START_REF] Kocsis | Bandit based monte-carlo planning[END_REF] as a niching technique. Our experiments, using several difficult functions, show that the proposed algorithm learns the interesting regions of the function to optimize. As a result, our algorithm can, with the same number of evaluations, finds more optima than the other methods that we have compared. Our algorithm can also handle functions with a larger dimensionality than our previous algorithm [START_REF] Dubois | Improving Multi-Modal Optimization Restart Strategy Through Multi-Armed Bandit[END_REF].

The rest of this paper is organized as follows. In Section 2, we present state-of-the-art MMO algorithms based on ES with niching, or based on a partition of the search-space. In Section 3, we detail the proposed algorithm. In Section 4, we present the experimental results of our algorithm, for several functions, and compare them with the results of the previous algorithms. Finally, we conclude in Section 5.

Related work

Evolution Strategies for Multi-Modal Optimization have been widely studied. Most of the proposed algorithms implement a niching technique [START_REF] Li | Multimodal Optimization using Niching Methods[END_REF][START_REF] Preuss | Multimodal Optimization by Means of Evolutionary Algorithms[END_REF], such as crowding [START_REF] De | An Analysis of the Behavior of a Class of Genetic Adaptive Systems[END_REF][START_REF] Mahfoud | Niching methods for genetic algorithms[END_REF][START_REF] Mengshoel | Probabilistic crowding: Deterministic crowding with probabilistic replacement[END_REF], sharing [START_REF] Goldberg | Genetic algorithms with sharing for multimodal function optimization[END_REF], clearing [START_REF] Petrowski | A clearing procedure as a niching method for genetic algorithms[END_REF][START_REF] Singh | Comparison of multimodal optimization algorithms based on evolutionary algorithms[END_REF] and restarting [START_REF] Ahrari | Multimodal optimization by covariance matrix self-adaptation evolution strategy with repelling subpopulations[END_REF][START_REF] Auger | A restart cma evolution strategy with increasing population size[END_REF][START_REF] Kadioglu | Learning a reactive restart strategy to improve stochastic search[END_REF][START_REF] Teytaud | Qr mutations improve many evolution strategies: A lot on highly multimodal problems[END_REF]. Here, the niching technique is very important because it enables the population to evolve and to find niches that contain optima.

In [START_REF] Schoenauer | A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize[END_REF], Schoenauer et al. propose an ES algorithm with a restarting strategy as a niching technique. The algorithm performs decreasing step-size local searches and restart successive searches from random (or quasi-random) initial points. This algorithm reaches good performances compared to previous niching techniques. However, it does not take into account the landscape of the function, since the restarting points are randomly sampled in the whole searchspace. Thus, for difficult functions (large dimension, heterogeneous distribution of the optima. . . ), the algo-rithm may need a great number of function evaluations to find all the optima.

For difficult functions, the restart strategy, i.e. the choice of the initial point for a new local search, can greatly impact the global performance of the algorithm. In [START_REF] Dubois | Improving Multi-Modal Optimization Restart Strategy Through Multi-Armed Bandit[END_REF], we proposed an improved algorithm to learn the interesting regions for sampling initial points. In that work, we partition the searchspace in regular regions and model the choice of a region (to sample restarting points) as a Multi-Armed Bandit problem. Thus, the algorithm automatically learns the interesting regions of the function and outperforms classic restarting-based algorithms. However, the partition scheme is constant during the execution of the algorithm so the algorithm can only roughly learn the landscape of the function. Moreover, the number of bandit arms (i.e., regions of the search-space) grows exponentially with the dimension, which limits the algorithm to small dimensions only. The contributions proposed in the next sections are a continuation of this work.

In [START_REF] Munos | Optimistic optimization of deterministic functions without the knowledge of its smoothness[END_REF], Munos proposes a deterministic tree-based algorithm for mono-modal optimization problems. This algorithm searches the global optimum of the function by incrementally building a hierarchical partitioning of the search-space. At each iteration, it selects the current best leaf node (according to the fitness of the function at the mid-point of the corresponding region), then it expands the selected node (i.e., partitions the corresponding region). The algorithm can find the global optimum with no knowledge of the smoothness of the function but it has poor performances on complex functions or when the required precision is high [START_REF] Preux | Bandits attack function optimization[END_REF]. In [START_REF] Valko | Stochastic simultaneous optimistic optimization[END_REF] propose a modification of the algorithm, where the nodes are selected using a stochastic method that constructs upper confidence bounds over the partitions of the search-space. However, the algorithm does not implement a local search in the sampled regions and does not handle multi-modal optimization problems.

Finally, other algorithms, such as Ant Colony Optimization and Particle Search Optimization, have also been used for Multi-Modal Optimization (Deng et al., 2019;Deng et al., 2019;[START_REF] Deng | Study on an improved adaptive pso algorithm for solving multi-objective gate assignment[END_REF]Zhao et al., 2019Zhao et al., , 2020)).

Model and algorithm

In this section, we first recall the Random restarts with Decreasing Step-size algorithm (RDS). Then, we present the reinforcement learning model considered in this paper and the Upper Confidence Tree method (UCT). Finally, we detail the proposed algorithm (UCT-RDS) which uses the UCT method to improve the RDS algorithm, for Multi-Modal Optimization problems.

Random restarts with Decreasing

Step-size Random restarts with Decreasing Step-size [START_REF] Schoenauer | A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize[END_REF] x: threshold value of the position X: set of previously found optima Output:

X: updated set of optima

1 begin 2 y ← f (x) 3 σ ← σ 0 4 repeat {mutation} 5 x ← N (x, σ) 6 y ← f (x ) {selection with 1/5th adaptation} 7 if y > y then 8 x ← x 9 σ ← 2σ 10 else 11 σ ← 2 -1/4 σ {discard search if optimum already known} 12 if ∃x ∈ X, x -x < x then 13 break {store found optimum} 14 if y -y * < y then 15 X ← X ∪ {x} 16 break 17 until σ < σ or max nb of

function evaluations reached

The local search is a simple (1+1)-ES with the 1/5 adaptation rule (see Algorithm 1). This algorithm evolves candidate solutions iteratively: it generates a new point by mutating the current point (using a normal distribution with standard deviation σ) and selects the best of these two points. If the new mutated point is better, the step-size σ is increased because this means that the current point is far from the solution, so the search must be extended to a larger neighborhood. Otherwise, σ is decreased because this means that the current point is close to the solution, so the search must focus on a smaller neighborhood. The search is terminated if the current point is converging to an optimum already found in a previous search or when the current point has converged to a new optimum (and, in this case, the new optimum is stored). Here, we consider that the value of the global optima is known but it is very easy to modify the algorithm if this value is unknown.

Algorithm 2: RDS {Random restarts with Decreasing Step-size} Input: f, σ 0 , σ , y * , y , x Output: X 1 begin 2 X ← ∅ 3 repeat 4 x ← sample search-space 5 X ← SearchDS(f, σ 0 , σ , y * , y , x, x, X)
6 until all optima found or max nb of function evaluations reached

Using this local search algorithm, a restart strategy is simple to implement (see Algorithm 2): at each iteration, an initial point is chosen in the search-space and is used as the starting point of a local search. When a local search is terminated, a new local search is started, if all the optima are not found and if the maximum number of function evaluations is not reached.

In [START_REF] Schoenauer | A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize[END_REF], Schoenauer et al. compare two algorithms: Random restarts with Decreasing

Step-size (RDS) and Quasi-Random restarts with Decreasing Step-size (QRDS). They show that sampling restarting points according to a quasi-random sequence rather than a purely random sequence is more efficient.

In this paper, we propose an algorithm that learns the interesting regions to sample. This algorithm is based on reinforcement learning as explained below.

Reinforcement learning

Reinforcement learning is a field of machine learning that considers how agents can take actions in an environment. The main idea is to reward the actions of the agent. This can be modeled as a Markov Decision Process M = (S, A, P, R), where:

-S is the set of states, -A is the set of actions, -P a (s, s ) = P(s t+1 = s |s t = s, a t = a) is the probability of transition from state s to s under action a (at discrete time step t),

-R a (s, s ) is the reward after transition from s to s with action a.

The action selection of the agent is modeled by the policy π : S × A → [0, 1]. This policy gives the probability of making action a when the agent is in state s, i.e. π(s, a) = P(a t = a|s t = s).

The return R t is the cumulative reward, for the current episode, from time t until a final state is reached, at time T [START_REF] Gelly | Combining Online and Offline Knowledge in UCT[END_REF].

R t = T k=t+1 r k (1)
Value-based reinforcement learning methods attempt to find the best policy, i.e. with maximum expected return, by computing an intermediate action value function.

Q π (s, a) = E π [R t |s t = s, a t = a] (2) 
In other words, this function estimates the return when the agent takes action a in state s and uses policy π for taking all subsequent actions.

The action value function is generally estimated using an iterative algorithm: an estimation of the function can be used to improve the policy and therefore compute a new estimation of the function. At each step of this process, the algorithm has to choose an action to consider, i.e. the well-known tradeoff between exploitation (selecting the maximum value action) and exploration (selecting a random action). This tradeoff is a classic Multi-Armed Bandit problem (Auer et al., 2002a).

Upper Confidence Tree

The Upper Confidence Tree (UCT) algorithm is a valuebased reinforcement learning algorithm [START_REF] Silver | Reinforcement Learning and Simulation-Based Search[END_REF]) [START_REF] Kocsis | Bandit based monte-carlo planning[END_REF]. It is the most famous implementation of Monte-Carlo Tree Search (MCTS).

The UCT algorithm estimates an action value function Q U CT (s, a) by building a search tree where the root node corresponds to the start state and the subtrees correspond to the subsequent visited states. In other words, the tree T ⊆ S × A is a subset of all the (state, action) pairs. The value of each node is estimated by Monte Carlo simulation.

The policy used in the UCT algorithm is based on the UCB algorithm (Auer et al., 2002a), i.e. a Multi-Armed Bandit algorithm, designed to solve the exploitation versus exploration problem. For a current state s, if all actions are in the tree (∀a ∈ A(s), (s, a) ∈ T ) then the tree-policy is applied and the action that maximises the Upper Confidence Bound on Q U CT (a, s) is selected:

π U CT (s) = arg max a Q U CT (s, a) + k U CT log N (s) N (s, a) (3) 
where N (s, a) is the number of times action a has been selected from state s, N (s) is total number of selections of s (N (s) = a∈A(s) N (s, a)) and k U CT is a parameter of the algorithm. If any action from the current state is not in the tree ( Ā(s) = {a|(s, a) / ∈ T } is not empty) then a random action is selected in Ā(s) and a new node is added in the tree.

Finally, at the end of the episode, each visited node is updated using the return of the episode:

N (s t , a t ) ← N (s t , a t ) + 1 Q U CT (s t , a t ) ← Q U CT (s t , a t ) + R t -Q U CT (s t , a t ) N (s t , a t ) (4) 
New nodes are simply initialized with the return R t . Thus, after many episodes, we obtain an unbalanced tree where the more interesting nodes have been more frequently visited (therefore more precisely estimated).

Planning random restarts with UCT

We propose a derivative-free Multi-Modal Optimization algorithm called UCT-RDS (Upper Confidence Tree for Random restarts with Decreasing Step-size). This algorithm is an improvement of the RDS algorithm that learns which region of the search-space is interesting to sample for restarting a local search. This is implemented by a UCT reinforcement learning method which computes a hierarchical partitioning of the search-space.

As the RDS algorithm and the QRDS algorithm, UCT-RDS iteratively computes local searches (see Algorithm 1) until all the optima have been found or until the maximum number of function evaluations has been reached. However, the restarting points, for these local searches, are not sampled in the whole search-space but into subregions.

The main objective of the algorithm is to select interesting regions while still exploring the whole search space. Moreover, it should be usable for large dimensional functions, i.e. the number of regions should not grows exponentially with the dimension. To this end, we use a hierarchical partitioning similar to [START_REF] Munos | Optimistic optimization of deterministic functions without the knowledge of its smoothness[END_REF]: the algorithm iteratively selects a region and splits it in K subregions according to one dimension (see Fig. 1a). These successive splits form a hierarchical partitioning of the search-space that can be modeled with a tree (see Fig. 1b). Thus, if we traverse the tree to a leaf, we get a region that we can sample, for restarting a local search. To select an interesting region while exploring the whole search-space, the UCT-RDS algorithm implements this tree as an Upper Confidence Tree.

The UCT-RDS algorithm is detailed in Algorithm 3. It is a classic UCT algorithm where the states correspond to regions of the search-space and the defaultpolicy is a local search. Initially, a root node, corresponding to the whole search-space, is created then the tree is built iteratively by repeating the four following steps. In the selection step, the tree is traversed to a leaf node by applying the tree-policy. In the expansion step, a new node is created and the selected region is split. In the simulation step, the local search is performed. Finally, in the backpropagation step, all the visited nodes are updated according to the result of the simulation step.

For example in Fig 1, the initialization of the algorithm partitions the search-space horizontally, giving the nodes 1, 2 and 3. Then, the first iteration of the loop traverses the tree, selects the node 1 and splits its search-space vertically, giving the nodes 11, 12 and 13. Finally, the second iteration of the loop traverses the tree, selects the node 12 and splits its search-space horizontally, giving the nodes 121, 122 and 123. During this process, a local search is performed when a new node is created.

Experiments

In order to evaluate the efficiency of our improvement, we have experimented the proposed algorithm UCT-RDS on three multi-modal functions and compared with the QRDS algorithm. In fact, we have also considered various simple synthetic functions such as sphere, cigar and sinus. In this paper, we present our results on more realistic functions (f Hump , f HumpSin and f Icop ) since they represent more faithfully real-world problems, where the optima are not regularly distributed in the searchspace. Moreover, these functions are often used in the litterature [START_REF] Dubois | Improving Multi-Modal Optimization Restart Strategy Through Multi-Armed Bandit[END_REF][START_REF] Lacroix | Interpolated continuous optimisation problems with tunable landscape features[END_REF][START_REF] Schoenauer | A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize[END_REF][START_REF] Singh | Comparison of multimodal optimization algorithms based on evolutionary algorithms[END_REF], which enables us to compare the proposed algorithm to existing ones.

Multi-modal functions

The first function we used in our experiments, f Hump , is a simplified version of the function presented in [START_REF] Singh | Comparison of multimodal optimization algorithms based on evolutionary algorithms[END_REF], where all the random peaks have the same shape (see Eq. 5 and Fig. 2a). 

f Hump (x) = h max 0, 1 - min q∈Q x -x q r α (5)
Here, α defines the (inverse) sharpness of the peaks, r the radius of the peaks and Q the number of peaks (and therefore the number of optima). The points x q define the centers of the peaks and are randomly drawn in [0, 1] D . Following [START_REF] Dubois | Improving Multi-Modal Optimization Restart Strategy Through Multi-Armed Bandit[END_REF][START_REF] Schoenauer | A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize[END_REF][START_REF] Singh | Comparison of multimodal optimization algorithms based on evolutionary algorithms[END_REF], we use h = 1, r = 1.45 and α = 1 in all our experiments. A strong advantage of this function is that, due to its randomness, it cannot be overfitted.

The second function, f HumpSin , has been proposed in [START_REF] Dubois | Improving Multi-Modal Optimization Restart Strategy Through Multi-Armed Bandit[END_REF]. It is a variation of f Hump where the peaks have a more complicated shape. The randomness advantage of f Hump is kept, but instead of having simple single-optimum peaks, f HumpSin have Ddimensional sine peaks (see Eq. 6, Eq. 7 and Fig. 2b).

f HumpSin (x) = f Sin ( x-xz+r 2r ) if x -x z ∞ < r 0 otherwise (6) f Sin (x) = 1 D D d=1 sin 2s (pπx d ) (7) 
In the definition of f HumpSin , z is the number of local peak zones, and r the radius of the zones. The points x z define the centers of the zones and are randomly drawn. In the local D-dimensional sine function f Sin , p is the number of peaks (i.e. optima) per zone. The total number of optima of f HumpSin is then z × p D . This function is then far more difficult than f Hump , and is a real challenge for MMO algorithms. In our experiments, we use p = 2. The last function, f Icop , comes from [START_REF] Lacroix | Interpolated continuous optimisation problems with tunable landscape features[END_REF]. It defines a class of optimization problems with tunable landscape features (see Eq. 8 and Fig. 2c).

f Icop (x) =    u i if ∃i, ||x -x i || ≈ 0 Ω i=1 u i ||x-x i || p Ω i=1 1 ||x-x i || p otherwise (8)
To create a f Icop function, we generate Ω global optima x i , with respective fitnesses u i . If we want a multimodal function, we can set half of the x i as global optima (i.e. u i = 1) and the other half as local optima (i.e. 0 ≤ u i ≤ u l < 1). The purpose of Icop functions is to have a generic and tunable class of optimization problems:

-Ω: number of optima (local or global), u i : fitness of the i-th global optimum, u l : maximum fitness allowed for local optima, p: influence of nearby seed solutions on the interpolation.

In our experiments, we use u i = 1, p = 1, and we have tested different values for Ω and u l .

Results

We have compared the proposed algorithm, UCT-RDS, with QRDS [START_REF] Schoenauer | A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize[END_REF], a state-of-theart multi-modal optimization algorithm, using the functions defined in the previous section. Each experiment has been performed 100 times. The number of evaluations allocated to each function is 10 6 . For the local searches, the threshold value of the fitness is y = 0.00001 and the threshold value of the position is x = 0.001. To adjust the parameters of the proposed algorithm, we have carried out an empirical study and we have selected the parameters giving the best performance. The results reported below correspond to the average and the standard error , defined as = σ/ √ n, where σ is the standard deviation and n the number of runs (in our experiments, n = 100).

The first set of experiments consists in finding the maximum number of optima within a given number of function evaluations (see Table 1). First, on the f Icop function, the results with our UCT-RDS algorithm are at least as good as the results with the QRDS algorithm. It is important to note that f Icop is a test of robustness for our algorithm: by definition, there is no predefined area which should be more important than another one, as the global optima are randomly drawn. Our algorithm is then quite robust since it reaches the performances of QRDS. UCT-RDS is even better on some sets of parameters, because if a group of optima is drawn in a same area, then UCT can learn that this area is important.

Similar results are seen on the f Hump function. We have tested a really hard set of parameters (dimension 35 and 50 optima) and found better results for UCT-RDS which has found 7 more optima than QRDS, in average.

On the f HumpSin function, the results are very significant. We recall that this function is very difficult and that previous algorithms are very limited on it [START_REF] Dubois | Improving Multi-Modal Optimization Restart Strategy Through Multi-Armed Bandit[END_REF]. With UCT-RDS, we are able to find 314 of the 2048 optima, in dimension 5, whereas QRDS is only able to find 12 optima, in average. In dimension 8, with somehow easier parameters, UCT-RDS is able to find twice as many optima as QRDS (67.5 vs 32.9, in average).

Finally, in Fig. 3, we study the influence of the parameters of UCT-RDS, on the f HumpSin function in dimension 8. This algorithm has two parameters: the number of subregions K a region is split and the exploration vs exploitation trade-off k U CT . First, we can see that the number of subregions is important. In our experiments, we have noticed that K has to slowly grow with the dimension. Second, the k U CT parameter is very important. A large parameter tends to explore more, while a small one tends to exploit more. It is known that the optimal strategy is somewhere between extreme exploration and extreme exploitation, which is also verified in our experiments.

Conclusion

In this paper, we proposed a derivative-free Multi-Modal Optimization algorithm. This algorithm implements an Upper Confidence Tree that hierarchically partitions the search-space and computes a local Decreasing Stepsize search. We model the successive selections of the subregion to search as a Multi-Armed Bandit problem. This enables the algorithm to learn which subregions of the search-space are interesting, in order to spend more function evaluations on it (local search). We experimented our algorithm on three strongly multi-modal functions and verify the robustness of our method regardless the dimension and the function landscape. Compared to previous approaches, we observed significantly better results on all the tested functions for both small and large dimensions.

This method requires the tuning of two parameters, k U CT (exploration vs exploitation trade-off) and K (number of subregions in which a region must be split). As future work, we will focus on tuning these two parameters automatically. The tuning of k U CT should be done thanks to the UCB-Tuned strategy [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF]. Automatically choosing a good value of K is another challenge: using the variance of the subregion may be an appropriate solution. Adding improvements, such as using the local smoothness properties of functions [START_REF] Bubeck | X-armed bandits[END_REF], may also improve the performances of our algorithm.

Table 1: Average number of optima found by each algorithm after 10 6 evaluations, over 100 runs (higher is better). We have experimented different parameters, in particular for f Icop , in order to evaluate the robustness of UCT-RDS. Zhao, H., Liu, H., Xu, J., and Deng, W. (2019). Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine. IEEE Transactions on Instrumentation and Measurement. Zhao, H., Zheng, J., Deng, W., and Song, Y. (2020).

Semi-supervised broad learning system based on manifold regularization and broad network. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(3):983-994.

  is an Evolution-Strategy-based Multi-Modal Optimization algorithm which uses the restarting technique. It consists in a single-optimum local search, controlled by a restart strategy. Algorithm 1: SearchDS {Search an optimum using a Decreasing Step-size } Input: f : function to optimize σ 0 : initial step-size σ : threshold value of the step-size y * : maximum fitness of the function y : threshold value of the fitness x: initial position for the search

Fig. 1 :

 1 Fig. 1: Illustration of the UCT-RDS partitioning, for a 2D search-space and a local split into K = 3 regions. The algorithm partitions a region according to one dimension, hierarchically (a) and builds a corresponding tree (b).

  f Hump with α = 1.0, r = 0.1, Q = 4 (see Eq. 5). HumpSin with s = 4, p = 2, z = 2 and r = 0.2 (see Eq. 6). f Icop with u i = 1.0, Ω = 20, p = 1.0 (see Eq. 8).

Fig. 2 :

 2 Fig. 2: Multi-modal functions used in our experiments (depicted in 2D).

Fig. 3 :

 3 Fig.3: Number of optima found in front of k U CT (in log scale), when splitting a region in K subregions, on f HumpSin and in dimension 8.

  Algorithm 3: UCT-RDS {Upper Confidence Tree for Random restarts with Decreasing Step-size} Input: f, σ 0 , σ , y * , y , x

		Output:	X
	1 begin
	2	X ← ∅
	3	{ initialization }
	4	s 0 ← create root node (corresponding to the whole
		search-space)
	5	Ā(s 0 ) ← split the region of s 0 according to one
		dimension
	6	{ UCT episodes }
	7	repeat
	8	{ selection }
	9	st ← s 0
	10	while Ā(st) = ∅ do
	11		st ←
			arg max

a Q U CT (st, a) + k U CT log N (s t ) N (s t ,a) 12 at ← the selected a 13 { expansion } 14 s T ← create a child node of st from any at ∈ Ā(st) 15 Ā(s T ) ← split the region of s T according to one dimension 16 { simulation } 17 x ← sample the region of s T 18 X ← SearchDS(f, σ 0 , σ , y * , y , x, x, X) 19 { backpropagation } 20 r T ← 1 if a new optima has been found, 0 otherwise 21 repeat 22

Ns t ,a t ← Ns t ,a t + 1

23 Q U CT (st, at) ← Q U CT (st, at) + R t -Q U CT (s t ,

a t ) N (s t ,a t ) 24 st ← parent node of st 25 until st = s 0 26 until all optima found or max nb of function evaluations reached
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