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Unsupervised Bayesian change detection for remotely sensed images

Walma Gharbi1,2 · Lotfi Chaari3 · Amel Benazza-Benyahia1

Abstract

The availability of remote sensing images with high spectral, spatial and temporal resolutions has motivated the design of 
new change detection (CD) methods for surveying changes in a studied area. The challenge of unsupervised CD is to 
develop flexible automatic models to estimate changes. In this paper, we propose a novel hierarchical Bayesian model for 
CD. Our main contribution lies in the application of Bernoulli-based models to change detection and transforming it to a 
denoising problem. The originality is related to the capacity of these models to act as implicit classifiers in addition to the 
denoising effect since even for changed pixels noise is also removed. The second originality lies in the way inference is 
conducted. Specifically, the hierarchical Bayesian model and Gibbs sampler ensure building an algorithm with secure 
convergence guarantees. Experiments performed on real data indicate the benefit that can be drawn from our approach.

Keywords Change detection · Multispectral satellites images · Remote sensing · Bayesian methods · MCMC

1 Introduction

The Earth surface is frequently submitted to numerous

variations caused both by natural phenomena and human

activities. Studying these variations for monitoring and risk

assessing is of paramount importance in many application

fields of remote sensing (RS) such as agriculture for land-

cover or land-use [1,21]. This interest has motivated the

design of change detection (CD) methods, namely methods

that aim at identifying differences in the state of an object

or a phenomenon by observing it at different times [1]. For

the past few decades, a new generation of satellite sensors

has enabled the acquisition of very high resolution (VHR)

optical images such as Quickbird, GeoEye and IKONOS.

Their spatial resolution is very often less than one meter in

the panchromatic band and few meters in the spectral bands
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(approximately less than 5 m) which allows observing more

subtle changes within “entities” (e.g., a forest parcel). How-

ever, for VHR images, the resort to CD methods developed

for low or medium resolution images is less performing since

they are tailored to only detect abrupt changes and not subtle

ones [11]. Hence, the need to design efficient CD methods

specifically dedicated to VHR images is clearly motivated

for many applications such as natural disasters management

and ecosystem [11] and forest monitoring [9]. In this paper,

we propose a fully automatic hierarchical Bayesian method

for multispectral CD which is handled as a denoising prob-

lem. The proposed hierarchical Bayesian model involves a

mixture prior that allows to recover zero coefficients using

a Bernoulli distribution and promotes the sparsity of the

observed image using a Laplace one. The result is a clean

version of the DI degraded by noise or any distortion where

changed and unchanged pixels are separated. The remainder

of this paper is organized as follows. Section 2 is dedicated

to a brief review of CD in multispectral images. Section 3

introduces the proposed model and inference scheme. The

proposed model is then validated using VHR images in

Sect. 4. Conclusions and perspectives are outlined in Sect. 5.



2 A brief reviewmultispectral change
detection

analyze the DI and produce binary CD maps. In this respect,

the threshold could be estimated according to the Maximum

A Posteriori (MAP) rule [5,6,20]. In [6], a Gaussian mixture

model (GMM) of the two classes (change and no change) is

considered for the threshold selection. A generalized GMM

is retained in [20] to fit the conditional densities of the DI

classes while assuming that these classes can follow a non-

Gaussian distribution. In [5], the threshold is obtained by

including all the spectral channels but with a high false alarm

rate due to noisy components. Since the rate of false alarms

is a highly important evaluation criterion of the CD meth-

ods effectiveness, the threshold has been set to minimize

the number of false alarms in [17]. Even if most methods

described here-above use the DI to extract changed pixels,

the use of statistical features extracted from images is also

possible for CD. In [13], an empirical Bayesian approach is

designed with a false discovery rate (FDR) formulation. The

aim is to control the false alarm rate using statistical features

that have a given distribution under a no-change hypothesis

while assuming that the change represents at most 25% of

the image total size. Hence, the challenge is to define models

that are flexible, robust to noise and suitable for analyzing

VHR images for an automatic CD.

3 Proposed Bayesian approach for CD

3.1 Problem formulation

Let us consider two co-registered multispectral images X1

and X2 in R
M×N×B , acquired over the same geographical

area at different dates t1 and t2, where B is the number of the

spectral channels and M × N is the size of the bth spectral

component. Let xb
1 and xb

2 denote the vectorized version of

the bth channels of X1 and X2, respectively. We define the

difference vector yb for the spectral channel b as

yb = xb
2 − xb

1. (1)

We propose to detect changed pixels from all the yb (b =
1, . . . , B) by formulating the CD as a denoising problem.

Indeed, the observation yb in a channel b is a noisy ver-

sion of the clean DI db. Thus, pixels of db corresponding

to unchanged areas of the image should have a reflectance

value close to zero, whereas the remaining ones have larger

dynamic. The observation model in channel b reads to:

yb = db + nb (2)

where yb and db are the noisy and clean difference vec-

tors of dimension M N , respectively, and nb ∈ R
M N is

an additive i.i.d. Gaussian noise vector with a covariance

CD methods could be divided into supervised or unsuper-

vised, depending on the availability of labeled data [19]. 
Supervised CD methods have been employed to detect urban 
changes and land cover [30]. The work of [25,26] performed 
a multitemporal analysis using the support vector machine-

based labeled graph to preserve the semantic information 
about changes (progressive or abrupt) and obtain tempo-

ral cartography of a studied region. Although supervised 
methods provide cover transition, prior knowledge using 
expert manual processing is required which can be time and 
effort consuming. In contrast, unsupervised CD methods do 
not require any expert action nor reference samples which 
importantly reduces the operational cost. As the detection is 
automatic, they are attractive from a practical point of view 
[3,6,18,20]. In this work, we focus on unsupervised CD for 
VHR images that allow to detect the presence of changes [6] 
or several kinds of change through a change vector analy-

sis (CVA) [4,18]. The CD methods are mainly based on the 
comparison result of bi-temporal images which are either 
the difference image (DI) [28], its vectorized version CVA 
[1,4,6] or to the image ratio [23]. Analyzing RS data was 
initially carried out using empirical strategies with a manual 
trial error procedure to separate changes. This analysis can 
be carried out either in the original spectral domain, such as 
methods that were mentioned here-above, or in a transform 
domain. Principal component analysis aims at selecting the 
first few principal components which are considered rele-

vant to change by achieving an overall percentage coverage 
[2]. However, this technique requires prior knowledge to 
select the most informative components which can be time-

consuming and lead to an increase of the missed alarms rate 
due to unselected components. Generally, transformation-

based techniques focus on specific kinds of change mainly 
related to the studied context but are not able to detect all 
changes related to a given area. To handle all variations 
(especially the subtle ones), more flexible models reflecting 
the multiple properties of the observed image are needed. 
Markov random fields have also been exploited due to their 
ability to integrate the spatial and temporal context infor-

mation based on DI [22]. In [22], the authors have combined 
object level information with random field-based methods for 
binary CD. Object-based methods were proposed to handle 
the problem of radiometric differences and misregistration of 
bitemporal images in pixel-based methods [10,31]. However, 
they suffer from over or under-segmentation since different 
segmentation scales are required for different objects. This 
can highly affect the CD performance. In [14], the authors 
used the masks of clouds and shadows to improve the CD 
performance by removing pixels related to clouds and shad-

ows [15]. Also, the Bayesian framework has been used to



matrix σ 2
n I . The CD problem amounts to derive an esti-

mated version d̂b of db from the observation yb. To this

end, especially for ill-posed problems, two main compet-

ing regularization strategies are usually used by the signal

and image processing community: variational and Bayesian

techniques [7,24]. On the one hand, variational methods rely

on the use of appropriate penalizations to formulate a cost

function that has to be optimized with respect to the target

variable. These techniques are known to be fast and efficient,

especially for high-dimensional problems [32]. On the other

hand, Bayesian techniques assume that all the target quan-

tities are realizations of random variables. In fact, Bayesian

models are known for their flexibility which allows them to

handle complex problems as CD. In this paper, we adopt

a Bayesian strategy (namely a MAP approach) in order to

design a fully automatic CD algorithm that do not require any

prior configuration. More precisely, we propose a hierarchi-

cal Bayesian model which consists in developing a statistical

model in multiple levels with sub-models (hierarchical form)

in order to estimate the parameters of the posterior distribu-

tion using the Bayesian method. In fact, the prior distribution

of some of the model parameters depends on other parame-

ters, which are also assigned to a prior. The advantage is, by

combining these sub-models with the observed data, we are

able to account for all the uncertainty that is present.

3.2 Hierarchical Bayesianmodel

We assume that yb and db are realizations of random vectors

Y b and Db. In the following, we detail the retained likeli-

hood and the different prior distributions.

3.2.1 Likelihood

Under the assumption of additive Gaussian noise of variance

σ 2
n , the likelihood writes as

f
(
yb|db, σ 2

n

)
=

(
1

2πσ 2
n

) M×N
2

exp

(
−

‖yb − db‖2

2σ 2
n

)
(3)

where ‖ · ‖ denotes the Euclidean norm.

3.2.2 Priors

In our model, the unknown parameter vector to be estimated

is denoted by θ =
{
db, σ 2

n

}
. In what follows, we introduce

the prior distributions to be used for these two parameters.

Prior for db

Since the db are either zero (no changed pixel) or with sig-

nificant value (changed pixel), a mixture model is adopted as

a prior for db. Specifically, we model the zero coefficients by

a Bernoulli distribution, while the nonzero ones by a Laplace

distribution. This mixture prior promotes the sparsity of the

target signal db in the original space and writes

f
(
db

i |ω, λ
)

= (1 − ω)δ
(
db

i

)
+

ω

2λ
exp

(
−

|db
i |
λ

)
(4)

where db
i is the i th component of db of the pixel i in the

DI of the spectral channel b, ω is a weight belonging to

[0, 1] that reflects the rate of nonzero coefficients and λ ≥
0 is the hyperparameter of the Laplace distribution. Note

that δ(.) refers to the Dirac delta function. The use of this

prior reinforces the ability to separate changed pixels from

unchanged ones. The latter are captured by the Bernoulli part

of the prior. Assuming the independence between pixels, the

prior distribution of the DI vector db can be expressed as

f
(
db|ω, λ

)
=

M×N∏

i=1

f
(
db

i |ω, λ
)
. (5)

Prior for σ 2
n

Since σ 2
n is a real positive scalar, we use an inverse gamma

(I G) prior given by

f
(
σ 2

n |α, β
)

=
βα

Ŵ(α)
σ−2(α+1)

n exp

(
−

β

σ 2
n

)
(6)

where Ŵ(.) is the standard gamma function and the positive

reals α and β refer to the shape and scale hyperparameters,

respectively. This is a common choice for σ 2
n since the inverse

gamma distribution is the conjugate distribution of the nor-

mal distribution [29]. A non-informative prior distribution is

chosen to reflect uncertainty when no or little prior informa-

tion on σ 2
n is available. The hyperparameters α and β can

be either manually fixed or estimated (e.g., according to the

maximum likelihood criterion).

3.2.3 Hyperparameter priors

This work defines an Hierarchical Bayesian model that

allows to estimate the hyperparameters from the observed

data. We denote by � = {λ, ω}, the hyperparameter vector

associated with the aforementioned priors.

Hyperprior for ω

Since ω is a weight reflecting the rate of nonzero coefficients

(sparsity factor), we use a uniform distribution on [0, 1] if

no further information about ω is available. However, it is

worth noting that a more informative version could be used

if further information on the rate of nonzero coefficients is

available.



Fig. 1 Direct acyclic graph of the proposed hierarchical Bayesian

model

Hyperprior for λ

We adopt an non-informative prior for λ by assuming λ ∼
I G(λ|a, b) as λ ∈ [0,+∞[. The hyperparameters a and b

are set to 10−3. Assuming that the hyperparameters λ and

ω are statistically independent, the full prior distribution for

� = {λ, ω} can be written as f (�|a, b) = f (λ|a, b) f (ω).

Figure 1 illustrates the hierarchical structure deployed using a

direct acyclic graph where the hyperparameters are indicated

by squares and the parameters by circles.

3.3 Bayesian inference scheme

Our goal is to derive an estimation of the unknown parameter

vector θ as well as the hyperparameter vector � according to

the MAP criterion by combining the adopted likelihood and

prior models. It is straightforward to show that thanks to the

Bayes rule the joint posterior distribution is expressed as

f
(
θ,�|yb, α, β, a, b

)
∝ f

(
yb|θ

)
f (θ |�) f (�|a, b). (7)

Figure 2 describes the inputs and outputs of the MAP esti-

mator. Based on the joint distribution in Eq. (7), the principle

is to derive the conditional distribution for each unknown

parameter (in θ and �) by integrating with respect to the

other variables. These conditional distributions are used to

derive estimators, either by performing analytic calculations

or by resorting to numerical simulation techniques [27].

Fig. 2 Scheme of the designed Bayesian MAP estimator

f
(
θ,�|yb, α, β, a, b

)
∝

(
1

2πσ 2
n

) M×N
2

exp

(
−

‖yb − db‖2

2σ 2
n

)

×
M N∏

i=1

[
(1 − ω)δ(db

i ) +
ω

2λ
exp

(
−

|db
i |
λ

)]
× U[0,1]

×
βα

Ŵ(α)
σ−2(α+1)

n exp

(
−

β

σ 2
n

)
×

ba

Ŵ(a)
λ−a−1 exp

(
−

b

λ

)
.

(8)

Due to the complexity of the posterior distribution in Eq. (8),

it is difficult to analytically derive a simple closed-form

expression of the estimators related to θ and �. Thus,

resorting to Markov Chain Monte Carlo (MCMC) sam-

pling techniques is a common strategy to obtain a numerical

approximation of the target posterior distribution [27]. To

this respect, a Gibbs sampler (GS) [27] is designed to sam-

ple from the joint posterior distribution. More precisely, in

an iterative manner, Markov Chain samples are generated for

each variable by sampling from its conditional distribution

with the remaining variables fixed to their current values until

convergence. Generally, the convergence is attained when the

Markov chain reaches a steady state that asymptotically char-

acterizes the posterior distribution. After applying the GS

algorithm, the obtained samples will not all be considered.

For this purpose, the burn-in period is of great significance,

since the samples generated during this period have to be

discarded because they are not yet asymptotically sampled

according to the target distribution. Consequently, the rest

of the samples is used to calculate the target estimators.

The iterative procedure is used to generate samples, at each

iteration, according to the following conditional posteriors:

f (db|yb, ω, λ, σ 2
n ), f (σ 2

n |yb,db, α, β), f (λ|db, a, b) and

f (ω|db). The main steps of the proposed sampling algo-

rithm are summarized in Algorithm 1 where S indicates the

number of iterations fixed properly, to be large enough, in

order to ensure reaching the convergence.

Algorithm 1: Gibbs Sampler (GS).

- Initialize with some db(0)
.

for s = 1 . . . S do

Sample σ 2
n according to Eq.(10);

Sample λ according to Eq.(11);

Sample ω according to Eq.(12);

for i = 1 to M × N do
Sample di according to Eq.(13);

end

end

The value of S was empirically set to 200. The MAP is

the retained estimation criterion to ensure the selection of

the most probable value sampled to approximate db
i . For the

proposed model, this estimator operates in two steps. First,



we determine if db
i is equal to zero or not. If it belongs to

the nonzero class of coefficients, the approximated value of

db
i is computed. The hierarchical MAP allows to properly

recover zero coefficients promoted by the Bernoulli dis-

tribution, which enforces the sparsity of the target image.

We estimate the variance of noise and the hyperparame-

ters according to the minimum mean square error principle.

Hence, the estimators σ̂ 2
n , λ̂ and ω̂ are obtained by minimiz-

ing an expected quadratic error. More specifically, we recall

that the minimum mean square error estimation is based on a

quadratic loss function. For example, a quadratic loss func-

tion associated to an estimator, ω̂, can be formally denoted by

L(ω̂, ω) = (ω̂−ω)2, where L(ω̂, ω) = 0 if ω̂ is the exact esti-

mate of ω. Thus, the estimators σ̂ 2
n , λ̂ and ω̂ can be computed

by averaging the samples obtained after discarding those

generated during the burn-in period. The conditional distri-

butions used in the GS (namely Algorithm 1) are detailed in

the following.

3.3.1 Sampling according to f (�2
n|y

b,db, ˛, ˇ)

It consists of drawing σ 2
n according to its conditional distri-

bution which can be expressed as

f
(
σ 2

n |db,yb, α, β
)

∼ f
(
yb|db, σ 2

n

)
f
(
σ 2

n |α, β
)
. (9)

After integration of Eq. (7) with respect to all the other

variables, straightforward calculations lead to the following

expression of the conditional distribution for σ 2
n

σ 2
n |db,yb, α, β ∼ IG

(
α +

M × N

2
, β +

‖yb − db‖2

2

)
.

(10)

3.3.2 Sampling according to f (�|db, a, b)

Calculations following the same principle as in Sect. 3.3.1

lead to the following expression

λ|db, a, b ∼ IG

(
a + ‖db‖0, b + ‖db‖1

)
(11)

where the number of nonzero coefficients is computed using

the l0 pseudo-norm denoted as ‖.‖0, while ‖.‖1 denotes the

l1 norm defined as ‖db‖1 =
M×N∑
i=1

|db
i |.

3.3.3 Sampling according to f (!|db)

Straightforward calculations similar to that [12] show that

the posterior of ω is a Beta distribution

ω|db ∼ B
(
1 + ‖db‖0, 1 + M × N − ‖db‖0

)
, (12)

according to which it is easy to sample.

3.3.4 Sampling according to f (db|yb, !, �, �2
n)

Since the signal coefficients are assumed to be a priori

independent, by doing similarly to [8], we can derive the

following expression of the conditional distribution

f
(
db

i |yb, ω, λ, σ 2
n

)
= ω1,iδ

(
db

i

)
+ ω2,iN

+(
µi+, σ 2

n

)

+ ω3,iN
−(

µi−, σ 2
n

)

(13)

where N + and N − denote the truncated Gaussian distribu-

tions on R
+ and R

−, respectively. The weights (ωl,i )1≤l≤3

in Eq. (13) can be expressed as ωl,i = µl,i

3∑
l=1

µl,i

where

µ1,i = 1 − ω, (14)

µ2,i =
ω

2λ
exp

(
µ2

i+
2σ 2

n

) √
2πσ 2

n C(µi+, σ 2
n ), (15)

µ3,i =
ω

2λ
exp

(
µ2

i−
2σ 2

n

) √
2πσ 2

n C(−µi−, σ 2
n ), (16)

µi+ =
(

yi −
σ 2

n

λ

)
, (17)

µi− =
(

yi +
σ 2

n

λ

)
, C(µ, σ 2) =

√
σ 2π

2

(
1 + erf

(
µ

√
2σ 2

))
.

(18)

To sample from Eq. (13), a two-step procedure is adopted.

First of all, a discrete variable of choice γi is introduced

which will be equal to 0 if the candidate coefficient has to be

sampled according to the Dirac function (equal to zero). If

γi = 1, the candidate coefficient belongs to the nonzero class

of coefficients. At this point, an additional discrete variable

κi has to be introduced to determine, based on the weights

ω2,i and ω3,i , whether the candidate coefficient have to be

sampled according to N +(µi+, σ 2
n ) or N −(µi−, σ 2

n ).

4 Experiments and analysis

4.1 Experimental description

In this section, we evaluate the performance of the proposed

CD model via three experiments. The first experiment is con-

ducted on synthetic data, whereas the second and the third

experiments handle real VHR images with different spatial

resolutions. Both experiments are performed with MATLAB

R2016a using a laptop with processor Intel(R) Core(TM)

i5-4200U CPU @ 1.60 GHz and RAM 6 GB on 64 bits

Ubuntu operating system. The proposed model is compared



Fig. 3 a Image X1, b simulated image X2, c the DI D , where b = 2

Fig. 4 a Ground truth and binary CMs using (b) the thresholding tech-

nique of S. Liu et al. and c the proposed model

Table 1 Quantitative results of the synthetic dataset

Accuracy measures S. Liu et al. The proposed

method

Overall accuracy (OA%) 95.57 99.69

Precision (%) 31.68 98.33

Average accuracy (AA%) 95.68 98.88

Recall (%) 97.79 97.92

Intersection over union (IoU%) 31.25 96.31

Missed alarms (MA%) 4.2 2.3

False alarms (FA%) 4.42 0.15

4.3 Experiment 2: quickbird real dataset

This dataset covers the region of Zaghouane in Tunisia,

acquired by QUICKBIRD1 on June 21, 2005 and June 27,

2010, respectively. The images have a spatial resolution of

2.4 m with B = 4 (red, green, blue, near infrared) spectral

channels. The images are georeferenced, both radiometri-

cally and geometrically corrected. In this experiment, ground

truth is not available. Figure 5a, b shows the images X1 and

X2 of size 500 × 500, respectively. The white arrows indi-

cate the major changes observed when visually analyzing the

scene by an expert in RS. The studied area is divided into 25

non-overlapped sub-images of size 100 × 100 as shown in

Fig. 5. This division allows handling homogeneous areas to

avoid confusing different change types. The binary CMs are

obtained for each of the underlying 25 patches. For the sake

of conciseness, two patches were selected (indicated by the

white arrows in Fig. 5). The obtained results are illustrated in

1 A commercial Earth observation satellite, owned by DigitalGlobe:

https://www.digitalglobe.com/resources/satellite-information.

to the work of [18] where the authors handled the CD prob-

lem as a three-step procedure. We only focus here on the 
first step, also called a pseudobinary CD since it results 
in changed, unchanged and uncertain pixels (considered at 
the end according to an uncertainty interval). This step is 
conducted using a thresholding technique detailed in [6]. 
This step aims to separate changed pixels from unchanged 
ones by automatically estimating the threshold on the mag-

nitude of the DI and using an Expectation-Maximization 
algorithm.

4.2 Experiment 1: synthetic dataset

In this round of experiments, we perform a CD on two multi-

spectral synthetic images (B = 4). Based on a realistic image 
X1 of size 100 × 100, a simulated image X2 is artificially

generated by adding changes affecting two major areas in X1 
figuring as an additional building structure and water surface 
appearance. Next, a DI D has been computed and disturbed

by a Gaussian noise with variance σn
2 according to the obser-

vation model introduced in Eq. (2). The images X1 and X2

are displayed in Fig. 3a, b, respectively. The generated DI D 
according to the observation model in Eq. (2) is also depicted 
in Fig. 3c. The proposed model is applied to estimate changes

for each DI db where b ∈ {1..4}. The estimated binary
Change Map (CM) is obtained by taking into consideration 
all the spectral bands. The GS has been run with 200 iterations 
(981 seconds), including 100 burn-in iterations. Changed 
areas are outlined by yellow squares in Fig. 3b. The CMs of 
the proposed method and the thresholding technique in S. Liu 
et al. [18] are illustrated in Fig. 4b, c, respectively. Figure 4a 
presents the ground truth. These binary CMs clearly indicate 
that the proposed model provides a more accurate estimation 
of change especially since the estimation of unchanged pix-

els was not affected by noise, which is due to the used prior. 
Although the thresholding technique adopted by S. Liu et 
al. succeeded to detect the main changing pixels, a severe 
salt and pepper noise is present. This problem is caused by 
only considering the spectral change magnitude of the DI. 
An objective evaluation in terms of overall accuracy, preci-

sion, average accuracy, recall, intersection over union, missed 
and false alarms is conducted. Table 1 presents the values of 
the retained accuracy measures obtained over the synthetic 
dataset. Based on the quantitative results, it is worth noting 
that the proposed approach outperforms the one of S. Liu et 
al. Both the precision and IoU values of the proposed method 
largely exceed the ones of one of S. Liu et al. The choice of a 
global threshold over the magnitude DI can cause high rates 
of both false alarms and missed alarms. This is due to the 
spectral variability in VHR images, i.e., the same object can 
have different spectral characteristics. Thus, it is not evident 
that pixels with high magnitude are changed and those with 
low values are not.



Fig. 5 a Image X1 and b image X2 acquired on June 21, 2005 and

June 27, 2010, respectively

Fig. 6, one patch per row. The original patches are displayed

in Fig. 6a, b, respectively. The binary CMs are displayed in

Fig. 6c where white pixels indicate changed areas. The pro-

posed method was able to detect the main changes, which

confirms the obtained results on synthetic data. Note that the

same burn-in period and iteration number as for synthetic

data have been considered. Figure 7a, b depicts the obtained

CM using thresholding technique used in S. Liu et al. and

the proposed model, respectively. Figure 7c compares the

differences between the two CMs. The overlay of the result

of Fig. 7a and the initial DI between the bi-temporal images

is illustrated in Fig. 7d. It is worth noting that all changed pix-

els detected by the proposed method have also been detected

as changed by the thresholding technique of Liu et al. [18].

The only difference is that the latter detected more changed

pixels counted to 2048 pixels ( 11.93% of the image size).

In Fig. 7d, the purple pixels correspond to those detected by

the thresholding technique of Liu et al. [18]. The yellow tra-

jectory illustrates the shape of the road where many pixels

have been detected as changed by the method of S. Liu et al.

However, the road was not submitted to any change which

suggests that these pixels can be considered as false alarms

due to the shade. Since the ground truth is not available,

the percentage of changed and unchanged are presented in

Table 2 for a numerical evaluation.

4.4 Experiment 3: GoogleEarth real dataset

This dataset and ground truth was made available in [16].

It is composed of 7 different scenes acquired from Google

earth (DigitalGlobe) with different spatial resolutions from

3 to 100 cm. In [16], a deep learning technique for CD

was proposed based on a convolutional neural network to

derive the threshold that separates the changed pixels from

the unchanged ones. This work only considers differences

related to the appearance or disappearance of objects in a

scene, rather than differences due to seasonal object changes

like brightness variations and other factors. Therefore, some

Fig. 6 First and second patches from a X1 and b X2 and their corre-

sponding binary CMs (c)

Fig. 7 Binary CMs of: a the thresholding technique in S. Liu et al., b

the proposed model, c DI between a and b and d an overlay of a over

the DI in c

inconsistencies related to the fact that we take into con-

sideration all the observed change including the spectral

changes (e.g., changing canopies) can be observed. These

VHR images cover the same region of size 4725 × 2700

with three spectral channels (red, green and blue). Figure 8

displays the studied scene in this experiment. In this exper-

iment, we validate the proposed method on more complex

change scenarios. The studied scene was divided into patches

of larger size 1000 × 1000 where different changes types

are simultaneously present. For performance analysis, two

patches that depict numerous changes were selected. These

patches are illustrated by red boxes in Fig. 8. The observed

changes include the appearance of building and objects as

well as changes in land cover such as tree appearance. The

result of the proposed model is compared to the previ-

ously described thresholding technique and the ground truth

employed in [16]. The overall result obtained over the whole

studied scene of size 4725×2700 is depicted in Fig. 9. These

CMs clearly depict the ability of the proposed method to

detect relevant changes. In the first patch, the upper left red

box changes such as the appearance of vehicles and even the

change of the tree shape in the upper left corner were detected.

For the second patch (bottom right), the binary CM was not

successful to detect the appeared building due to the fact that

the scenes before and after have very similar textures. How-

ever, the proposed method succeeds to detect all the observed

changes surrounding the building since it was affected by

change in luminosity and texture. The benefit that can be



Table 2 Quantitative results of the Quickbird dataset

S. Liu et al. The proposed method

Changed pixels (%) 11.93 4.78

Unchanged pixels (%) 88.07 95.22

Fig. 8 X1 (a) and X2 (b) images of the studied scene

Table 3 Quantitative results of the GoogleEarth dataset

Accuracy measures S. Liu et al. The proposed

method

Overall accuracy (OA%) 90.02 92.64

Precision (%) 14.28 52.2

Average accuracy (AA%) 58.69 71.27

Recall (%) 24.25 46.05

Intersection over union (IoU%) 9.88 32.39

Missed alarms (MA%) 6.5 4.12

False alarms (FA%) 3.5 3.22

5 Conclusions

In this paper, we have tackled the problem of CD in a

Bayesian framework. The two key strengths of the proposed

method are Bernoulli-Laplace model and the proposed algo-

rithm based on the hierarchical Bayesian model for CD.

Removing noise from changed pixels allows to detect critical

changes and to minimize the rate of false alarms. Besides,

the high performance and secure convergence of the pro-

posed algorithm enables to account for almost all changed

pixels. Several change scenarios with different images sizes

and spatial resolutions were considered. Multiple types of

changes are simultaneously present such as changing tree

canopies, new buildings and vehicles. The tolerance to such

scenarios was demonstrated for both simulated and real data.

As future work, we aim at considering a context-sensitive CD

by taking into account the relationship between pixels. We

also are in the process of generalizing the proposed model

to consider hyperspectral RS data. Besides, the applicability

of the proposed method will be investigated in a transformed

domain (e.g., wavelet domain).

Acknowledgements This work is supported by the Tunisian program

“Projets de Recherche Fédérés” of the Ministry of Higher Education and

Scientific Research under the project “Supervision Sensitive de lieux

Sensibles multi-capteurs : Super-Sense”.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of inter-

est.

References

1. Ashbindu, S.: Digital change detection techniques using remotely-

sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)

2. Baisantry, M., Negi, D.S., Manocha, O.P.: Change vector analysis

using enhanced PCA and inverse triangular function-based thresh-

olding. Def. Sci. J. 62(4), 236–242 (2012)

Fig. 9 a The ground truth in [16], b the binary CM of the proposed 
model and c the binary CM of S. Liu et al.

drawn from the proposed model that we also consider spec-

tral changes observed in vegetation canopies or land cover. In 
fact, the growth of trees, changes post-construction in uncul-

tivated land and also additional entryway for new houses 
have been detected. The visual comparison with the work of 
S. Liu et al. indicates that the proposed method outperforms 
the thresholding technique. Both of them have successfully 
detected the spectral changes such as the changing canopies. 
However, as depicted in Fig. 9c, the road have been mis-

takenly detected as changed. Also, there are some objects 
such as vehicles in the upper left that are partially missed 
to be detected. In Table 3, S. Liu et al. scored higher rates 
of missed and false alarms which is related to the fact that 
the thresholding method is based on the magnitude image. 
Because of the impact of the spectral variability, high mag-

nitude values do not always refer to changed pixels. Besides, 
it is very sensitive to noise and acquisition conditions. In 
contrary, the key strength of the proposed method is being 
robust to noise which explains the difference in precision val-

ues. The quantitative assessment in Table 3 indicates that the 
results are consistent with the visual results in Fig. 9 as well 
as the quantitative results of Table 1. It is obvious that the 
proposed method obtained high accuracy rate in detection 
and exhibited stability and reproductibility of the results.



3. Bovolo, F., Bruzzone, L.: A theoretical framework for unsuper-

vised change detection based on change vector analysis in the polar

domain. IEEE Trans. Geosci. Remote Sens. 45(1), 218–236 (2007)

4. Bovolo, F., Marchesi, S., Bruzzone, L.: A framework for automatic

and unsupervised detection of multiple changes in multitempo-

ral images. IEEE Trans. Geosci. Remote Sens. 50(6), 2196–2212

(2012)

5. Bruzzone, L., Bovolo, F.: A novel framework for the design of

change-detection systems for very-high-resolution remote sensing

images. Proc. IEEE 101(3), 609–630 (2013)

6. Bruzzone, L., Prieto, D.F.: Automatic analysis of the difference

image for unsupervised change detection. IEEE Trans. Geosci.

Remote Sens. 38(3), 1171–1182 (2000)

7. Chaari, L., Pesquet, J.C., Tourneret, J.Y., Ciuciu, P., Benazza-

Benyahia, A.: A hierarchical bayesian model for frame represen-

tation. IEEE Trans. Signal Process. 58(11), 5560–5571 (2010)

8. Chaari, L., Tourneret, J.Y., Batatia, H.: Sparse Bayesian regu-

larization using Bernoulli–Laplacian priors. In: Signal Process.

Conference, pp. 1–5. IEEE (2013)

9. Chen, G., Hay, G.J.: An airborne lidar sampling strategy to model

forest canopy height from quickbird imagery and geobia. Remote

Sens. Environ. 115(6), 1532–1542 (2011)

10. Chen, M.D.H.D.: Segmentation for object-based image analysis: a

review of algorithms and challenges from remote sensing perspec-

tive. J. Photogramm. Remote Sens. 150, 115–134 (2019)

11. Coppin, P., Jonckheere, I., Lambin, E.: Digital change detection

methods in ecosystem monitoring: a review. Int. J. Remote Sens.

25, 1565–1596 (2004)

12. Dobigeon, N., Hero, A.O., Tourneret, J.Y.: Hierarchical Bayesian

sparse image reconstruction with application to MRFM. IEEE

Trans. Image Process. 18(9), 2059–2070 (2009)

13. Krylov, V.A., Moser, G., Serpico, S.B., Zerubia, J.: False discovery

rate approach to unsupervised image change detection. IEEE Trans.

Image Process. 25(10), 4704–4718 (2016)

14. Kwan, C. et al.: Change detection using original and fused landsat

and worldview images. In: Proceedings of the IEEE Ubiquitous

Computing, Electronics & Mobile Communication Conference,

New York, NY, USA, pp. 10–12 (2019)

15. Kwan, C., et al.: Simple and effective cloud-and shadow-detection

algorithms for landsat and worldview images. Signal Image Video

Process. 14(1), 125–133 (2020)

16. Lebedev, M.A., et al.: Change detection in remote sensing images

using conditional adversarial networks. Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci. (2018). https://doi.org/10.5194/isprs-

archives-XLII-2-565-2018

17. Liu, G., Delon, J., Gousseau, Y., Tupin, F.: Unsupervised change

detection between multi-sensor high resolution satellite images. In:

EUSIPCO, pp. 2435–2439. IEEE (2016)

18. Liu, S., Bovolo, F., Bruzzone, L., Du, P.: Hierarchical unsupervised

change detection in multitemporal hyperspectral images. IEEE

Trans. Geosci. Remote Sens. 53(1), 244–260 (2015)

19. Liu, S., Marinelli, D., Bruzzone, L., Bovolo, F.: A review of change

detection in multitemporal hyperspectral images: current tech-

niques, applications, and challenges. IEE Trans. Geosci. Remote

Sens. Mag. 7(2), 140–158 (2019)

20. Liu, W., Yang, J., Zhao, J., Yang, L.: A novel method of unsu-

pervised change detection using multi-temporal polsar images.

Remote Sens. 9(11), 1135 (2017)

21. Lu, D.: Change detection techniques. Int. J. Remote Sens. 25(12),

2365–2401 (2004)

22. Lv, P., Zhong, Y., Zhao, J., Zhang, L.: Unsupervised change detec-

tion based on hybrid conditional random field model for high spatial

resolution remote sensing imagery. IEEE Trans. Geosci. Remote

Sens. 56(7), 4002–4015 (2018)

23. Prakash, A., Gupta, R.P.: Land-use mapping and change detection

in a coal mining area: a case study in the jharia coalfield, India. Int.

J. Remote Sens. 19(3), 391–410 (1998)

24. Pustelnik, N., Benazza-Benhayia, A., Zheng, Y., Pesquet, J.C.:

Wavelet-based image deconvolution and reconstruction. Wiley

Encyclopedia of Electrical and Electronics Engineering, pp 1–34

(1999)

25. Réjichi, S., Chaabane, F.: Satellite image time series classification

and analysis using an adapted graph labeling. In: 8th Interna-

tional Workshop on the Analysis of Multitemporal Remote Sensing

Images, MultiTemp, Annecy, France, July 22–24, pp. 1–4 (2015)

26. Réjichi, S., Chaabane, F.: Spatio-temporal regions’ similarity

framework for VHR satellite image time series analysis. In: IEEE

International Geoscience and Remote Sensing Symposium, Fort

Worth, TX, USA, July 23–28, pp. 2845–2848 (2017)

27. Robert, C., Castella, G.: Monte Carlo Statistical Methods. Springer,

Berlin (2004)

28. Sohl, T.L.: Change analysis in the united arab emirates: an inves-

tigation of techniques. Photogramm. Eng. Remote Sens. 65(4),

475–484 (1999)

29. Tiao, G.C., Tan, W.Y.: Bayesian analysis of random-effect models

in the analysis of variance. I. Posterior distribution of variance-

components. Biometrika 52(1/2), 37–53 (1965)

30. Volpi, M., et al.: Supervised change detection in VHR images using

contextual information and support vector machines. Int. J. Appl.

Earth Observ. Geoinf. 20, 77–85 (2013)

31. Wang, X., et al.: Object-based change detection in urban areas

from high spatial resolution images based on multiple features and

ensemble learning. Remote Sens. 10(2), 276 (2018)

32. Zheng, Y., Fraysse, A., Rodet, T.: Efficient variational Bayesian

approximation method based on subspace optimization. IEEE

Trans. Image Process. 24(2), 681–693 (2015)




