
HAL Id: hal-02951016
https://hal.science/hal-02951016v1

Submitted on 28 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A task-based approach to parallel parametric linear
programming solving, and application to polyhedral

computations
Camille Coti, David Monniaux, Hang Yu

To cite this version:
Camille Coti, David Monniaux, Hang Yu. A task-based approach to parallel parametric linear pro-
gramming solving, and application to polyhedral computations. Concurrency and Computation: Prac-
tice and Experience, 2021, 33 (6), pp.e6050. �10.1002/cpe.6050�. �hal-02951016�

https://hal.science/hal-02951016v1
https://hal.archives-ouvertes.fr

A task-based approach to parallel parametric

linear programming solving, and application to

polyhedral computations

Camille Coti1, David Monniaux2, and Hang Yu2

1LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, 99,
avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France
2VERIMAG, Univ. Grenoble Alpes, CNRS, Grenoble INP∗,

F-38000 Grenoble, France

September 28, 2020

Abstract

Parametric linear programming is a central operation for polyhedral
computations, as well as in certain control applications. Here we propose
a task-based scheme for parallelizing it, with quasi-linear speedup over
large problems. This type of parallel applications is challenging, because
several tasks might be computing the same region. In this paper, we
are presenting the algorithm itself with a parallel redundancy elimination
algorithm, and conducting a thorough performance analysis.

1 Introduction

A convex polyhedron in dimension n is the solution set over Qn (or, equivalently,
1Rn) of a system of inequalities (with integer or rational coefficients). Since all
the polyhedra we consider here are convex, we shall talk of polyhedra for short.
There also exist integer polyhedra, defined over Zn, but they are very different
in many respects; we shall not consider them here.2

Computations over polyhedra arise in low dimension (n = 2 and n = 3)
for modeling physical objects, but here we are interested in higher dimensions.

∗Institute of Engineering Univ. Grenoble Alpes
1Whether emptiness tests, inclusion tests, projection etc. are specified with real or rational

variables, the results are the same. It is impossible to distinguish the reals and the rationals
using first-order formulas in linear arithmetic.

2Among differences, it is possible to check in polynomial time if a given list of inequalities
defines an empty polyhedron over Q but the same problem is NP-complete over Z.

1

Polyhedra in higher dimension are typically used to enclose the set of reachable
states of systems whose state can be expressed, at least partially, as a vector of
reals or rationals. For instance, one can study the flow of ordinary differential
equations, or more generally the trajectories of hybrid systems, by enclosing
the trajectories into a succession of convex polyhedra. If the internal state of a
control system is expressed by a vector of n numeric variables, one may prove
that this system never encounters a bad condition by exhibiting a polyhedron
P such that the initial state belongs to P , no bad condition belongs to P , and
all possible time steps of the control system leave P stable (that is, it is not
possible to execute a step starting in P and ending outside of P).

One generally proves the correctness of programs by exhibiting inductive
invariants — an inductive invariant for a loop is a set containing the precondi-
tion of the loop, stable by moving to the next loop iteration, and implying the
desired postcondition. Since providing inductive invariants by hand is tedious,
it is desirable to automate that process. One approach for doing so is abstract
interpretation, where an ascending sequence of sets of states is computed until
reaching a fixed point. One may for instance search such sets as products of
intervals, an approach known as interval analysis, but the lack of relationships
between the dimensions tends to severely limit the kind of properties that can
be proved (e.g., one cannot have an invariant i < n where n is a parameter:
this is neither an interval on i nor on n nor a combination thereof). Cousot
and Halbwachs proposed searching for polyhedral inductive invariants [10, 16].
The operations needed there are projection, more generally image by an affine
transformation, convex hull, and inclusion (or equality) test, together with an
extrapolation operator known as widening.

Such usages of convex polyhedra suffered from the curse of dimensionality :
complexity grows quickly with the number of dimensions—the number of nu-
meric variables in the program or hybrid system under analysis. This problem
is exacerbated in approaches that double the number of variables to represent
pairs of states, or add extra variables for representing nonlinear terms (e.g., a
variable vxy is added to represent xy [27]). This led to either restricting poly-
hedra to subclasses with lower computational costs (e.g., restricting inequalities
to ±xi ± xj ≤ C as in the octagons [28]), or severely restricting the number
of dimensions of the system under consideration (e.g., by focusing on a subset
of interest of the program variables, disregarding relationships with variables
outside of that subset).

Why this curse of dimensionality? There exist multiple libraries for comput-
ing over polyhedra (NewPolka,3 Parma Polyhedra Library,4 PolyLib,5 CDD. . . 6).
They all use the double description [29] of convex polyhedra: both as constraints
(inequalities or equalities) and generators (vertices, and, for unbounded polyhe-
dra, lines and rays). Some operations are indeed simpler on one description than
the other, and Chernikova’s algorithm [24] converts between the two. Having

3Jeannet’s NewPolka is now part of Apron http://apron.cri.ensmp.fr/library/ [18]
4https://www.bugseng.com/ppl [4]
5https://icps.u-strasbg.fr/PolyLib/
6https://www.inf.ethz.ch/personal/fukudak/cdd_home/

2

http://apron.cri.ensmp.fr/library/
https://www.bugseng.com/ppl
https://icps.u-strasbg.fr/PolyLib/
https://www.inf.ethz.ch/personal/fukudak/cdd_home/

both descriptions is also handy for removing redundant constraints and gener-
ators, which are produced by many of the algorithms.

The double description has many advantages, but one major weakness. A
very common case of invariant is when one knows the interval of variation of
each variable: [l1, h1] × · · · × [ln, hn]. Such a polyhedron has 2n constraints
(li ≤ xi and xi ≤ hi for 1 ≤ i ≤ n) and 2n vertices (each xi is independently
chosen in {li, hi}). The double description then blows up. One workaround for
the above case is to detect that the polyhedron is exactly a Cartesian product
of simpler polyhedra, and to compute as locally as possible in terms of that
product [17], but this fails if the polyhedron is almost a Cartesian product; We
thus chose to completely do away with the generator representation and use
constraints only.7

The question was how to compute over convex polyhedra described by con-
straints only. It is possible to reduce most operations (image, convex hull etc.)
to projection. An algorithm for projecting polyhedra described by inequalities
only, Fourier-Motzkin elimination [22], has long been known. Unfortunately it
tends to generate a very large number of redundant constraints, which must be
eliminated using an expensive procedure.

We instead turned to parametric linear programming. Image, projection,
convex hull can all be formulated as solutions to linear programs where param-
eters occur linearly within the objective [25, 5]: given a system of equalities and
inequalities, defining a convex polyhedron P in higher dimension, and a para-
metric bilinear objective function f(x, λ) where x is the point and λ a vector
of parameters, give for each λ a vertex x∗ of P such that f(x∗, λ) is minimal.
A solution to such a program is a quasi-partition of the space of parameters λ
into convex polyhedra, with one optimum associated to each polyhedron. The
issue is how to compute this solution efficiently. In this article, we describe how
we parallelized our algorithm for doing so.

In addition to computations on convex polyhedra, parametric linear pro-
gramming is also used for control applications [20]: instead of using a solver,
whose computation times are high and hard to predict, inside the control loop,
the solution of the linear program is tabulated as a piecewise linear function
over the values of the parameters. Parametric linear programming is also used
for affine linear approximations of nonlinear expressions [27].

Parallelizing this type of applications seems straightforward at first sight,
since each polyhedron can be computed independently from the other ones.
However, it is actually challenging, because several computation units (threads
or processes) might be computing the same region at the same time. In this
paper, we present a parallel redundancy elimination algorithm that improves
the performance by eliminating redundant computations between concurrent
threads, and conduct a thorough experimental study of the task-based parallel
scheme presented shortly in [8].

7By polyhedral duality, which exchanges constraints and generators, the worst-case for
generators translates into a worst-case for constraints. The crucial point is that the worst-
case for generators occurs very naturally in the analysis of programs or hybrid systems.

3

2 Related works

Most libraries for computing over convex polyhedra are based on the double
description approach: a polyhedron is described both as the convex hull of its
vertices (and, in the case of unbounded polyhedra, rays and/or lines), and as
the solution set of a system of equalities and inequalities. They convert from
one description to the other using Chernikova’s algorithm [24], which computes
a set of generators (vertices, rays, lines) from a set of (in)equalities (and, dually,
the converse) by considering each (in)equality in a sequence and computing
the intersection of the polyhedron defined by the previous (in)equalities in the
sequence and the current one. To our best knowledge, there is no parallel version
of Chernikova’s algorithm, and we fail to see how to parallelize its main loop.
It may be possible to parallelize the inner loops that compute the generators of
the intersection of a polyhedron P and an (in)equality C given the generators
of P . An alternative to Chernikova is the reverse search vertex enumeration
algorithm [2].

We also opted out of the double description because it is difficult to indepen-
dently verify that a polyhedron described by generators includes the polyhedron
that should have been computed.8

Such verifiability is desirable for certain applications: when one computes
a polyhedron meant to include all reachable states of a system, to prove that
no undesirable state can be reached, then it would be catastrophic that this
polyhedron excludes some reachable state due to a bug in a library. Our Verified
Polyhedron Library (VPL)9 [1, 25, 26, 27, 11, 12, 13] provides, in addition to
core computations, an optional layer, formally proved correct within the Coq
proof assistant, that performs this verification.

VPL implements a constraint-only description (equalities and inequalities)
for polyhedra, using two generations of algorithms. The first generation maps all
operations, including convex hull, to projection, performed by Fourier-Motzkin
elimination [22, 14]. The second generation maps all operations to parametric
linear programming, performed as in Algorithm 1 except that no floating-point
solver is used, just an exact-precision implementation of the simplex algorithm.
Furthermore, VPL is implemented in OCaml, which does not currently allow
running computations in multiple threads, and its data structures were designed
for compatibility with Coq. For all these reasons, VPL has lower performance
than the C++ implementation described in this paper, even with one thread.

8It is co-NP-hard to check that, given the description of a polyhedron A by constraints
and a polyhedron B described by generators, A is included in B [15]. Furthermore, the vertex
enumeration problem, that is, checking whether, given a polyhedron P described by a list
of constraints and a set of vertices V of that polyhedron, P has another vertex not in V , is
NP-hard for unbounded polyhedra [23]. As of 2008, it was unknown if the same problem for
bounded polyhedra, or, equivalently, that of generator enumeration (V may contain rays and
lines) for unbounded polyhedra, was also NP-complete (it is known to be in NP). No progress
seems to have been made on this front since then.

Enumeration can be done in polynomial time for simple polyhedra, those for which a vertex
corresponds to exactly one basis [2] (no degeneracy); note that degeneracy is also a major
source of complication in our algorithms.

9https://github.com/VERIMAG-Polyhedra/VPL

4

https://github.com/VERIMAG-Polyhedra/VPL

Parametric linear programming with the parameters in the objective func-
tion is a generalization of vertex enumeration, for which there exist parallel
implementations based on reverse search [3] (vertex enumeration is the case
where there are as many independent parameters as there are variables, so that
the optimization direction can point to any direction). A difference of our ap-
proach with reverse search is that we store the nodes already traversed in a
central location, which they do not have to do. Jones and Maciejowski [21] ap-
plied reverse search to parametric linear programming; they however warn that
while they have better asymptotic complexity than other approaches, the con-
stant hidden in the big-O notation is huge and they warn that their approach is
likely to be interesting only on larger examples. In contrast, we base ourselves
on an approach already used in a sequential library that is competitive with
double description approaches even on problems in moderate dimension [5].

3 Sequential algorithms

We shall leave out here how polyhedral computations such as projection and
convex hull can be reduced to parametric linear programming — this is covered
in the literature [19, 1] — and focus on solving the parametric linear programs.

3.1 Non-parametric linear programming

A linear program with n unknowns is defined by a system of equations AX = B,
where A is an m × n matrix; a solution is a vector X such that X ≥ 0 on all
coordinates and AX = B.10 The program is said to be feasible if it has at
least one solution, infeasible otherwise. In a non-parametric linear program one
considers an objective C: one wants the solution that maximizes CTX. The
program is deemed unbounded if it is feasible yet it has no such optimal solution.

Example 1. Consider the polygon P defined by x1 ≥ 0, x2 ≥ 0, 3x1 − x2 ≤ 6,
−x1 + 3x2 ≤ 6. Define x3 = 6 − 3x1 + x2 and x4 = 6 + x1 − 3x2. Let
X = (x1, x2, x3, x4), then P is the projection onto the first two coordinates of

the solution set of AX = B ∧ X ≥ 0 where A =

[
1 −3 0 −1
−3 1 −1 0

]
and

B =

[
6
6

]
.

A linear programming solver takes as input (A,B,C) and outputs “infeasi-
ble”, “unbounded” or an optimal solution X∗. Some linear programming solvers
take (A,B,C) and output X∗ as exact rational numbers and ensure that the
answer is correct. Most, however, operate fully on floating-point numbers and
their final answer may be incorrect: they may answer “infeasible” whereas the
problem is feasible, or propose “optimal solutions” that are not solutions, or are
not optimal.

10There exist more general descriptions of linear programming with upper and/or lower
bound constraints on each coordinate of X; our approach generalizes to them.

5

In addition to an exact X∗ or floating-point X̃∗ output, the solvers also
provide the discrete information of optimal basis: a solution is obtained by
the simplex algorithm setting n−m coordinates of X∗ to 0 (known as nonbasic
variables) and solving for the other coordinates (known as basic variables) using
AX∗ = B, and the solver provides the partition into basic and nonbasic variables
it used. If a floating-point solver is used, it is possible to reconstruct an exact
rational point X∗ using that information and a library for solving linear systems
in rational arithmetic. One then checks whether it is truly a solution by checking
X∗ ≥ 0 on the reconstructed coordinates.

The optimal basis contains even more information: it contains a proof of
optimality of the solution! The system computes the objective function CTX
as
∑

i∈N αiXi where N is the set of indices of the nonbasic variables, and
concludes that the solution obtained by setting these nonbasic variables to 0 is
maximal because all the αi are nonpositive.

If X∗ is not a solution of the problem (the condition X∗ ≥ 0 fails) or is
not optimal, then one can fall back to an exact implementation of the simplex
algorithm, possibly starting it from the last basis considered by the floating-
point implementation.

Example 1 (continued). Assume the objective is C =
[
1 1 0 0

]
, that is,

CTX = x1 + x2. From AX = B we deduce x1 = 3 − 3
8x3 − 1

8x4 and x2 =
3− 1

8x3 − 3
8x4. Thus x1 + x2 = 6− 1

2x3 − 1
2x4.

Assume x3 and x4 are nonbasic variables and thus set to 0, then X∗ =
(x1, x2, x3, x4) = (3, 3, 0, 0). It is impossible to improve upon this solution:
as X ≥ 0, changing the values of x3 and x4 can only decrease the objective
o = 6 − 1

2x3 − 1
2x4. This expression of o in terms of the nonbasic variables

can be obtained by linear algebra once the partition into basic and nonbasic
variables is known.

If the linear programming solver uses floating-point arithmetic and is not
to be trusted, it is still possible to reconstruct, by pure linear arithmetic, the
expression of the objective function as a function of the nonbasic variables and
check the signs of the coefficients.

While the optimal value CTX∗, if it exists, is unique for a given (A,B,C),
there may exist several X∗ for it, a situation known as dual degeneracy.

Example 1 (continued). Assume the objective is C =
[
−1 0 0 0

]
, that is,

CTX = −x1. X∗ can be chosen to be (0, 0, 6, 6), (0, 2, 8, 0) or any point in
between.

The same X∗ may be described by different bases, a situation known as
primal degeneracy, happening when more than n − m coordinates of X∗ are
zero, and thus some basic variables could be used as nonbasic and the converse.

Example 2. Consider the regular polygonB with k ≥ 3 vertices
(
1+cos(2iπ/k), 1+

sin(2iπ/k)
)
| 1 ≤ i < k. The convex hull of B and T = (1, 1, 1) is a pyramid

with k+ 1 faces (e.g., k = 4 is a square pyramid), defined using 3 + k unknowns
and k equations (e.g., for k = 4, x4 = 1− x1 − x2 − x3, x5 = 1 + x1 − x2 − x3,
x6 = 1 − x1 + x2 − x3, x5 = 1 + x1 + x2 − x3), plus x1, . . . , xk+3 ≥ 0. The

6

Figure 1: A pyramid based on an octagon, the apex T described by
(

8
3

)
bases.

apex T of the pyramid corresponds to (1, 1, 1, 0, . . . , 0). It is obtained by picking
any 3 variables out of x4, . . . , x3+k as nonbasic: there are

(
k
3

)
bases defining it

(Fig. 1).

3.2 Parametric linear programming

For a parametric linear program, we replace the constant vector C by C0 +∑k
i=1 µiCi where the µi are parameters.11 When the µi change, the optimum

X∗ changes. Assume temporarily that there is no degeneracy. Then, for given
values of the µi, the problem is either unbounded, or there is one single optimal
solution X∗. It can be shown that the region of the (µ1, . . . , µk) associated to a
given optimum X∗ is a convex polyhedron (for C0, a convex polyhedral cone),
and that these regions form a quasi partition of the space of parameters (two
regions may overlap at their boundary, but not in their interior) [19, 20, 1]. The
output of the parametric linear programming solver is this quasi-partition, and
the associated optima—in our applications, the problem is always bounded in
the optimization directions, so we do not deal with the unbounded case.

Let us see in more detail how to compute these regions. We wish to attach
to each basis (at least, each basis that is optimal for at least one vector of
parameters) the region of parameters for which it is optimal.

Example 1 (continued). Instead of C =
[
1 1 0 0

]
we consider the paramet-

ric C =
[
µ1 µ2 0 0

]
. Let us now express o = CTX as a function of the

nonbasic variables x3 and x4:

o = (3µ1 + 3µ2) +

(
−3

8
µ1 −

1

8
µ2

)
x3 +

(
−1

8
µ1 −

3

8
µ2

)
x4 (1)

The coefficients of x3 and x4 are nonpositive if and only if 3µ1 + µ2 ≥ 0 and

11There exists another, dual, kind of parametric linear programming where the parameters
are in the right-hand side B. We do not consider it here.

7

Ri

Rj
Dj

?

Figure 2: Ri and Rj are not adjacent. The intermediate region is missed.

µ1 + 3µ2 ≥ 0, which define the cone of optimality associated to that basis and
to the optimum X∗ = (3, 3, 0, 0).

Note that the description of the cone (or polyhedron) of optimality by the
constraints obtained from the sign conditions in the objective function may
contain redundant constraints, that is, constraints that can be removed without
changing the cone. It is desirable to remove these. Some procedures for removing
redundant constraints from the description of a region R1 also provide a set of
vectors outside of R1: for each constraint in the description they provide a
vector violating it [26], a feature that will be useful.

Assume now we have solved the optimization problem for a value C(D) of
the optimization direction, for a vector of parameters D1, and obtained a region
R1 in the parameters (of course, D1 ∈ R1). We now pick D2 /∈ R1 — if the
redundancy elimination procedure provided us with a set of vectors outside of
R1, we can store them in a “working set” to be processed and choose D2 in
it. We compute the region R2 associated to D2. Assume that R2 and R1 are
adjacent, meaning that they have a common boundary. We get vectors outside
of R2 and add them to the working set. We pick D3 in the working set, check
that it is not covered by R1 or R2, and, if it is not, compute a region R3, etc.
This amounts to a traversal of the adjacency graph of the optimality regions.
The algorithm terminates when the working set becomes empty, meaning the
R1, . . . produced form the desired quasi-partition.

This simplistic algorithm might fail because it assumes that it is discovering
the adjacency relation of the graph. The problem is that, if we move from a
region Ri to a vector Dj /∈ Ri, it is not certain that the region Rj generated
from Dj is adjacent to it, so we could miss some intermediate region (Fig. 2).
In order to cope with this issue, we modify our traversal algorithm as follows.
The working set contains pairs (R,D′) where R is a region and D′ /∈ R a vector
(there is also a special value none for R). The region R′ corresponding to D′

is computed. If R and R′ are not adjacent, then a vector D′′ in between R
and R′ is computed, and the pair (R,D′′) is added to the working set. This
ensures that at the end, we obtain a quasi-partition. An additional benefit is
that we can obtain a spanning tree of the region graph, with edges from R to
R′, tracking which region led to which other one.

8

The last difficulty is degeneracy. So far we have assumed that each opti-
mization direction corresponded to exactly one optimal vector X∗, and that
this optimal vector is described by exactly one basis. This is not the case in
general; in this case, the interiors of the optimality regions may overlap. This
situation results in a performance hit; also the final result is no longer a quasi-
partition, but instead just a covering of the parameter space (for each possible
vector D of parameters, there is at least one region that covers it). Of course,
the value of the objective function C(D)TX∗ must be the same for all optimal
vectors X∗ associated with the regions covering D. A covering suffices however
for the correctness of our projection, convex hull etc. algorithms.

We are currently investigating approaches for getting rid of degeneracy —
enforcing one optimal vector X∗ and only one optimal basis per vector D, except
at the boundaries. The methods for doing so rely on lexicographic orderings or
perturbations on the objective and/or constant term, or pivoting rules [20]. We
have recently proposed a working solution to degeneracy [31] but there is still
room for improvement.

4 Parallel algorithms

4.1 Parallel redundancy elimination

A polyhedron may be specified by a redundant system of inequalities, meaning
that some inequalities can be discarded without changing the polyhedron. The
first step is to eliminate syntactic redundancies — constraints simplified into
true or false, or subsumed by another (e.g., 2x + 2y ≤ 2 subsumes x + y ≤ 2);
a constraint of the form 0 ≤ −1 after simplification makes the polyhedron
empty; a constraint of the form 0 ≤ 1 after simplification is to be discarded; if
two constraints are of the form CTX ≤ B1 and CTX ≤ B2 where B1 ≤ B2,
then the latter is to be discarded (note that this involves putting the vector
of rationals C in canonical form: flushing denominators and removing common
factors, so that e.g., 2x+ 2y ≤ 3 can be discarded as subsumed by x+ y ≤ 1).

The general case of redundancy elimination is harder. Checking that an
inequality C is redundant with respect to other inequalities C1 ∧ · · · ∧ Cn boils
down to finding a vector D such that D satisfies C1 ∧ · · · ∧Cn but not C: such
a vector exists if and only if the inequality is irredundant. This is a pure satis-
fiability problem in linear programming (it uses a strict inequality ¬C, but this
can be dealt with). Note that if an inequality is irredundant, a vector D not sat-
isfying that inequality is provided: this is handy since eliminate redundancy(S)
is to, in addition to removing constraints, provide a set of vectors each violating
one constraint but not the others.

A sequential algorithm for removing redundant constraints thus considers
each constraint in sequence, and tests its irredundancy with respect to all the
other remaining constraints that have not been shown to be redundant yet. This
can also be done in parallel, as in Algorithm 2. The only requirement is that
the table marking which constraints have already been found to be redundant

9

Algorithm 1 Sequential parametric linear programming solver.

float lp(A,B,C) is an external procedure returning the optimal basis for maxi-
mizing CTX, AX = B, X ≥ 0; it may provide incorrect results.
exact lp returns the exact optimum and optimal basis.
midpoint(R,R′, D′), where D′ ∈ R′, computes a vector in between regions R
and R′.
exact point computes the exact rational X∗ point corresponding to the basis.
exact objective computes the objective function as a bilinear function of the
parameters and the nonbasic variables (the output is a matrix).
sign conditions translates it into sign conditions on the parameters, defining a
cone.
eliminate redundancy(S) returns (R,Dnext), where R is an irredundant set of
inequalities defining the same cone as S and Dnext are vectors outside of that
cone, each violating one different inequality in R but not the others.

procedure PLP(A,B,C)
pick any nonzero vector of parameters D0

W ← {(none, D0)}
regions ← ∅
while W 6= ∅ do

Pick (Rfrom, D) in W and remove it from W
Rcov ← is covered(D, regions)
if Rcov == none then

basis ← float lp(A,B,C(D))
X∗ ← exact point(basis)
o← exact objective(basis)
if ¬(X∗ ≥ 0 ∧ o ≤ 0) then

(basis, X∗)← exact lp(A,B,C(D))
end if
S ← sign conditions(basis)
R← eliminate redundancy(S)
for each constraint i in R do

Dnext ← compute next(R, i)
W ←W ∪ {(R,Dnext)}

end for
regions ← regions ∪ {(R,X∗)}
Rcov ← R

end if
if ¬are adjacent(Rfrom, Rcov) then

D′ ← midpoint(Rfrom, Rcov, D)
W ←W ∪ {(Rfrom, D

′)}
end if

end while
return(regions)

end procedure

procedure is covered(D, regions))
for (R,X∗) ∈ regions do

if D covered by R then
return(R)

end if
end for
return(none)

end procedure

10

Algorithm 2 Parallel redundancy elimination.

is redundant ← make array(n, false)
for i ∈ 0 . . . n− 1 do

F ← {¬Ci}
for j ∈ 0 . . . n− 1 do

atomic r ← is redundant [j]
if j 6= i ∧ r then

F ← F ∪ {Cj}
end if

end for
if ¬check sat(F) then

atomic is redundant [i]← true
end if

end for

should support atomic accesses. We applied the same parallelization scheme to
our more refined “ray-tracing” redundancy elimination algorithm [26].

We can use parallel redundancy elimination within parallel parametric linear
programming. It helps in some cases where the coarse-grained parallelism of the
parametric linear programming solver is limited due to the lack of tasks that
can be executed in parallel, e.g., projections of polyhedra in smaller dimensions
and few faces in the result; otherwise it does not help and hampers tuning.

4.2 Parallel parametric linear programming

We implemented two variants of task-based coarse-grained parallelism: one us-
ing Intel’s Thread Building Blocks (TBB),12 the other using OpenMP tasks [30].

Algorithm 1 boils down to executing tasks taken from a working set, which
can themselves spawn new tasks. In addition to the working set, it uses a shared
data structure: the set regions of regions already seen, used: i) for checking
whether a vector D belongs to a region already covered (is covered); ii) for
checking adjacency of regions; iii) for appending new regions found.

We implemented it as a concurrent extensible array, with a “push at end” op-
eration, random read accesses, and iteration: either tbb::concurrent_vector,
or our simple lock-free implementation based on an array with a large, stati-
cally defined maximal capacity, using atomic operations for increasing the cur-
rent number nfill of items; the latter has the advantage of not needing TBB.
There is a little subtlety involved here, in both implementations: nfill is incre-
mented atomically before the item is pushed, so that if two items are pushed
concurrently, they are pushed to different slots. However, not all items in slots
0 . . . nfill − 1 are ready for reading: there may be items currently being written
in the last slots. We therefore need a second index, nready ≤ nfill, such that
all slots 0 . . . nready − 1 contain data ready for reading, which is updated as in

12https://www.threadingbuildingblocks.org/

11

https://www.threadingbuildingblocks.org/

Algorithm 3.

Algorithm 3 Concurrent push on the shared region structure.

procedure push region(R)
atomic (i← nfill; nfill ← nfill + 1)
regions[i]← R
while nready < i do

possibly use a condition variable instead of spinning
end while . nready = i
atomic nready ← i+ 1

end procedure

The working set is managed differently depending on whether we use TBB
or OpenMP. For TBB, we use tbb::parallel_do, which dynamically schedules
tasks from the working set on a number of threads and allows dynamically
adding tasks to the working set. For OpenMP, when we run a task, we collect
all the tasks (R,D) that it generates for spawning, and we spawn them at the
end.

The resulting implementation however had disappointing performance. In
fact, we obtained better performance using a naive OpenMP implementation
that collected all tasks to spawn, spawned them and waited for them to com-
plete, using a barrier, before the next round of spawning!

We identified the reason. It was frequent that the working set contained
two tasks (R1, D1) and (R2, D2) such that the regions generated from D1 and
D2 were the same. In that case, there were two tasks that each solved a lin-
ear program, found the same basis, reconstructed exactly the solution and the
parametric objective function in that basis, etc. The workaround was to add a
hash table (either a tbb::concurrent_unordered_set or a normal hash table,
protected by a mutex) that stores the set of bases (each basis being identified
by the ordered set of its nonbasic variables) that have been processed or are
currently under processing. A task aborts after solving the floating-point linear
program if it finds a basis identical to one already in the table.

The overall algorithm is simple: create an initial task (none, D0) and then
run the tasks over available threads as long as there are uncompleted tasks
(Algorithm 4).

The number of tasks running to completion (not aborted early due to a test)
is the same as the number of generated regions. Thus, if, geometrically, the
problem does not have many enough regions in comparison to the number of
available threads of execution, its parallelism is intrinsically limited.

The is covered(D, regions) loop can be easily parallelized as well. We opted
against it as it would introduce a difficult-to-tune second level of parallelism.

Figure 3 presents the tasks generated by the sequential and the parallel
algorithms on a real example, and their dependencies. Figure 3a show how the
sequential algorithm handle tasks: as long as the tasks generate subtasks, these
subtasks are computed. For instance, task 10 has a long series of descendants

12

that are computed sequentially. Figure 3b show how the tasks are handled in
parallel: after an initial task 0 that generates a set of subtasks (tasks 1 to 9),
these subtasks are computed in parallel, as well as the subtasks they generate.

This figure also illustrates the parallelism extracted from the computation,
on a polyhedron involving 29 constraints and 16 variables. In particular, we can
see on Fig. 3b the number of parallel tasks and their dependencies. For instance,
task 5 is generated by task 0 and generates tasks 15 and 16. We can see that,
at the beginning of the computation, task 0 generates 7 tasks (i.e., regions to
compute). Hence, 7 cores will be used by the parallel algorithm. Since the
computation time of each task varies a lot between tasks, the second level of
the tree is not necessarily executed at the same time.

0

1

2

3

4

5

6

7

8

9

10

31

32

33

34

11 12 13

14

29

15 16 17 18 19 20 21

22

28

23

25

24

26 27

30

(a) Task graph with 1 thread

0

1 2 3 4 5 6 7

9 10 11 12 17 22 13 14 15 16 8 18 19 20 21

2423 25 28 30 26 31 27 29 37 33 32 34

35 36

(b) Task graph with multiple threads

Figure 3: Generation graph of the regions from one typical polyhedron, com-
puted with 1 thread and 30 threads. The region graphs, depending on overlaps
etc., are different; the numbers in both trees have no relationship.

5 Performance evaluation

We implemented our parallel algorithms in C++, with three alternate schemes
selectable at compile-time: no parallelism, OpenMP parallelism, TBB. We use:

Eigen for floating-point matrix computations outside of linear programming.
Eigen supports internal OpenMP parallelism; we disabled it since these
computations take very little time in our overall execution and using it
would have entailed tuning for two levels of parallelism. We used Eigen
3.3.4.

13

0 4 8 12 16 20 24 28 32
Number of threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ex
ec

ut
io

n
tim

e
(s

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

Execution time
Speedup

(a) 2 dimensions projected

0 4 8 12 16 20 24 28 32
Number of threads

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ex
ec

ut
io

n
tim

e
(s

)

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Execution time
Speedup

(b) 5 dimensions projected

Figure 4: Computation time and speedup for 20 projections of polyhedra with
9 constraints with no redundant constraints and 16 variables, on Paranoia (20
hyperthreaded cores, OpenMP). Each parametric linear program has 2–36 re-
gions

GLPK for floating-point linear programming. This library was not thread-safe,
meaning it was impossible to solve linear programs in multiple threads at
the same time. We suggested to the maintainer making one global variable
thread-local, which solved the problem and was made the default as of
GLPK version 4.61; we used 4.63. GLPK has no internal parallelism.

Flint for computations on rationals and rational matrices. This library is de-
signed to be thread-safe, but does not use parallelism by itself, at least for
the operations that we use. We used Flint 2.5.2.

All the benchmarks were run on the Paranoia cluster of Grid’5000 [7] and on
a server called Pressembois. Paranoia features 8 nodes, each equipped with 2
Intel Xeon E5-2660v2 CPUs (10 cores or 20 threads/CPU, 40 threads per node)
and 128 GB of RAM. Although the network was not used for these experiments,
each node as two 10 Gbps and one 1 Gbps Ethernet NICs. The code was
compiled using GCC 6.3.1 and OpenMP 4.5 (201511). The nodes run a Linux
Debian Stretch environment with a 4.9.0 kernel. Pressembois fetures 2 Intel(R)
Xeon(R) Gold 6138 CPU (20 cores or 40 threads/CPU, 80 threads per node)
and 192 GB of RAM. It runs a 4.9 Linux kernel, and we used GCC 6.3 to compile
the code. Every experiment was run 10 times, and the plots presented in this
section provide the average and standard deviation. Paranoia was used for the
OpenMP experiments, whereas Pressembois was used for the TBB experiments.

We evaluated our parallel parametric linear programming implementation
by using it to project polyhedra. This is a very fundamental operation on
polyhedra, since it is used for computing forward images (image of a polyhedron
by an affine linear transformation), and may also be used for computing convex
hulls, although there exists a more direct approach for that.

14

We used a set of typical polyhedra, with different characteristics: numbers of
dimensions and of constraints, sparsity, number of dimensions to be projected.
Here we present a subset of these benchmarks. Each benchmark comprises 50
to 100 polyhedra.

Our polyhedra were randomly generated. The reason is that it is difficult
to obtain polyhedra typically used for the target application (static analysis):
because libraries based on the dual description approach behave exponentially
with respect to the dimension, static analysers are typically designed to keep
low the dimension of the polyhedra, at the expense of analysis precision.13

On problems that have only few regions, not enough parallelism can be
extracted to exploit all the cores of the machine. For instance, Figure 4 presents
two experiments on 2 to 36 regions using the OpenMP version. It gives an
acceptable speedup on a few cores (up to 10), then the computation does not
generate enough tasks to keep the additional cores busy.

As expected, when the solution has a large number of regions, computation
scales better. Figure 5 presents the performance obtained on polyhedra made of
24 constraints, involving 8 to 764 regions and using the OpenMP version. The
speedup is sublinear. This is likely due to the synchronizations when tasks are
created (lookup in the hash table), some contention on shared data structures
and task management.

On larger polyhedra, with 120 constraints and 50 variables, we can see how-
ever that the speedup is close to a linear one with OpenMP as well as with TBB
(Figure 8).

The speedup is good for larger problems with many regions (which can be
computed independently from each other): the number of tasks is larger than
the number of available cores, hence allowing an efficient parallel computation
(Fig. 6). When the problem does not have enough regions to allow the algo-
rithm to extract enough parallelism to use all the available cores, the speedup
is bounded by how many independent tasks are generated. We have seen an
example presented Figure 3, where at the beginning of the computation, 7 cores
at most can be used in parallel. Hence, a plateau occurs when the problems do
not have enough regions (Fig. 9); the limited width of the region graph then
limits parallelism.

6 Conclusion and future work

We have successfully parallelized computations over convex polyhedra repre-
sented as constraints, most importantly parametric linear programming. Speedups
are particularly satisfactory for the most complex cases: polyhedra with many
constraints in higher dimension.

13There is a chicken-and-egg problem there: static analysis tools do not use general convex
polyhedra or only in low dimension due to the cost of the dual description in higher dimension,
thus there is little incentive to develop libraries more efficient in higher dimension. Designers
of such libraries then lack higher dimension examples from static analysis.

15

0 4 8 12 16 20 24 28 32
Number of threads

0

10

20

30

40

50

60

Ex
ec

ut
io

n
tim

e
(s

)

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

Execution time
Speedup

(a) 2 dimensions projected, 4 redundant con-
straints

4 8 12 16 20 24 28 32
Number of threads

0

10

20

30

40

50

Ex
ec

ut
io

n
tim

e
(s

)

0

2

4

6

8

Sp
ee

du
p

Execution time
Speedup

(b) 5 dimensions projected, 4 redundant con-
straints

0 4 8 12 16 20 24 28 32
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
tim

e
(s

)

0

1

2

3

4

5

6

7

Sp
ee

du
p

Execution time
Speedup

(c) 2 dimensions projected, 12 redundant con-
straints

0 4 8 12 16 20 24 28 32
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5
Ex

ec
ut

io
n

tim
e

(s
)

0

1

2

3

4

5

6

Sp
ee

du
p

Execution time
Speedup

(d) 5 dimensions projected, 12 redundant con-
straints

Figure 5: Computation time and speedup for different numbers of projections of
polyhedra with 10 variables and variable numbers of redundant constraints, on
Paranoia (20 hyperthreaded cores, OpenMP). Each parametric linear program
has 8–764 regions.

The main cause of inefficiency in our current implementation is geometrical
degeneracy, which causes overlapping regions. Several approaches are being
studied in this respect, all based on enforcing that, for given parameters, there
should be only one optimal basis.14

The floating-point simplex algorithm is restarted from scratch in each task.
It could be more efficient to store in the task structure the last basis used, or even
the full simplex tableau, to start solving from that basis instead of the default
initial. The intuition is that neighboring regions are likely to have similar bases.

14For some of our applications, such as polyhedral projection, there cannot be several opti-
mal vertices for the same parameters, except at region boundaries, so that source of degeneracy
is not present. There however remains the other source, that is, several bases for the same
vertex.

16

0 5 10 15 20 25 30 35 40
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0
Ex

ec
ut

io
n

tim
e

(s
)

1e5

0

5

10

15

20

25

Sp
ee

du
p

Execution time
Speedup

Figure 6: Computation time and
speedup for 50 projections of polyhe-
dra in dimension 120, on Paranoia (20
hyperthreaded cores, OpenMP). Each
parametric linear program has 3460–
3715 regions.

0 10 20 30 40 50 60 70 80
Number of threads

0

1

2

3

4

Ex
ec

ut
io

n
tim

e
(s

)

1e4

0

5

10

15

20

25

30

35

Sp
ee

du
p

Execution time
Speedup

Figure 7: Computation time and
speedup for 50 projections of polyhe-
dra in dimension 100, on Pressembois
(40 hyperthreaded cores, TBB).

We have presented an approach to handle the heterogeneous, non-predictible
computation time, and lack of predictibility of the domain decomposition. One
major challenge of this problem is that each subtask covers an area of the
domain, but the size and shape of this area is not known before the task is
actually computed. In addition, precautions must be taken to avoid computing
the same area multiple times on multiple tasks.

Checking whether a vector belongs to a region that has already been pro-
cessed is currently implemented following a very simplistic approach: the vector
is searched for in every region. A binary space partitioning region storage could
be used instead: build a tree with nodes adorned by hyperplanes, all regions
wholly on one side of the hyperplane under the first child, all regions wholly
on the other side under the second child, all regions straddling the hyperplane
in both branches, and so recursively in the branches. Then a region covering a
vector is searched for by testing, at each node, on which side of the hyperplane
the vector lies, and entering the branch. An appropriate locking scheme would
however have to be designed, hence introducing synchronizations and requiring
more collaboration from the operating system.

Our coarse-grained parallelism for parametric linear programming dependent
highly on the geometry of the problem. If there are too few regions, too few
tasks will keep the cores busy and little speedup will be achieved. One could
use two levels of parallelism, with parallel linear programming, parallel exact
reconstruction, etc... onn each task, using parallel matrix computations. One
possibility would be to parallelize floating-point linear programming and exact
matrix computations, both handled by external libraries. These phases are
based on matrix operations (either floating-point, rational, or integer modular),
so the usual parallelization schemes for matrix computations should apply. One
should keep in mind, however, that our matrices are much smaller than the

17

0 5 10 15 20 25 30 35 40
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
tim

e
(s

)
1e5

0

5

10

15

20

25

Sp
ee

du
p

Execution time
Speedup

(a) OpenMP on Paranoia

0 10 20 30 40 50 60 70 80
Number of threads

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
(s

)

1e4

0

5

10

15

20

25

30

Sp
ee

du
p

Execution time
Speedup

(b) TBB on Pressembois

Figure 8: 120 constraints, 50 variables, 1 dimension projected, 3459–3718 re-
gions.

ones typically used in high performance computing applications. One option
could be to replace GLPK by another library based on BLAS, such as Coin-
OR LP, and use a parallel BLAS implementation such as GotoBLAS or Intel
MKL, using an adaptative, hierarchical parallelism, as mentionned in [9]. With
respect to Flint, we attempted to run certain internal matrix computation loops
in parallel, but gave up due to crashes; perhaps this could be done with more
careful examination of shared data structures or the collaboration of the library
maintainer.

While our approach based on (in)equalities only does not blow up expo-
nentially when the polyhedron is a Cartesian product of simple polyhedra, as
opposed to the double description, it would likely benefit from being applied
separately to terms of a Cartesian product as opposed to over the full product,
perhaps in parallel. Some computations are performed over dense matrices,
and, even if sparseness is exploited, it is easier to exploit it at a coarse level.
We think of combining our approach with a Cartesian decomposition [17].

Acknowledgements

Experiments presented in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organizations (see https:

//www.grid5000.fr).

References

[1] David Monniaux Alexandre Maréchal and Michaël Périn. “Scalable minimizing-
operators on polyhedra via parametric linear programming”. In: Static

18

https://www.grid5000.fr
https://www.grid5000.fr

3 6 9 12 15 18
Number of threads

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
(s

)
0

1

2

3

4

5

6

Sp
ee

du
p

Execution time
Speedup

Figure 9: Computation time and
speedup for smaller, simpler polyhe-
dra: 16 projections in dimension 29,
on Paranoia (20 cores, OpenMP).

analysis (SAS). Ed. by Francesco Ranzato. Springer, 2017. doi: 978-3-
319-66706-5 11. hal: hal-01555998.

[2] David Avis. “A revised implementation of the reverse search vertex enu-
meration algorithm”. In: Polytopes — Combinatorics and Computation.
Ed. by Gil Kalai and Günter M. Ziegler. Vol. 29. DMV Seminar. Deutsche
Mathematiker-Vereinigung. Birkhäuser, 2000. isbn: 978-3-7643-6351-2.
doi: 10.1007/978-3-0348-8438-9 9.

[3] David Avis and Charles Jordan. “mplrs: A scalable parallel vertex/facet
enumeration code”. In: Math. Program. Comput. 10.2 (2018), pp. 267–302.
doi: 10.1007/s12532-017-0129-y.

[4] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma Poly-
hedra Library: toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems”. In: Science
of Computer Programming 72.1–2 (2008), pp. 3–21. doi: 10.1016/j.scico.
2007.08.001. arXiv: cs/0612085.

[5] Sylvain Boulmé et al. “The Verified Polyhedron Library: an overview”.
In: 20th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC 2018). Ed. by Erika Ábrahám et al.
IEEE Computer Society, 2019, pp. 9–17. isbn: 978-1-7281-0625-0.

[6] David Cantor, Basil Gordon, and Bruce L. Rothschild, eds. Selected papers
of Theodore S. Motzkin. Birkhäuser, 1983. isbn: 3-7643-3087-2.

[7] Franck Cappello et al. “Grid’5000: A large scale and highly reconfigurable
grid experimental testbed”. In: Proceedings of the 6th IEEE/ACM Inter-
national Workshop on Grid Computing CD (SC—05). IEEE/ACM. Seat-
tle, Washington, USA, Nov. 2005, pp. 99–106.

19

https://dx.doi.org/978-3-319-66706-5_11
https://dx.doi.org/978-3-319-66706-5_11
https://hal.archives-ouvertes.fr/hal-01555998
https://worldcat.org/isbn/978-3-7643-6351-2
https://dx.doi.org/10.1007/978-3-0348-8438-9_9
https://dx.doi.org/10.1007/s12532-017-0129-y
https://dx.doi.org/10.1016/j.scico.2007.08.001
https://dx.doi.org/10.1016/j.scico.2007.08.001
https://arxiv.org/abs/cs/0612085
https://worldcat.org/isbn/978-1-7281-0625-0
https://worldcat.org/isbn/3-7643-3087-2

[8] Camille Coti, David Monniaux, and Hang Yu. “Parallel parametric linear
programming solving, and application to polyhedral computations”. In:
International conference on computational science (ICCS). Springer, 2019,
pp. 566–572. doi: 10.1007/978-3-030-22750-0\ 52. hal: hal-02097321.

[9] Camille Coti et al. “Solving 0-1 quadratic problems with two-level par-
allelization of the BiqCrunch solver”. In: 2017 Federated Conference on
Computer Science and Information Systems (FedCSIS). IEEE. 2017, pp. 445–
452.

[10] Patrick Cousot and Nicolas Halbwachs. “Automatic discovery of linear
restraints among variables of a program”. In: SIGACT-SIGPLAN Sympo-
sium on Principles of programming languages (POPL). Ed. by Alfred V.
Aho, Stephen N. Zilles, and Thomas G. Szymanski. ACM. ACM Press,
1978, pp. 84–96. doi: 10.1145/512760.512770.

[11] Alexis Fouilhé. “Revisiting the abstract domain of polyhedra : constraints-
only representation and formal proof”. PhD thesis. Saint Martin d’Hères,
France: Université Grenoble Alpes, 2015. tel: tel-01286086.

[12] Alexis Fouilhé and Sylvain Boulmé. “A certifying frontend for (sub)polyhedral
abstract domains”. In: Verified software: theories, tools and experiments
(VSTTE). Vol. 8471. Lecture Notes in Computer Science. Springer, 2014,
pp. 200–215. doi: 10.1007/978-3-319-12154-3 13. hal: hal-00991853.

[13] Alexis Fouilhé, David Monniaux, and Michaël Périn. “Efficient generation
of correctness certificates for the abstract domain of polyhedra”. In: Static
analysis (SAS). 2013, pp. 345–365. isbn: 978-3-642-38855-2. doi: 10.1007/
978-3-642-38856-9 19. hal: hal-00806990.

[14] Joseph Fourier. “Histoire de l’Académie, partie mathématique (1824)”.
In: Mémoires de l’Académie des sciences de l’Institut de France. Vol. 7.
Gauthier-Villars, 1827, xlvij–lv. Gallica: ark:/12148/bpt6k32227/f53.

[15] Robert M. Freund and James B. Orlin. “On the complexity of four polyhe-
dral set containment problems”. In: Math. Program. 33.2 (1985), pp. 139–
145. doi: 10.1007/BF01582241.

[16] Nicolas Halbwachs. “Détermination automatique de relations linéaires vérifiées
par les variables d’un programme”. French. PhD thesis. Grenoble, France:
Université Scientifique et Médicale de Grenoble & Institut National Poly-
technique de Grenoble, Mar. 1979. hal: tel-00288805. url: https://tel.
archives-ouvertes.fr/tel-00288805.

[17] Nicolas Halbwachs, David Merchat, and Laure Gonnord. “Some ways to
reduce the space dimension in polyhedra computations”. In: Formal Meth-
ods in System Design 29.1 (2006), pp. 79–95. doi: 10.1007/s10703-006-
0013-2. hal: hal-00189633.

20

https://dx.doi.org/10.1007/978-3-030-22750-0_52
https://hal.archives-ouvertes.fr/hal-02097321
https://dx.doi.org/10.1145/512760.512770
https://tel.archives-ouvertes.fr/tel-01286086
https://dx.doi.org/10.1007/978-3-319-12154-3_13
https://hal.archives-ouvertes.fr/hal-00991853
https://worldcat.org/isbn/978-3-642-38855-2
https://dx.doi.org/10.1007/978-3-642-38856-9_19
https://dx.doi.org/10.1007/978-3-642-38856-9_19
https://hal.archives-ouvertes.fr/hal-00806990
https://gallica.bnf.fr/ark:/12148/bpt6k32227/f53
https://dx.doi.org/10.1007/BF01582241
https://hal.archives-ouvertes.fr/tel-00288805
https://tel.archives-ouvertes.fr/tel-00288805
https://tel.archives-ouvertes.fr/tel-00288805
https://dx.doi.org/10.1007/s10703-006-0013-2
https://dx.doi.org/10.1007/s10703-006-0013-2
https://hal.archives-ouvertes.fr/hal-00189633

[18] Bertrand Jeannet and Antoine Miné. “Apron: a library of numerical ab-
stract domains for static analysis”. In: Computer aided verification (CAV).
Ed. by Ahmed Bouajjani and Oded Maler. Vol. 5643. Lecture Notes in
Computer Science. Springer, 2009, pp. 661–667. doi: 10.1007/978-3-642-
02658-4 52. eprint: hal-00786354.

[19] Colin. Jones et al. “On polyhedral projections and parametric program-
ming”. In: J. Optimization Theory and Applications 138.2 (2008), pp. 207–
220. doi: 10.1007/s10957-008-9384-4.

[20] Colin N. Jones, Eric C. Kerrigan, and Jan M. Maciejowski. “Lexicographic
perturbation for multiparametric linear programming with applications to
control”. In: Automatica (43 2007). doi: 10.1016/j.automatica.2007.03.008.

[21] Colin N. Jones and Jan M. Maciejowski. “Reverse Search for Parametric
Linear Programming”. In: Proceedings of the 45th IEEE Conference on
Decision and Control. IEEE, Dec. 2006, pp. 1504–1509. doi: 10 .1109/
CDC.2006.377799.

[22] Leonid Khachiyan. “Fourier-Motzkin elimination method”. In: Encyclo-
pedia of Optimization. Ed. by Christodoulos A. Floudas and Panos M
Pardalos. 2nd ed. Springer, 2009, pp. 1074–1076. isbn: 978-0-387-74760-
6.

[23] Leonid Khachiyan et al. “Generating all vertices of a polyhedron is hard”.
In: Discrete & Computational Geometry 39.1-3 (2008). Also as DIMACS
TR 2005-21 http : / / archive . dimacs . rutgers . edu / pub / dimacs /

TechnicalReports/TechReports/2005/2005-21.pdf, pp. 174–190. doi:
10.1007/s00454-008-9050-5.

[24] Hervé Le Verge. A note on Chernikova’s Algorithm. Tech. rep. 635. Rennes,
France: IRISA, 1992. hal: inria-00074895.

[25] Alexandre Maréchal. “New algorithmics for polyhedral calculus via para-
metric linear programming. (Nouvelle algorithmique pour le calcul polyédral
via programmation linéaire paramétrique)”. PhD thesis. Saint Martin
d’Hères, France: Université Grenoble Alpes, 2017. tel: tel-01695086.

[26] Alexandre Maréchal and Michaël Périn. “Efficient elimination of redun-
dancies in polyhedra by raytracing”. In: Verification, model checking, and
abstract interpretation (VMCAI). Ed. by Ahmed Bouajjani and David
Monniaux. Vol. 10145. Lecture Notes in Computer Science. Springer, 2017,
pp. 367–385. doi: 10.1007/978-3-319-52234-0 20. hal: hal-01385653.

[27] Alexandre Maréchal et al. “Polyhedral approximation of multivariate poly-
nomials using Handelman’s theorem”. In: Verification, model checking,
and abstract interpretation (VMCAI). Ed. by Barbara Jobstmann and K.
Rustan M. Leino. Vol. 9583. Lecture notes in computer science. Springer,
Jan. 2016, pp. 166–184. doi: 10.1007/978- 3- 662- 49122- 5 8. hal: hal-
01223362.

21

https://dx.doi.org/10.1007/978-3-642-02658-4_52
https://dx.doi.org/10.1007/978-3-642-02658-4_52
hal-00786354
https://dx.doi.org/10.1007/s10957-008-9384-4
https://dx.doi.org/10.1016/j.automatica.2007.03.008
https://dx.doi.org/10.1109/CDC.2006.377799
https://dx.doi.org/10.1109/CDC.2006.377799
https://worldcat.org/isbn/978-0-387-74760-6
https://worldcat.org/isbn/978-0-387-74760-6
http://archive.dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2005/2005-21.pdf
http://archive.dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2005/2005-21.pdf
https://dx.doi.org/10.1007/s00454-008-9050-5
https://hal.archives-ouvertes.fr/inria-00074895
https://tel.archives-ouvertes.fr/tel-01695086
https://dx.doi.org/10.1007/978-3-319-52234-0_20
https://hal.archives-ouvertes.fr/hal-01385653
https://dx.doi.org/10.1007/978-3-662-49122-5_8
https://hal.archives-ouvertes.fr/hal-01223362
https://hal.archives-ouvertes.fr/hal-01223362

[28] Antoine Miné. “The octagon abstract domain”. In: Higher-Order and
Symbolic Computation 19.1 (2006), pp. 31–100. doi: 10 . 1007/ s10990 -
006-8609-1. hal: hal-00136639.

[29] Theodore S. Motzkin et al. “The double description method”. In: Con-
tributions to the theory of games, vol. II. Ed. by Harold W. Kuhn and
Albert W. Tucker. Vol. 28. Annals of Mathematics Studies. Reprinted as
[6, Ch. 2]. Princeton University Press, 1953, pp. 51–74. isbn: 0691079358.

[30] OpenMP Application Programming Interface. 4.5. OpenMP Architecture
Review Board. Nov. 2015. url: https://www.openmp.org/wp-content/
uploads/openmp-4.5.pdf.

[31] Hang Yu and David Monniaux. “An efficient parametric linear program-
ming solver and application to polyhedral projection”. In: Static analysis
(SAS). Ed. by Bor-Yuh Evan Chang. Vol. 11822. Lecture notes in com-
puter science. Springer, 2019, pp. 203–224. doi: 10.1007/978-3-030-32304-
2\ 11. url: https://doi.org/10.1007/978-3-030-32304-2_11.

22

https://dx.doi.org/10.1007/s10990-006-8609-1
https://dx.doi.org/10.1007/s10990-006-8609-1
https://hal.archives-ouvertes.fr/hal-00136639
https://worldcat.org/isbn/0691079358
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://dx.doi.org/10.1007/978-3-030-32304-2_11
https://dx.doi.org/10.1007/978-3-030-32304-2_11
https://doi.org/10.1007/978-3-030-32304-2_11

Algorithm 4 Task for parallel linear programming solver.

push tasks adds new tasks to those to be processed; its implementation is dif-
ferent under TBB and OpenMP.
test and insert(T, x) checks whether x already belongs to the hash table T , in
which case it returns true; otherwise it adds it and returns false. This operation
is atomic.

procedure process task((Rfrom, D))
Rcov ← is covered(D, regions)
if Rcov == none then

basis ← float lp(A,B,C(D))
if ¬test and insert(bases, basis) then

X∗ ← exact point(basis)
o← exact objective(basis)
if ¬(X∗ ≥ 0 ∧ o ≤ 0) then

(basis, X∗)← exact lp(A,B,C(D))
end if
S ← sign conditions(basis)
R← eliminate redundancy(S)
for each constraint i in R do

Dnext ← compute next(R, i)
push tasks(Dnext)

end for
push region(R,X ∗)
Rcov ← R

end if
end if
if ¬are adjacent(Rfrom, Rcov) then

D′ ← midpoint(Rfrom, Rcov, D)
W ←W ∪ {(Rfrom, D

′)}
end if

end procedure

procedure is covered(D, regions))
for i ∈ 0 . . . nready − 1 do . nready to be read at every loop iteration

(R,X∗)← regions[i]
if D covered by R then

return(R)
end if

end for
return(none)

end procedure

23

	Introduction
	Related works
	Sequential algorithms
	Non-parametric linear programming
	Parametric linear programming

	Parallel algorithms
	Parallel redundancy elimination
	Parallel parametric linear programming

	Performance evaluation
	Conclusion and future work

