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Abstract—Fault attacks consist in changing the program
behavior by injecting faults at run-time, either at hardware or
at software level. Their goal is to change the correct progress of
the algorithm and hence, either to allow gaining some privilege
access or to allow retrieving some secret information based
on an analysis of the deviation of the corrupted behavior
with respect to the original one. Countermeasures have been
proposed to protect embedded systems by adding spatial,
temporal or information redundancy at hardware or software
level. First we define Countermeasures Check Point (CCP)
and CCPs-based countermeasures as an important subclass of
countermeasures. Then we propose a methodology to generate
an optimal protection scheme for CCPs-based countermeasure.
Finally we evaluate our work on a benchmark of code examples
with respect to several Control Flow Integrity (CFI) oriented
existing protection schemes.

Keywords-multiple fault-injection; code analysis; counter-
measure optimization; dynamic-symbolic execution.

I. INTRODUCTION

Fault injection is a powerful attack vector, allowing to
modify the code and/or data of a software, going much
beyond more traditional intruder models relying “only” on
code vulnerabilities and/or existing side channels to break
some expected security properties. This technique essentially
targets security critical embedded systems, using physical
disturbances (e.g., laser rays, or electro-magnetic fields)
to inject faults. However, it may now also concern much
larger software classes when considering recent hardware
weaknesses like the so-called Rowhammer attack [1], [2],
or by exploiting some weaknesses in the power management
modules [3], [4], [5], [6].

As a result, developers have to integrate mitigation mech-
anisms into their product as dedicated hardware and/or
software countermeasures whose purpose is to detect (or
even prevent) runtime security violations. In addition, well
established certification schemes [7], [8] have been devel-
oped to validate the protection level achieved. In practice,
the process of designing robust applications mainly consists
in identifying assets to be protected, protect them and
finally check their robustness with respect to state-of-the
art attacks. In particular, today’s applications must now be
protected against (spacial or temporal) multi-fault injection

[9], [10], namely when several faults can be injected at
various successive locations during an execution, making
the evaluation and development processes very challenging.
Due to the growing complexity of these tasks, designing
(and certifying) secure applications requires specific tools to
evaluate their robustness [11], [12], even under single-fault
assumptions.

However, countermeasure integration still raises very chal-
lenging issues from the developer point of view, namely:
how to choose and set up the most appropriate protection
scheme, possibly with respect to some application dependent
security properties, and with specific security/performance
trade-offs in mind? More specifically, how to identify which
parts of the code should really be protected, how to avoid
useless runtime checks, and redundant countermeasure trig-
ger points? Note that all these questions become even
more crucial in a multi-fault context, where countermeasures
themselves can be attacked, and where a “try and test”
approach becomes no longer effective. To the best of our
knowledge, there is no current work addressing such coun-
termeasure analysis, as an intrinsic problem. The objective
of this paper is precisely to address this issue and to assist
the developer in the countermeasure insertion process. In
particular, we provide the following contributions:

1) we formulate the problem of test-based countermea-
sure optimization, where a program countermeasure
is a set of trigger points guarded by side-effect free
boolean conditions;

2) we propose a methodology to generate an optimal
protection scheme for such application embedded
countermeasures, in a multi-fault injection context;

3) we provide an implementation of this approach, based
on the Lazart tool [13];

4) finally, we evaluate our work on a benchmark of code
examples with respect to several existing protection
schemes targeting CFI.

Section II introduces the context of multiple fault-
injection through a motivating example. Section III defines
our notion of so-called CCPs -based countermeasure and
discusses about common issues related to countermeasure



analysis and comparison. Section IV defines the four steps of
our methodology, and Section V shows the results obtained
with our implementation on the benchmark we considered.
Section VI presents some related work. Finally, we conclude
with Section VII, discussing some limitations of our solution
and directions for future work.

II. FAULT INJECTION ATTACKS

A. Motivating example

Listing 1 is an excerpt of a verifyPIN program taken from
the FISSC public benchmark [14]. Function verifyPIN
checks that an user-supplied userPIN corresponds to a
(secret) cardPin in order to grant the authentication.
g_ptc is a counter checking that the maximal number of
consecutive unsuccessful tries was not exceeded.

Listing 1. Example: a PIN code verifier
1 BOOL byteArrayCompare(UBYTE* a1,
2 UBYTE* a2, UBYTE size) {
3 BOOL result=TRUE;
4 UBYTE i;
5 for(i=0; i < size; i++)
6 if(a1[i] != a2[i]) result=FALSE;
7 if(i != size) killcard();
8 return result;
9 }

10
11 BOOL verifyPIN() {
12 if(g_ptc > 0) {
13 if(byteArrayCompare
14 (userPin, cardPin, PIN_SIZE)){
15 authenticated=1; // Auth
16 g_ptc=3;
17 return TRUE;
18 } else {
19 g_ptc--;
20 return FALSE;
21 }
22 }
23 return FALSE;
24 }

An expected security property Φ is that an user get
authenticated (line 14) only if the correct userPin was
supplied. Φ can be strengthened to a property Φ′ in order
to prevent fault injections that increase the value of the
counter g_ptc. The property Φ clearly holds without any
fault injection. However, when considering the (classical)
test inversion fault model i.e., assuming that each control-
flow condition can be “negated” at runtime, this property
is of course no longer ensured. In particular an attacker
may enforce execution of line 14 by changing the result
of byteArrayCompare() (line 12), or may perform a
brute force attack by repeatedly evaluating as true g_ptc>0
(line 11). Note that function byteArrayCompare() is
protected against an incorrect number of iterations of its
internal loop (line 6), which is an example of counter-
measure. The number of (distinct) successful test inversion
attack scenarios against Φ provided by the tool Lazart is

summarized in Table I1.

Table I
ATTACKS ON VERIFYPIN WITH TEST INVERSION

Fault bound 0 faults 1 faults 2 faults 3 faults 4 faults
Attacks 0 1 6 10 12

A 2-faults attack, using the test inversion model,
consists in inverting the first loop condition in
byteArrayCompare (line 5 of listing II) and then
the loop counter verification (line 7) to be authenticated.

B. Faults, fault models and attacks

We assume in the following that a program execution trace
is modelled in a standard way as a sequence of transitions
”→” between configurations, where a configuration c is a
pair (l, µ) with l being a program control location and µ a
memory content. In this paper we are going to consider so-
called symbolic execution traces, where the memory content
µ is a symbolic store, mapping program variables either to
concrete values or to symbolic expressions that can contain
symbolic meta-variables, in addition with a path predicate,
as used in Dynamic Symbolic Execution (DSE) [15]. For
a program p and a configuration c, we then denote by
Exec(p, c) the set of such symbolic execution traces of p,
starting from configuration c.2.

We define a volatile fault as a modification of an instruc-
tion or of a memory location occurring at some injection
point, during the program execution (i.e., the program it-
self is not modified). A fault model f is then characterized by
a set of injection points (the program configurations where
faults of f may apply) and the “effect” of these faults on
the program execution (how the memory is modified, which
new configuration is reached, etc.). A fault model f will be
formalized by a labeled transition relation between program
configurations, noted c ↪−→ c′, defining the configuration c′

reached when injecting a fault at configuration c. Note that
this transition relation is defined only if c is an injection
point for the fault model f. As an example, for the test
inversion fault model, injection points are conditional branch
instructions and transition relation ↪−→ allows to reach the
configuration corresponding to the incorrect branch target
(according to the original instruction semantics).

A n-faults attack on a program p, noted anp , is then defined
as an execution trace containing sub-sequences of “nominal”
execution steps σi (i.e., following the program semantics)
interleaved with n faults ↪−→, injected between the σi
according to the considered fault models. More formally,
for a program p with initial configuration c0:

anp =def [(σ0, ↪−→0), (σ1, ↪−→1), . . . , (σn−1, ↪−→n−1), σn]

where

σi = [ci → c1i → . . .→ c
ki
i ] ∈ Exec(p, ci) ∧ c

ki
i ↪−→i ci+1

1we consider here symbolic attack scenarios, see section II-B
2or simply Exec(p) when c is the initial program configuration



Note that this definition allows a same injection point to
occur several times in an attack (with or without fault injec-
tions), and allows attacks combining several fault models.
Moreover, we distinguish between successful attacks, able
to violate some desired security property Φ of the target
program, and unsuccessful ones.

III. FAULT INJECTION COUNTERMEASURES

Intuitively, a software countermeasure is a code trans-
formation which preserves the original program behaviour
under nominal execution conditions and which aims to
enforce some security properties in case of fault injection.
Usually, countermeasures are designed with respect to some
precise fault model. Beyond making the software more
secure, they may also take into account other objectives like
performance, automation easiness, etc.

A. CCP-based Countermeasures

We refine the concept of test-based countermeasures with
the CCP-based countermeasures3, which are divided in two
parts:
• The Countermeasure Check Points (CCPs), are con-

trol points in the program where one checks if some
safety condition b about the program state holds. They
correspond to a fault detection spot in the program.
We assume that each CCP has associated an unique
identifier i.

• The Countermeasure Structures (CS) concern the
pieces of code (changes w.r.t. the original code or newly
introduced) that correspond to computations that are
useful to CCPs.

In practice, when triggered, a CCP can lead to a program
shutdown or restart, some error reporting etc. In the follow-
ing examples we will denote that using a special function
killcard().

In order to model CCPs in our framework, we assume at
the semantic level that there is a special command trigger(b,
i) that allows to the CCP i to check if the Boolean condition
b is respected by the current configuration. Formally, we
extend the operational semantics from subsection II-B with
the two additional rules below (assuming that l′ is the
successor location of l):

p(l) = trigger(b, i) µ(b) = false
(1)

(l, µ)
t(i)→ (l′, µ)

p(l) = trigger(b, i) µ(b) = true
(2)

(l, µ)→ (l′, µ)

Rule (1) corresponds to the case where condition b does
not hold, and hence an alarm needs to be raised at control
point l, whereas rule (2) corresponds to the case where

3Not all countermeasures can be modelled in this way.

the program execution can continue normally. Note that we
assume that the command trigger(b, i) is side-effect free,
that is, it does not change the memory content µ, in the
case that the condition b is not satisfied, it only provokes a
labelled transition. Of course, this side-effect free hypothesis
may be tuned depending on the code granularity level we
consider, the main assumption being that at some point there
exists software mechanism able to trigger a countermeasure
in an atomic way.

For an attack anp , we denote by TSeq(anp ) the underlying
sequence of triggered alarms, i.e. TSeq(anp ) is defined as the
sequence obtained from anp by erasing all the transitions that

are not of the form
t(i)→ ,

TSeq(anp ) = [ci0
t(i0)→ ci0+1, . . . cin−1

t(in−1)→ cin−1+1]

Definition 1: An n-faults (successful) attack anp (n ≥ 1)
is called detected iff TSeq(anp ) is non-empty, i.e. at least
one alarm was triggered. If TSeq(anp ) is empty, then anp is
called undetected.

B. Test duplication

In this section, we introduce our methodology using
a simple countermeasure example, Test duplication.
This countermeasure transforms each control-flow condi-
tional branching by introducing two CCPs, one for the true
branch and one for the false one. We choose here to compute
the condition value only once, i.e., its result is reused in each
of the two CCPs.

The Listings 2 (respectively 3) show the general C-level
transformations applied to each if statement (and respec-
tively to each while loop). Assuming that the condition c1 is
side-effect free, the statement ”if (c1) killcard();”
will be modelled in our abstract semantics as a command
trigger(c1, i) where i is a fresh CCP identifier. Even if con-
trary to the C-semantics of the function ”killcard();”,
the command trigger(c1, i) does not interrupt the program,
remember that we are interested in the detection of fault
injection attacks and this modeling preserves this property.

The Listing 5 shows the resulting program obtained after
applying the Test duplication countermeasure to the
PIN code verifier example from Listing 1, with the CCPs
numbered in comment.

Listing 2. Test duplication on if statements
1 // Source
2 if(condition)
3 do_something();
4
5 // Protected
6 BOOL c1;
7 if(c1 = condition)
8 {
9 if(!c1) killcard();

10 do_something();
11 }



12 else if (c1) killcard();

Listing 3. Test duplication on while loops
1 // Source
2 while(condition)
3 do_something();
4
5 // Protected
6 BOOL c1;
7 while(c1 = condition)
8 {
9 if(!c1) killcard();

10 do_something();
11 }
12 if(c1) killcard();

IV. OPTIMIZING A CCP-BASED COUNTERMEASURE

Our goal is to simplify a CCP-based countermeasure
without sacrificing its security wrt a fault model and a
security property. Concretely, our approach is exploring
the set of all (detected and successful) attacks and their
underlying sequences of triggered alarms and try to find all
CCPs that can be safely removed without increasing the set
of undetected successful attacks.

The methodology takes as parameter the attack model: a
fault model and a security property. It takes a program P in
input and returns a program P ′′ as output. It consists in the
following successive steps:

1) Generate the instrumented program P ′ from the pro-
gram P containing CCPs to analyze.

2) Generate a list of (symbolic) attacks for P , for instance
using a Dynamic-Symbolic Execution.

3) Compute the CCP Classification.
4) Choose a removal strategy and use CCP selection

algorithm to find the optimal sets of CCPs to be
removed.

5) Use structure removal rules to remove countermea-
sure’s structures (variables, parameters...) correspond-
ing to the set of removed CCPs. We denote by P ′′ the
program obtained after this step.

P ′′ is the optimized protected version of P . P ′′ should
not contain additional undetected attacks compared to P ′.

A. Instrumentation and CCP requirements

The instrumentation step of our methodology takes as
input the original program P strengthened with a CCP-based
countermeasure, and produces the instrumented program P ′

obtained by replacing the killcard()-like alarm handlers
by a Lazart specific function (LZ_ALARM) allowing to
register all run-time triggered alarms. This transformation
implements the semantics of the trigger command intro-
duced in Section III-A. An example of such replacing is
shown by the Listing 4, where i is a fresh integer identifier.

Table II
CCP CLASSIFICATION ON VERIFYPIN STRENGTHENED WITH THE TEST

DUPLICATION COUNTERMEASURE WITH UP TO 4 TEST INVERSIONS

CCP 0 1 2 3 4 5 6 7 8 9 10
1 fault I I I R I I I I N I R
2 faults R I R R R R R R R I N
3 faults N I N N N N R N N I N
4 faults N I N N N N R N N I N

Listing 4. Instrumentation of a killcard CCP
1 // Original code with CCP-based countermeasures
2 if(condition)
3 killcard();
4
5 // Resulting code after instrumentation
6 if(condition)
7 LZ_ALARM(i);

B. CCP Classification

The classification algorithm takes as input the set A of
attacks and it partitions the set C of CCPs in three classes:
Inactive, Necessary or Repetitive. We associate with each
attack a a repetition level R(a) as being the number of
different CCPs triggered by a.

The classification algorithm focuses on the minimum
repetition level Lm[Ci] of each CCP Ci on the set of
(symbolic) attacks traces which are:
• successful: validate the oracle.
• blocked: at least one CCP is triggered in the trace.
Each CCP Ci is classified depending on its minimal

repetition level among all the considered traces:
• Inactive, if Lm(Ci) =∞ (never triggered);
• Necessary, if Lm(Ci) = 1;
• Repetitive, if 1 < Lm(Ci) <∞.
It is safe to remove the Inactive CCPs since they are

never triggered. In the case of Repetitive CCPs, we apply
an additional step, the CCP Selection Algorithm (see section
IV-C) in order to compute an optimal set of CCPs that could
be removed without adding new undetected attacks.

The Table II presents the CCP classification for the
verifyPIN example strengthened with the test duplication
countermeasure and up to 4 test inversion faults injected.
One can remark that the example has 11 CCPs, and in the
case of 2 test inversions, among these CCPs, only the last
one is Necessary, two of them are Inactive and can be safely
removed, and the remaining 8 CCPs are Repetitive.

C. CCP Selection

This step aims to compute an optimal set of Repetitive
CCPs to keep with respect to the CCP classification. We
assume that the Inactive CCPs were already removed and
we also ignore the attacks that trigger at least a Necessary
CCP. Hence the Selection Algorithm takes as input the
set Cr ⊆ C of Repetitive CCPs and the subset Ar ⊆ A
of attacks containing only Repetitive CCPs. It computes



a minimal subset of Repetitive CCPs that guarantees that
no new undetected attacks are added. The algorithm can be
parameterized by a cost or weight function W : Cr → R+

associating a costW(i) to each Repetitive CCP i depending
on some desired property of the countermeasure (perfor-
mance, code size etc). This function is lifted to sets Ri of
CCPs in the usual way W(Ri) =

∑
i∈Ri
W(i). Then the

CCP Selection corresponds to find the valid sets Ri with
the minimal cost valueWRi , where a set of CCPs Ri ⊆ Cr
is called valid if for each attack a ∈ Ar, at least one CCP
in Ri is triggered.

D. CS Removal

Once the set of removable CCPs has been computed,
then the corresponding conditional tests can be removed
without weakening the security. The next step is to remove
unused countermeasure’s structures as well. This step
corresponds to useless code elimination, which is a common
problem in code analysis. It can be done with a compiler’s
optimizer or static analysis tools (as Frama-C [16] for
example).

The Listing 5 presents one optimal solution provided
by our methodology where unnecessary CPPs and conse-
quently, unused CS has been removed. The cost function
used to produce these results is the constant function asso-
ciating 1 to each CCP. The pieces of code depicted in green
are kept, and the pieces of code depicted in red can be safely
removed without introducing new undetected attacks.

Listing 5. Removed CCPs and CS are depicted in red (attacks in 2 faults)
1 BOOL byteArrayCompare(UBYTE* a1,
2 UBYTE* a2, UBYTE size) {
3 BOOL result = TRUE;
4 UBYTE i;
5 BOOL c_1 = FALSE;
6
7 for(i = 0; BOOL c_1 = i < size;

i++) {
8 if(!c_1) killcard(); // CCP 2
9 if(BOOL c_2 = a1[i] != a2[i]) {

10 if(!c_2) killcard(); // CCP 4
11 result = FALSE;
12 } else
13 if(c_2) killcard(); // CCP 5
14 }
15 if(c_1) killcard(); // CCP 3
16 if(BOOL c_3 = i != size) {
17 if(!c_3) killcard(); // CCP 6
18 killcard(); // CCP 11
19 } else
20 if(c_3) killcard(); // CCP 7
21 return result;
22 }
23
24 BOOL verifyPIN() {
25 if(BOOL c_1 = g_ptc > 0) {
26 if(!c_1) killcard(); // CCP 0
27 if(BOOL c_2 =

byteArrayCompare(g_userPin,
g_cardPin, PIN_SIZE) == TRUE) {

28 if(!c_2) killcard(); // CCP 8

29 g_authenticated = 1;
30 g_ptc = 3;
31 return TRUE;
32 } else {
33 if(c_2) killcard(); // CCP 9
34 g_ptc--;
35 return FALSE;
36 }
37 } else
38 if(c_1) killcard(); // CCP 1
39 return FALSE;
40 }

V. EXPERIMENTATION

In this section, we present and discuss several experiments
involving three generic countermeasures. These experiments
were performed using the tool Lazart. We start by briefly
presenting this tool, then we describe the examples we used,
together with a set of countermeasures we considered. We
conclude the section by an analysis of the obtained results.

A. Lazart

Lazart [13] is a tool allowing to check the robustness of
a software under multi-fault injections. It takes as input an
LLVM Intermediate Representation (IR), a fault model, and
a security property. It relies on a 2-steps approach:
• First, a high order mutant is generated from the initial

LLVM representation. This mutant statically encodes
all the possible injected faults (as symbolic boolean
values) according to the fault model. In this paper we
consider the test inversion fault model.

• Then, a dynamic-symbolic exploration, performed by
Klee [17], produces all the successful symbolic attacks
with respect to the security property.

In this work, we first needed to extend Lazart with features
specific to our approach (in order to model the CCPs and
to take them into account in the symbolic execution traces).
Then, we provide to the enhanced Lazart tool, as input an
instrumented program as described in section IV-A and we
get the set of all ordered sequences of triggered alarms
corresponding to the successful symbolic attacks. This set
is the input for the CCP Classification step.

B. Studied Examples

Our experimentation are performed on various programs
from the FISSC [14] benchmark enriched with a custom
firmware updater example. Each of these programs will give
rise to several versions obtained by adding the countermea-
sures shown in the next section. These examples are briefly
described below4.

1) VerifyPIN (VP): this is the running example presented
in the previous sections. Several security properties are
considered (see Section V-D).

4they are fully available at https://lazart.gricad-pages.univ-grenoble-
alpes.fr/home/fdtc20



2) GetChallenge (GC): this program is an example of
a nonce generation. The security property asserts that the
nonce is updated with a randomly generated value. Note
that the initial program already contains some CCP-based
protections (shadow stack, loop counter, etc.) and can thus
be directly analyzed with our approach.

3) AES (AES): this program is an implementation of the
standard AES encryption scheme. We also considered in
isolation the specific AddRoundKey step (ARK).

4) Firmware Updater (FU): this program represents an
updater for a firmware. The studied security property is the
following: the firmware is updated only upon request and
none of its pages are corrupted and the correct loading
address has been used.

C. Studied countermeasures

To evaluate our approach we consider three oriented CCP-
based countermeasures described below. All these counter-
measures aim to enforce the Control-Flow Integrity (CFI)
by detecting at runtime possible alterations of the expected
control-flow[18].

1) Test Duplication (TD): this countermeasure has been
introduced in Section III-B.

2) SecSwift ControlFlow (SSCF): this countermeasure
[19] associates an unique identifier to each basic block (i.e.,
an atomic sequence of instructions) and uses a xor-based
mechanism to ensure that the correct branch has been taken.
The figure 1 shows how a conditional branching is protected
by introducing two CCPs (the secswift_assert state-
ment is equivalent to our abstract alarm command).

Figure 1. SSCF transformation scheme for an if statement

3) LHB [20]: this countermeasure introduces step coun-
ters to protect against C-level instruction skips. Each counter
check corresponds to a CCP in our approach.

D. Results

Table III shows the results of the CCP optimization for
several (program, countermeasure) pairs. Entries in column
1 are the pairs we consider, column 2 is the corresponding
total number of CCPs and the remaining columns give the
percentage of removed CCPs for up to 3 fault injections.
Several remarks can be drawn from this table:

Table III
PERCENTAGE OF REMOVED CCP FOR EACH EXPERIMENTATION

Program CCP 1 fault 2 faults 3 faults
VP + TD 11 72% 63% 18%
VP + SSCF 13 92% 76% 23%
VP + LHB 31 93% 93% 32%
FU + TD 14 0% 0% 0%
FU + SSCF 24 12% 12% 8%
GC1 11 81% 72% 63%
GC1 + TD 39 37% 34% 34%
GC1 + SSCF 38 57% 28% 28%
AES RK + TD 2 50% 50% 0%
AES RK + SSCF 3 66% 33% 0%
AES C + TD 8 50% 50% 0%
AES C + SSCF 13 76% 61% 38%

Table IV
REMOVED CCP DEPENDING ON PROPERTY (VP + TD)

Property 1 fault 2 faults 3 faults
φauth 83% 72% 18%
φptc 72% 63% 9%
φauth ∨ ptc 83% 72% 18%
φauth ∧ ptc 72% 63% 9%
φtrue 18% 9% 9%

• the ratio of removed CCPs highly depends on the
considered program and countermeasures;

• as expected, it decreases with respect to the number of
injected faults;

• the high number of removed CCPs in the case of the
LHB countermeasure (VP + LHB line) is due to the
fact our fault model (Test Inversion) is weaker than the
one targeted by this countermeasure.

The percentage of removed CCPs also strongly depends
on the considered security property. Table IV presents the
results on verifyPIN using various security properties:
• φauth: being authenticated.
• φptc: do not decrease the g_ptc counter in case of

invalid pin code5.
• φauth ∨ ptc.
• φauth ∧ ptc.
• φtrue: consider all faulted executions (the security

property being set to true).
For a same program a weaker security property increases

the number of traces to consider, and thus reduces the
number of CCPs that can be removed. The intuition behind
this fact is that stronger security properties hold only on a
small subset of the initial program traces, and hence this
subset of traces is easier to protect with a reduced number
of CCPs (with respect to the whole set of program traces,
corresponding to the true security property).

Table V gives the execution times of our analysis 6 for
3 injected faults. Columns 2 and 3 present respectively the
execution time and the number of completed paths of the

5in our example, and for Test Inversion, φptc ⇒ φauth
6Performed on a laptop (Intel I7 2.6GHz, 16GB RAM)



Table V
TIME METRICS IN 3-FAULTS

Program DSE (h) Completed
Paths Traces CCPO

VP + TD 0:00:03 7118 296 26ms
VP + SSCF 0:01:54 130 576 1005 89ms
VP + LL 0:38:24 1 173 312 37 347 371ms
FU + TD 0:39:16 935 409 43 328 736ms
FU + SSCF 1:04:39 1 490 767 91 713 4s
GC1 0:00:04 4628 78 12ms
GC1 + TD 0:01:35 102 169 10 281 1s
GC1 + SSCF 0:31:45 1 048 354 58 367 2s
AES RK + TD 0:00:07 9 439 847 61ms
AES RK + SSCF 0:09:19 410 095 6 952 195ms
AES C + TD 1:17:25 1 064 007 38 810 575ms
AES C + SSCF 1:45:00 842 583 29 770 2s

DSE engine (Klee). The ”traces” entry correspond to the
number of symbolic attacks and the last column shows
the duration of the CCP Optimization step (Classification
+ Selection). One can remark that the execution time of
CCPO is very small compared to one of the DSE. Moreover,
the Selection step is even much smaller compared to the
Classification one, this can be explained by the small number
of attack traces containing only Repetitive CCPs (in our
examples).

VI. RELATED WORK

Two main topics are related to the contributions presented
in this paper: (fault injection) counter measure analysis, and
cost reduction of software runtime checks.

As stated in the introduction, although numerous coun-
termeasure schemes have been already proposed in the
literature, their evaluation essentially consisted in showing
how effective they are to detect fault injection attacks, but
without precisely analyzing how to reduce their overhead
and potential redundancies when applied to a whole piece of
code. Moreover, most of these analysis only consider single
fault injections. We list below some existing work on such
countermeasure evaluations.

The countermeasure presented in section V-C3 is analyzed
in [21] and [20]. The correctness of the hardened code and its
robustness with respect to C-level single jump attack faults
is proved by model-checking for each basic control-flow
statement. In [20], a lighter version of this countermeasure
scheme is proposed to reduce its overhead (at the cost of
delaying the attack detection). However, this variant remains
generic, and it is not (automatically) tailored for a precise
code example, which could lead to further optimizations.

The countermeasure scheme mentioned in section V-C2
has been initially described in [22], and its overhead is
compared to other related schemes on set of benchmarks.
There is no discussion about automated way to reduce this
overhead, beyond suggesting that ”only critical parts of the
code” need to be secured.

[23] presents an LLVM based tool allowing to evaluate
software resiliency against hardware faults. It relies on the
so-called SWiFi7 technique, and relies on Klee as a symbolic
test execution platform. The fault model considered are bit-
flip of the target register of an LLVM computation or load
instruction, assuming at most one single fault. A counter-
measure mechanism is proposed by means of executable
assertions on program variables at different code locations
to detect “silent data corruptions”. Experiments are provided
on benchmarks, showing the results obtained in terms of
fault detected, but the question of reducing the number of
assertions is not addressed.

[24] focuses on software encoding schemes to protect
cryptographic implementations against physical attacks. It
proposes a metric to evaluate the robustness of an encoding
scheme against single bit flip or instruction skip, together
with a probabilistic simulation based evaluation method
allowing to provide some robustness vs. performance trade-
offs. Hence, it allows the user to select the most appropriate
encoding scheme according to the simulation results.

Finally, [25] gives an abstract set-theoretic model to
evaluate the security level brought by a mitigation scheme
with respect to a given set of exploits. However, this model
relies on a very high-level quantification on “how much” a
mitigation hardens the probability that an exploit occurs (in
terms of big O notation). Although an application example
is given in the context of CFI, the granularity of the results
obtained are far from the ones we can achieve in our
approach.

Another line of work related to the one presented in this
paper is related to the cost reduction of runtime checks in
programs. Such checks are added either by the compiler to
enforce type safety, or by dedicated tools like Valgrind [26]
or AdSan [27], or even by assertions explicitly added by
the developer. The execution time overhead induced by
these extra lines of code can become quite significant and
eliminating useless checks can provide important gains.
Most of the existing work in this direction are based on
abstract interpretation techniques (like [28]) to statically
prove the validity of some assertions allowing to remove the
runtime check. However, the techniques used heavily rely
on the fact that the program semantic remains unchanged at
runtime, which is clearly not the case in our context of fault
injection.

VII. CONCLUSION

We proposed a methodology allowing to optimize a pro-
tected program with respect to a fault model and a security
property within the context of multi-faults injection. Thanks
to the CCPs side-effect free hypothesis, a trace can con-
tain multiple CCPs triggered. Moreover, Lazart generates a
high-order mutant embedding all possible fault injections.
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Hence in one single pass, we are able to deal with all
combinations of faults and CCPs.

Associated with Dynamic-Symbolic Execution, it gives a
generic approach, parameterized by the fault model and the
security property, to compute the optimal combination of
CCPs for a given CCP-based countermeasure.

Our experiments already show that our approach is effec-
tive on non-trivial examples, for various protection schemes.
Regarding its application to real software products, two
points need to be considered. First, our current implementa-
tion operates at the LLVM-level, which is the intermediate
code representation supported by the Klee symbolic execu-
tion engine. However, from a conceptual point of view, the
same operations could be performed directly on assembly
code, extending dedicated DSE engines, for instance like
Binsec [29] or Angr [30]. This is one direction of the future
work direction we plan to investigate. Second, according
to our experiments, the time complexity of our approach
is dominated by the dynamic-symbolic execution step, to
compute the set of symbolic attack traces and associated
trigger alarms. The cost of this computation strongly de-
pends on the considered fault model (number of of injected
faults, number of injection points). The selection algorithm
itself remains rather cheap, in particular when the number
of execution traces with repetitive CCPs is small (as in our
experiments).

Finally, another interesting future work would be to eval-
uate our method when considering other fault models than
test inversion, like data injection or function call skip or
even combination of several different fault models.
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