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LARGE DEVIATIONS FOR SPECTRAL MEASURES OF SOME

SPIKED MATRICES

NATHAN NOIRY1 AND ALAIN ROUAULT2

Abstract. We prove large deviations principles for spectral measures of per-

turbed (or spiked) matrix models in the direction of an eigenvector of the
perturbation. In each model under study, we provide two approaches, one of

which relying on large deviations principle of unperturbed models derived in

the previous work ”Sum rules via large deviations” (Gamboa-Nagel-Rouault,
JFA [13] 2016).

1. Introduction

Beside the empirical spectral distribution of an n× n random matrix Mn

µ(n)
u =

1

n

n∑
k=1

δλk ,

whose asymptotical behavior is widely known, there has been a growing interest in
the study of the so-called spectral measures. For any fixed unit vector e(n) ∈ Cn,

the spectral measure associated to the pair (Mn, e
(n)) is the measure µ

(n)
w defined

by

〈e(n), (Mn − z)−1e(n)〉 =

∫
R

dµ
(n)
w (x)

x− z
for all z ∈ C \ R

if Mn is self-adjoint or

〈e(n),
Mn + z

Mn − z
e(n)〉 =

∫ 2π

0

eiθ + z

eiθ − z
dµ(n)

w (θ) for all z : |z| 6= 1,

if Mn is unitary. In turns out that the spectral measure is a weighted version of
the empirical spectral distribution:

µ(n)
w =

n∑
k=1

wkδλk ,
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where wk = |〈φk, e(n)〉|2, with φk a unit eigenvector associated to the eigenvalue λk.
It was studied under the name eigenvector empirical spectral distribution in [34], in
the context of unperturbed random covariance matrices.

In a series of papers [18, 13, 14, 15, 16] Gamboa et al. studied the random

spectral measure µ
(n)
w of a pair (Mn, e

(n)) where Mn is a random n × n matrix
self-adjoint or unitary, whose distribution is invariant by conjugation, and e(n) is a
fixed vector of Cn. The authors proved that with convenient assumptions on the

potential, the family (µ
(n)
w )n≥1 satisfies a large deviations principle at scale n with

a good rate function consisting of two parts. The first part is the Kullback entropy
of the equilibrium measure µV with respect to the absolute continuous part of the
argument measure. The second part corresponds to the contribution of the outliers
of the argument measure, namely of the eigenvalues that belong to the complement
of the support of µV . Besides, when the spectral measure is encoded by the Jacobi
recursion coefficients (or the Verblunsky coefficients in the unitary case), the rate
function admits another expression in term of these coefficients, which is a simple
functional in most of the classical cases. The identification of the two expressions
of the rate functions leads to the so called sum rules.

The simplest Hermitian invariant models are the well known Gaussian Unitary
Ensemble GUE(n) and Laguerre Unitary Ensemble LUEnτ (n), whose equilibrium
measures are respectively given by the semi-circle law (SC) and the Marchenko-
Pastur law (MPτ ). In the unitary world, the simplest model is of course the CUE(n)
which corresponds to the Haar measure on the unitary group. The first non-trivial
models are provided by the Gross-Witten measures which form a family of prob-
ability measures on the unitary group, absolutely continuous with respect to the
CUE(n).

In this paper, we are interested in the large deviations of the spectral measures of
rank-one perturbations of the classical aforementioned models. More precisely, we
will consider additive perturbations of the GUE(n), multiplicative perturbations of
the LUEnτ (n) and multiplicative perturbation of the Gross-Witten measures. For
a survey of the literature on these so-called spiked models, we refer the reader to [9].
Let us mention that, at the level of large deviations, the extreme eigenvalues have
been studied in [4], and the pair (extreme eigenvalue, weight) has been recently
considered in [5]. In the present work, we establish large deviations principles
for the sequences of spectral measures associated to the pairs (Mn, e

(n)), in case
where the reference vector e(n) is colinear to the eigenvector of the perturbation.
The corresponding good rate functions are simple perturbations of the good rate
functions of the undeformed models and we refer the reader to Theorems 5.1, 5.2
and 5.3 for precise statements.

In order to derive these large deviations principles, we propose two approaches,
each based on the already known LDP for classical models, and shedding different
lights on the problem. The first one uses that the distributions of the spectral
measures of the deformed models are tilted versions of the distributions of the
spectral measures of the undeformed ones. The second approach relies on the
computations of the Jacobi (resp. Verblunsky) parameters of the deformed models.

Of course, the unique minimizers of the rate functions corresponds to the lim-
iting spectral measures of the considered models. In particular, we recover the
expressions of the limiting spectral measures associated to the perturbations of the
GUE(n) and the LUEnτ (n), which belong to the class of free Meixner laws. In
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the Gaussian setting, this was first observed in [25]. In the general case, this is
a consequence of the local laws [24, 23], as observed in [26]. A byproduct of our
considerations also yields a characterization of the limiting measures as the unique
minimizers of the rate functions of the unperturbed models, under a constraint on
the mean.

In a last part, we propose two generalizations of our considerations. The first
one is concerned with perturbations of general invariant models, while the second
one deals with matricial versions of the spectral measures.

In all the sum rules considered, the Kullback-Leibler divergence or relative en-
tropy between two probability measures µ and ν plays a major role. When the
probability space is R endowed with its Borel σ-field, it is defined by

K(µ | ν) =


∫
R

log
dµ

dν
dµ if µ is absolutely continuous with respect to ν,

∞ otherwise.

(1.1)
Usually, ν is the reference measure. Here the spectral side will involve the re-
versed Kullback-Leibler divergence, where µ is the reference measure and ν is the
argument.

The outline of the paper is as follows. In Section 2, we present our three ran-
dom models and the main notations. Section 4 gives the encoding of the spectral
measures by Jacobi parameters in the real case and Verblunsky parameters in the
complex case. In Section 4, we recall the results obtained by the second author
of this paper with Gamboa and Nagel about large deviations and the sum rules.
Section 5 contains our results, which are stated in Theorems 5.1, 5.2 and 5.3. In
Section 6, we present some generalizations of these results. Finally, in an appen-
dix we present a technical lemma and a short panorama of measures found in the
different limits, which simplifies some computations along the paper.

2. Notations

In this article, we are going to consider perturbed versions of three classical
models of random matrices whose definitions are recalled here. The two first models
have real eigenvalues and correspond to the Hermite and the Laguerre ensembles.
The third model will have its eigenvalues on T := {z ∈ C, |z| = 1}, and corresponds
to the so-called Gross-Witten measure, which is absolutely continuous with respect
to the Haar measure on U(n).

The Hermite ensemble. For all n ≥ 1, the Gaussian Unitary Ensemble GUE(n),
or Hermite ensemble, is a probability distribution on Hermitian matrices of size
n × n, whose density is proportional to exp

(
− 1

2Tr(MM?)
)
. The rescaled matrix

X = 1√
n
M has law:

P(n)
0 (dX) :=

1

Z(n)
0

exp
(
−n

2
Tr(XX?)

)
dX. (2.1)

The equilibrium measure of this ensemble, i.e. the limit of the empirical spectral

distribution µ
(n)
u , is the semicircle distribution:

SC(dx) =
1

2π

√
4− x2 1[−2,2](x) dx. (2.2)
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The Laguerre ensemble. For all n ≥ 1, let N = N(n) be such that n ≤ N .
Let X be a n × N complex matrix with independent entries having a gaussian
distribution such that EXij = E(X2

ij) = 0 and E|Xij |2 = 1. Then, the Laguerre
Unitary Ensemble LUEN (n) is the distribution of XX?, which is proportional to
(detXX?)N−n exp (−TrXX?). The law of the rescaled matrix L = 1

NXX
? is

therefore given by

Q(n)
1 (dL) :=

N−n
2

Γ̃n(N)
(detL)N−n exp (−NTrL) dL , (2.3)

where Γ̃n(N) is the multigamma function. During this article, we will assume that
N/n→ τ−1 > 1 as n→ +∞. The equilibrium measure of this Laguerre ensemble,

i.e. the limit of the empirical spectral measure µ
(n)
u , is the Marchenko-Pastur

distribution with parameter τ :

MPτ (dx) =

√
(τ+ − x)(x− τ−)

2πτx
1(τ−,τ+)(x)dx (2.4)

where τ± := (1±
√
τ)2.

The Gross-Witten ensemble. Our third model has its eigenvalues on T and

corresponds to the Gross-Witten measure GW(n)
g with parameter g ∈ R. It is a

probability measure on U(n) which is absolutely continuous with respect to the
Haar measure P(n) on the unitary group U(n), with density:

dGW(n)
g

dP(n)
(U) :=

1

Zn(g)
exp

[ng
2

Tr(U + U?)
]
. (2.5)

Let us mention that the Gross-Witten measure arises in the context of the Ulam’s
problem which concerns the length of the longest increasing subsequence inside a
uniform permutation [3]. For other details and applications of this distribution we
refer to [20] p. 203, [19], [33].

There are two different behaviors according to the value of the parameter g.
For |g| ≤ 1 (ungapped or strongly coupled phase). In this context, the equilib-

rium measure GWg is supported by T and has the following density:

GWg(dz) =
1

2π
(1 + g cos θ) dθ, (z = eiθ, θ ∈ [−π, π)). (2.6)

Note that GWg has only nontrivial moments of order ±1.
For |g| > 1, the equilibrium measure is supported by an arc. This case will not be

considered here since the paper would be lenghtened with involved computations.

3. Recap on Orthogonal polynomials

In this section we recall the possible parametrization of positive measures on R
(resp. T) by their Jacobi (resp. Verblunsky) coefficients. The latter appear through
the spectral theory of orthogonal polynomials on the real line (OPRL), resp. the
spectral theory of orthogonal polynomials on the unit circle (OPUC), which we
briefly recall here. In the next section, we will use these parametrizations in order
to recall the large deviations principles satisfied by the spectral measures of the
models defined in Section 2.
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3.1. OPRL. Let ρ be a positive measure on R whose support is bounded but not
made of a finite union of points. Let (pn(x))n≥0 be the sequence of orthonormal
polynomials associated to ρ, obtained by applying the Gram-Schmidt algorithm to
the basis {1, x, x2, . . .}. Then, there exists two sequences of uniformly bounded real
numbers (an)n≥0 and (bn)n≥0 such that an > 0 for all n ≥ 0 and such that the
polynomials pn(x)’s satisfy the following three terms recursion:

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x). (3.1)

The parameters {an, bn}∞n=1 are called the Jacobi parameters associated to ρ. We
will denote

Jac(ρ) =

(
b1, b2, · · ·
a1, a2, · · ·

)
. (3.2)

As it is well known (see, e.g., [29, Section 1.3]), Equation (3.1) sets up the one-
to-one correspondence between uniformly bounded sequences (an)n≥1, (bn)n≥1 and
positive measures ρ on R whose supports are bounded but not made of a finite
union of points. Moreover, a similar argument implies that there exists a one-to-
one correspondence between the set of positive measures ρ on R whose support
are finite union of N distinct points and the set of sequences (an)1≤n≤N−1 and
(bn)1≤n≤N such that an > 0 for all 1 ≤ n ≤ N . Let us mention that the Jacobi
parameters of the semicircle law are given by:

Jac(SC) =

(
0, 0, · · ·
1, 1, · · ·

)
, (3.3)

it is called the “free” case in the OPRL literature.
When ρ is supported on [0,∞) the recursion coefficients can be decomposed as

bk =z2k−2 + z2k−1,

a2
k =z2k−1z2k,

(3.4)

for k ≥ 1, where zk ≥ 0 and z0 = 0. In fact, by Favard’s Theorem a measure ρ is
supported on [0,∞) if and only if its Jacobi coefficients satisfy the decomposition
(3.4). In particular, the MPτ distribution corresponds to zMP

2n−1 = 1 and zMP
2n = τ

for all n ≥ 1, so that

Jac(MPτ ) =

(
1, 1 + τ, 1 + τ, · · ·√
τ ,

√
τ ,

√
τ , · · ·

)
. (3.5)

Let us finally mention that the measure ρ can be realized as the spectral measure
associated to the pair (J, e1), where J is the so-called Jacobi matrix which represents
the multiplication by x in the basis (pn(x))n≥0:

J :=


b1 a1 0

a1 b2 a2
. . .

0 a2
. . .

. . .

. . .
. . .

. . .

 . (3.6)
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3.2. OPUC. Let µ be a probability measure on T whose support is not a finite set
of points. Let (ϕn(z))n≥0 be the sequence of orthonormal polynomials associated
to µ, obtained by applying the Gram-Schmidt algorithm to the basis {1, z, z2, . . .}.
Then, there exists a sequence of complex numbers (αn)n≥0, called the Verblunsky
coefficients associated to µ, such that |αn| < 1 for all n ≥ 0 and such that the
polynomials ϕn(z)’s satisfy the following recursion:

zϕn(z) = ρnϕn+1(z) + ᾱnϕ
∗
n(z), (3.7)

where
ϕ∗n(z) = zn ϕn(1/z̄) ρn = (1− |αn|2)1/2 . (3.8)

Equation (3.7) sets up a one-to-one correspondence between sequences (αn)n≥0

with values inside {z, |z| < 1} and the set of positive measures µ on T whose
supports are not finite union of points. Moreover, a similar argument implies that
there exists a one-to-one correspondence between the set of positive measures µ
on T whose support are finite union of N distinct points and the set of sequences
(αn)1≤n≤N such that |αn| < 1 for all 0 ≤ n ≤ N − 1 and |αN | = 1.

The sequence αn ≡ 0 corresponds to λ0, the normalized Lebesgue measure on
T, and is called “free” case in the OPUC literature.

For the Gross-Witten model, when |g| ≤ 1, the V-coefficients are given by (see
[29], p. 86):

αGW
n =


− x+ − x−
xn+2

+ − xn+2
−

if |g| < 1

(−g)n+1

n+ 2
if |g| = 1 ,

(3.9)

where x± are roots of the equation

x+
1

x
= −2

g
.

In particular

αGW
0 =

g

2
. (3.10)

4. Recap on LDP and sum rules

See [11, 12, 1] for background on LDP. For the self-adjoint models the sequence

(µ
(n)
u ) satisfies the LDP at scale n2 with good rate function involving the logarithmic

entropy and the potential. Moreover the extremal eigenvalues satisfy the LDP at
scale n with a rate function FH and F±L , which represent effective potentials. For
the unitary model studied here, the support of the limiting measure is the whole
unit circle and there exists no outlier. The following results are the sum rules
obtained by the second author of this paper together with Gamboa and Nagel.



SPECTRAL MEASURES OF SPIKED MATRICES 7

4.1. OPRL.

4.1.1. LDP on the measure side. To begin with, let us give some notations. Let
S = S(α−, α+) be the set of all bounded positive measures µ on R with

(i) supp(µ) = J ∪ {E−i }N
−

i=1 ∪ {E
+
i }N

+

i=1, where J ⊂ I = [α−, α+], N−, N+ ∈
N ∪ {∞} and

E−1 < E−2 < · · · < α− and E+
1 > E+

2 > · · · > α+.

(ii) If N− (resp. N+) is infinite, then E−j converges towards α− (resp. E+
j

converges to α+).

Such a measure µ will be written as

µ = µ|I +

N+∑
i=1

γ+
i δE+

i
+

N−∑
i=1

γ−i δE−i
, . (4.1)

Further, we define S1 = S1(α−, α+) := {µ ∈ S|µ(R) = 1}. We endow S1 with the
weak topology and the corresponding Borel σ-algebra.

On the measure side we have

Theorem 4.1. Under GUE(n) (resp. LUEN (n)) the family of distributions of

(µ
(n)
w ) satisfies the LDP on M1(R) in the scale n with good rate function IHmeas

(resp. ILmeas) given by

IHmeas(µ) =

{
K(SC | µ) +

∑
k FH(E±k ) if µ ∈ S1(−2, 2),

∞ otherwise,
(4.2)

where

FH(x) :=


∫ |x|

2

√
t2 − 4 dt if |x| ≥ 2

∞ otherwise,

(4.3)

resp.

ILmeas(µ) =

{
K(MPτ | µ) +

∑
k F
±
L (E±k ) if µ ∈ S1(τ−, τ+)

∞ otherwise,
(4.4)

where

F+
L (x) =

∫ x

τ+

√
(t− τ−)(t− τ+)

tτ
dt if x ≥ τ+, (4.5)

F−L (x) =

∫ τ−

x

√
(τ− − t)(τ+ − t)

tτ
dt if x ≤ τ−, (4.6)

F±L (x) =∞ if x ∈ [τ−, τ+] . (4.7)

The measure SC (resp. MPτ ) is the unique minimum of IHmeas (resp. ILmeas).

4.1.2. LDP on the coefficients side. We start by stating the classical Killip-Simon
sum rule (due to [22] and explained in [32] p.37). It gives two different expressions
for the discrepancy between a measure and to the semicircle law SC.

For a probability measure µ on R with recursion coefficients a := (ak)k, b :=
(bk)k, define

IHcoeff(a, b) :=
∑
k≥1

(
1

2
b2k +G(a2

k)

)
, (4.8)
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where G(x) = x − 1 − log x. It is a convex function of (a, b) which has a unique
minimum at ak ≡ 1, bk ≡ 0, corresponding to the semicircle law SC (see (3.3)).

If the support of µ is a subset of [0,∞) with z = (zk)k, define

ILcoeff(z) :=

∞∑
k=1

τ−1G(z2k−1) +G(τ−1z2k) . (4.9)

It is a convex function of z which has a unique minimum at z = (zk)k≥0 with

z0 = 0, Z2k−1 = 1, z2k = τ (k ≥ 1) .

which corresponds with MPτ .
Then we have the following theorem.

Theorem 4.2 ([22]). (1) Let J be a Jacobi matrix with diagonal entries bk ∈ R
and subdiagonal entries ak > 0 satisfying supk ak + supk |bk| < ∞ and let
µ be the associated spectral measure. Then IHmeas(µ) =∞ if µ /∈ S1(−2, 2)
and for µ ∈ S1(−2, 2),

IHcoeff(a, b) = IHmeas(µ) (4.10)

where in (4.10), both sides may be infinite simultaneously.
(2) Assume the entries of the Jacobi matrix J satisfy the decomposition (3.4)

with supk zk < ∞ and let µ be the spectral measure of J . Then for all
τ ∈ (0, 1], IL(µ) =∞ if µ /∈ S1(τ−, τ+) and for µ ∈ S1(τ−, τ+),

ILcoeff(z) = ILmeas(µ) (4.11)

where in (4.11), both sides may be infinite simultaneously.

Note that if τ = 1, the support of the limit measure is [0, 4], so that we have a
hard edge at 0 with N− = 0 and no contribution of outliers to the left.

4.2. OPUC. For the unitary case we have LDPs on the measure side and some
sum rules. In the following K(ν | µ) denotes the Kullback-Leibler divergence or
relative entropy of ν with respect to µ on T.

4.2.1. Measure side.

Theorem 4.3 ([14] Cor. 4.5). Under GW(n)
g , with |g| ≤ 1, the sequence of spectral

measures µ(n) satisfies the LDP in M1(T) with speed n and rate function

IGW
meas(µ) = K(GWg | µ) .

The measure GWg is the unique minimum of IGW .

4.2.2. Coefficient side - sum rules. For a probability measure µ on T we denote by
α := (αk)k the sequence of its Verblunsky coefficients.

On the unit circle, the most famous sum rule is the Szegő formula:

K(λ0 | µ) = −
∑
k≥0

log(1− |αk|2) (4.12)

where, as above λ0 is the normalized Lebesgue measure on T, whose Verblunsky
coefficients are αk = 0 for every k.

There are many proofs of (4.12) in [29] and a probabilistic proof in [17].
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In the Gross-Witten case, we define, for |g| ≤ 1

IGW
coeff(α) := K(GWg | λ0)− g<

(
α0 −

∞∑
k=1

αkᾱk−1

)
+

∞∑
k=0

− log(1− |αk|2) .

(4.13)

where

K(GWg | λ0) := 1−
√

1− g2 + log
1 +

√
1− g2

2
. (4.14)

The following sum rule was pointed out in [29] Theorem 2.8.1 for GW−1 and ex-
tended in Cor. 5.4 in [14]) for −1 < g < 0, but the proof remains valid for
0 < g ≤ 1. In [8], the authors proved the LDP for the coefficient side when g = −1
by probabilistic arguments, and actually this proof may be extended easily to the
case |g| < 1.

Theorem 4.4. Let µ be a probability measure on T with Verblunsky coefficients
α = (αk)k≥0 ∈ DN. Then, for 0 ≤ |g| < 1, we have

IGW
coeff(α) = IGW

meas(µ) . (4.15)

Remark 1. The case |g| > 1 is more complex (see Conjecture in [14]).

5. LDP for perturbations

We are now in position to state and prove our main results, which are concerned
with large deviations of spectral measures of rank one perturbation of the models
introduced in Section 2. As advertised during the Introduction, we will always
provide two proofs. The first proof, which will be called the direct proof, uses
the fact that the law of the spectral measure of the deformed model is a tilted
version of the law of the initial model. The second proof, which will be called the
alternative proof, uses the fact that the Jacobi (resp. Verblunsky) coefficients of the
deformed models are simple perturbations of the initial coefficients (in fact, only
one parameter is affected).

5.1. Additive perturbation - Gaussian case. For all n ≥ 1, let us consider

Wn =
1√
n
Xn +An,

where Xn follows the GUE(n) distribution and An is a rank-one deterministic
matrix of size n × n. Since the Gaussian Unitary Ensemble is unitarily invariant,
we can assume that An = θuu∗, where θ ∈ R and where u = e1 is the first vector

of the canonical basis. Let µ
(n)
w be the spectral measure of the pair (Wn, u). It is

known ([24] Th. 4.6, [26] Cor. 1) that, as n → ∞, µ
(n)
w converges in probability

towards the following probability measure:

µSC,θ(dx) =

√
(4− x2)+

2π(θ2 + 1− θx)
dx+

(
1− 1

θ2

)
+

δθ+ 1
θ
. (5.1)

Our first result establishes a large deviation principle for the sequence of probability

measures (µ
(n)
w )n≥1.
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Theorem 5.1. The family (µ
(n)
w ) satisfies the LDP at scale n with good rate func-

tion

IW (µ) =

{
K(SC | µ)− θm1(µ) + 1

2θ
2 +

∑
k F(E±k ) if µ ∈ S1(−2, 2),

∞ otherwise.
(5.2)

Moreover:

(1) µSC,θ is the unique minimizer of µ 7→ IW (µ),
(2) µSC,θ is the unique minimizer of µ 7→ IHmeas(µ) under the constraint m1(µ) =

θ, where we recall that IHmeas is defined in (4.2).

Proof. We first prove (5.2) using two different arguments.
A) Direct proof. If X has the GUE(n) distribution (see (2.1)), the distribution

of W = n−1/2X + θuu∗ is

P(n)
θ (dW ) =

1

Z(n)
0

exp
(
−n

2
Tr((W − θuu∗)(W ? − θuu∗))

)
dW.

But

Tr((W − θuu∗)(W ? − θuu∗)
= Tr(WW ?)− θ (Tr(Wuu∗) + Tr(uu∗W ?)) + θ2Tr(uu∗)

= Tr(WW ?)− 2θu∗Wu+ θ2,

which allows us to rewrite

P(n)
θ (dW ) = exp

(
−n

2
(θ2 − 2θu∗Wu)

)
P(n)

0 (dW ) .

Let us finally notice that, since u = e1, one has u∗Wu = W11 = m1(µ
(n)
w ), which

yields

P(n)
θ (µ(n)

w ∈ dµ) =
expnΨ(µ)

E0 expnΨ(µ
(n)
w )

P(n)
0 (µ(n)

w ∈ dµ),

where

Ψ(µ) = θm1(µ).

It remains to apply Varadhan’s lemma (see [11] Th 4.3.1 or [12] Exercise 2.1.24).
Notice that the uniform exponential integrability condition is satisfied since under

P(n)
0 , m1(µ

(n)
w ) = X11 ∼ N (0;n−1), which implies that for every γ > 0,

1

n
logE[exp γnm1(µ(n)

w )] =
γ2

2
.

B) Alternative proof. Fix n ≥ 1. A consequence of the tridiagonal representation

of the GUE(n) of Dumitriu and Edelman is that µ
(n)
w is the spectral measure of the

pair (Jn, e1), where Jn is the following random Jacobi matrix:

Jn ∼



N (0, 1
n ) + θ 1√

n
χ2(n−1)

1√
n
χ2(n−1) N (0, 1

n ) 1√
n
χ2(n−2)

1√
n
χ2(n−2) N (0, 1

n )
. . .

. . .
. . . 1√

n
χ2

1√
n
χ2 N (0, 1

n )


.
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Here, the matrix Jn is symmetric and up to this symmetry, its coefficients are
independent. Note that this corresponds to the usual tridiagonalisation of the
GUE(n) except for the addition of the parameter θ to the (1, 1) coefficient.

Fix µ a measure on R with Jacobi parameters a = (an)n≥1 and b = (bn)n≥1.
Then, using a projective method and the independence of the coefficients of Jn, we
see that the rate function for the LDP on the coefficient side is given by

IWcoeff(a, b) =
1

2
(b1 − θ)2 +

1

2

∑
k≥2

b2k + +
∑
k≥1

G(a2
k) (5.3)

=
1

2
θ2 − b1θ + IHcoeff(a, b) . (5.4)

But, by Theorem 4.2,

IHcoeff(a, b) = IHmeas(µ) = K(SC | µ) +
∑
k

F(E±k ) .

Besides, b1 = m1(µ), so that the random measure µ
(n)
w satisfies the LDP at scale n

with rate function

IW (µ) = IWcoeff(a, b) = K(SC | µ)− θm1(µ) +
1

2
θ2 +

∑
k

F(E±k ) . (5.5)

We now turn to the proofs of (1) and (2).
(1) The infimum can be looked from the coefficient side, i.e. from (5.5) and (5.3),
and is given by:

Jac(argmin IW ) =

(
θ, 0, 0, · · ·
1, 1, 1, · · ·

)
.

Using section 7.2, we deduce that Jac(argmin IW ) = Jac(µ̃−θ,0), namely argmin IW =
µSC,θ.

(2) If m1(µ) = θ, we deduce from (5.4) and the sum rules that

IHmeas(µ) = IWmeas(µ) +
θ2

2
≥ θ2

2
,

with equality if and only if µ = µSC,θ.
�

Remarks. (1) Let us first observe that we can check by hands that the minimum
of IW is zero. Indeed, since FH is also given by1

FH(θ + θ−1) =
(θ + θ−1)2

2
− 2

∫
log(θ + θ−1 − x) SC(dx)− 1,

we deduce that

K(SC | µSC,θ) =

∫
log(1 + θ2 − θx) SC(dx)

= log θ +

∫
log(θ + θ−1 − x) SC(dx)

= log θ +
(θ + θ−1)2

4
− 1

2
− 1

2
F(θ + θ−1)

1There is a mistake in [1] p.81 see http://www.wisdom.weizmann.ac.il/ zeitouni/cormat.pdf
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= log θ +
(θ + θ−1)2

4
− 1

2
− 1

4
(θ2 − θ−2) + log θ

=
(θ−2 − θ2)

2
+ 2 log θ +

θ2

2
.

Hence K(SC | µSC,θ) + F(θ + θ−1) = θ2

2 and:

IWmeas(µSC,θ) = K(SC | µSC,θ) + F(θ + θ−1)− θm1(µSC,θ) +
θ2

2

=
θ2

2
− θ2 +

θ2

2
= 0.

(2) The fact that µSC,θ is the only minimizer of IW allows to retrieve the con-

vergence of µ
(n)
w towards µθ,SC, and actually to strengthen the convergence

in probability into an almost sure convergence.

5.2. Multiplicative perturbation. For all n ≥ 1, let us consider

Sn =
1

n
Σ1/2
n LnΣ1/2

n

where Σn = Diag(θ, 1, . . . ). It is known ([23] Prop. 6.1) that the sequence of

measure (µ
(n)
w )n≥1 has a limit. An explicit computation of the limiting measure

µL,θ can be performed as in [26], and we get2

µL(dx) =

√
4τ − (x− (1 + τ))2

2πx ((θ + τ − 1) + x(θ−1 − 1))
dx+ uδ0 + vδw, (5.6)

with

u =
(τ − 1)+

θ + τ − 1
, v =

τ
(
(θ − 1)2 − τ

)
+

(θ − 1)(θ + τ − 1)
, w = −θ + τ − 1

θ−1 − 1
.

Here, we will restrict the setting to the case where n/N → τ < 1, that is to the
case where µL does not have a mass at zero. In this context, we obtain a large

deviation principle for the family of spectral measures (µ
(n)
w )n≥1 associated to the

pairs (Sn, e1).

Theorem 5.2. The family (µ
(n)
w ) satisfies the LDP at scale n with good rate func-

tion

IS(µ) =

{
K(MPτ | µ) + θ−1−1

τ m1(µ) + 1
τ log θ +

∑
k

FL(E±k ) if µ ∈ S1(τ−, τ+)

∞ otherwise.
(5.7)

Moreover,

(1) µL,θ is the unique minimizer of µ 7→ IS(µ),
(2) µL,θ is the unique minimizer of IL(µ) under the constraint m1(µ) = θ.

Proof. We first provide two proofs of (5.7).
A) Direct proof. Let L be a random n × n matrix following the LUEN (n)

distribution (see (2.3)), and Σ a Hermitian positive n × n. Then, the distribution

2This is the same measure as µMP,τ−1,θ in [26] up to a little change, due to the convention on

the definition of sample covariance matrix.
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of S = Σ1/2LΣ1/2 is given by the following density:

1

Γ̃n(N)
N−n

2

(detS)N−n(det Σ)−N exp−NTr Σ−1S dS.

In our case, N = τ−1n and Σn = Diag(θ, 1, . . . , 1), so that we have det Σn = θ and:

Tr(SnΣ−1
n ) = θ−1(Sn)11 +

∑
k≥2

(Sn)kk = (θ−1 − 1)(Sn)11 + TrSn.

Therefore, the law of Sn = Σ
1/2
n LnΣ

1/2
n is

Q(n)
θ (dS)

=
(nτ−1)n

2τ−1

Γ̃n(nτ−1)
θ−nτ

−1

(detS)n(τ−1−1) exp
(
−nτ−1(TrS + (θ−1 − 1)S11)

)
dS

Moreover, since µ
(n)
w is the spectral measure associated to the pair (Sn, e1), we have

S11 = m1(µ
(n)
w ), which implies that

Q(n)
θ (µ(n)

w ∈ dµ) =
expnΦ(µ)

Q(n)
1 (expnΦ(µ

(n)
w )

Q(n)
1 (µ(n)

w ∈ dµ),

where
Φ(µ) = τ−1(1− θ−1)m1(µ).

In order to apply Varadhan’s Lemma, let us check the uniform exponential integra-

bility condition. Under Q(n)
1 ,

nτ−1m1(µ(n)
w ) = nτ−1S11

(d)
= χ2(nτ−1),

which implies that for all ϕ < 1,

Q(n)
1 (expϕnτ−1S11) = (1− ϕ)

−nτ−1

.

Therefore γ ∈ (1, (1− θ−1)−1
+ ),

1

n
logQ(n)

1 exp γnΦ(µ(n)
w ) = −τ−1 log(1− γ(1− θ−1)) .

Thus, the uniform integrability condition is satisfied and we can apply Varadhan’s
Lemma, which leads to (5.7).

B) Alternative proof.
Fix n ≥ 1. A consequence of the tridiagonal representation of the LUE(n) of

Dumitriu and Edelman is that µ
(n)
w is the spectral measure of the pair (Jn, e1),

where Jn = BnB
?
n with:

Bn ∼
1√
2N


χ2N√

θ · χ2(n−1) χ2(N−1)

χ2(n−2) χ2(N−2)

. . .
. . .

χ2 χ2(N−n+1)

 .

Here, the matrix Bn is bidiagonal and its coefficients are independent. Note that
this corresponds to the usual bidiagonal matrix of the LUE(n) except for the addi-

tion of the multiplicative factor
√
θ to the (1, 2) coefficient. Using the parameters

system (3.4), we deduce that the transformation Ln 7→ Sn changes the first coef-
ficient z1 into z′1 = θz1 and does not change the other parameters. Since the rate
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function for z1 is τ−1G(z) with G(z) = z − 1 − log z, the rate function for θz1 is
τ−1G(z/θ). Let µ be a positive measure on [0,∞) with z-parameters (zi)i≥0. Then,
using a projective method and the independence of the coefficients of Jn, we see
that the LDP on the coefficient side is given by:

IScoeff(z) = τ−1 [G(z1/θ)−G(z1)] + ILcoeff(z)

= τ−1(θ−1 − 1)z1 + τ−1 log θ + ILcoeff(z) .

But by the sum rule (4.11),

ILcoeff(z) = K(MP | µ) +
∑
k

FL(E±k ). (5.8)

Moreover, z1 = b1 = m1(µ), so that our random measure satisfies the LDP with
rate function

IWmeas(µ) = K(MP | µ) + τ−1(θ−1 − 1)m1(µ) + τ−1 log θ +
∑
k

FL(E±k ). (5.9)

We now turn to the proof of (1) and (2).
(1) The minimizer of IS can be looked from the coefficient side and is given by

the following z-parameters:

z1 = θ, z2k−1 = 1 , k ≥ 2 , z2k = τ , k ≥ 1 . (5.10)

Owing to (3.4), it corresponds to the following Jacobi coefficients:

Jac(argmin IW ) =

(
θ, 1 + τ, 1 + τ, · · ·√
θτ ,

√
τ ,

√
τ , · · ·

)
. (5.11)

By Lemma 7.1, we deduce that

Jac
(
T√θτ,θ(argmin IW )

)
= Jac(µb,c) (5.12)

where

b =
1 + τ − θ√

θτ
, c =

1− θ
θ

. (5.13)

Coming back to our distribution, we find the expression given in (5.6) for µL. For
θ > 1 (resp. θ < 1), it is the free binomial (resp. free Pascal) distribution (see
Section 7.2).

(2) The condition m1(µ) = θ rewrites z1 = θ. Combining (5.8) and the sum rule
(4.11), we deduce that

IL(µ) = IS(µ) + τ−1(θ − 1− log θ) ≥ τ−1(θ − 1− log θ) ,

with equality if and only if µ = µL. �

5.3. Perturbations of Unitary Matrices. Up to our knowledge, there is only
one type of perturbation of unitary matrices which was studied in relation with
Verblunsky (in short “V”) coefficients. If Un ∈ U(n) and e = e1 is cyclical, let as
usual (αk)k≥0 be the V-coefficients of the pair (U, e). Now, for any fixed element
eiϕ ∈ T, we define

Wn = UnQn , whith Qn = In + (eiϕ − 1)e〈e, ·〉 . (5.14)

Such a rank-one perturbation has been considered in Sections 1.3.9, 1.4.16, 3.2, and
4.5 of [29], 10.1, A.1.D and A.2.D of [30], see also [31].
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If µ is the spectral measure of the pair (Un, e) let us denote by τeiϕµ the spectral
measure of the pair (Wn, e). A usual tool for the study of a measure µ on T is its
Caratheodory transform, which is the analog of the Stieltjes transform, defined by

Fµ(z) =

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) . (5.15)

Conversely, if dµ = w(θ)dλ0(θ) + dµs, then

w(θ) = lim
r↑1
<Fµ(reiθ) (5.16)

and µs is supported by {θ : limr↑1<Fµ(reiθ) =∞} (see [29] (1.3.31)).
The mapping (µ 7→ τeiϕµ) gives at level of Caratheodory transform :

Fτeiϕµ =
(1− e−iϕ) + (1 + e−iϕ)F

(1 + e−iϕ) + (1− e−iϕ)F
, (5.17)

(see [29](1.3.90)), which implies, by the Schur recursion, the remarkable relation:

αk(τeiϕµ) = e−iϕαk(µ) , (k ≥ 0) . (5.18)

When ϕ is varying, it generates the so-called Aleksandrov family of measures.

In particular, if P(n)
ϕ (resp. P(n)

0 ) denotes the distribution of Wn (resp. Un), we
have

P(n)
ϕ (µ(n)

w ∈ dµ) = P(n)
0

(
µ(n)
w ∈ d(τe−iϕµ)

)
. (5.19)

Here is our theorem which establishes a large deviation principle for the sequence
of spectral measures associated to the pairs (Wn, e).

Theorem 5.3. Assume |g| ≤ 1.

(1) The family of distribution of random measures (µ
(n)
w ) under GWg satisfies

the LDP on M1(T), at scale n with good rate function

IW (µ) = IGW (µ)− g<
(
(e−iϕ − 1)m1(µ)

)
, (5.20)

where IGW has been defined in Theorem 4.3.
(2) The unique minimizer of IW is µϕ = τe−iϕ(GWg) and

dµϕ(θ) =
1

2π

1 + g cos θ

1− 2g sin ϕ
2 sin

(
θ − ϕ

2

)
+ g2 sin2 ϕ

2

dθ . (5.21)

(3) µϕ is the unique minimizer of IGW
meas under the constraint m1(µ) = g

2e
iϕ.

Proof. (1) A) Direct proof .

The distribution of Un is GW(n)
g i.e.

P(n)
0 (dU) =

1

Z(n)
0

exp
ng

2
Tr(U + U?) dU , (5.22)

and then the distribution of Wn is

P(n)
ϕ (dW ) =

1

Z(n)
0

exp
ng

2
Tr(WQ−1

n + (WQ−1
n )?) dW . (5.23)

But

Tr (WQ−1
n ) = TrW + (e−iϕ − 1)W11 , Tr (WQ−1

n )? = TrW ? + (eiϕ − 1)W̄11

(5.24)
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so that

P(n)
ϕ (dW ) =

1

Z(n)
0

exp
ng

2

(
Tr (W +W ∗) + < (e−iϕ − 1)W11)

)
dW (5.25)

and since W11 = m1(µ
(n)
w ) we get

P(n)
ϕ (µ(n)

w ∈ dµ)) = expng<
(
e−iϕ − 1)m1(µ)

)
P0(µ(n)

w ∈ dµ)) . (5.26)

This yields (1) by application of Varadhan’s lemma without any condition since

m1(µ
(n)
w ) ∈ D.

(1) B) An alternate proof

Under GW(n)
g , the rate function for the LDP of the V-coefficients is IGW

coeff given
by (4.13). After a pushing forward by (5.19) the new rate function on the coefficient
side becomes

IWcoeff(α) = IGW
coeff(eiϕα) = IGW

coeff(α)− g<
(
α0(eiϕ − 1)

)
. (5.27)

Coming back to the sum rule and using α0(µ) = m̄1(µ) we get (5.20).
(2) From (5.19), we have

IW (µ) = IGW(τe−iϕ(µ)) . (5.28)

Therefore, the rate function IW has a unique minimum at

µϕ := τeiϕ(GWg) . (5.29)

The Caratheodory transform of the equilibrium measure is ([29] p.86)

F (z) = 1 + gz ,

so that, using (5.29), (5.17) and (5.16), we find the density (5.21). Moreover there
is no extra mass since Fϕ has no pole on T.

We could also have applied formula (3.2.96) in [29], which states that if µ =
w(θ)dλ0(θ) + dµs(θ), then the density w̃ of µϕ is given by

w̃(θ) =
w(θ)

| cos ϕ2 + i sin ϕ
2F (eiθ)|2

. (5.30)

(3) If m1(µ) = eiϕg/2, we deduce from (5.20) that

IGW (µ) = K(GWg | µ) = IW (µ) +
g2

2
(1− cosϕ) ≥ g2

2
(1− cosφ) ,

with equality if and only if µ = µϕ.

6. Generalizations

In this section, we discuss two possible generalizations of our considerations.
The first one concerns the rank-one perturbations of invariant models with general
potentials and the second one deals with a matricial version of our results. In each
case, for the sake of clarity and to avoid numerous repetitions, we will only treat
in details the Hermitian setting.

6.1. General potential.
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Additive perturbation. Let V be a convex polynomial potential of even degree
2d with positive leading coefficient:

V (x) = a2dx
2d + · · · , a2d > 0, (6.1)

and suppose that V is convex. Let P
(n)
0 be the following invariant measure on the

set of n× n Hermitian matrices:

P(n)
0 (dX) =

1

Zn
exp

(
− nTrV (X)

)
dX.

Under our assumptions on V , this model has a unique equilibrium measure µV ,
which is the almost-sure limit of the empirical spectral measures. Moreover, µV is
supported by a single interval [aV , bV ] and has a density of the form:

µV (dx) =
1

π
r(t)

√
(bV − x)(x− aV )1[aV ,bV ](x)dx,

where r is a polynomial of degree 2d−2 with nonreal zeros (see for example Propo-
sition 3.1 and Equation (2.8) of [21]).

As in Section 5.1, we are interested in the following additive rank-one perturba-
tion of the model:

W := X + θe1e
T
1 , X ∼ P(n)

0 .

Denoting π = e1e
T
1 , the random matrix W has law:

P(n)
θ (dW ) := exp

(
− n [TrV (W − θπ)− V (W )]

)
P(n)

0 (dW ). (6.2)

Let µ
(n)
w be the spectral measure associated to the pair (W, e1). In order to compute

the distribution of µ
(n)
w , we need the following lemma, whose proof is postponed to

the end of this section.

Lemma 6.1. There exists a polynomial QV in 2d variables such that, for all Her-
mitian matrix M ,

QV (θ,M11, (M
2)11, . . . , (M

2d−1)11) = TrV (M − θπ)− TrV (M).

Remark 2. Although a concise formula for Q2q in function of V seems out of reach,
let us give two simple examples:

• when V (x) = x2, QV = θ2 − 2θM11,
• when V (x) = x4, QV = θ4−4θ3(M3)11 +4θ2(M2)11 +2θ2M2

11−4θ(M3)11.

With the notation of Lemma 6.1, we have that

P(n)
θ (µ(n)

w ∈ dµ) = exp
(
− nQ2d(θ,m1(µ(n)

w ), . . . ,m2d−1(µ(n)
w ))

)
P(n)

0 (µ(n)
w ∈ dµ),

where we recall that mi(µ
(n)
w ) stands for the i-th moment of µ

(n)
w . We also need the

following observation, whose proof is postponed to the end of this section.

Lemma 6.2. If V is a convex polynomial of even degree,

sup
n

1

n
logE expnγ (TrV (M − θπ)− TrV (M)) <∞ (6.3)

By Lemma 6.2, we may apply Varadhan’s Lemma and obtain the following result.
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Theorem 6.3. The sequence of probability measures (µ
(n)
w )n≥1 satisfies a large

deviations principle at scale n with good rate function:

IW (µ) = K(µV | µ)−Q2d(θ,m1(µ(n)
w ), . . . ,m2d−1(µ(n)

w )) +
∑
k

F(E±k ) . (6.4)

We now turn to the proofs of Lemmas 6.1 and 6.2.

Proof of Lemma 6.1. It is enough to check the assertion when V a monomial V (x) =
cxr. The matrix (M − θπ)r is the sum of 2r products of elements which are M or
θπ. Since π is a projection, πk = π for every k ≥ 1, hence the products involved in
(M + θπ)r −Mr are of the form

(1) θjπMa1π...πMaiπ
(2) θjπMa1π...πMai

(3) θjMa1π...πMai

(4) θjMa1π...πMaiπ .

It is clear that the first expression is exactly θj(Ma1
11 . . . (M

ai)11. The three other
ones can be reduced to the first type: since TrAB = TrBA, we can write

• Tr(πMa1π...πMai) = Tr(π2Ma1π...πMai) = Tr(πMa1π...πMaiπ)
• Tr(Ma1π...πMai) = Tr(Ma1+aiπ...π) = Tr(Ma1+aiπ...π2) = Tr(π(Ma1+aiπ...π)
• Tr(Ma1π...πMaiπ) = Tr(Ma1π...πMaiπ2) = Tr(πMa1π...πMaiπ)

and since πMkπ = (Mk)11π, we get the result. �

Proof of Lemma 6.2. Let us denote ` := max{|λmax|, |λmin|}. Combining Lemma
6.1 and the fact that for all k ≥ 0, (Mk)11 ≤ `k, we deduce that Tr V (M + θπ) −
TrV (M) is bounded by C`2d−1, for some constant C only depending on V and θ.

Therefore, it is enough to check that supn n
−1 logE expCn`2d−1 <∞. This fact

is a direct consequence of the following rough large deviations estimate : there
exists C ′ > 0 such that for every x > 0 large enough P(` > x) ≤ e−nC

′V (x) (see
[27] Theorem 11.1.2, a precise rate function is given in [7] Prop. 2.1). The proof is
ended recalling that V is given by (6.1). �

Remark 3. If V is analytical:

V (z) =

∞∑
0

ckz
k,

we can formally write

Tr V (M + θπ)− TrV (M) =

∞∑
1

ak
(
Tr (M + θπ)k − TrMk

)
.

Using Lemma 6.1, this implies that Tr V (M + θπ)−TrV (M) is a function of all of
the moments of the spectral measure associated to the pair (M, e). Of course the
problem of uniform exponential integrability seems unreachable in that case.

6.2. Matricial spectral measures. Given a matrix M and a r-tuple of unit
vectors that are orthogonal (u1, . . . , ur), we define the matricial spectral measure
(νMij )1≤i,j≤r as the only matrix of signed measures such that, for all i, j ∈ {1, . . . , r}
and all z ∈ C, =z > 0,

〈ui, (M − zI)−1uj〉 =

∫
dνMij (x)

x− z
.
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In particular, for all k ≥ 0, the following equality holds:(
(Mk)ij

)
1≤i,j≤r =

(∫
xkdνMij (x)

)
1≤i,j≤r

.

We will denote by mk = mk((νMij )) the right-hand side of the above equality. Note
that when r = 1, we retrieve the previously considered spectral measure associated
to the pair (M,u1). Interestingly, our method also applies to the study of matricial
spectral measures of perturbations of the invariant models described in Section 2. In
the following, we will always assume that u1, . . . , ur are the first r vectors e1, . . . , er
of the canonical basis. Analogously to Sections 5.1, 5.2 and 5.3, our results rely on
former large deviations principles obtained for the unperturbed models. In order
to state them, we first need to introduce the notion of Kullback-Leibler divergence
with respect to quasi-scalar matricial measures. Let m be a positive measure on
R and let ν be a matricial measure of size r × r such that ν(dx) = h(x)m(dx) · 1.
Then, for any matricial measure µ of size r× r, the Kullback-Leibler divergence of
µ with respect to ν is defined by

K(µ | ν) =


∫
R

log h(x) dm(x) if µ << ν,

∞ otherwise.
(6.5)

Finally, we define S = S(α−, α+) the set of all bounded matricial measures µ of
size r × r such that

(i) supp(µ) = J ∪ {E−i }N
−

i=1 ∪ {E
+
i }N

+

i=1, where J ⊂ I = [α−, α+], N−, N+ ∈
N ∪ {∞} and

E−1 < E−2 < · · · < α− and E+
1 > E+

2 > · · · > α+.

(ii) If N− (resp. N+) is infinite, then E−j converges towards α− (resp. λ+
j

converges to α+).

Such a matricial measure µ can always be written as

µ = µ|I +

N+∑
i=1

Γ+
i δE+

i
+

N−∑
i=1

Γ−i δE−i
, (6.6)

for some r × r matrices Γ±i . We also introduce

S1 = S1(α−, α+) := {µ ∈ S|µ(R) = 1},
and endow S1 with the weak topology and the corresponding Borel σ-algebra.

In the unitary case, there is a corresponding framework. We omit to give details
for simplicity.

The Hermitian case. For all n ≥ r, let Xn be a GUE(n) random matrix, meaning

that X has law P(n)
0 . Let also An be a deterministic Hermitian matrix having all of

its entries equal to zero except for the r × r top-left block which is given by some
Hermitian matrix Θ. We are interested in the matricial spectral measure of the
deformed matrix:

Wn := Xn +An.

Note that the law P(n)
Θ of Wn is given by:

P(n)
Θ (dW ) =

1

Z(n)
0

exp
(
−n

2
Tr(W −An)(W −An)?

)
dW.
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Let µw
(n) be the matricial spectral measure associated to Wn and the r-tuple

(e1, . . . , er). Since

Tr(W −An)(W −An)? = Tr(WW ?)− 2Tr(AnW ) + Tr(AnA
?
n)

= Tr(WW ?)− 2Tr(Θm1) + Tr (ΘΘ?) ,

we deduce that

P(n)
Θ (µw

(n) ∈ dµ) =
expnΨ(µ)

E0[expnΨ(µw
(n))]

P(n)
0 (µw

(n) ∈ dµ), (6.7)

where 0 is the r × r matrix having all its coefficients equal to zero and where

Ψ(µ) = Tr (Θm1(µ)) .

Under P(n)
0 , it is known (see for example [15]) that the sequence (µw

(n))n≥r satisfies
a large deviations principle at speed n and with good rate function

IX(µ) =

{
K(SC · 1;µ) +

∑
k≥1

FH(E±k ) if µ ∈ S1(−2, 2),

∞ otherwise.

Besides, note that for every γ > 0,

1

n
logE0 [exp Tr (Θm1)] =

γ2

2
Tr (ΘΘ?) .

Therefore, applying Varadhan’s Lemma to (6.7), we obtain the following analog of
Theorem 5.1.

Theorem 6.4. The sequence (µw
(n))n≥r satisfies a large deviations principle at

speed n and with good rate function IW given by

IW (µ) =

K(SC · 1 | µ) +
∑
k≥1

FH(E±k )− Tr(Θm1) + 1
2Tr(ΘΘ?) if µ ∈ S1(−2, 2),

∞ otherwise.

Let us finally describe the unique minimizer of IW . First, we claim that, as
in the scalar case described in Section 3, there exists a one-to-one correpsondence
between matricial measures µ and sequences of r×r matrices (An)n≥1 and (Bn)n≥1

such that the matrices Bi’s are Hermitian positive definite. Using the matricial sum
rule (Th. 2.1 in [15]), the good rate function can be rewritten, when µ ∈ S1(−2, 2):

IW (µ) =
1

2
Tr(B1 −Θ)(B1 −Θ)? +

1

2

∑
n≥2

TrBnB
?
n +

∑
n≥1

G(AnA
?
n).

The unique minimizer µSC,Θ = argmin IW can therefore be described by its ma-
tricial Jacobi coefficients:

Jac(µSC,Θ) =

(
Θ, 0, 0, · · ·
1, 1, 1, · · ·

)
.

In order to obtain an explicit formula, we compute the matricial Stieltjes transform
of µSC,Θ, which is defined by

G(z) :=

∫
dµSC,Θ(x)

x− z1
.

By [32, Theorem 4.3.3], it satisfies the following equation:

G(z) =
1

Θ− z1−GSC(z)1
, (6.8)
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where GSC(z) = 1
2 (z −

√
z2 − 4) is the Stieltjes transform of the semi-circle law.

Therefore:

G(z) =
(z −

√
z2 − 4)1− 2Θ

2 (ΘΘ? + 1− zΘ)
.

Since the absolutely continuous part of µSC,Θ is given by

dµSC,Θ(x)

dx
= lim
t→0+

1

π
=G(x+ it),

it is easy to deduce that

dµSC,Θ(x)

dx
=

√
(4− x2)+

2π
(ΘΘ? + 1− xΘ)

−1
.

Moreover, µSC,Θ has an atom at each pole of G and the mass of this atom is the
corresponding residue. Thanks to (6.8), the poles of G corresponds to the reals x
such that det(Θ− x1−GSC(x)1) = 0. For simplicity, let us assume from now on
that Θ has distinct eigenvalues θ1, . . . , θr, the adaptation in the general case being
straightforward. Let U be the matrix whose columns are the eigenvectors of Θ.
Then, Θ = UDU? with D = Diag(θ1, . . . , θr), and we deduce that

G(z) = U
1

D − (z +GSC(z))1
U?.

We now use the following well-known fact about the subordination function ω(z) =
z +GSC(z):

• if |θ| ≤ 1, there is no real x such that ω(x) = θ;
• if |θ| > 1, there exists exactly one real xθ = θ + 1

θ such that |xθ| > 2 and

ω(xθ) = θ. Moreover, 1/ω′(xθ) = 1− 1
θ2 .

Therefore, the poles of G are in one-to-one correspondence with the eigenvalues θi of
Θ satisfying |θi| > 1, and each of this pole has a residue given by U(1− 1

θ2i
)eie

T
i U

?.

Hence, we have proved that:

µSC,Θ(dx) =

√
(4− x2)+

2π
(ΘΘ? + 1− xΘ)

−1
dx

+

r∑
i=1

(
1− 1

θ2
i

)
Ueie

T
i U

?1|θi|>1δθi+ 1
θi

(dx). (6.9)

It can also be written as follows:

µSC,Θ = U Diag(µSC,θ1 , · · · , µSC,θr )U
∗ .

Application. The above computation is particularly simple when Θ is propor-
tional to a projection, i.e. Θ = θR with R2 = R. Then

Θ2 + 1− zΘ = 1− (θz − θ2)R

(Θ2 + 1− zΘ)−1 = 1 +

∞∑
1

(θz − θ2)nRn = 1 +R

∞∑
1

(θz − θ2)n

= 1 +
(
(1− θz + θ2)−1 − 1

)
R . (6.10)

In particular, let us consider the following problem. Let u such that |〈u, e〉| 6= 1.
We look for the spectral measure µu,e of the pair (X + θuu∗, e). To build a basis,
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we set e1 = e, w = u− 〈u, e〉e, e2 = w
‖w‖ and complete e3, · · · , en. We have

u = (cosϕ, sinϕ)T

R = uu∗ =

(
cos2 ϕ sinϕ cosϕ

sinϕ cosϕ sin2 ϕ

)
, U =

(
cosϕ − sinϕ
sinϕ cosϕ

)
Our (scalar) spectral measure µu,e is exactly

(
µSC,Θ

)
11

and then, from (6.9) and

(6.10)

µu,e = (sin2 ϕ) SC +(cos2 ϕ)µSC,θ . (6.11)

In short, we just proved that as n→∞ the spectral measure µ(n) of the pair (Xn+
θunu

∗
n, en) where en and un are two unit vectors such that u∗nen = cosϕ converges

almost surely to µu,e. Of course, by the contraction principle, µ(n) satisfies the
LDP at speed n with rate function

Iu,e(µ) = inf{IW (µ); (µ)11 = µ} .
where IW was defined in Theorem 6.4 but we didn’t find anl expression of this rate
function.
The Gross-Witten case. The role of eiϕ is now played by a unitary r×r operator.
In the sequel, we will omit the subscript n to simpifly the notation. As in (4.5.10)
in [29] we consider

W = UQ , Q = 1 + (Λ− 1)P , (6.12)

where P is the projection on Hr = Vect {e1, . . . , er} and Λ is a unitary operator
acting on Hr. Notice that

Q−1 = Q∗ = 1 + (Λ∗ − 1)P .

In other words,
Q = Λ⊕ In−r , Q−1 = Q∗ = Λ∗ ⊕ In−r .

If µ is the spectral measure of the pair (µ; e1, . . . , er), let us denote by τΛµ the
spectral measure of the pair (W ; e1, . . . , er). We have the matricial version of (5.17)
(Theorem 4.5.6 in [29])

FΛ = [(1 + Λ)− F (1− Λ)]
−1

[−(1− Λ) + F (1 + Λ)] .

which gives, via the Schur recursion

αk(τΛµ) = Λ∗αk(µ) , (k ≥ 0) . (6.13)

To compute the distribution of W , let us denote by W ↑r the r × r upper left

corner of W and by W ↓n−r the (n− r)× (n− r) lower right corner of W so that

P(n)
Λ (dW ) =

1

Z(n)
0

exp
ng

2
Tr
(
WQ−1 + (WQ−1)∗

)
dW . (6.14)

Let µ
(n)
w be the matricial spectral measure associated toW and the r-tuple (e1, . . . , er).

Since

Tr(WQ−1) = TrW + Tr
(
W ↑r (Λ∗ − 1)

)
Tr
(
WQ−1 + (WQ−1)∗

)
= Tr (W +W ∗) + 2<Tr

(
W ↑r (Λ∗ − 1)

)
(6.15)

so that

P(n)
Λ (dW ) = expng<Tr

(
W ↑r (Λ∗ − 1)

)
P(n)(dV ) (6.16)
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and since W ↑r = α∗0 = m1(µ
(n)
w ), we get

P(n)
Λ (µ(n)

w ∈ dµ) = expng<Tr (m1(µ)(Λ∗ − 1)) P(n)
1 (µ(n)

w ∈ dµ) . (6.17)

Under P(n)
1 , it is known ([14]) that the sequence (µ

(n)
w )n≥r, satisfies an LDP at

speed n. If |g| ≤ 1, the rate function is

IGW(µ) = K(GWg ·1 | µ) . (6.18)

The matrix measure GWg ·1 is the unique minimum of I.
This allows to obtain the following analog of Theorem 5.3.

Theorem 6.5. The sequence (µ
(n)
w )n≥r satisfies an LDP at speed n and good rate

function

IW (µ) = IGW (µ)− g<Tr (m1(µ)(Λ∗ − 1)) . (6.19)

There is a matrix version of the method to recover the measure (Prop. 3.16 in
[10] and Lemma 7.1 in [6]). From (6.13), it is then straightforward to state that if
dµ(θ) = w(θ) · 1 dλ0(θ) + dµs(θ), then τΛ(µ · 1) has for density

wΛ(θ) = 4w(θ) |1 + Λ + F (θ)(1− Λ)|−2
(6.20)

where |A|2 = AA∗ (analog of (5.30). Notice that if |g| ≤ 1 there is no extra mass.
From (6.13) we have

P(n)
Λ (µ(n)

w ∈ dµ) = P(n)
1

(
µ(n)
w ∈ d(τΛ∗µ)

)
. (6.21)

Under GW(n)
g , the rate function for the LDP is K(GWg ·1 | µ). A pushforward of

this LDP gives

IW (µ) = K(GWg ·1 | τΛµ) . (6.22)

It is then clear that IW reaches his unique minimum at τΛ∗(GWg ·1).

Remark 4. We didn’t give an alternate proof of the LDP. Actually we could have
used the matrix version of the sum rule (4.15) proved recently by analytic methods
in [28].

K(GW−g ·1 | µ) = K(GW−g | λ0)−
∞∑
0

log det(1− αkα∗k) + gT (α0, α1, · · · ) .

(6.23)

with

T (α0, α1, · · · ) = <Trα0 +
1

2
Trα0α

∗
0

+
1

2

∞∑
0

Tr (αk − αk+1)(α∗k − α∗k+1)−
∞∑
0

Trαkα
∗
k .

(6.24)

7. Appendix

We use the affine transformation Tα,β corresponding to the change of variable
x = αy + β.
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7.1. A technical result. The first lemma is elementary. We give its proof for the
sake of completeness.

Lemma 7.1. If

Jac(µ) =

(
b1, b2, · · ·
a1, a2, · · ·

)
(7.1)

then

Jac (Tr,s(µ)) =

(
b̃1, b̃2, · · ·
ã1, ã2, · · ·

)
with ãk =

ak
|r|

, b̃k =
bk − s
r

. (7.2)

Proof. If J be the Jacobi matrix associated with µ

〈e, (J − z)−1e〉 =

∫
dµ(x)

x− z
hence ∫

dTr,s(µ)(y)

y − z
=

∫
dµ(x)

r−1(x− s)− z
= 〈e, (r−1(J − s)− z)−1〉

hence if r > 0 the Jacobi matrix associated to Tr,s(µ) is J̃ = r−1(J − s).
If r = −1, s = 0, the tridiagonal operator −J admits T−1,0 as its spectral

measure, but −J is not Jacobi. A change of basis ek 7→ ẽk = (−1)k−1ek gives the

true Jacobi with b̃k = 〈ẽk, (−J)ẽk〉 = −bk and ãk = 〈ẽk+1, (−J)ẽk〉 = ak.

7.2. Free Meixner distributions. From [2], we know3 that the normalized free
Meixner distributions µb,c are probability measures on R with Jacobi parameter
sequences

Jac(µb,c) =

(
0, b, b, · · ·
1,
√

1 + c,
√

1 + c, · · ·

)
(7.3)

b ∈ R, c > −1. The first line corresponds to the b’s (diagonal terms) and the second
to the a’s (subdiagonal terms). The corresponding probability measure is

µb,c(dx) :=
1

2π
·
√

4(1 + c)− (x− b)2

1 + bx+ cx2
dx+ p1δx1

+ p2δx2
, (7.4)

where x1 and x2 are real roots of 1+bx+cx2 = 0 (if there exist(s)) and p1, p2 ∈ [0, 1).
The mean is 0 and the variance is 1.

The case b = c = 0 and p1 = p2 = 0 is just SC also called ”free Gaussian”.
In order to compare µb,c with SC, we transform the support into [−2, 2] and set

µ̃b,c(dy) := T√1+c,b(µb,c)(dy) :=
1

2π
·

√
4− y2

cy2 + αy + β
dy + p1δy1 + p2δy2 (7.5)

with

Jac (µ̃b,c) =

(
−b/
√

1 + c, 0, 0, · · ·
1/
√

1 + c, 1, 1, · · ·

)
. (7.6)

Apart from SC there are only 5 situations.

3Be careful, the author considered the sequence {a2n, bn} as Jacobi coefficients.
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(1) c = 0, (b 6= 0).

µb,0(dx) =
1

2π
·
√

4− (x− b)2

1 + bx
+ (1− b−2)+δ−b−1 (7.7)

T1,b(µb,0)(dy) =
1

2π

√
4− y2

(1 + b2) + by
dy + (1− b−2)+ δ−b−b−1 . (7.8)

It is a variant of MP, called also ”free Poisson”. Indeed,

Tb,1(µb,0)(dy) =
1

2πb2
·
√

((1 + b)2 − y)(y − (1− b)2)

y
dy + (1− b−2)+δ0

(2) c 6= 0
(a) −1 < c < 0, it is called ”free binomial”, the denominator has two

real roots. For instance, when b = 0 we get the measure

µ0,c(dx) =
1

2π
·
√

4(1 + c)− x2

1 + cx2
dx+ p

(
δ−1/
√

(−c) + δ
1/
√

(−c)

)
, (7.9)

with p =
(
1 + 1

2c

)+
,

T√1+c,0(µ0,c)(dy) =
1

2π
·

√
4− y2

(1 + c)−1 + cy2
dy + p

(
δ−1/
√
−c(1+c)

+ δ
1/
√
−c(1+c)

)
.

(7.10)

Notice that the variance is σ2 = 1/(1 + c) > 1. There are masses if
and only if c ∈ (−1,−1/2).
Up to a affine transform, this distribution is of the KMK type. In other
words it is the equilibrium measure when the potential is −nκ2 log x−
nκ1 log(1− x) (see Appendix)

(b) c > 0, b2 − 4c < 0 , for instance with b = 0. We get

µ0,c(dx) =
1

2π
·
√

4(1 + c)− x2

1 + cx2
dx (7.11)

(without any atoms). It is called ”free hyperbolic tangent” or
”free Meixner type”, and

T√1+c,0(µ0,c)(dy) =
1

2π
·

√
4− y2

(1 + c)−1 + cy2
dy .

Notice that the variance is σ2 = 1/(1 + c) < 1. Up to a scaling,
this distribution can be obtained by Cayley transform from the Hua-
Pickrell distribution. In other words it is the equilibrium measure
when the potential is n log(1 + x2) (see [14]).

(c) b2 = 4c, one double root x = −2/b, the measure is

µb,b2/4(dx) =
1

2π
·
√

4 + 2bx− x2(
1 + bx

2

)2 dx ,

It is sometimes called ”free Gamma type” and

T√
1+ b2

4 ,b
(µb,b2/4)(dy) =

1

2π
·

√
4− y2(

b
2y + b2+2√

b2+4

)2 dy . (7.12)
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(d) c > 0, b2−4c > 0, it is called ”free Pascal”, the denominator in (7.4)
has two real roots

x± = − b

2c
± sgn b

√
b2 − 2c

2c

and there is a mass p =
(

1− |b|−
√
b2−4c

2c
√
b2−4c

)+

at x+, and

T√1+c,b(µb,c)(dx) =
1

2π
·

√
4− y2

c(y − y+)(y − y−)
+ pδy+ , (7.13)

where y+ = x+−b√
1+c

.

Acknowledgement. A.R. thanks Fabrice Gamboa and Jan Nagel for valuable
comments on this work.

References

[1] G. Anderson, A. Guionnet, and O. Zeitouni. An introduction to random matrices. Cambridge

University Press, Cambridge, 2010.
[2] M. Anshelevich. Bochner–Pearson-type characterization of the free Meixner class. Adv. Appl.

Math., 46(1-4):25–45, 2011.

[3] J. Baik, P. Deift, and K. Johansson. On the distribution of the length of the longest increasing
subsequence of random permutations. J. Amer. Math. Soc., 12(4):1119–1178, 1999.

[4] F. Benaych-Georges, A. Guionnet, and M. Maida. Large deviations of the extreme eigenvalues

of random deformations of matrices. Probab. Th. Rel. Fileds, 154:703–751, 2012.
[5] G. Biroli and A. Guionnet. Large deviations for the largest eigenvalues and eigenvectors of

spiked random matrices. arXiv 1904.01820, 2019.
[6] V. Bolotnikov and H. Dym. On boundary interpolation for matrix valued Schur functions.

Mem. Amer. Math. Soc., 181(856):vi+107, 2006.

[7] G. Borot and A. Guionnet. Asymptotic expansion of β matrix models in the one-cut regime.
Comm. Math. Phys., 317(2):447–483, 2013.

[8] J. Breuer, B. Simon, and O. Zeitouni. Large deviations and the Lukic conjecture. Duke Math.

J., 167(15):2857–2902, 2018.
[9] M. Capitaine and C. Donati-Martin. Spectrum of deformed random matrices and free prob-

ability. In Advances topics in random matrices. SMF, 2017.

[10] D. Damanik, A. Pushnitski, and B. Simon. The analytic theory of matrix orthogonal poly-
nomials. Surv. Approx.Theory, 4:1–85, 2008.

[11] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer, 1998.

[12] J-D. Deuschel and D. Stroock. Large deviations, volume 342. American Mathematical Soc.,
2001.

[13] F. Gamboa, J. Nagel, and A. Rouault. Sum rules via large deviations. J. Funct. Anal.,

(270):509–559, 2016.
[14] F. Gamboa, J. Nagel, and A. Rouault. Sum rules and large deviations for spectral measures

on the unit circle. Random Matrices Theory Appl., 6(1):1750005, 49, 2017.
[15] F. Gamboa, J. Nagel, and A. Rouault. Sum rules and large deviations for spectral matrix

measures. Bernoulli, 25(1):712–741, 2018.
[16] F. Gamboa, J. Nagel, and A. Rouault. Sum rules via large deviations: extension to polynomial

potentials and the multi-cut regime. preprint arXiv:2004.13566, 2020.
[17] F. Gamboa and A. Rouault. Canonical moments and random spectral measures. J. Theoret.

Probab., 23:1015–1038, 2010. Erratum in the same journal (2015) doi 10.1007/s10959-015-
0653-5.

[18] F. Gamboa and A. Rouault. Large deviations for random spectral measures and sum rules.
Applied Mathematics Research eXpress, 2011(2):281–307, 2011.

[19] D.J. Gross and E. Witten. Possible third-order phase transition in the large-N lattice gauge
theory. Phys. Rev. D, 21(2):446–453, 1980.

[20] F. Hiai and D. Petz. The Semicircle Law, Free Random Variables and Entropy, volume 77
of Mathematical Surveys and Monographs. Amer. Math. Soc., Providence, 2000.



SPECTRAL MEASURES OF SPIKED MATRICES 27

[21] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices. Duke mathe-

matical journal, 91(1):151–204, 1998.

[22] R. Killip and B. Simon. Sum rules for Jacobi matrices and their applications to spectral
theory. Ann. of Math. (2), 158(1):253–321, 2003.

[23] A. Knowles and J. Yin. Anisotropic local laws for random matrices. Probab. Theory Rel.

Fields, (169):257–362, 2017.
[24] J.O. Lee and K. Schnelli. Edge universality for deformed Wigner matrices. Rev. Math. Phys.,

27(08):1550018, 2015.

[25] R. Lenczewski. Random matrix model for free Meixner laws. Int. Math. Res. Not. IMRN,
(11):3499–3524, 2015.

[26] N. Noiry. Spectral measures of spiked random matrices. J. Theoret. Probab., 2020. arXiv

preprint arXiv:1903.11731.
[27] L. Pastur and M. Shcherbina. Eigenvalue distribution of large random matrices. Number 171.

American Mathematical Soc., 2011.
[28] A. Rouault. Matrix version of a higher-order Szegő theorem. preprint arxiv-2006.03336.
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