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Bayesian sparse regularization for parallel MRI reconstruction
using Complex Bernoulli-Laplace mixture priors

Siwar Chaabene1,2 · Lotfi Chaari3 · Abdelaziz Kallel2

Abstract Parallel imaging technique using several re-
ceiver coils provides a fast acquisition of Magnetic Reso-
nance Imaging (MRI) images with high temporal and/or 
spatial resolutions. Against this background, the most 
difficult task is the full Field of View (FoV) images re-
construction without noise, distortions and artifacts. In 
this context, SENSitivity Encoding (SENSE) is consid-
ered the most often used parallel Magnetic Resonance 
Imaging (pMRI) reconstruction method in the clinical 
application. On one side, solving the inherent recon-
struction problems has known significant progress dur-
ing the last decade. On other side, the sparse Bayesian 
regularization for signal/image recovery has generated a 
great research interest especially when large volumes of 
data are processed. The purpose of this paper is to 
develop a novel Bayesian regularization technique for 
sparse pMRI reconstruction. The new technique is based 
on a Hierarchical Bayesian Model (HBM) using a 
complex Bernoulli-Laplace mixture in order to promote 
two sparsity levels for the target image. The inference is 
conducted using a Markov chain Monte Carlo (MCMC)
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sampling scheme. Simulation results obtained with both

synthetic and real datasets are showing the outperfor-
mance of the proposed sparse Bayesian technique com-
pared to other existing regularization techniques.

Keywords Sparse Bayesian model · ℓ0 + ℓ1 regu-
larization · MCMC · Gibbs sampler · parallel MRI
restoration · SENSE

1 Introduction

Magnetic Resonance Imaging (MRI) is a powerful imag-
ing technique that enables producing accurate images
in order to visualize with great precision many organs

of the human body. In fact, classical MRI uses a sin-
gle receiver coil to capture the MRI data acquisition

in the Fourier space (i.e., the k-space). However, the
major drawback of MRI is its time-consuming acqui-
sition to capture all the data needed to rebuild a full
Field of View (FoV) image. For this reason, MRI im-
ages with fast data acquisition, high spatial and tempo-

ral resolutions, and without artifacts represent a great
interest for researchers in various research activities,
like functional MRI where several data volumes have

to be acquired during the application of an experimen-
tal paradigm to stimulate patients. This goal can be
achieved using parallel Magnetic Resonance Imaging

(pMRI) [1] with several receiver coils using different
spatial sensitivity profiles. This helps to reduce the ex-
posure time of the patient to the MRI environment,
to accelerate the acquisition of MRI data, and to im-

prove spatial and/or temporal resolutions of the im-

ages. Following the parallel imaging principle, each re-
ceiver coil acquires in the k-space a sub-sampled data

using a reduction (sub-sampling) factor R. This k-space
sub-sampling consists of acquiring one line over R usu-



ally along the phase encoding direction, which gener-
ally leads to a sampling below the Nyquist rate [2].

The measured reduced FoV images present aliasing ar-
tifacts in the image domain after an inverse Fourier

transform. Therefore, the pMRI reconstruction tech-

nique consists of combining reduced FoV images of mul-
tiple receiver coils in order to reconstruct the full FoV
image. Accordingly, this reconstruction procedure may

be performed by three types of algorithms: i) recon-
struction in the spatial domain (SENSitivity Encoding

(SENSE) [1]), ii) reconstruction in the k-space (Gen-
eralized Autocalibrating Partially Parallel Acquisitions
(GRAPPA) [3]) and iii) hybrid algorithms combining

the two reconstructions (Sensitivity Profiles from an

Array of Coils for Encoding and Reconstruction In Par-
allel (SPACE RIP) [4]). A comparative study in [5]

shows that the SENSE technique is the most often used

in the clinical routine application. Compressed sens-

ing [6] also makes it possible to accelerate the data ac-
quisition [7–11]. In this paper, we concentrate on the
SENSE method as operating in the original space. In

practice, the pMRI reconstruction problem do not meet
the expectations presented by the Hadamard condi-
tions [12] due to severe acquisition conditions under
high reduction factors. Therefore, the inverse pMRI re-
construction problem based on the SENSE method is
often ill-posed [13]. On one side, the works addressed
in [13–17] have been suggested to regularize this ill-
posed problem during the past years. More recently,
other techniques [18,19] have been proposed to account
for potential sensitivity errors during the reconstruc-

tion process. On other side, several works in the re-
cent Bayesian literature [20–23] have been proposed us-
ing the ℓ0 + ℓ1 regularization effect for sparse image
recovery. The use of this effect has demonstrated its
ability to provide flexible and adaptive regularizations
for the resolution of ill-posed inverse problems. Gen-
erally, the use of a Bernoulli and continuous distribu-

tions mixture priors like multivariate Bernoulli-Laplace
[24,25], Bernoulli-Gaussian [26], Bernoulli-Exponential
[20] and Bernoulli-generalized Gaussian-Laplace [27] al-

lows promoting the desired image sparsity levels di-
rectly in the original space. These Bayesian Bernoulli-
based models enable to estimate the regularization pa-

rameters and hyperparameters directly from the ob-
served data, which is not possible with other varia-
tional methods [6, 13, 17, 28]. The estimation of these
parameters and hyperparameters is performed using
Monte Carlo Markov chains (MCMC) [29] sampling

techniques. These latter are used to simulate samples
from the target distributions and to obtain accurate

estimates afterwards. For this reason, we resort here
to a Bayesian framework in order to develop a fully

automatic regularization method for pMRI reconstruc-

tion. This will allow us to avoid needing a reference

scan to estimate the regularization parameters, which
is generally essential for variational regularization tech-
niques. In this paper, we propose a new Bayesian regu-

larization technique for sparse parallel MRI based on a
ℓ0+ ℓ1 regularization to estimate a complex-valued tar-
get image. This prior promotes directly in the original

space two sparsity levels of the desired image without
using any transform. It is worth noting that we use

here the same model as in [30]. In this paper, a more

detailed presentation of the whole model is given. We
also provide more validations especially by adding ex-
periments on real data that illustrate our reconstruc-
tion method performance under real and severe exper-
imental conditions. These validations have been con-

ducted with data acquired at both 1.5 and 3 Tesla
magnetic fields. The paper is structured as follows. In

Section 2, we introduce the problem statement of the
pMRI restoration. Section 3 presents the proposed Hi-
erarchical Bayesian model (HBM). Section 4 shows the
resolution scheme for this model. In Section 5, we vali-
date our sparse model on complex-valued synthetic and
real pMRI data. Finally, conclusions with some future
work are described in Section 6.

2 Problem Statement

The pMRI observation model [1, 17] in the spatial do-
main at each position x writes

d(x) = S(x)ρ(x) + n(x), (1)

where d is the complex-valued observed signal, S is
the sensitivity maps operator, ρ represents the target
image, while n stands for the observation noise. The

matrix S is generally ill-conditioned and the pMRI re-
construction problem is ill-posed. Our objective is to
estimate ρ from d and the knowledge about S. Solving
this problem following the SENSE procedure resorts to

a maximum likelihood estimation (MLE). At each spa-
tial position x, the estimate writes as

ρ̂MLE(x) = SH(x)Ψ−1S(x)
)♯
SH(x)Ψ−1d(x), (2)

where Ψ−1 represent the noise covariance matrix which

is generally pre-estimated by a reference acquisition,
(.)H denotes the transposed complex conjugate and (.)♯

denotes the pseudo-inverse. As already reported in a
number of studies of the literature [17, 28], SENSE re-
construction provides images that generally suffer from

several imperfections especially when the acquisition
conditions are poor (high reduction factor, high noise
level,...). Regularization is therefore essential to cope

with this problem and provide accurate reconstruction



of images. Several variational methods have therefore
been proposed in the literature using either wavelet

transforms [17] or total variation (TV) regularization
[15]. These methods provide better images than the

SENSE method, but request setting regularization pa-

rameters that have to be a priori estimated. This prior
estimation can be performed based on a reference scan,

which is not always possible. For this reason, we resort

in this paper to a Bayesian framework where we design
a fully automatic regularization method that directly

calculates the regularization parameters and hyperpa-
rameters from the observed data along with the target
images.

3 Hierarchical Bayesian model

In the present section, we detail our HBM designed to
perform automatic regularized reconstruction of pMRI
images. Following a probabilistic approach, all the model

parameters and hyperparameters are supposed to be re-
alizations of random variables. Moreover, we account in
our model construction for the complex-valued nature
of pMRI data.

3.1 Likelihood

Assuming that n is Complex additive Gaussian noise

with Ψ = σ2
nI, where I represents the identity matrix,

the likelihood with the linear model in (1) can be de-
fined as

f(d|ρ, σ2
n) =

∏

x

exp
(

−‖d(x)− S(x)ρ(x)‖2Ψ−1

)

(2π)Q/2|Ψ |1/2
, (3)

where Q is the number of coefficients in the observed
data.

3.2 Priors

In this subsection, we assign prior distributions to the
unknown parameter vector θ =

{

ρ, σ2
n

}

.

3.2.1 Prior distribution for ρ

A Bernoulli-Laplace (BL) mixture prior is assigned to
ρ. This BL prior allows to promote two sparsity lev-

els of the target image in the original space. The first
one serves to capture coefficients that exactly equal to
zero, whereas the second one promotes sparsity within

the non-zero coefficients. Note that the BL prior is af-
fected to complex-valued data. In this case, we assume

that the real and imaginary parts are used separately
and independently. Supposing that every complex coef-

ficient ρi(i = 1, ...,K) can be defined as

ρi = yi + jzi, (4)

where j2 = −1, yi (resp. zi) denotes the real (resp.
imaginary) part of the complex desired image ρi, and

K represents the number of coefficients of ρ).
Assuming that yi and zi are independent, the BL prior

can be written as follows

f(ρi|ω, λ) = f(yi|ω, λ)f(zi|ω, λ)

=

[

(1− ω) δ(yi) + ω
1

2λ
exp

(

−
|yi|

λ

)]

×

[

(1− ω) δ(zi) + ω
1

2λ
exp

(

−
|zi|

λ

)]

, (5)

where ω represents a weight belonging to [0, 1], λ as-
sesses the non-zero coefficients sparsity level of yi and
zi parts, and δ(.) represents the Dirac delta function.

It should be noted that various hyperparameters could
be considered for each part.
Supposing independence between the complex coeffi-
cients ρi, the BL distribution of the desired image ρ

writes

f(ρ|ω, λ) =
K
∏

i=1

f(ρi|ω, λ). (6)

3.2.2 Prior distribution for σ2
n

The positivity of the noise variance σ2
n can be guar-

anteed when an inverse-Gamma (IG) prior with two
hyperparameters γ and ε is adopted

f(σ2
n|γ, ε) = IG(σ2

n|γ, ε)

=
εγ

Γ (γ)

(

σ2
n

)−1−γ
exp

(

−
ε

σ2
n

)

, (7)

where Γ (.) denoted the standard gamma function. The
shape and scale hyperparameters γ and ε have been set

to 10−1 to keep a non-informative prior.

3.3 Hyperparameter priors

In this subsection, we define the choice of the hyperprior
distributions affected for the unknown hyperparameter
vector denoted by Φ = {ω, λ}.

3.3.1 Hyperprior distribution for ω

A uniform prior on [0, 1] is assigned for the weight ω,
i.e., U[0,1] (ω). The weight ω indicates the non-zero co-
efficients rate in the desired image.

3.3.2 Hyperprior distribution for λ

A IG prior is used for λ that guarantees the positivity
of this defined as

f(λ|ν, α) = IG(λ|ν, α) =
αν

Γ (ν)
λ−1−ν exp

(

−
α

λ

)

. (8)

where the hyperparameters ν and α are fixed to 10−1

in order to keep a non-informative prior.

In summary, the directed acyclic graph (DAG) of our
HBM is represented in Fig. 1 where the unknown pa-

rameters and hyperparameters appear in circles and the

fixed hyperparameters appear into squares.
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Fig. 1: DAG of our HBM.

The next section explains the Bayesian inference scheme
with the sampling techniques used to construct a cor-
rect Bayesian estimators for the unknown parameter
vector {θ,Φ}.

4 Bayesian Inference Scheme

Taking into account the HBM introduced in the pre-
vious section, we use a maximum a posterior (MAP)
estimation for the unknown model parameters and hy-

perparameters. By the Bayes’ paradigm, the joint pos-
terior of the parameter/hyperparameter vector {θ,Φ}
can be represented as

f (θ,Φ|d) ∝ f (d|θ) f (θ|Φ) f (Φ|γ, ε, ν, α) (9)

∝ f(d|ρ, σ2
n)f(ρ|ω, λ)f(σ

2
n|γ, ε)f(ω)f(λ|ν, α).

The corresponding joint posterior distribution of the
proposed sparse Bayesian model based on the distribu-

tions adopted in Section 3 takes the following formula

f (θ,Φ|d) ∝

∏

x

exp
(

−‖d(x)− S(x)ρ(x)‖2Ψ−1

)

(2π)Q/2|Ψ |1/2

×
K
∏

i=1

[(

(1− ω)δ(yi) + ω
1

2λ
exp(−

|yi|

λ
)

)

×

(

(1− ω)δ(zi) + ω
1

2λ
exp(−

|zi|

λ
)

)]

× U (ω)×
αν

Γ (ν)
(λ)

−1−ν
exp

(

−
α

λ

)

1R+(λ).

(10)
The complicated distribution in (10) does not allow us
to derive closed-form expressions for the Bayesian esti-
mators of {θ,Φ}. As a consequence, we propose to use

the MCMC method for sample this joint posterior dis-
tribution. More precisely, we use here a Gibbs sampler
(GS) algorithm that iteratively draws in samples of the
unknown parameters and hyperparameters according to

the conditional posterior distributions f(ρ|d, σ2
n, ω, λ),

f(ω|ρ), f(λ|ρ, ν, α) and f(σ2
n|d,ρ, γ, ε).

4.1 Conditional posterior distribution of σ2
n

The combination of the likelihood in (3) and the prior
of σ2

n in (7) gives the following IG distribution

σ2
n|d,ρ, γ, ε ∼ IG

(

γ +
Q

2
, ε+

‖d− Sρ‖22
2

)

, (11)

where ‖.‖2 refer to the Euclidean norm. The distribu-

tion in (11) can be easily sampled.

4.2 Conditional posterior distribution of λ

Similar to [20], the combination of (6) and (8) leads to

the following conditional posterior distribution

λ|ρ, ν, α ∼ IG (ν + ‖ρ‖0 , α+ ‖ρ‖1) . (12)

where ‖.‖0 denotes ℓ0 the pseudo-norm and ‖.‖1 signify

ℓ1 norm. The distribution in (12) can be easily sampled.

4.3 Conditional posterior distribution of ω

Calculations similar to [21] show that ω follows a Beta

distribution

ω|ρ ∼ B (1 + ‖ρ‖0 , 1 +Q− ‖ρ‖0) . (13)

The distribution in (13) can be easily sampled.

4.4 Conditional posterior distribution of ρ

It is worth noting that yi and zi are independent. Their

conditional posterior distributions can be expressed re-
spectively by

f(yi|d, ρ̃i, σ
2
n, ω, λ) = ω

y
1,iδ(yi) + ω

y
2,iN

+ µ+
y,i, σ

2
i

)

+ ω
y
3,iN

− µ−
y,i, σ

2
i

)

, (14)

and

f(zi|d, ρ̃i, σ
2
n, ω, λ) = ωz

1,iδ(zi) + ωz
2,iN

+ µ+
z,i, σ

2
i

)

+ ωz
3,iN

− µ−
z,i, σ

2
i

)

, (15)

where N+ and N− represent the truncated Gaussian

distributions on R
+ and R

−, respectively.
The desired image ρ decomposes onto the orthonormal
basis B = {e1, ..., eK} such that ρ = ρ̃i+ρiei where ρ̃i

is obtained by setting the ith element of ρ to 0 denoted
as vi = d− Sρ̃i and si = Sei.

The weights
(

ω
y
l,i

)

1≤l≤3
used in (14) are defined as

ω
y
l,i =

u
y
l,i

3
∑

l=1

u
y
l,i

(16)

where

u
y
1,i = 1− ω,

u
y
2,i =

ω
4λ2 exp

(

(µ+

y,i)
2

2σ2
i

)

√

2πσ2
iG µ+

y,i, σ
2
i

)

,

u
y
3,i =

ω
4λ2 exp

(

(µ−

y,i)
2

2σ2
i

)

√

2πσ2
iG −µ−

y,i, σ
2
i

)

,

and

σ2
i =

σ2
n

‖si‖2
2

,

µ+
y,i = σ2

i

(

Real(vT
i si)

σ2
n

− 1
λ

)

,

µ−
y,i = σ2

i

(

Real(vT
i si)

σ2
n

+ 1
λ

)

,

G µ, σ2
)

=
√

σ2π
2

(

1 + erf
(

µ√
2σ2

))

.



The weights
(

ωz
l,i

)

1≤l≤3
used in (15) have the same ex-

pressions for the weights
(

ω
y
l,i

)

1≤l≤3
.

Algorithm 1 summarizes the main steps of the designed

GS for pMRI reconstruction. The GS algorithm consists
of generating samples distributed for these unknown pa-

rameters and hyperparameters according to their con-
ditional posterior distributions. In our experiments, the
GS algorithm is executed 60 runs with 30 iterations as

the burn-in period to reach convergence. It is worth
noting that the burn-in period has been empirically set

since it is not possible to a prior estimated it. Resort-

ing to convergence monitoring techniques [31] will also
dramatically increase the algorithm complexity.

Algorithm 1: GS.

Initialize ρ(0) ;
repeat

Sample σ2
n according to f(σ2

n|d,ρ, γ, ε).
Sample λ according to f(λ|ρ, ν, α).
Sample ω according to f(ω|ρ).
for i = 1 . . .K do

Sample yi according to f(yi|d, ρ̃i, σ
2
n, ω, λ).

Sample zi according to f(zi|d, ρ̃i, σ
2
n, ω, λ).

end

until convergence;

Based on the chains sampled by our algorithm, and af-
ter discarding the samples corresponding to the burn-in
period, we estimate the target image ρ̂ using a MAP
estimator in order to let the Bernoulli prior express the
sparsity level of the estimates. For σ̂2

n and the hyper-
parameters ω̂ and λ̂, a minimum mean square error
(MMSE) estimator has been used as commonly done
in the literature. The flowchart of the proposed frame-
work is represented in Fig. 2.

Fig. 2: The flowchart of the proposed framework.

5 Experimental Validation

The proposed sparse Bayesian model presented in the

previous two sections was tested and validated on both
complex-valued synthetic and real pMRI data. Our im-

plementation has been performed using Matlab R2016a
on a laptop with i7-7500U Intel core processor (3.5GHz,

RAM 8GB) which corresponds to about 11 minutes

of computational time. Synthetic data experiment was

conducted to appraise the robustness of our algorithm
with respect to the known reference image. However,

real data experiments were conducted to illustrate the

reconstruction performance on real pMRI data since no
ground truth is available in this case.

5.1 Experiment with Synthetic data

To prove the effectiveness of our model, an experiment

was performed on a synthetic complex-valued pMRI
dataset. The reference image of size 256× 256 is shown

in Fig. 3(a). The observations have been simulated with
severe acquisition conditions using a high reduction fac-
tor R = 4, L = 8 receiver coils and uncertainties in the

sensitivity maps using a Gaussian white noise of vari-

ance equal to 0.001. The pMRI data have been sim-

ulated by a complex Gaussian noise of variance σ2
n =

5. Figs. 3(b) and 3(c) display the restored images by
the SENSE method and the proposed sparse Bayesian
model, respectively. To compare with methods of the
literature, reconstructed slices are obtained by two re-
cent regularizations techniques such as the Bayesian
ℓ2 [18] and the Tikhonov [32]. Figs. 3(d) and 3(e) il-
lustrate the restored images.

(a) (b)

(c) (d) (e)

Fig. 3: (a) Ground truth, Restored image by : (b) the SENSE
method, (c) the proposed sparse model, (d) the Bayesian ℓ2
regularization, and (e) the Tikhonov regularization.

The Tikhonov regularization can be defined as

min
ρ(x)

{

‖d(x)− S(x)ρ(x)‖2
Ψ−1 + ι ‖ρ(x)− ρGT (x)‖2

}

(17)

where ι ≥ 0 is the regularization which is difficult to set
automatically and ρGT represent the ground truth im-

age. This regularization is fast and easy to implement.

However, oversmoothing generally occur as illustrated

in Fig. 3(e). As regards the the Bayesian ℓ2 regulariza-

tion method and the proposed model, they more time-
consuming. However, these methods have the advan-

tages to give more flexibility to the level of the infor-
mation a prior used, and to be more automatic since all



the model parameters/ hyperparameters are directly es-
timated from the observed data. Visually, the proposed

model allows to reduce reconstruction artifacts with-
out introducing any oversmoothing aspect and offers

a less noisy reconstruction in contrast to Bayesian ℓ2
and Tikhonov regularizations. In addition, it is evident
that our sparse model helps to restore slice with lower
smoothing levels than other methods. For the sake of

quantitative assessment of the image quality [33], Tab.1
indicates the structural similarity (SSIM) values and

the signal to noise ratio (SNR) values for the recon-
structed slices compared to the reference image. These
reported values confirm the visually restored slices and

show that our model provides a less noisy reconstruc-

tion that is closer to the reference image.

Table 1: Synthetic data : SNR and SSIM values for the re-
constructed images.

SNR (dB) SSIM

SENSE method 18.83 0.79
Proposed model 27.05 0.94
Bayesian ℓ2 regularization 25.84 0.93
Tikhonov regularization 20.66 0.89

The MMSE values of the estimated posteriors of σ̂2
n ,

ω̂ and λ̂ are equal to the values 4.69, 0.12 and 41.01,
respectively. As regards the noise variance σ̂2

n, we notice
that the estimate is close to the reference value σ2

n = 4.

For the Bernoulli hyperparameter ω̂, the value found
indicates a high sparsity level of the target image ρ̂.

5.2 Experiments with Real data
5.2.1 Experiment 1
In this experiment, we concentrate on validating our al-
gorithm on a real dataset. The used data includes 255×
255 × 14 × 8 Gradient-Echo (GE) anatomical images
where 255 × 255 represents the size of the axial brain

slice, 14 represents the number of slices and 8 represents
the number of used coils. These data were acquired with

a 1.5 Tesla GE Healthcare scanner and a spatial resolu-
tion of 0.93×0.93×8mm3 with two different reduction

factors 2 and 4. Fig. 4(b) (resp. Fig. 4(a)) illustrates the

restored slices by the proposed sparse Bayesian model
(resp. the SENSE method) for R = 2 and R = 4. The

performance of our sparse Bayesian technique was com-

pared with two recent literature methods. Fig. 4(c) il-
lustrates the restored images by the Bayesian ℓ2 regu-

larization, and Fig. 4(d) defines the restored images by
the Tikhonov regularization, with R = 2 and R = 4.
The artifacts occurring in Fig. 4(a) are very severe espe-

cially when R = 4. The existing regularization methods

are not able to eliminate these too severe artifacts as

shown in Fig. 4(c) and Fig. 4(d). In the same sense,
these artifacts are too strong to be eliminated using

our method too. To better explain the performance

of the proposed model, Fig. 5 illustrates the compar-
ison between difference slices for R = 2 and R = 4.
These difference slices were calculated with respect to

the SENSE reconstruction in order to asses the artifacts
reduction level. Both the visual inspection of the recon-
structed and difference images show that our model bet-
ter attenuates reconstruction artifacts. This is mainly
clear through the difference images where the informa-
tion is more structural especially next to the main re-
construction artifacts of the SENSE image. For the sake
of quantitative evaluation of the artifacts attenuation,
Tab. 2 indicates the energy values for the difference im-
ages. The reported energy values indicate that the pro-

posed method gives a more significant difference with
respect to the SENSE reconstruction, and this in com-
parison to the Bayesian ℓ2 and the Tikhonov regular-
izations. As regards sparsity, Tab. 3 indicates the ℓ0

R
=

2
R

=
4

(a) (b) (c) (d)

Fig. 4: Reconstructed pMRI brain images by : (a) the SENSE method, (b) the proposed sparse model , (c) the Bayesian ℓ2
regularization, and (d) the Tikhonov regularization, with R = 2 and R = 4.



pseudo-norm (‖.‖0) of the reconstructed images using
the competing methods. The reported values indicate a

clear advantage for the proposed method in providing
sparse image.

R
=

2
R

=
4

(a) (b) (c)

Fig. 5: Difference images between SENSE and (a) the pro-
posed model, (b) the Bayesian ℓ2 regularization, (c) the
Tikhonov regularization, for R = 2 and R = 4.

Table 2: Real data : Energy values for the difference images.

R = 2 R = 4

Prop. model - SENSE 1.48e+10 4.26e+10

Bay. ℓ2 reg. - SENSE 8.63e+09 3.35e+10

Tikhonov - SENSE 1.28e+10 2.92e+10

Table 3: Real data : sparsity level for the reconstructed Slices.

R = 2 R = 4

SENSE 29080 29082
Prop. model 26954 26954
Bay. ℓ2 reg. 29081 29081
Tikhonov 29857 29857

5.2.2 Experiment 2

In this experiment, the proposed Bayesian technique
has been validated on a second real data acquired at 3
Tesla Siemens scanner with R = 2. Figs. 6(a) and 6(b)
illustrate the restored images by the SENSE method
and our sparse model, respectively. For comparison,
Fig. 6(c) illustrates the restored slice using the Bayesian
ℓ2 regularization, while Fig. 6(d) illustrates the recon-

structed slice by the Tikhonov regularization. Visually,
no clear difference in notable between the different meth-
ods. However, and to better investigate the performance

of our technique, Fig. 7 illustrates the difference im-
ages between SENSE and the proposed model, Bayesian
ℓ2 and Tikhonov regularizations. The energy values of
these difference images are equal to 6.80e+15, 6.07e+15

and 6.00e+15, respectively. For validation purpose, the

sparsity level ‖.‖0 for the restored images by the pro-
posed model, the SENSE method, the Bayesian ℓ2 reg-
ularization and the Tikhonov regularization, is equal
to 21126, 22292, 38400 and 38400, respectively. Based

on the evaluation of the difference energy and spar-

sity criteria, the same conclusions as for the first ex-

periment hold, which confirms that our method out-
performs SENSE, the Bayesian ℓ2 and the Tikhonov

regularizations.

(a) (b)

(c) (d)

Fig. 6: Restored image by : (a) the SENSE method, (b) the
proposed sparse model, (c) the Bayesian ℓ2 regularization,
and (d) the Tikhonov regularization.

(a) (b) (c)

Fig. 7: Difference images between SENSE and (a) the pro-
posed model, (b) the Bayesian ℓ2, (c) the Tikhonov regular-
izations.

6 Conclusion

This paper proposed a novel Bayesian regularization
technique for sparse pMRI reconstruction with a BL
mixture priors to handle complex-valued pMRI data

and promotes two sparsity levels of the target image
directly in the spatial domain. The designed method
is fully automatic and allows estimating all the regu-
larization methods along with the target image, and

this directly from the data. This avoids using a refer-
ence scan to do it as usually done for most of the vari-
ational regularization methods. The proposed sparse

Bayesian model has been validated on a synthetic and
real datasets under severe experimental conditions. The
achieved results confirm the validity of the proposed
sparse Bayesian model. Besides, it outperforms those

of recent competing methods of the literature. Our fu-

ture work will focus on integrating into our model the
estimation of the complex-valued sensitivity profiles. It
will also consider integrating wavelet transforms in the

regularization process.
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