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Effectiveness of Neural Networks for Power Modeling 
for Cloud and HPC: It’s Worth It!

GEORGES DA COSTA, JEAN-MARC PIERSON, and
LEANDRO FONTOURA-CUPERTINO, IRIT, University of Toulouse

Power consumption of servers and applications are of utmost importance as computers are becoming ubiqui-
tous, from smart phones to IoT and full-fledged computers. To optimize their power consumption, 
knowledge is necessary during execution at different levels: for the Operating System to take decisions of 
scheduling, for users to choose between different applications.
Several models exist to evaluate the power consumption of computers without relying on actual 

wattmeters: Indeed, these hardware are costly but also usually have limits on their pooling frequency 
(usually a one-second frequency is observed) except for dedicated professional hardware. The models link 
applica-tions behavior with their power consumption, but up to now there is a 5% wall: Most models cannot 
reduce their error under this threshold and are usually linked to a particular hardware configuration.
This article demonstrates how to break the 5% wall of power models. It shows that by using neural 

networks it is possible to create models with 1% to 2% error. It also quantifies the reachable precision 
obtainable with other classical methods such as analytical models.

Additional Key Words: Power models, machine learning, analytical models, Cloud, HPC

1 INTRODUCTION

In the Green IT community there is a very large number of researchers proposing approaches
for estimating power. Power consumption knowledge is crucial in many aspects of the life of a
computer infrastructure: It allows system administrator to make sure their computers will not
exceed the maximum power fed from the energy provider; it allows infrastructure providers to
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bill for the actual consumption of the hosted customers and these latter to be conscious of their
power consumption; it can allow autonomous systems to adapt the placement of services [27, 39]
as a matter of these estimates to avoid creating hot spots in the infrastructure or to optimize the
power consumption of the diverse equipment at hand (favoring the most energy-efficient ones, for
instance); it also provides means for users to choose the less-energy-consuming application and
the developers to choose the most energy-efficient code library.
To know the power consumption of a system, there are basically two techniques: Either having

power meters andmonitoring the power consumption regularly or building a model for estimating
the power on the fly. The first solution needs the installation and management of a monitoring
infrastructure on every single computer; the second creates a generic model and instantiates it on
all equipment. However, the quality of the estimation finally depends on the quality of the model.
The main trend of approaches is based on analytical models, where all components are known in
advance and the contribution of each to the power consumption is weighted (manually calibrated
or via linear regression). Knowing in advance the internal architectures allows for good precision
but for general workloads, any error on the power estimation below a 5% wall is unseen. While
this precision can be considered enough in some cases, better precision is required to make smart
and profitable decisions.
Another approach can give better results in the general case, i.e., better precision, and with

a higher level of adaptation to unknown architectures. In formula-learned models, the compo-
nents contributing to the power consumption are unknown. Some early works [16, 40] showed
the interests of such approach, but in limited environment and configuration. Using properly ar-
tificial neural networks to build prediction models is a common technique: We propose a detailed
methodology integrating proper data curation and neural network hyper-parameters selection.
The methodology by itself is actually a contribution allowing other researchers to reproduce the
same experimental protocol and therefore to improve the reproducibility of the results. We ap-
plied it to the estimation of power consumption at runtime. In the experiment section, we focus
on high-density servers with low power consumption. The reason is twofold: First, there is a trend
in investigating the possibilities of using such systems in different environments, from Cloud to
HPC [25, 30, 44]. Second, being able to model the power consumption of low-power servers with
high precision is more difficult than with high consumption servers (i.e., a 5% error on 300 watts is
not the same as on 100 watts: the former is precise at 15 watts, while the latter is precise at 5 watts).
However, the method is not limited to this use case and could have been applied on different types
of hardware. To the best of our knowledge, this work is the first to use neural networks to estimate
power consumption at runtime [38, 46].
To sum up, the contributions of this article are:

• A comprehensive state-of-the-art on power modeling, highlighting pros and cons of the
different approaches.

• A validated in-depth methodology for power modeling based on four steps using artificial
neural networks (preprocessing, learning dataset, topology optimization, variable reduc-
tion).

• An in-depth performance evaluation of analytical and machine-learning power models.

The rest of the article is organized as follows: Section 2 provides a comprehensive state-of-
the-art on power modeling. Section 3 proposes basic preprocessing for learning data. Section 4 
introduces our approach with artificial neural networks for power modeling. Section 5 details the 
experimentation. Section 6 validates and discusses the results. Section 7 concludes the article and 
give perspectives.



Fig. 1. Power model creation workflow.

2 RELATEDWORKS IN POWER MODELING

Power models allow a better understanding of the energy consumption on computing systems.
The creation of suchmodels requires the execution andmonitoring of different workloads. Figure 1
presents the workflow for creating a model. First, a training workload provides observations of the
inputs X and power targets p to the modeling methodology to generate a power estimator f (X).
Then, the obtained model needs to be validated against a new workload that has not been used
during the model creation. The validation workload provides new inputs (X′) and targets (p′) that
are used to estimate the power for each input and to compute the error of the estimation, providing
the accuracy of the model.
According to a Reference [43], this field of research on models has been particularly active until

the end of 2014. Most recent works are focusing on new hardware architecture such as GPU instead
of focusing on new approaches. It also shows that recent advances are focused on tools and usage
of power models.
The models differ according to numerous aspects. In this section a thorough review on the state-

of-the-art on power consumption estimation and modeling is done. The method for the evaluation
of the proposed models and their accuracies are given when available. The literature review is
organized in two parts: (iii) models that are predefined, in the sense that the variables being in
the power model are known (the analytical power model formula is known, but possibly not the
respective weights of the variables); (ii) models that do not a priori choose neither the variables,
nor their weights (the power model formula is unknown). Finally, a discussion on the existing
models is done by summarizing and comparing them based on characteristics such as granularity,
accuracy, portability, simplicity, type of power meter used during the creation/evaluation of the
model, and others. Each of these characteristics will be detailed in Section 2.4.
Several works [60, 66] use the source code of applications to evaluate their power consumption.

As the focus of this article is on unknown applications, these approaches will not be evaluated in
the following.
Similarly, the present work focuses on system-wide power models and will exclude hardware-

specific models. Several works propose models related to a particular processor, as this is consid-
ered as the element consuming the largest amount of dynamic power. Gschwandtner et al. [26]
propose a Power7 model leveraging the detailed knowledge of the processor architecture for the
choice of the performance counters. The results show that under the limit of using a particular
compiler (GCC), the power model error for the sole processor is between 1% and 5% for several
HPC benchmarks.
Finally, the model described in the following are application-independent. To improve

power models, one method consists in creating application- and hardware-specific models.



Fig. 2. Portability of power models.

Tiwari et al. [57] propose a methodology to create dedicated power models for several classical 
HPC kernels (such as matrix multiplication or LU) and obtain an error of 5.5%.

2.1 Analytical Models vs. Formula-learned Models
Modeling techniques can be grouped into detailed analytic models and high-level machine learning 
models. Analytic models are highly accurate, requiring a priori information from experts’ knowl-
edge. Thus, their portability is limited, although they can still use training data to tune themselves. 
However, machine learning models are statistical models that extract knowledge directly from the 
dataset, creating an entire model from scratch automatically.
Figure 2 compares both approaches with respect to their portability. Analytical models can either 

require information from an expert to provide inputs from hardware data-sheets or execute a 
calibration workload to automatically parameterize the model—usually a linear regression is used. 
Formula-learned models are created automatically; the simple execution of a workload can create 
a model for a new target machine. This makes them more portable than analytical ones.

2.2 Analytical Models
Predefined models are based on a priori knowledge of the most important and impacting charac-
teristics of a computer to its power consumption. In other words, the Graal formula linking the 
usage of computer’s resources to its power consumption is considered known.

2.2.1 Hardware-dependent Models. Intel first introduced in 2012 a power management archi-
tecture embedded on their Sandy Bridge microprocessors to enable the Turbo Boost technology 
to change cores’ frequencies, respecting processor’s thermal design power constraints [47]. The 
power management architecture predicts processor’s power usage based on an analytical model. 
This model collects a set of architectural events from each core, the processor graphics, and I/O, 
and combines them together with energy to predict package’s power consumption. Leakage power 
is estimated based on the voltage and temperature. The authors claim that the actual and reported 
power correlate accurately, but no in-depth information regarding neither the model, nor the ac-
curacy is given. Intel also made available an interface—namely, Running Average Power Limit 
(RAPL), which allows the end-user to access power and energy measurements on different granu-
larity. Energy measurements of processor’s package, core, and DRAM sockets are available through 
Model Specific Registers (MSR). RAPL is also available in Linux’s kernel mainline through the perf 
tool since 2013 [20]. Similar approaches can be found in recent AMD processors, which can report 
“Current Power in Watts” [1] while Nvidia GPUs can report power usage of the entire board via 
the Nvidia Management Library (NVML) [42]. Some libraries and software work as wrappers, sim-
plifying the access for such embedded meters. The Performance API (PAPI) traditionally provides



low-level cross-platform access to Performance Monitoring Counters (PMC) available on modern
processors. In Reference [62], the authors extended PAPI to collect power consumption of Intel
processors and NVidia’s GPUs via RAPL and NVML, respectively. In both cases, power metrics
can only be retrieved at system-level and are based on the unknown analytical models given by
the vendors. Note, however, that since the Haswell processor family, Intel RAPL is reporting ac-
tual power measurements and not any more estimates based on power models. Finally, note that
these models only provide information related to the power consumption of processor, memory,
and GPU, which is insufficient to obtain the power consumption of a whole computer.

2.2.2 Architectural-level Simulators. Low-level architectural events in a simulation system pro-
vide precise measurements with drawbacks on speed and portability. Such simulators can estimate
the power consumption in different levels of granularity from transistors, through circuits, to in-
structions. Although important in early stages of the design cycle, the high execution time turns
them into an offlinemethod, being unfeasible to provide runtime estimations. In addition, low-level
simulators are hardware-specific, which reduces their portability.
Gate-level simulators emulate components such as logic gates, multiplexers, or ALUs. CACO-

PS [6] is a cycle-accurate simulator that estimates the power consumed by an embedded system.
The methodology used to implement the power models is based on the number of gates switching
in the component when it is activated in a given cycle. The capacitance of each gate needs to be
provided by the user, requiring in-depth knowledge of the hardware and circuitry.
In circuit-level simulators, the emulation occurs at a coarser grain. Wattch [12] is a processor

power model that tries to accurately model the energy consumed by array structures, wires, and
clocking. Each structure is modeled based on the dynamic power consumption (Pd ) in CMOS mi-
croprocessors, defined as follows:

Pd = αCV 2
dd f ,

whereC is the load capacitance,Vdd is the supply voltage, and f is the clock frequency. The activity
factor, α , is a fraction between 0 and 1 indicating how often clock ticks lead to switching activity
on average. Similar approaches have been applied to memory [45], disk [65], and networking [61].
SimplePower [59] is a full-system cycle-level simulator that captures the energy consumed by a
five-stage pipeline instruction set architecture, the memory system, and the buses.
Other simulators work at the instruction-level, such as Mambo [48], which is an IBM propri-

etary full-system simulation tool-set for the PowerPC architecture that includes a power estima-
tor. The simulator uses the average power consumption of each instruction to provide the overall
consumption of an application. The authors forced an instruction to run and measured its power
consumption using a mainboard instrumented with a very accurate power meter. Although deal-
ing with a single-core, architecture-specific estimator, the reported errors varied from −11.3 to
6.6%, while the average error was 4.1%. Similar approaches can be found for other architectures as
well [3, 35].
Recently, generic low-level simulators such as McPAT [36] made possible the creation of power-

aware simulators for GPU systems. In Reference [37], authors propose a power simulator for GPU
that obtains an error of 8%–13% on numerous HPC workloads.

2.2.3 A Priori Analytical Models. The most basic approaches consider that the weights appear-
ing in the power model are also known.
The first attempt to model the power consumption of applications at the process-level was done

in 1999 by Flinn and Satyanarayanan with PowerScope [21]. The authors proposed a methodol-
ogy to map the energy consumption to program structure by profiling the power and application’s
performance indicators. Basically, it decouples the total energy based on the running time of each



application. The profiled computer needs kernel modifications and can only handle single proces-
sor. The energy of each process is estimated first by synchronizing the power with the PID of the
running process and then by integrating each PID’s power over time as follows:

E ≈ Vmeas

n
∑

t=0

It∆t ,

where It is the current measured at regular intervals of time ∆t , while the voltage Vmeas is con-
sidered to be constant. PowerScope considers only single-core processors, making it inapplicable
to recent processors.
Do et al. [17] proposed pTop, a top-like tool to monitor the power consumption of each process

using only OS information. The underlying power model aggregates the consumption of three
devices (processor, disk, and network) to measure the full-system power consumption of a process.
The application’s energy consumption is estimated indirectly through its resource utilization (u).
The energy consumed by an application i is the sum of the energy of each resource j plus the
energy of interaction with the system. For a time interval t , application and resource energy are
computed as follows:

Eappi =
∑

j

ui jEr esource j + Einteraction,

with, for each device, a dedicated model:

ECPU =
∑

f ∈F

Pf tf +
∑

k

nkEk ,

ENeti = tsendiPsend + tr ecviPr ecv ,

EDiski = tr eadiPr ead + twriteiPwrite,

where ECPU is the energy spent by the processor, Pf and tf are the power and time spent by the
processor in a given frequency (F available frequencies), nk is the number of times a transition
k occurs, and Ek is the energy spent on such transition. The energy for the network and disk
are measured for each process i based on each device state’s (send/receive packages, read/write
from/to disk) power P and elapsed time t . The model was validated using three benchmarks: a
sorting algorithm, a downloader, and an image viewer. The reported model accuracy is of 2 W
maximum in a 3 to 15 W range (13% to 66%). Later, the authors extended the implementation to
Windows OS, including a memory power model [14]. The reported accuracy for Media Player and
Internet Explorer benchmarks shows a good approximation for processor and disk power, although
pTopW presents bad estimations for the networking, showing 4 W error in a 7 W range (57%).
PowerAPI [41] is a process-level power estimator library that uses analytical models for proces-

sor and network card. Machine power consumption is estimated by summing the devices’ power,
as follows:

Psys =
∑

pid ∈P ID

P
pid
cpu + P

pid
nic ,

P
pid
cpu =

∑

f ∈F P
pid,f
cpu × t

f
cpu

tcpu
,

P
pid,f
cpu = c f V 2 ×

t
pid
cpu

tcpu
, c =

0.7 ×TPD

fT PDV
2
T PD

,

P
pid
nic =

∑

i ∈S ti × Pi × d

ttotal
,



where c , f , andV are, respectively, the processor’s capacitance, frequency, and voltage; F is the set
of available processor’s frequencies; fT PD and VT PD are the frequency and voltage at the thermal
design power; PID is the set of all running processors in the system; S is a set of network states; Pi
is the power consumed by the card in state i (provided bymanufacturers). PIDs’ usage always sums
up to 1. The authors do not expose the number of states used to model their NIC. The evaluation
workload is composed of stress and MPlayer benchmarks with no frequency changes. Linux’s
stress command is set to run concurrently in 1, 2, 3, and 4 cores, while MPlayer video execution is
single threaded. Although the proposed model is a power model, the accuracy is measured based
on the total energy, which masks accumulated power errors. The reported error is below 0.5%
for the evaluation workload and 3% (1 W) for more complex software such as Jetty and Apache’s
Tomcat web server.

2.2.4 Statistically Calibrated Analytical Models. More advanced works use machine learning
(linear regression in particular) for assessing the weights of the different variables involved in the
powermodel formula. They differ by the number of variables considered, their target architectures,
and their experimental evaluation methodology.
These models relate events fetched from both performance counters and operating system (OS).

Some performance monitoring counters (PMC) are generic, being available in most of the recent
architectures, while OS information is hardly deprecated over OS versions, making this approach
quite stable and allowing a higher portability than the previous reported methods. Event-driven
models have become popular during the past years due to their low overhead, allowing runtime
estimations and management. In this section, different approaches to create event-driven models
are described.
In 2000, Joule Watcher [8] was one of the first models to use PMCs as inputs. They use a linear

model composed of four PMCs that strongly correlate to specific energy consumption profiles
generated through the execution of micro-benchmarks to stress integer operations, floating-point
operations, cache misses, and memory I/O. The selection of the PMCs was done manually
and the selected variables were: retired micro-instructions (MUOP/s), floating-point operations
(MFLOP/s), second-level cache address strobes (L2_ADS/s), and main memory transactions
(BUS_TRAN_MEM/s). The model needs to be calibrated for each system; for this reason, synthetic
micro-benchmarks are executed, while an external power meter measures the electrical power of
the whole system. The authors do not comment about the accuracy of the model, only pointing
out the importance of an embedded counter exclusively devoted to energy accounting.
Economou et al. [19] proposed Mantis, a full-system linear model composed of both OS uti-

lization metrics and performance counters. They argue that the cost of PMC time multiplexing
could be reduced by the use of similar OS metrics. The model requires an offline calibration phase
through an external power meter for each new architecture. They selected four variables and de-
rived a linear model using ucpu (processor’s utilization), umem (off-chip memory access count),
udisk (hard-disk I/O rate), and unet (network I/O rate). Only the memory usage is measured via
performance counters; all the others are fetched from the OS. For the calibration, the authors used
a synthetic benchmark to vary the utilization levels of processor, memory, hard disk, and network
and applied linear regression. The model was evaluated on two different hardware while running
the SPECcpu2000 integer and floating-point, SPECjbb2000, SPECweb2005, streams, and matrix
multiplication benchmarks. The reported average error for each evaluation benchmark reaches up
to 15%, while the average error for all benchmarks is 10%.
In Reference [34], a system-wide energy consumption model was proposed using performance

counters incorporating the model of electromechanical such devices as fans. The model computes
the aggregated value of each device (processor, memory, electromechanical, and board component)



as follows:

Esystem = α0 (Eproc + Emem ) + α1Eem + α2Eboard + α3Ehdd .

The processor model is a linear regression model, while other devices are described using prede-
fined analytical equations. The power consumed by the processor is expressed as a linear com-
bination of the following variables: ambient and die temperatures for processors 0 and 1, Hyper-
Transport transactions (HT1 and HT2), and L2 cache misses per core. The memory model is com-
puted by Emem = NLLCM × Pr ead−write , where NLLCM is the number of last-level cache misses,
and Pr ead−write is the average power spent to read or write in memory. The hard drive model
is Ehdd = Pspin−up × tsu + Pr ead

∑

Nr × tr + Pwrite
∑

Nw × tw +
∑

Pidle × tidle , where Pspin−up is
the power to spin-up the disk from 0 to full rotation, tsu is the time to achieve spin-up, Pr ead and
Pwrite is the power consumed by kilobyte of data read and wrote from/to the disk, respectively, Nr

and Nw are the number of kilobytes read/written from/to the disk in time-slices tr and tw , respec-
tively. The electromechanical contribution is given by Eem =

∑

Pfan × tipmi−sl ice +
∑

Poptical × t

where Pfan = Pbase · (
RPMfan

RPMbase
)3, where tipmi−sl ice is the time-slice to update fan’s rotation val-

ues, Poptical is the power consumed by optical drives, Pbase defines the base of the unloaded
system, i.e., the power consumption of the system when running only the base operating sys-
tem and no other jobs, and RPM measures fan’s rotational speed in revolutions per minute. Fi-

nally, the main board model is Eboard =
(

∑

Vpow−l ine × Ipow−l ine
)

× tt imeslice , where Vpow−l ine
and Ipow−l ine are the voltage and current drained by the main-board, i.e., processor, disk, fan, and
optical-drive power lines are excluded. The total power consumed by the system is then computed
by calibrating the model to define the α values. The error on some benchmarks reaches more than
10%.
Joulemeter [31] is a freeware from Microsoft that provides power footprints for Windows end-

users at process and device-specific level. Using a combination of PMC and OS information, it
computes the power dissipation of the full-system as a base power (γ ) added to three device models
for processor, memory, and disk. Each device energy is measured linearly as follows:

Ecpu (T ) = αcpuucpu (T ) + γcpu ,

Emem (T ) = αmemNLLCM (T ) + γmem ,

Edisk (T ) = αrbbR (T ) + αwbwR (T ) + γdisk ,

where α and γ are constants,ucpu (T ), NLLCM (T ), bR (T ),wR (T ) are, respectively, the processor uti-
lization, the number of LLC misses, and the number of bytes read and written over a time duration
T . As the static energy Estatic cannot be decoupled from each device constant γ , in practice, all
constants are coupled together in a base energy, i.e., the energy used to load the system. The tool
has a calibration procedure that allows determining constants’ values through a WattsUp power
meter. The model was validated with five benchmarks from the SPEC_CPU 2006. The accuracy of
a calibrated model can reach up to 5% (10 W) error, while the average is around 3% (6 W).
In Reference [5], Basmadjian and De Meer proposed a multi-core processor model that differs

from the literature by considering that the power consumption of a processor is not only an ag-
gregation of the consumption of its cores. Differently from the Wattch approach [12], Basmadjian
proposed a methodology to estimate the capacitance of each circuit based on system’s observa-
tion during the execution of micro-benchmarks. The authors model the power consumption of a
multi-core CPU based on its resource-sharing and power-saving techniques. The training work-
load used to estimate the capacitance stresses processor’s components at different levels through
the execution of micro-benchmarks. Power measurements are done using an internal power
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meter to directly monitor processor’s 12 V channel. For the resource sharing, the authors ana-
lytically modeled processor’s chip, die, and core components:

Pproc = Pmc + Pdies + Pint_die ,

where Pmc , Pdies , and Pint_die are the power of chip-level mandatory components, die-level, and
inter-die communication, respectively. Mandatory chip-level components and inter-die communi-
cation models follow the capacitive model based on the effective capacitance ceff, operating voltage
v and frequency f , as follows:

Pmc = ceffv
2 f ,

Pint_die =

n−1
∑

k=1 |dk ∈D

ceffv
2
k f ,

where dk and D indicate, respectively, the set of active cores of a die k and the set of active dies
involved in the communication. Similarly, the power of each die is divided into die-level mandatory
components, cores, and off-chip cache memory. And recursively, the power of cores is divided into
the power of cores themselves and inter-core communications. The power models are validated
using two synthetic benchmarks: while-loop and look-busy. The reported errors are usually less
than 5% and always under 9% (3 W).

2.3 Formula-learned Models Using Machine Learning

The following methods for proposing a power model do not assume anything on the target for-
mula. Machine learning is used to select from a set of variables the most appropriate ones together
with their relative importance to the power model (their weights). The use of machine learning
methodologies to propose new powermodels does not depend on in-depth knowledge of the target
hardware. This strength allows models to easily adapt to new architectures.
The available variables are numerous—several hundred performance counters and system values

are available on a classical Linux system, for example. Not selecting a subset is viable only for
specific sub-systems such as the GPU. Song et al. [51] use neural networks to create the power
model of GPU using the small number of available monitoring elements. The resulting error of the
model for particular workloads is 2%.
A first well-known technique is to determine statistically themost promising variables, and then

using those, to learn a model. Within iMeter [64], a initial set of 91 PMC is selected from a compre-
hensive understanding of the internal of the target architecture, and Principal Component Anal-
ysis is reducing to seven principal components, leading to about 20 PMC. Support Vector regres-
sion is used allowing non-linear models to be created from the subset of preselected PMC. Their
work is done in the context of virtualized environments and achieved 5% error on average. Bertran
et al. [11] similarly proposed a PMC linear model for multicore processors for high-performance
computing and extended it with others to virtualized environment [10]. They select a number of
performance counters beforehand, having a close look on the micro-architecture of the Core2 Duo,
exploit DVFS, and apply PCA, as in Reference [64].
A second approach is to create the model without preselecting the variables. Da Costa and

Hlavacs [16] proposed a methodology to automatically generate linear power models based on
the correlation of the input variables and power. As explanatory variables, it explores a set of 330
performance indicators containing PMCs, process and system information collected from perf,
pidstat, and collectd, respectively. The model is created based on synthetic workloads im-
plemented to stress memory, processor, network, and disk, along with a mixed setup. The au-
thors compare two approaches: one to find the best combination of variables and another that



sequentially adds the best variables until the inclusion of new variables does not enhance the 
quality of the model. To determine the best combination of variables, first a linear regression with 
all the available variables is done. From this regression, the variables that show no impact on the 
power consumption are removed. Thus, for each workload type, a model is created through exhaus-
tive search to find the best combination of the remaining variables. The model using 10 variables 
reports an average percentage error of less than 0.7% for the training data. Authors also provide 
the results based on the correlation between measured and estimated values and report a correla-
tion always greater than 0.89. The main limit of this work is that the learning and evaluation are 
done on a few simple applications.
McCullough et al. [40] proposed variations of linear regression with LASSO (Least Abso-

lute Shrinkage and Selection Operator) regularization [56] and Support Vector Machine (SVM) 
for regression problems [49]. The Lasso is a shrinkage and selection method for linear regres-
sion that penalizes the number of variables, encouraging the creation of models with low num-
ber of inputs. The linear-lasso model creates a linear regression model of the inputs. In 
nl-poly-lasso a polynomial function of the variables is used, i.e., use the same variables as be-
fore but add their squared and cubic values (xi , xi

2, xi
3) letting lasso guarantee a few variables. 

The nl-poly-exp-lasso extends nl-poly-lasso by including exponential values of each vari-
able (exi ). The last model is an SVM with radial basis function. Variable selection of performance 
counters was done by removing those that showed small correlation with the power, reducing 
from 884 to 200 counters. The top most correlated variables were then used as explanatory vari-
ables, allowing concurrent measurements. After the variable reduction, the methodology explored 
3 OS-level variables (processor utilization, disk usage, and processor C-state residency statistics), 
10 PMC variables (4 programmable and 6 fixed hardware counters), and 3 uncore counters (L3 
cache performance, QPI bus, and memory controller). The benchmarks used were the SpecCPU, 
PARSEC, Bonnie I/O, LinuxBuild, StressAppTest, memcached, a synthetic CPU load, and sleep. All 
benchmarks were used during the training and evaluation of the models through a cross-evaluation 
technique. The results show that for single core systems, Mantis [19] and SVM have worse perfor-
mance than all Lasso implementations (which have a similar performance). On multi-core systems 
only non-linear Lasso models outperform linear Lasso, Mantis, and SVM. The reported average 
energy errors for single and multi-core ranged from 1% to 3% and from 2% to 6%, respectively, 
with the non-linear models being slightly better than linear ones.
Witkowski et al. [63] extended Da Costa’s work [16] by proposing a linear model using PMCs 

and processors’ temperature—along with their respective square root and logarithm—for real HPC 
workloads. The variables are selected according to their correlation with the power—a given vari-
able is added to the model if its inclusion on the linear model, after calibration, has a better cor-
relation than before. Different models were created for each evaluated hardware. The reported 
errors vary from 1% to 1.5% with the workloads used to calibrate and from 3% to 7% to new ones, 
presenting an average error of 4% (15 W).
Yeseong et al. [32] propose a similar approach with a complete split between the resource con-

sumption models of applications and the hardware power consumption models. At the cost of 
precision that reaches 7%, the proposed models are able to be run on different hardware with a 
minimal relearning cost.
Jarus et al. [29] proposed the use of decision tree to select a workload-specific model at runtime, 

providing more accurate results. Each workload power estimator is a linear model that uses PMCs 
and processor’s temperature as inputs. As in Reference [63], the variables are added to the model 
one-by-one according to their correlation with power until the correlation between model’s output 
and measured values decrease. However, estimation is adjusted to classes of programs. Several



models were calibrated using different classes of problems, and then at runtime the choice of which
model to use is done based on a decision tree. The reported error reaches 5%.
In a different context, other works propose to use machine learning methods to model power. In

Reference [2], authors use neural networks to model power of mobile systems. In this context they
assume the dynamic part of the power consumption is mainly linked to the networking hardware,
and they focus on selected variables linked to this subsystem.
Including the work on different fields such as mobile, most existing work propose models with

carefully selected inputs or are based on existing a priori knowledge on the applications (such as
availability of source code).

2.4 Summary of Existing Approaches

This chapter presents the state-of-the-art on computing systems’ power modeling. As described
earlier, the models differ in several characteristics. To compare the reported models, the following
metrics were used:

Degree of autonomy. The autonomy indicated the degree of dependence of external
equipment. Based on the model’s requirements, they may be classified into hardware-
dependent (HW) or software-only (SW) approaches.

Level of granularity. The granularity states at which level the model can estimate. It can
be divided into logical and physical levels. At the logical level, the model can estimate
process-, system-, thread-, application-, or VM-level measurements. While at the physical
level, it can decouple the power in device-only, device-aggregation, or estimate the entire
system’s power. The evaluated devices were: processor (P), memory (M), network (N),
hard disk (D), mainboard (MB), and fans (F).

Methodology. The methodology used to create the models is divided into simulators (S),
analytical (A), or machine learning (ML) techniques.

Simplicity. The simplicity of a model can be measured by the number of variables used as
inputs. Complexity in power modeling arises in part from the need to capture all the rele-
vant features expressed by performance indicators to serve as inputs to build the models.
Other aspects such as the complexity of the functions and libraries used by the model
should also be taken into account, but they require an in-depth knowledge of the model,
making the comparison hard to be made. Therefore, the number of input variables can be
used to compare the system’s overhead while computing the estimation.

Portability. The portability refers to the capacity of adaptation of the model. Three classes
of portability are used: none, partial, and full. Partially portable models exploit statistical
calibration procedure to adapt themselves to similar architectures, while fully portable
ones generate the model for any architecture without inputs of an expert.

Accuracy. The accuracy of the model defines how precise the estimated values are relative
to the measured ones. Accuracy can be measured either in percentage (%) or absolute
(W) errors. Percentage error may not be a good metric to compare computing systems,
since low-power systems have higher relative percentage errors thanmore power-hungry
systems for exact same models. Also, most studies limit themselves to evaluate error on
total energy while not providing error on power.

Powermeter. The power meter used during the creation and evaluation impacts on the over-
all accuracy of the model. Some models use intra-node devices, while others prefer exter-
nal devices.

Table 1 presents a comparison between the above-mentioned models and techniques. One can
see a large variety of techniques and limitations. A really low number of publications explore



Table 1. Comparison of Different Power Estimators

Ref. Year Alias Autn. Granularity Methodology Accuracy Portable Simplicity Power

Logical Physical W % (# vars) Meter

[21] 1999 PowerScope HW Process Node Analytical - - No 2 Ext.

[8] 2000 Joule Watcher SW Process Node Analytical - - Partial 4 Ext.

[12] 2000 Wattch SW System P Simulator - 10 No ≈20 N/A

[48] 2003 Mambo SW System P Simulator <0.2 4.1 No 24 Int.

[19] 2006 Mantis SW System P+M+N+D Analytical - 5 Partial 4 Ext.

[34] 2008 Lewis SW System P+M+D+MB+F Analytical 2.3 - Partial ≈18 Ext.

[17] 2009 pTop SW Process P+N+D Analytical 2 20 No 6 Ext.

[31] 2010 Joulemeter SW Process P+M+N Analytical 10 5 Partial. 5 Ext.

[16] 2010 Da Costa SW System Node ML-LR - <0.7 Full 10 Ext.

[7] 2010 PowerMon2 HW System PSU rails Measure - - No - Int.

[24] 2010 PowerPack HW System P+M+D+MB Measure - - No - Int.

[40] 2011 McCullough SW System P+M+N+D ML-LR/SVM - 6 Full 5 Ext.

[5] 2012 Basmadjian SW System P Analytical 0 5 Partial ≈16 Int.

[41] 2012 PowerAPI SW Process P+N Analytical 1 3 Partial ≥4 Ext.

[10] 2012 Bertran SW VM Node ML-LR - 5 Full - Ext.

[63] 2013 Witkowski SW System Node ML-LR 15 4 No 10 Ext.

[51] 2013 Song SW System GPU ML-LR - 2 Specific 12 Ext.

[29] 2014 Jarus SW System Node ML-LR/DT - 4 Full 5 Ext.

[64] 2014 Yang SW VM Node ML-LR/SVR - 5 Full ≈20 Ext.

[37] 2014 Lim SW System GPU Simulator - 8–13 Partial - N/A

[13] 2014 Castaño HW VM Node ML-LR 1.38 4.6 No 4 Int.

[32] 2017 Yeseong HW Process Node Analytical - 7 Full 14 Ext.

& Node

process-level granularity; in this review, only five references tackle this level of granularity, with 
an accuracy varying from 3% to 20%. Most approaches intend to model each component with main 
efforts to processor, due to its high power consumption. Most models are linear regression models 
or analytical models that use linear regression to calibrate themselves. The number of variables in 
a model can vary from 2 to 24, although no direct influence on the accuracy can be noticed. Nine 
among 15 use external meters to estimate their power without considering PSU’s losses, modeling 
noise, or providing imprecise estimations. The use of machine learning technique has increased 
during the past five years; most of them are based on linear regression models.
Although extremely important, the accuracy of the models is usually evaluated under specific 

workloads and, in most of the cases, cannot be used as a comparison. The majority of the mod-
els use synthetic workloads to evaluate the model, providing high accuracy although not using 
real-world applications. In addition, some workloads used to validate the models are run under 
controlled environment, with or without Simultaneous Multithreading (SMT) and frequency scal-
ing, which makes it difficult to compare the reported results.

3 LEARNING METHOD FOR POWER MODELS
Several steps are followed in machine learning methods. Between data acquisition and learning, 
data must first be preprocessed to increase the learning quality. Machine learning methods’ preci-
sion heavily depends on the quality of data acquisition and of preprocessing.



Fig. 3. Steady state method requires the removal of transient data.

3.1 Data Preprocessing

Before creating or calibrating a model, it is recommended to preprocess the collected data to
achieve better and more reliable results. This section proposes a set of preprocessing methods to
resolve power-metering issues. In total, four preprocessing methods were conducted, as follows:

psu_model This method uses the PSU conversion losses model proposed in Reference [15] to
filter the acquired data.

timesyncThismethod removes the timing jitters by the insertion of a synchronization pattern
before the execution of each workload as described in Reference [15].

unique This method removes sequentially repeated values, keeping the first value and remov-
ing subsequent repeated values, as they come from the fact that watt-meters usually give
outdated values if they are requested too frequently [15].

steady The impact of the previously identified issues can be circumvented by the detection
of steady states. This can be done by an analysis of the variance of each variable or,
as in our case, the record of the transients in a controlled scenario. In this case, during
data acquisition, the transients are recorded and then, during data preprocessing, data
values related to two seconds before and after the transient are removed from the dataset.
Figure 3 shows an example of this filter, where the crosses represent the removed data.

This combination of methods was selected to preprocess all data used for creating and calibrat-
ing the models further presented in this article.

Methodology Step I: Preprocessing data taking into account the distributed and complex mon-
itoring infrastructure

3.2 Learning Datasets

As quoted in Reference [40]:

“Selecting the training set is often a non-trivial task andmust ensure that the train-
ing set includes enough samples from various operating points. When this is not
done judiciously the testing error can be large, even though the training error is
small. The ideal scenario is to identify a set of basis benchmarks that are known
to provide the sufficient coverage and to generate the training data from these



benchmarks. However, this is hard to achieve when the systems are complex and
have a large operating space.”

Therefore, we propose the use of three different cases for the learning set, which differ according
to their workload configuration. These cases allow us to evaluate the quality and usability of each
model, as well as the impact on the accuracy of the final model of using only a generic workload
to create the learning set. The learning workload varies according to the a priori knowledge of the
workload type to be executed on a target machine. The three cases were defined as follows:

Case 1 (ideal). Considers that the user has no knowledge of the workload executed on the
host. A generic workload [23] with an exhaustive coverage is used to learn the model and
all other workloads are used to validate it.

Case 2 (one-of-a-kind). Considers that the types of the workloads executed on the host are
known. In this case a medium-size problem of each workload is included to the learning
workload additionally to the generic one, while smaller and larger problem sizes are used
for evaluation.

Case 3 (all). Used to define if a unique model can be achieved for all executed workloads. This
case includes a single execution of each available workload in the learning set.

Methodology Step II: Learning dataset with a wide coverage

3.3 Additive Models

As discussed in Section 2.2.4, model calibration is one of the most used techniques for system
power estimations. Additive models sum subsystem models assuming a complete knowledge of
the hardware infrastructure. Linear regression can be used to calibrate these predefined models
(and computew∗ in the following equations). The basic principle is to transform the observed data
into the polynomial’s variables.

Psys = Pstatic + Pproc + Pleak + Pmem + Pnet , (1)

Pstatic = w0, (2)

Pproc = w1 ∗ up ∗
∑

c ∈Cores

fc , (3)

Pleak = w2 ∗
∑

c ∈C

t/oCc , (4)

Pmem = w3 ∗ LLCAM +w4 ∗ LLCWM, (5)

Pnet = w5 ∗ snd +w6 ∗ rcv . (6)

An additive model is the result of adding several models, improving the precision with each one. 
The simplest model, a dummy constant model, consisting of the average of the learning workload 
power, is proposed in Equation (2); this model considers a static power consumption. Then, a pro-
cessor proportional model is defined in Equation (3) and uses for each core c its frequency fc and 
the processor load up . This is a very usual approach [5, 12, 41]. Equation (4), models the leakage 
power due to the processor temperature as proposed in Reference [47] and uses core tempera-
tures t/oCc . Equation (1) is the analytical model using all the available devices including memory 
and network information. Memory power is computed based on the processor’s last level cache



Table 2. Summary of ANN’s Properties

Parameter Setup
Weights initialization Nguyen-Widrow
Learning algorithm Levenberg-Marquardt
Error metric Mean Squared Error
Early stopping condition Evalid (t ) < Evalid (t + i ),∀i ∈ [1, 6]
Stopping condition 1,000 epochs
Training set size 70%
Validation set size 15%
Test set size 15%

miss when accessing (LLC-load-misses) or writing (LLC-store-misses) data (Pmem ). The linear net-
work model uses the number of sent and received bytes during the last time duration (Pnet ). By
increasing the number of sub models, the precision increases, but also the monitoring cost (see
Section 6.2).

Static power model (avg)

Pstatic
Capacitive power model (cap)

Pstatic + Pproc
Capacitive + Leakage power model (capleak)

Pstatic + Pproc + Pleak
Aggregated power model (aggr)

Psys = Pstatic + Pproc + Pleak + Pmem + Pnet

A linear regression using monitored variables is used to compute the model constantsw∗.
In the following, aggr model will be used as a comparison to evaluate our neural network pro-

posal, as it is close to state-of-the-art proposed in References [16, 29, 63].

4 NEURAL NETWORKS FOR POWER MODEL LEARNING

The use of Artificial Neural Networks (ANN) in regression problems has been done is several areas
of expertise. In such cases the use of a Multi-Layer Perceptron (MLP) network topology with one
or two hidden layers is suggested. A single hidden layer can approximate any continuous function,
while with two layers it can also map discontinuous functions. In the methodology proposed here,
we explore both approaches, keeping the best suitable one.
The general network setup used during the experiments is summarized in Table 2. The Nguyen-

Widrow algorithm allows a uniform distribution of the initial weights and biases. We chose
Levenberg-Marquardt for the learning algorithm, which uses the Mean Squared Error as error
metric. Using this learning algorithm is convenient due to its fast convergence and, as it uses the
Jacobian matrix instead of the Hessian matrix through the standard back-propagation algorithm, it
presents a fast computing time. An early stop condition is used to avoid over-fitting; this condition
requires that the validation error in a given epoch t is less than the error for the six next epochs. If
the early stop condition is not reached, then a maximal number of 1K epochs is set as the limit to
avoid infinite loops. The dataset is then randomly divided into training, validation and test sets in
a 70%, 15%, and 15% ratio, respectively. The training set is used to learn the model, the validation
set defines whether the training should stop, and the test set is used to evaluate the final resulting
model.



The learning phase of an ANN is the most time-consuming one, even when using a fast con-
vergence algorithm such as the Levenberg-Marquardt. During our experiments, for a single model
creation, it reached up to 2 minutes on a classical laptop (Intel Ivy-Bridge I5-3210M@2.5 GHz).
However, to estimate a value it does not take longer than 50 ms. At first, one can say that this time
is not a problem, but as we are dealing with a stochastic algorithm, it needs to be executed several
times when defining the neural network topology and reducing its number of input variables. For
instance, the proposed variable reduction procedure for neural networks described in Section 4.3
takes almost one day to be completed. More details regarding the impact of the number of inputs
and hidden neurons will be discussed later in this section.

4.1 Topology Configuration

Multilayer Perceptron (MLP) networks are known as good function approximation topologies. The
number of hidden neurons of such networks impacts the number of variables that theminimization
algorithm needs to parameterize to minimize the error metric. Although proven that a two-layer
MLP is able to approximate any non-linear function, the number of neurons may lead to a time-
consuming methodology, even unfeasible in some cases. The total number of weights and biases
to optimize is computed as follows:

wb = (i + 1) ∗ l1 + (l1 + 1) ∗ l2 + (l2 + 1) ∗ o, (7)

where i is the number of inputs of the network (dimension of the problem), o is its number of
outputs, l1 and l2 are the number of neurons in the first and second hidden layers, respectively.
Figure 4 shows the impact of the number of variables for a problem having 20 and 200 dimensions.
In this figure, HL1 and HL2 represent hidden layer 1 and 2, respectively. As stated in Equation (7),
the number of weights and biases is linear to the number of inputs. For a 200-inputs problem, this
number can reach around 4,500 variables, representing a very hard minimization problem to solve.
This enhances the necessity to reduce the number of input variables of the model.
The stochastic learning requires several executions of the learning procedure to evaluate a topol-

ogy. This issue is tackled by evaluating ANN’s training through the median of 10 runs. Another
issue is the time duration of the learning algorithms, which is held by setting a maximum topology
size that can be learned in a feasible time execution. In addition, the accuracy of a topology may
vary according to the number of input variables; this is taken into account by comparing the net-
work performance by varying its structure from 1 to 20 neurons at the first hidden layer and from
none to 15 at the second, increasing at 5 neuron steps guaranteeing that the number of neurons
on the first layer is always greater than the second one. Furthermore, an ANN with only 1 neuron
is equivalent to a linear regression; hence, this methodology explores linear regression, single and
a double layer MLP network. To illustrate the proposed methodology, consider a set composed by
(x, y), x being the number of neurons in the first and y in the second layer; the structure is tested
interactively as follows:

{1, 0}, {5, 0}, {10, 0}, {10, 5}, {15, 0}, {15, 5}, {15, 10}, . . . , {20, 15}. (8)

The procedure used to identify the best network layout for a given number of variables is listed in
Algorithm 1.

Methodology Step III: Topology optimization

4.2 The Need for Variable Reduction
There is an extensive variety of performance indicators that can be used as explanatory vari-
ables to achieve power models. For instance, the Linux library libpfm contains a list of 4,196



Fig. 4. Number of variables (weight and biases) to be optimized in an ANN according to the dimensionality

of the problem.

performance counters from which 162 are supported in a classical Intel I7 processor. Some of these
counters can be configured per core, increasing even more the number of variables in our models.
Reference [15] shows that using numerous performance counters reduces the precision of these
measures but also has an impact on performance and power consumption. High dimensional prob-
lems are usually complex to understand and hard to solve. There are several techniques [22, 53] to
reduce the dimension of a problem either changing the hyperspace or reducing the number of vari-
ables. Dimension reduction modifies the hyperspace by searching for a different dimension space
where two or more variables can be put together in a single dimension; the most used dimension



ALGORITHM 1: FindBestTopology
Input: A training set matrix of Key Performance Indicators X, where each row is an

observation and each column a variable of the problem; and an array y of targets
Output: The best topology besttopo and its mean squared error bestmse

1 lmin
1 ← 0; lmax

1 ← 20

2 lmin
2 ← 0; lmax

2 ← 15

3 δ ← 5

4 bestmse ← ∞

5 for l1 ∈ {l
min
1 , lmin

1 + δ , lmin
1 + 2δ , . . . , lmax

1 } do

6 for l2 ∈ {l
min
2 , lmin

2 + δ , lmin
2 + 2δ , . . . ,min(l1 − 1, lmax

2 )} do

7 topoloдy ← [max(1, l1), l2]

8 for i ∈ {1, 2, . . . , 10} do
9 msei ← AnnTrain(X, y, topoloдy)

10 if bestmse ≥ mse then

11 besttopo ← topoloдy

12 bestmse ←mse

13 return besttopo , bestmse

reduction technique is the PCA (Principal Component Analysis). In the modeling perspective, it 
enables the creation of simpler models. Variable reduction plays an even more important role re-
ducing, not only the complexity of the model, but also its overhead during data acquisition and 
online estimation. Thus, variable reduction has two main benefits: First, it generates simpler power 
models, which are easier to understand. Second, it reduces power estimation’s impact on the target 
platform.
From a methodology point of view, in the following, several heuristics will be used to create a 

similar simple base of the data-space that is specific to our problem, i.e., with evaluating, in the 
context of power models, what are the improvement of the ANN quality. These heuristics are well 
suited for our case, but there will be no proof of their quality in more general cases, contrary to 
classical methods such as the ones presented in Reference [22].

4.3 Variable Reduction
Variable reduction on artificial neural networks is complex: First, because it is a non-deterministic 
learning algorithm; second, due to the impact of the number of variables in the network structure. 
This section proposes a variable selection methodology that can be used to reduce variables not 
only for ANNs but also for any regression problem.
A forward selection is used to achieve a model with a few variables while keeping a good ac-

curacy. Forward selection is a search strategy that selects individual candidate variables one at a 
time. This method is wrapped inside the network training algorithm. Usually, forward selection 
methods iteratively start by training d single-variable ANN models and by selecting the input vari-
able that maximizes an optimal criterion. Then it iteratively trains a d − 1 bivariate ANN adding 
the previously selected input variable, where d is the number of input variable candidates. A stop 
criterion is reached when the addition of another input variable does not improve the model’s 
performance. To reduce the time duration of variable selection, a common approach is to select 
the variables most correlated with the targets (power) and insert them into the model until the 
model’s performance stops increasing.



ALGORITHM 2: ForwardSelection
Input: A n-by-m training set matrix of KPIs X and an array y of n targets
Output: An array v with the most significant variables from X

1 ŷ← 0

2 bestmse ← ∞

3 ntrials ← 2

4 for i ∈ {1, 2, . . . ,m} do
5 r← y − ŷ // residuals

6 idx ← argmax(corr (X, r)) // single most relevant candidate

7 vi ← idx // list of variable indexes

8 X′ ← X(:, v)

9 y′ ← y(v)

10 topoloдy,mse ← FindBestTopology(X ′,y ′)

11 if bestmse ≥ mse then

12 bestmse ←mse

13 trial ← 0

14 else

15 trial ← trial + 1

16 if trial ≥ ntrials then

17 return v

18 return v

A modified version of the forward selection method is proposed to fit the ANN time constraint
and to include the most important variables into the model. Sometimes, the variables most corre-
lated with the target are correlated among themselves. Thus, we propose a modification of such
procedure, by not training all single variables ANNs, but selecting the variables most correlated
with the residuals and inserting them into the power model if the model’s performance enhances,
as shown in Algorithm 2. The residuals of a given model are calculated as the difference between
expected and actual values (see line 5 of Algorithm 2). In addition, we allow that the insertion of a
variable decreases the performance two times before stopping the algorithm, enabling the creation
of slightly more complex models. The proposed methodology is generic and can be used for reduc-
ing the number of variables in other machine learning algorithms; it is just a matter of changing
line 10 of Algorithm 2 to receive the learned model from another regression technique instead of
the best ANN topology.

Methodology Step IV: Variable reduction

4.4 Theoretical Limitations

The use of artificial neural networks is subject to a fundamental constraint: The input variables
to estimate a new value need to be in the same range as the training set. For instance, if during
the training of an ANN a variable x varies from 5 to 15, one cannot use it to estimate a value
for neither x greater than 15, nor smaller than 5. Otherwise, the activation can be saturated and
the predictions might not be realistic. Overall, the quality of the resulting ANN will be directly
correlated with the quality of coverage of the benchmarks used during the learning phase.



Table 3. Characteristics of I7 Nodes

Used in Experiments

Processor Intel Ivy Bridge I7-3615QE
Number of cores 4 (8 logical)
Cache L1 32 kB (per core)
Cache L2 256 kB (per core)
Cache L3 6 MB (shared)
RAM 16 GB
Op. Frequencies 1.2–2.3 + Boost
HardDisk None
Network 1 GB Ethernet
Max. power 46.1 W
Idle power 10.9 W

Fig. 5. Generic workload proposal based on µ-benchs to stress the processor, memory, and network, along

with a mixed setup to stress all devices concurrently.

5 METHOD OF EVALUATION OF THE METHODOLOGY

Methodology of ANN Workflow Power Estimation Model

5.1 Hardware and So#ware Platform

Experiments are done on a four-node Ivy Bridge I7-3615QE composed of four cores, 16 GB of
memory, 1 GB Ethernet, and without a local disk. A complete description of the motherboard
characteristics is given in Table 3. Similar experiments were conducted on a low-power processor
(Intel ATOM N2600), and as they reached the same conclusion, they will not be detailed in the
following.
We aim at being able to model different types of workloads, from Cloud to high-performance

computing fields. Thus, we selected the following ones to obtain a large evaluation set:

Generic (Figure 5) is a combination of micro benchmarks targeting several subsystems: pro-
cessor, memory, network, or entire system stress. It runs through several phases, first
CPU-intensive stressing cores, then a memory-intensive phase followed by a network-
intensive phase. A last phase stresses all the above sub-systems.



Cloud Apache web Server [54], Pybench [33], OpenSSL [55],
HPC Stress (Linux benchmarking command), C-Ray [58], GROMACS [9], HPCC [18], NPB [4].

Several benchmarks encompass numerous programs. For example, GROMACS, a molecular dy-
namics benchmark, uses several input files such as lzm (named as gmx_lzm in the following).
HPCC and NPB propose multiple benchmarks with several sizes. In the end, there are 1 generic
benchmark, 4 cloud benchmarks, and 18HPC benchmarks. The three learning workloads described
in Section 3.2 will be in the following experiments:

Case 1 ideal workload: generic benchmark only;
Case 2 one-of-a-kind workloads: generic, apache, c-ray, gmx_lzm, hpcc_B_dist,

npb_B8_dist, pybench, and openssl benchmarks;
Case 3 all workloads: all available benchmarks.

During all the experiments, the monitoring and model are done on a single node (called main
node), but the benchmark is running on the adapted number of nodes. For single code such as
openssl it will run on the main node; for the distributed HPC benchmarks such as hpcc it will
run on the four nodes, and for the asymmetric one such as apache the main node will run the
benchmark while the other nodes will send it requests to provide its load.

5.2 Metrics

The analysis of each workload can be done at a high granularity, as illustrated on one example in
Figure 6. Each model and workload can be evaluated given their estimate for the power consump-
tion, the residuals of each estimate, the residuals histogram, and the regression of the estimations
and targets. The estimates show how close the model is from the target; this result gives an em-
pirical feeling of how good is the model. The residuals’ histogram shows the dispersion of the
error, while the residue graph allows identifying where the error is larger. Finally, the regression
between estimations and targets provides the correlation between them, showing how close is the
model from the actual case. The example of Figure 6 shows the results from a synthetic generic
workload when using an artificial neural network as predictor.
However, as the number of evaluated workloads and models increases, the above-mentioned

analysis gets too difficult to manage. This analysis can only be used during design of the method-
ology but not for actual comparison between numerous models due to this complexity. Thus, the
Mean Average Error (MAE) was used to summarize the performance of a model into a single num-
ber. The smaller the MAE, the better the model is. Small errors may incur in better correlation
between targets and estimations and provide the order of magnitude of the error in Watts. In the
case of Figure 6, the MAE is 1.175 W.
The error metrics used to evaluate the models consider both average power and total energy

consumed by each workload. MAE and MAPE metrics are derived to provide estimators’ errors
in Watts and Joules, respectively. The error metrics are described in terms of estimated (p̂) and
measured (p) power as follows:

MAEW =
1

N

N
∑

i=1

�
�pi − p̂i �� , (9)

MAPE J = 100 ∗
|
∑N
i=1 p̂ −

∑N
i=1 p |

∑N
i=1 p

, (10)

where N is the number of samples, MAEW is the absolute error (in Watts) of power estimations,
while MAPE J is the percentage error of the energy estimation for an entire workload execution.



Fig. 6. Generic workload results for an artificial neural network using all available variables as inputs. This 
model has a MAE of 1.175 W for this workload.

MAPE J is similar to the value used in most of the studies described in the state-of-the-art. MAEW 
represents the actual error of the models for each estimation.
Each workload defined previously was executed five times. The first execution is used as the 

learning set according to its case, and the four other runs are used to evaluate the models. The 
evaluation is done based on the average and standard deviation of the error metric (MAEW ) for 
these runs.
First, a comparison between the additive models is done, followed by a comparison between the 

learned models. For the reduced ANN model, once the variables are reduced, all the workloads 
are re-run collecting only the required performance indicators. This decreases the impact of time 
multiplexing for the PMCs variables (as shown in Reference [15]) and reduces the system overhead 
of the data acquisition tool. This re-execution profiling works in the same way as before, but the 
learning will only search for the best topology. Thus, for the learned models the comparison is 
done between the linear regression and ANN using all variables and only reduced variables.
After identifying the best of each class of models, i.e., additive and learned, both models are 

compared.

6 EVALUATION AND DISCUSSION
Figure 7 is a high-level reminder of the global methodology proposed in our approach.



Fig. 7. Workflow of the different elements of the proposed methodology leading to a high-quality neural

network.

Fig. 8. Impact of each preprocessing method on the final model for the training and evaluation runs.

6.1 Data Preprocessing

The impact of data preprocessing on system-level models’ accuracy is evaluated by training an
ANN for some combinations of the preprocessing methods as described in Section 3.1. Accuracy
of the methods is defined using the MAE metric to measure their learning and validation’s error.
The results for each preprocessing case exploit the same data acquired during several executions of
the genericworkload. Figure 8 shows the results of this experiment, where the bars represent the
average of the error metric, while the whiskers represent the standard deviation. For the learning
phase, a single run is considered, so no standard deviation is seen. However, four datasets from
four different executions were used to evaluate the methodology. The number of test executions
was kept small due to the generic workload’s long execution time duration, which takes more
than one hour to be executed and due to the small standard deviation observed from the data from
the test executions.
In Figure 8, the raw bars represent the ANN’s performance when using the acquired data with-

out applying any preprocessing technique, while the psu_model, timesync, steady, and unique

bars correspond each to a single method applied to the raw data. One can see from these five
grouped bars that any preprocessing method alone is better than using the raw data for learning.
Although the unique method has the worst evaluation with a high variance of the error, it is still
under the same range of error than the raw data. The best preprocessing techniques, when applied
independently, are the timesync and steady, which present similar performance for both learning
and evaluation datasets. However, due to the non-linearity that the psu_model adds to the data
(as shown in Reference [15]), we decided to keep it for further evaluations, coupling it with other
methods.
The proposed preprocessing methods were then coupled as follows: Bars named pt, ps, and

pu combine the psu_model with timesync, steady, and unique models, respectively. The results
of these combinations show that they decrease the evaluation error of the timesync and unique

models, keeping the error of the steadymodel identical. This means that PSUmodeling will either
enhance or not influence the results of data preprocessing. To continue the experiment, it was
decided to keep the method that enhanced the accuracy the most, i.e., the timesync. Then, the
psu_model and timesync were combined with steady and unique methods (pts and ptu bars),



and the evaluation error slightly increased, suggesting the worst combinations. Finally, all methods 
were combined (ptus bars). The combination of all methods presents similar evaluation accuracy 
with the pt combination, given that their evaluation variance superpose, while the learning error 
of ptus slightly decreases.
The comparison between the ptus combination and the raw data shows that the former en-

hances the accuracy of both learning and evaluation results. Learning error decreases from 0.90 to 
0.39 W, i.e., an improvement of 55%; while the evaluation mean error goes from 1.97 to 1.27 W, i.e., 
a gain of 35%. These results are quite impressive, considering that the only change here was the 
data preprocessing. The rest of the experiments conducted in this work use the ptus combination 
to preprocess the data, since it covers all the identified issues and provides large improvement of 
models’ accuracy.

6.2 Additive Models
The calibration of a priori models is the most common approach for power modeling, providing 
some flexibility to the models to adapt themselves to new hardware architectures. This section 
compares the models described in Section 3.3 for the three learning dataset cases described in 
Section 3.2. The results presented in Figures 9 to 11 show each model’s average performance and 
standard deviation for the learning dataset and for every workload used for evaluation (see Sec-
tion 5.1). As a general aspect, one can notice that the learning error always decreases as the model 
increases in complexity. However, the error on evaluation does not necessarily decrease when the 
complexity of the model increases.
Figure 9 shows the results for the ideal case, i.e., when only the generic workload is used for 

training. One can see that the average model, which considers the power consumption constant, 
presents very poor results reaching up to 25 W of MAE. These results evidence that this assumption 
cannot be used in most of the cases. It can also be noticed that the errors for the workloads that are 
not too close to the generic workload, such as stress, Gromacs (gmx), HPCC, and NPB, have a 
poor performance when using the capacitive model. However, more complex models provide better 
results. The capacitive with leakage power and the aggregated models have similar performance. 
Most of the workloads present evaluation errors near 2 W; however, for the stress, HPCC_A, and 
NPB_A workloads, some high errors are noticed. In addition, a large difference can be noticed for 
the distributed version of the NPB size C (npb_C8_dist).
Figure 10 shows the results for Case 2, where one workload of each kind is used in the learn-

ing set used to calibrate the model. In this case, the overall error of all models decreases. Once 
again the average model has the worst accuracy. Even though the capacitive model presents 
large improvements compared to the previous case, its performance is still below more com-
plex models. The results of the capacitive with leakage and aggregated models surpass the 
others for nine of the workloads (generic, apache_perf, openssl, pybench, hpcc_B, hpcc_C, 
npb_B4, npb_B8_dist, and npb_C4), have similar performance in eight (apache, c-ray, gmx_dppc, 
hpcc_A_dist, hpcc_B_dist, hpcc_C_dist, npb_A4, and npb_A8_dist), and a worse performance 
for the five remaining ones. One can notice that for the npb_C8_dist workload, the capacitive with 
leakage and the aggregated models have a large difference, similarly to the previous learning case.
The results when learning from one execution of each workload (Case 3) is shown in Figure 11. 

This case allows the evaluation of each model’s best performance, since it considers all possible 
configurations of the workloads. One can notice that for all models, except the Static power model 
(avg), the results are quite close to Case 2. This proximity convinces that Case 2 is a good approach, 
i.e., the concept of using one workload configuration of each kind to create the model is suitable. 
It is important to notice that even for this case, the error of the stress workload is still high. This 
is due to the dynamic behavior of the workload, which varies from high to low power usage in a



Fig. 9. Additive models’ performance a#er calibration using the learning workload for the ideal case (Case 1).

Fig. 10. Additive models’ performance a#er calibration using the learning one workload of each kind

(Case 2).

Fig. 11. Additive models’ performance a#er calibration using the learning all workloads (Case 3).



Fig. 12. Comparison between learning workloads for each case (L1, L2, and L3) and the evaluation runs for 
the npb_C8_dist workload (V1, V2, V3 and V4).

short period. Due to this high dynamic heat production, the models that use the temperature as 
an input will not provide good results, because temperature presents inertia and its changes are 
not instantaneous.
The aggregated model has three extra variables compared to the capacitive with leakage 

model: total number of cache misses; and network sent and received bytes. An analysis of the 
npb_C8_dist workload was done to understand why the results of learning cases 1 and 2 present 
such difference between these models. Figure 12 shows the means and standard deviations of each 
extra variable. One can notice that the network communications of the evaluation datasets are 
higher than any learning dataset. Since they are not in the same range as the learning data, any 
variation above the training range may incur unexpected behavior (see Section 4.4). This does not 
happen for the learning Case 3, since the workload is included as part of the learning dataset.

6.3 Machine Learning Models
The process of learning a model from scratch without an expert’s input enables its usage to model 
new hardware architectures without any extra implementation cost. This section compares two 
machine learning methodologies: Linear Regression (LR) and Artificial Neural Networks (ANN). 
The linear regression is used as a reference learning algorithm to evaluate the performance en-
hancement for the ANN approach. As described in Reference [15], performance counter measure-
ments vary according to the number of counters measured concurrently, suggesting that models 
with fewer counters could be more reliable. Furthermore, the number of inputs of an ANN will 
have a large impact on the total number of parameters it needs to optimize during the learning 
phase and then on its accuracy. These issues are tackled through the variable reduction of ANNs 
and the re-execution of workloads. Finally, a comparison between LR and ANN using all input 
variables and an ANN with the reduced variables is done.

6.3.1 Variable Reduction. Variable selection was executed for each of the three learning work-
loads defined in Section 3.2. Variable reduction is based on a bottom-up approach, as described 
in Section 4.3. The two approaches described earlier were executed: one that includes variables 
based on their correlation with the power consumption of the machine (reference technique from 
literature), the other with the residuals of the previous selected model (our proposed approach). 
After the variable selection, the number of explanatory variables of the model decreased from 60 
to a maximum of 8 variables, depending on the reduction methodology.
Figure 13 shows the evolution of the average error for our residuals correlated variable insertion 

methodology. For all the learning dataset cases, the error evolves according to the number of input 
variables included in the ANN. The average error of 10 ANNs is used, since the learning algorithm 
used to train an ANN is nondeterministic. The x-axis represents the number of variables selected 
for inclusion during an iteration of the algorithm, while the circles indicate the variables that were 
actually kept in the model. The last circle represents the best combination of variables. One can



Fig. 13. Evolution of the averaged error during the variable selection procedure. At each iteration, the variable

most correlated with the residuals of the previous model is included in the model only if the error on the

evaluation set is reduced.

Table 4. Comparison of Models’ Explanatory Variables Selected

through Each Variable Reduction Method (Power and Residual

Correlated Selection) Executed for Each Learning Case (C1:ideal,

C2:one-of-a-kind, and C3:all Workloads)

Variable reduction Power Residuals
method correlated correlated
Performance indicator C1 C2 C3 C1 C2 C3
msrtemp x x x x x x
msrpstate x x x x
msrcstate x x x
pmccachemisses x x x
syscstate x x x
pmcdTLBstoremisses x x
pmciTLBloads x x
pmcLLCprefetches x x
syscpuusage x x
pmcbranchmisses x
pmcdTLBstores x
pmcinstructions x
pmcL1dcachestoremisses x
pmcmajorfaults x
Number of variables 3 4 3 6 8 8

see that the error rapidly decreases for the first included variables, then a slight decrease is still
seen, until it reaches a stagnation point. By allowing a variable to not be sequentially included in
a model if the ANN evaluation error is greater than the iteration before, we had the inclusion of
6, 8, and 8 variables for Cases 1, 2, and 3, which fail for iterations 8, 9, and 9, respectively. We can
also see that when the learning dataset grows, the final error gets larger; this happens because of
the difficulty of finding a single model able to model all situations presented in the whole dataset.
In addition, the variation of the evaluation curve is close to the training set, showing that there
were no data over fitting.
Table 4 lists the variable selected by both variable reduction approaches: power and residuals

correlated variable insertion. Each reduction approach was executed for all learning cases. From



Table 5. Best Network Configuration, Selected from Different Variable Reduction

Methodologies Using Distinct Learning Datasets

Learning Hidden Layer size
Reduction methodology Case Inputs First Second Weights+Biases
Power correlated 1 3 15 10 366
Power correlated 2 4 20 0 281
Power correlated 3 3 15 5 236
Residual correlated 1 6 15 10 546
Residual correlated 2 8 15 5 566
Residual correlated 3 8 15 10 666

the selected variables, one can notice that the temperature (msrtemp) is always present, as it is the 
variable most correlated with the power. As we are dealing with auto-generated models, there is no 
constraint regarding the observed variables. For the power-correlated approach, there is no con-
sensus on any other variable, although the final models present simpler models having at most four 
input variables. However, for the residuals-correlated approach, in addition to the temperature, 
three other variables are present in all learning cases: P-States (msrpstate), C-States (syscstate), 
and cache misses (pmccachemisses). These variables represent processor’s performance (like fre-
quency), power savings techniques, and the RAM accesses, all of which have significant impact 
on the power consumption of a machine. It is important to notice that frequently used variables 
in the literature such as CPU usage variables (e.g., syscpuusage and pmcinstructions) were not 
selected in the residuals-correlated models for any of the learning cases. This could happen due 
to the high correlation between CPU usage times frequency and the temperature; as it is quite 
used and available in all hardware and usually updated more frequently, the inclusion of such 
combination could be of great value to replace the temperature.
Table 5 shows the ANN’s topology configuration selected from different variable reduction 

methodologies using distinct learning datasets. Most of the networks present a similar topology 
consisting of two hidden layers with 15 neurons on the first layer and 5 or 10 neurons on the second 
one. The only exception is for Case 3 of the power-correlated method, which has only one hidden 
layer. This shows that the range of search for the topology definition (from 1 to 20 neurons on the 
first layer and from none to 15 on the second one) is enough, since the selected topologies are not 
located on a range border. Another aspect to be noticed is that the number of weights and biases 
for all the cases are smaller than the number of samples used in the training set, signifying that 
the number of samples used is adequate. The next section analyzes the accuracy of each learned 
model, including the reduction techniques. The remainder of this section will use this model to 
compare with additive techniques.

6.3.2 Models Comparison. The number and types of available variables depend on the hard-
ware architecture. Thus, self-adaptive models need to be able to generate the model without ex-
ternal influence. This section compares four self-adaptive models; two of these use all available 
variables as input while using linear regression and artificial neural network learning algorithms, 
lr-all and ann-all, respectively; while the other two reduce the number of variables based on 
the power and residuals correlation, ann-red-pow and ann-red-res, respectively. As in the pre-
vious section, Figures 14 to 16 show the results from each of the three learning cases described 
earlier.
It is clear, from Figure 14, that the use of the generic workload to train a highly accurate model 

is not enough for any of the tested learning methodologies. Here, the importance of properly 
selecting the dataset to learn from is evident. For all methodologies, Case 1 presents a bad accuracy



Fig. 14. Machine learning models’ performance a#er calibration using the learning workload for the ideal

case (Case 1).

Fig. 15. Machine learning models’ performance a#er calibration using the learning one workload of each

kind (Case 2).

Fig. 16. Machine learning models’ performance a#er calibration using the learning all workloads (Case 3).



Fig. 17. Residual’s based reduced ANN power models’ comparison for each learning case a#er workload 
re-execution.

when compared with Cases 2 or 3. The only methodology that presents suitable results is the 
reduced ANN based on residuals (ann-red-res), except for the npb_C8_dist workload.
The overall comparison between Case 2 and 3, Figures 15 and 16, present similar results. This 

means that the use of Case 2, where one workload of each kind is used to learn the model is a 
good solution, not only when calibrating additive models but also when a model is created from 
scratch. Once the learning dataset is well-chosen (Figures 15 and 16), the learning methodologies 
present similar accuracies. One can notice that there is a small difference in the learning aspect, 
where ann-all and ann-red-res present better results. For the evaluation, the only workloads 
presenting a significant difference are pybench and npb_C8_dist, where the lr-all and ann-all 
have a high variation and mean error. For the other workloads, the models have similar results. Due 
to the capability of providing a useful model even when using only the generic workload (Case 1) 
to learn the model, the ann-red-res methodology was chosen as the best suitable to model the 
power consumption from scratch.

6.3.3 Workload Re-execution. The number of concurrently monitored performance counters 
influences their measurements (as shown in Reference [15]). This section analyzes the impact 
of such measurements on the accuracy of a reduced ANN. Thus, after the variable reduction 
procedure, all workloads must be executed once again to avoid noise and provide better preci-
sion measurements.
Figure 17 shows the error performance for each workload after five reruns where only the se-

lected variables were monitored. One can notice an overall improvement when compared with the 
ann-red-res reduced model of Figures 14 to 16. The results of learning Case 1 present the most 
visible accuracy enhancement, mainly for the npc_C9_dist where the MAE decreases from 13 to 
3 W. Learning Case 3 has similar results—except for the hpcc_A, the error decreasing from 4 to 
2 W. For the learning Case 2, the results are close to previous runs.
It is important to notice that the decrease on the number of monitored variables also decreases 

the power consumed to observe the system without compromising model’s accuracy. Thus, the re-
execution of the workloads for learning the model once again provides better accuracy and more 
energy-efficient monitoring.

6.4 Additive vs. Machine Learning Models
In this section, we compare the calibration of additive models (aggr) with the creation of models 
from scratch using machine learning models (ann). In here, we are not only interested in the MAE



Fig. 18. A priorimodel vs. reduced neural network power models’ comparison using the learning one work-

load of each kind (Case 2), absolute error.

Fig. 19. A priorimodel vs. reduced neural network power models’ comparison using the learning one work-

load of each kind (Case 2), accumulated error.

(Equation (9)), but also on the overall energy consumption error measured through its percentage
error metric (Equation (10)). This comparison in done based on the most suitable learning work-
load, i.e., the use of one workload of each kind to be learned (Case 2). Figure 18 compares the best
model from each technique. One can notice that, for all workloads, the learned model has a sim-
ilar or better performance than the calibrated one. The superiority of the learned model is more
evident in Figure 19, where the percentage error of the energy consumed during the entire work-
load execution is shown. With the additive models, eight workloads have large energy estimations
error (5%); while for the learned model, only two workloads surpass this threshold.
An in-depth view of the generic workload’s evaluation can be seen in Figure 20. This figure

shows the aggregated and ANN models’ estimation and residual analysis. It can be noticed that
the ANN has a better performance than the aggregated model, presenting lower error (1.18W),
higher correlation (R2 = 0.95), and smaller standard error (residuals have a mean of −0.04 W and
standard deviation of 1.67 W). From this figure, one can see that the aggregated model has the best
performance when the temperature and the dissipated power are highly correlated, i.e., before
1500 s. After this point the variance of the residuals is higher. The same does not happen with
the ANN, where the variance of the residual is more uniform across the entire execution and the



Fig. 20. Performance of system-level power estimators for a random execution of the generic workload.

dependency to the temperature is not so high. This allows the ANN to model high variances in 
short time as seen in 1500 s, where the power drops from over 40 W to only 15 W in one second. 
Thus, even if the power errors are equivalent in the case of the genetic workload, the use of the 
ANN as estimator allows a more realistic modeling.

7 CONCLUSION

Several methods can be used to create power models with or without a priori on the resulting 
model. This article shows the methodology to obtain these two classes of models based on mea-
surements. It also evaluates the precision of the state-of-the-art of predefined additive and of neural 
network models that can reach a few percent on a large variety of workloads, from Cloud to HPC.
This article provides an in-depth methodology needed to create an efficient neural network.
The methodology proposes a structure in four detailed steps, Preprocessing data taking into ac-

count the distributed and complex monitoring infrastructure in Section 3.1, Learning dataset with a 
wide coverage (Section 3.2), Topology optimization (Section 4.1), and Variable reduction (Section 4.3). 
The possibility to change each block of the approach with a better one while keeping the overall 
workflow is one of the good properties of this approach. One of the future works will be to eval-
uate different generic improvement and to compare them with the proposed dedicated one. As an 
example, we will evaluate Spearmint [50] for the network configuration to compare this generic 
method to the specific one described in this article.
The proposed methodology is particularly flexible and can be used on different types of archi-

tecture without user intervention. A future step will be to evaluate this methodology on hetero-
geneous architecture (multiple CPU and GPU) in which the classical aggregated model needs to 
be tweaked.
This article also proves that research based on learning methods must take into account mea-

surement bias. The evaluated bias takes into account the power-supply losses that are dependent 
on the power load, the timing jitters between internal system measures and external power meter, 
outdated values from power meter and the transient state. By taking into account all these biases, 
the error of learned models is reduced by 1/3.



An open problem consists on the evaluation of the resulting models, which should be evaluated
on current available processors, but also onmachine-learning accelerators available in data-centers
or in the one available as co-processor in recent generations of smartphones. A future work will
be to evaluate the impact of network pruning [52] on the network resulting from our approach.
The proposed approach could also be used in other cases, such as performance modeling [28].

The main differences come from the fact that monitoring can be done in this case in a single node,
compared to power modeling where an external node will monitor the consumed electricity.
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