
HAL Id: hal-02950743
https://hal.science/hal-02950743

Submitted on 28 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taylor Series Revisited
Xavier Thirioux, Alexis Maffart

To cite this version:
Xavier Thirioux, Alexis Maffart. Taylor Series Revisited. International Colloquium on Theoretical
Aspects of Computing (ICTAC 2019), Oct 2019, Hammamet, Tunisia. pp.335-352. �hal-02950743�

https://hal.science/hal-02950743
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.1007/978-3-030-32505-3_19

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26358

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Thirioux, Xavier and Maffart, Alexis Taylor

Series Revisited. (2019) In: International Colloquium on Theoretical

Aspects of Computing (ICTAC 2019), 31 October 2019 - 4 November

2019 (Hammamet, Tunisia).

Taylor Series Revisited

Xavier Thirioux(B) and Alexis Maffart(B)

IRIT, Toulouse, France
Xavier.Thirioux@enseeiht.fr, alexis.maffart@gmail.com

Abstract. We propose a renovated approach around the use of Taylor
expansions to provide polynomial approximations. We introduce a coin-
ductive type scheme and finely-tuned operations that altogether con-
stitute an algebra, where our multivariate Taylor expansions are first-
class objects. As for applications, beyond providing classical expansions
of integro-differential and algebraic expressions mixed with elementary
functions, we demonstrate that solving ODE and PDE in a direct way,
without external solvers, is also possible. We also discuss the possibility
of computing certified errors within our scheme.

Keywords: Taylor expansion · Certification · PDE

1 Motivations

1.1 Taylor Expansions

Our principal motivation is to provide an automatic way of approximating arbi-
trary multivariate numerical expressions, involving elementary functions, inte-
grations, partial derivations and arithmetical operations. In terms of features,
we propose an approach where Taylor expansions are first-class objects of our
programming language, computed lazily on demand at any order. Finally, we also
wish to obtain certified errors, which will by the end include errors of approxima-
tion and numerical errors, expressed in any suitable user-provided error domain,
such as zero-centered intervals, intervals, zonotopes, etc. From a user’s perspec-
tive, a typical workflow is first to compute a certified approximation at some
order of some expression, second to evaluate the maximum error for the given
domains of variables, and maybe third to compute a finer approximation at some
higher order (without recomputing previous values) if the error is too coarse, and
so on, until the approximation meets the user’s expectations in terms of preci-
sion. We postulate that the expressions at hand are indeed analytical and possess
a valid Taylor expansion around a given point and within variables’ domains. If
it is not the case, then the error computed at every increasing order won’t show
any sign of diminishing and could even diverge. Last but not least, our approach
yields a direct means to express solutions to ODEs and PDEs and thus solve
them, without complex numerical methods based on domains discretization.

Furthermore, we aim at bringing as much robustness and correction as possi-
ble to our library through a correct-by-construction approach. The type system

_https://doi.org/10.1007/978-3-030-32505-3 19

is in charge of the correction as it ensures, at compile time, that dimensions
of various tensors, functions, convolutions and power series conform to their
specifications. This is of a particular importance in a complex and error-prone
context involving a vast number of numerical computations such as ODEs and
PDEs resolution. The type system which validates all dimension related issues
greatly helps in reducing the focus on purely numerical concerns: correctness
of approximation, precision, convergence. Moreover, correction could be proved
more formally with a proof assistant such as COQ. This idea could be addressed
in the future even if this work is likely to be laborious.

As a disclaimer, the current state of our contribution doesn’t allow yet the
computation of certified errors in the presence of differential equations, so we
mainly focus here on infinite Taylor expansions without remainders. Still, as one
of our prominent future goals, certified errors were taken into account in the
design stage of our framework and we discuss them along this paper.

1.2 Applications

Among many possible applications, we more specifically aim at formally ver-
ifying systems dealing with complex numerical properties, such as controllers
for embedded systems. Moreover, through certified integration of ODE, we may
also consider hybrid systems, such as a continuous plant coupled to a discrete
controller.

1.3 Outline

We start by recalling some related works around formalization and mechaniza-
tion of Taylor expansions in Sect. 2. Then, we state a mathematical formulation
of our on-demand multivariate Taylor expansions with errors in Sect. 3 before
introducing our implementation of data structures and operations that form an
algebra in Sect. 4. We separately discuss the more complex case of composition
in Sect. 5. In Sect. 6, we present some experiments done on solving differential
equations in a direct way. Finally, we open up some perspectives, notably about
errors, then conclude, respectively in Sects. 7 and 8.

2 Related Works

2.1 Taylor Series

Although Taylor expansions are well known and form a very rich and inter-
esting algebra, their realizations as software items are not widespread. From a
mathematical perspective, some weaknesses may explain this lack of success:
they only support analytical functions, a rather limited class of functions; they
don’t possess good convergence properties, uniform convergence is hardly guar-
anteed for instance; typical applications for polynomial approximations are usu-
ally not concerned with certified errors, mean error or integrated square error

(through various norms) are more important and don’t easily fit into Taylor
expansion schemes. Finally, from a programming perspective, Taylor expansions
are: hard to implement as they require many different operations to be imple-
mented, from low-level pure numbers to high-level abstract Taylor expansions
seen as first-class citizens; error-prone with lots of complex floating-point compu-
tations on non-trivial data structures; heavily resource demanding in our multi-
dimensional setting because data structures rapidly grow as the precision order
increases.

Here are a few works dealing with Taylor expansions. In [4], the author
presents an early application of laziness to cleanly obtain Taylor polynomial
approximations. Laziness allows to augment the degree of the resulting polyno-
mial on demand. Yet, the setting is much simpler as it is strictly one-dimensional
and certified errors are not in scope. With these restrictions, the author obtains
nice formulations of automatic differentiation and polynomial approximations of
classical phenomena in physics. Speaking about implementation, related works
come in many flavors and date back to the now well established folklore of auto-
matic differentiation (forward or backward modes). As for symmetric tensor
algebra, which forms a well-suited representation basis for partial derivatives, a
huge menagerie of (mostly C++) libraries exists, for tensors of arbitrary orders
and dimensions (but some libraries put a very low upper-bound on these values).
These implementations are clearly not oriented towards reliability and proof of
correctness, but towards mere efficiency. This also comes at the expense of some
user-friendliness, as memory management and user interface are more complex
and error-prone than in our own library. Still, we may consider interfacing our
code base with a trusted and stable tensor library, for much better performance.

One of the most prominent implementation of Taylor expansions is the COSY
tool, cf. [5,8]. This tool has been used in industrial-scale engineering and sci-
entific contexts, to modelize and predict the complex dynamics of particles in
accelerators for instance. This tool supports 1D Taylor expansions with interval-
based certified errors. Polynomial degree is not refinable on demand and Taylor
expansions are not handled per se (i.e. not first-class citizens). The authors
managed anyway to implement an error refinement scheme for solved form ordi-
nary differential equations, that allows solving them with tight certified errors.
Experiments show that this tool compares favorably to other traditional approx-
imations and bounding techniques, such as branch-and-bound approaches and
interval arithmetics, in terms of speed and precision. We also aim at implement-
ing differential equation solving in our multi-dimensional setting.

At the other end of the spectrum, [7] proposes correct-by-construction uni-
variate Taylor expansions with certified errors, which appears as a huge step.
Integration of floating-point errors into this scheme is also a concern addressed
in [6]. Still, apart from its limitation to the 1D case, this approach suffers from
weaknesses: expansion degree is fixed and differential equations cannot be han-
dled. The underlying algorithm won’t be so easily turned into a co-inductive
(lazy) equivalent version.

And in the middle of the spectrum comes [1], where the author defines a way
to handle multivariate Taylor series and presents its implementation featuring

on demand computation thanks to Scheme laziness. The few points he did not
implement and that we will try to cope with in our library are: errors certifi-
cation which is not handled and efficiency which is not optimal. For instance,
the author’s method to multiply multivariate power series is to define a generic
composition between a bivariate function and a power series and to instantiate
it with the multiplication. This method is simply built upon the chain rule but
has some drawbacks. First, the generic equation given can usually be drastically
simplified for instance in the case of multiplication and second, such a generic
scheme implies that some parts of the resulting coefficients will be computed sev-
eral times differently. Conversely, in our solution, the pervasive multiplication
operation is implemented with a strong concern on optimality.

Our work and specifically our data-structure is based on the dissertation [9,
Part 2], with the nuance that a single unbounded tree will be used instead of an
infinite sequence of finite trees, each such tree representing a symmetric tensor
of a given order. This choice notably enables the resolution of partial differential
equations, which was impossible in the setting of [9].

2.2 Differential Equations

Iterative methods are pervasive in integrating differential equations because they
often provide an efficient way to find an approximation of an ODE solution. Some
of them own validation aspects, such as [2] which relies on Runge-Kutta method
to integrate ODE with a numerical validation. The main difference between these
methods and our work as a direct method is that we don’t need these next level
iterations. We are able to yield a result in the equivalent of the first iteration.

3 Formalization

We recall the canonical presentation of a multivariate Taylor expansion at order
R in dimension N . This expansion converges to f(x) when R → +∞ for an
analytical function f only in a chosen neighbourhood of point 0.

f(x) =
∑

|α|<R

Dα
f (0) · x

α

α! +
∑

|α|=R

Dα
f (λ ∗ x) · x

α

α!

In the above formulation, x = (x0, . . . ,xN−1) ∈ R
N , α = (α0, . . . , αN−1) ∈

N
N indexes the derivation order of f in the symmetric tensor of partial deriva-

tives Dα
f and λ ∈ [0, 1] is an unknown coefficient that characterizes the exact

Taylor remainder. We have to compute derivatives both at point 0 for the poly-
nomial part and at point λ ∗ x for the error part. We choose to use a sin-
gle co-inductive data-structure that encodes all possible derivatives, indexed by
some α. As for the elements of this structure, we handle 〈value, error〉 pairs.
Our framework is error-agnostic as the value-error domain is user-defined and
only requires arithmetical operations. Several solutions are available in the lit-
erature: zero-centered intervals, intervals, zonotopes, etc. In the remainder, we
only assume that elements of our structures form an algebra (including addition,

multiplication and some elementary functions), disregarding whether they are
pure values or values with errors.

This co-inductive structure, that we coin a “cotensor”, enables to compute
finer approximations on demand and also to lazily represent expansions of solu-
tions to ODEs and PDEs, when they are expressed in solved form, i.e. not
implicit (as it would for instance be the case if the solution were specified as a
zero of a polynomial form in a functional space).

4 An Algebra of Taylor Series

4.1 Data Structure

Coefficients are present in each node of a unique tree structure and are written
as so0,...,oN−1

where every oi is the number of occurrences of the variable xi in
the path that leads to the considered coefficient so0,...,oN−1

.
The principle is quite simple: at each node, we choose either to keep the same

variable accounting for the final Taylor series, or we drop it and repeat the same
process for lower dimension variables. This is pictured in tree branches of the
following example as xi for the first case and xi for the second case. The variable
at the root of the tree is Xn if the dimension is n + 1. This tree is developed
below and represents a symmetric cotensor s of dimension 4:

s0,0,0,0

s0,0,0,0

s0,0,0,0

s0,0,0,0

s1,0,0,0

...

s0,1,0,0

s0,1,0,0

...

s0,2,0,0

...

...

s0,0,1,0

s0,0,1,0

s0,0,1,0

...

s0,1,1,0

...

...

s0,2,0,0

s0,2,0,0

...

...

...

s0,0,0,1

s0,0,0,1

s0,0,0,1

s0,0,0,1

...

s0,1,0,1

...

...

s0,0,1,1

s0,0,1,1

...

...

...

s0,0,0,2

s0,0,0,2

s0,0,0,2

...

...

...

...

x3

x2

x1

x0
x0

x0
x0

x0
x0

x1

x1

x0
x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x1

x2

x3

x3

x2

x1

x0
x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x1

x2

x3

x3

x2

x1

x0
x0

x1

x2

x3

4.2 Structural Decomposition

We will introduce for this co-inductive structure a few notations inspired from
the computation of the quotient and the remainder with respect to variable Xn.
We will call a left cotensor a cotensor which is the left branch of another cotensor
and we will denote Ln+1 the set of left symmetric cotensors and Rn+1 the set
of right symmetric cotensors in dimension n + 1. If V is the set of labels at the
root of the tree, we have the following definitions:

Ln+1 � Ln + Xn.Rn+1

Rn+1 � Ln + Xn.Rn+1 + V

Hence : Rn+1 = Ln+1 + V

We note that the only difference between left and right cotensors is the constant
part v ∈ V and from now, we are going to consider that right case is the general
one and that left case is the specification of the right case with constant part
equal to 0. This will prevent us from writing similar redundant equations for
all algebraic operations we will describe later. A cotensor is, then, considered a
right cotensor by default, even if it has no parent because it contains a significant
value v ∈ V which is the constant part of the Taylor series. It comes then that
a tree is interpreted as a Taylor series by adding together the term for the left
tree, Xn times the term for the right tree and the label value of the root.

4.3 Implementation

Finally, in terms of OCaml implementation, this decomposition scheme natu-
rally translates into the slightly relaxed following type definition, where Ln and
Rn have been conflated in a single type:

type (’a, _) st =

| Nil: (’a, Nat.zero) st

| Leaf: (’a, ’n Nat.succ) st

| Node: (’a, ’n) st Lazy.t

* ’a

* (’a, ’n Nat.succ) st Lazy.t

-> (’a, ’n Nat.succ) st

and

(’a, ’n) tree = (’a, ’n) st Lazy.t

Here the type of symmetric cotensors tree has two type parameters: the
type of elements ’a and the dimension type ’n. The last parameter not being
constant through recursion, it appears as _ in the type declaration. Then, the
two cases for the dimension N : N = 0 and N �= 0, are respectively handled with
Nil and Leaf/Node constructors. Leaf is only a special case of Node where all the
coefficients are zeros. Handling this particular case with a different constructor
aims at saving some computations, for instance all polynomial forms will be
represented by finite trees, not by unbounded ones with trailing zeros. And
Leaf constructor is used to mark the end of a branch when the dimension has

decreased to 0, namely all the variables has been consumed. Type parameters of
constructors’ arguments behave accordingly to the decomposition of Rn+1.

The Nat.zero and Nat.succ type constructors encode the dimensions of
manipulated cotensors, as we use GADT1 allowed by OCaml. We use a stan-
dard type-level encoding of Peano numbers and operations that we don’t detail
here. We hereby enforce a correct-by-construction use of our data-structures.

4.4 Component-Wise Operations

From this section onward, we assume cotensor elements form a field, with arith-
metical operations on it. It may be in practice a field of coefficients or/and
errors. These elements are denoted by VA and VB . Functions “λ. � ” and “ � + � ”
straightforwardly witness the vector space structure of cotensors. The Hadamard
product “ � ⊙ � ” is the component-wise product of two cotensors of same dimen-
sion. Hence with the notation An+1 � AL

n + Xn.AR
n+1 + VA:

An+1 + Bn+1 = (AL
n + BL

n) + Xn.(AR
n+1 + BR

n+1) + (VA + VB)

λ.An+1 = λ.AL
n + λ.Xn.AR

n+1 + λ.VA

An+1 ⊙ Bn+1 = (AL
n ⊙ BL

n) + Xn.(AR
n+1 ⊙ BR

n+1) + (VA ∗ VB)

4.5 Multiplication

Let us define a new notation for cotensors in order to specify the multiplication.
We are now going to consider that the error term is no longer separated in a
precise term of the equation but is distributed in all the terms of the equation.
Which gives:

S(X0, ..., XN) = (S0 + S1 ⊙ X + S2 ⊙ X2 + ... + Sm ⊙ Xm + ...) shortened in

= (S0 + S1X + S2X
2 + ... + SmXm + ...)

where X = (X0, ..., XN)

This notation is inspired by derivation order; even if we do not consider
order of cotensors; because it will be of a great help when defining the multipli-
cation and introducing the convolution product. Product of Taylor expansions
is really pervasive and appears in many operations (derivation formulas, compo-
sition of Taylor series, etc.). It is naturally defined with an explicit convolution.
Concretely:

S(X0, ..., XN) × T (X0, ..., XN) = (S0 + S1X + ... + SpX
p + ...)

× (T0 + T1X + ... + TqX
q + ...)

= R0 + R1X + R2X
2 + ... + RkXk + ...

where ∀k ∈ N, Rk =

k
∑

i=0

SiTk−i

1 Generalized Algebraic Data Types.

To compute the coefficients at order k, we need to consider every product that
will produce an order k, i.e. every coefficient of order i by every coefficient of
order k − i, i ranging from 0 to k.

In our setting, we maintain a typed convolution structure to express com-
putation of the term

∑k
i=0 SiTk−i. This structure, while geared towards static

guarantees and proof of correctness, still allows for some efficient implementa-
tion. Informally, we may specify our structure as an array containing couples
of cotensors of a specific dimension and that will represent absolute paths. The
same structure is used to represent relative paths. We introduce a path notation,
illustrated by the following examples in dimension n:

– () is the considered tree
– (n) is the tree we get when we take the n-th variable (Xn) once in the con-

sidered tree
– (n.n.n−1) when we take the Xn variable twice and then Xn−1 once

The so called “considered tree” is the original tree given in parameter if consid-
ering absolute paths or a specific tree (descendant of the original one) if consid-
ering relative paths. Through the relative paths (left part of the semi-colon), we
will store the number of times we went down a right branch since the last left
branch, namely relative paths are about the current variable and absolute paths
are about all previous variables with respect to the order. Initially, the structure
contains a couple of the two original trees given in parameter for both absolute
paths (and the part for relative paths is empty):

() ; ()
() ()

Then, at each step of the algorithm:

– If the current node is a right branch, we will update the relative paths by
adding the current node (k.k here) and shifting the lines as follows:

() (k) ; ... becomes () (k) (k.k) ; ...

(k) () ... (k.k) (k) () ...

– if the current node is a left branch, we will combine the relative paths with
the absolute ones, store the result as the new absolute paths and empty the
new relative paths:

() (n−1) ; () (n) becomes () ; () (n) (n−1) (n−1.n)
(n−1) () (n) () () (n−1.n) (n−1) (n) ()

Folding this structure to compute a term of a product simply consists in combin-
ing relative paths with absolute paths, multiplying cotensors roots column-wise
and then summing these intermediate results altogether. Associating a relative
path to an absolute one means concatenating them. Speaking in terms of trees,
it means that the relative path begins where the absolute one ends in the tree.

4.6 Differential Operations

Cotensors of dimension N may not only be structurally decomposed on XN−1

but also on any other Xk, which we would call a non-structural decomposition.
For that purpose, the “ � [�]” function specializes a cotensor, i.e. drops some index
by specializing it to a specific dimension k, and therefore represents the division
by a monomial Xk. Conversely, the “ � ↑ � ” function represents the multiplication
by a monomial Xk. For a cotensor of dimension N , they are defined in terms of
polynomials as:

(S[k])(X0, . . . , XN−1) �
S(X0,...,XN−1)−S(X0,...,Xk−1,0,Xk+1,...,XN−1)

Xk

(S↑k)(X0, . . . , XN−1) � Xk.S(X0, . . . , XN−1)

Using the same notations as for component-wise operations, we show how
these operators simply fit the structural decomposition:

S[k] = (SL + XN−1.S
R + VS)[k]

=

SR, for k = N − 1
S

L+XN−1.SR−S
L

|Xk←0−XN−1.SR
|Xk←0+VS−VS

Xk
= SL[k] + XN−1.S

R[k],

for k < N

S↑k =

0 + XN−1.S, for k = N − 1
(SL + XN−1.S

R + VS).Xk = SL ↑k + XN−1.(S
R ↑k) + VS .Xk,

for k < N

Differential operations introduce partial differentiation and integration in the
cotensor algebra. These differentiation and integration operators respectively
refer to S[�] and S ↑ � . They also use the cotensor of integration/derivation
factors “∆k”, where the oi are the variable occurrence number, such that:

(∆k)(o0,...,oN−1) � 1 + ok, for
∑

i oi = R

dS(X0,...,XN−1)
dXk

� S[k] ⊙ ∆k

Xk
∫

0

S(X0, . . . , xk, . . . , XN−1)dxk � (S ⊙ ∆−1
k)↑k

5 The Composition Operator

5.1 Differential Method

Principle. The Taylor series algebra with the previous operations still remains
basic, and that is why we are now interested in composing Taylor series with
elementary functions. To do so, we only need to apply elementary functions to
arbitrary arguments, i.e. to compose univariate Taylor series with multivariate
ones. A general composition scheme of Taylor series is also possible in our setting
but out of the scope of our current concerns. This method lies on a differential

decomposition, namely a function is the sum of the integrals of its derivatives
with respect to all its variables, plus a constant term:

H : R
N → R, H = H(0) +

∑

i<N

∫ Xi ∂H

∂Xi

∣

∣

∣

Xk=0
k>i

dXi

Example. We need to partially evaluate the derivatives at 0 to avoid counting
several times the parts shared by different variables, as illustrates the following
concrete example:

let F : R
3 → R, F (x, y, z) = x3 + 2x2y + xz + 5y2 + 3yz2

∂f
∂x

= 3x2 + 4xy + z
∫ x

0
∂f
∂x

dx = x3 + 2x2y + xz

∂f
∂y

= 2x2 + 10y + 3z2
∫ y

0
∂f
∂y

dy = 2x2y + 5y2 + 3yz2

∂f
∂z

= x + 6yz
∫ z

0
∂f
∂z

dz = xz + 3yz2

The blue terms are redundant and that is why we have:

F (x, y, z) = F (0, 0, 0) +

∫ x

0

∂f

∂x
dx +

∫ y

0

∂f

∂y

∣

∣

∣

x=0
dy +

∫ z

0

∂f

∂z

∣

∣

∣

x=0
y=0

dz

Composition. As we are in the specific case of composition, we will use the
classic chain rule:

∂(f ◦ g)

∂Xi i<N

= (
∂g

∂Xi

)i<N × (f ′ ◦ g)

Hence :

f ◦ g = f ◦ g(0) +
∑

i<N

∫ Xi

(
∂g

∂Xi

× f ′ ◦ g)
∣

∣

∣

Xk=0
k>i

dXi

The computation of the partial derivatives ∂(f◦g)
∂Xi i<N

is done case by case

with respect to the elementary function f at use, each such function having a
well-known derivative f ′. The cases where f = exp, sin, cos, log, atan, xa, . . . are
easily handled. So, according to the above equation, we only need to partially
evaluate these derivatives, to integrate them then and to finally sum the results.

This method will bring us satisfying results as detailed below, but one must
bear in mind that despite the method is very short in terms of code and then
easily implemented, it is not optimal in terms of computation. This differential
method for the composition is not canonical in that it does not compute the
minimum number of operations to produce the coefficients of the result. As a
witness of non canonicity in the definition of composition, the ∆k coefficients will
be used for multiplication and division consecutively, which could be avoided.
Besides, as long as we do not handle certified errors, the method does not need
an additive decomposition of f but it will be the case as soon as we handle the
errors and we will have to deal with this constraint.

5.2 Elementary Functions

Elementary functions, limited to one argument functions, are specified as univari-
ate Taylor series. Therefore, as only one branch of the cotensor will be mean-
ingful, such series are treated separately. This is only a matter of efficiency
and obviously not mandatory. To obtain a Taylor expansion of an elementary
function, we need to be able to compute any n-th derivative. Taylor series for
elementary functions are well known, so the first way to produce such a series
is to compute the coefficients iteratively and lazily with respect to the known
formulas, such as the following ones:

exp(x) =
∑

i∈N

xi

i!

log(1 + x) =
∑

i∈N

−(−x)i

i

(1 + x)p =
∑

i∈N

(

p
i

)

xi

sin(x) =
∑

i∈N

(−1)i

(2i+1)!x
2i+1

cos(x) =
∑

i∈N

(−1)i

(2i)! x2i

Similar formulations are available for elementary functions not presented here.

6 Experimentation

Now that the main operations are available in our algebra, we can start using
it. Differential equations are pervasive in dynamical systems and our point is to
propose a direct (i.e. non-iterative) way to solve them. By direct method, we
mean that coefficients are computed once and for all and therefore there is no
need to iterate over their values until a specific precision is reached. Precision
in our case is seen differently: coefficients are computed only once and if the
user wants a finer precision, the user will increase the order of derivation which
means that new and deeper coefficients will be computed.

6.1 Airy Equation

To illustrate this direct approach for solving ODEs and PDEs, we will use the
first dimension Airy equation which stands as follows:

f ′′ − xf = 0

As the equation contains a second derivative, we split it for convenience in two
first order equations introducing f dot as f derivative:

f dot = f dot0 +

∫ x

xf

f = f0 +

∫ x

f dot

Then, thanks to OCaml laziness, we express and solve this mutually recur-
sive system directly, with the following principle:

– According to the second equation, computing the first coefficient of f , the
constant part, means summing the constant part of f0 with the constant part
of

∫

x
f dot. We know that the constant part of an integral will be 0, whatever

the integrand is.
– the first coefficient of f dot, or equivalently the second coefficient of f , is

computed the same way (no need to evaluate the argument of the integral).
– then the mutual recursion works and the third coefficient of f , or the second

one of f dot, is simply the result of integrating the constant part of xf ,
actually 0. The other coefficients are also computed in finite time.

So the trick is to stay a step ahead by computing a first coefficient of a
recursive Taylor series without having to evaluate itself, thanks to the integral
operator, and then to keep this advance all along the computation so that the
recursion will always end. Indeed, if the computation scheme respects the causal-
ity, for example in one dimension: computing a coefficient requires only strictly
lower order coefficients, then we can ensure the recursion will end.

Once we get the solution up to a specific order, we evaluate it as a polynomial
function so that we can draw its graph (Figs. 1 and 2):

Fig. 1. Our function (at order 150) Fig. 2. Theoretical result

We can observe that the approximation is reliable on a specific interval and
diverge outside of it. We can have this conclusion because we know the theoretical
result in this case, but we won’t know it in most cases. This is what will motivate
the necessary handling of certified errors. Intervals of errors, which are only an
example of error representation, will give the user information about how far the
theoretical function could be from the returned approximation.

6.2 Heat Equation

In order to explain the principle of causality more precisely and to show a more
general case, we are going to present the 2-dimensional heat equation example:

∂u

∂t
= α

∂2u

∂x2

There are 2 different ways of integrating this equation and we chose to integrate
it with respect to variable t so that initial conditions are a function of variable
x at initial time t = 0. Here is the new form of the equation:

u(x, t) = u0(x) + α ×

∫ t ∂2u(x, t)

∂x2

where u0(x) will be a data we have. The causality is respected if computing any

derivative ∂i+ju
∂xi∂tj boils down to compute elements of initial condition u0(x). And

in the case of the heat equation, we can ensure it will be possible thanks to
Schwarz ’s theorem about switching partial derivatives:

∂i+ju

∂xi∂tj
=

∂i+j−1u

∂xi∂tj−1

(

∂u

∂t

)

=
∂i+j−1u

∂xi∂tj−1

(

∂2u

∂x2

)

=
∂i+j+1u

∂xi+2∂tj−1
= ... =

∂i+2ju

∂xi+2j

This graph illustrates the depen-
dencies between the partial deriva-
tives and we see that all arrows
will end up on the vertical axis
which represents the derivatives
with respect to x only, namely the
different parts of u0(x). The causal-
ity being respected ensures that
the recursion will end. This exam-
ple in 2 dimensions shows how the
principle of causality is more flexi-
ble than it was presented with the
Airy equation. Indeed, we said that
coefficients of specific order should
require strictly lower order coeffi-

cients, which is graphically represented by arrows crossing the blue line from the
top right-hand corner down to bottom left-hand corner. But we state now that
it is not a necessary condition as we can see with the heat equation where higher
order coefficients are required but with respect to other variables. So arrows are
allowed to cross the blue line in the opposite direction as long as they end on
the vertical axis.

Figure 3 shows our heat equation solution developed at order 25. The vertical
axis is the temperature. We set the initial conditions to a sinus, which concretely
means we impose the temperature on one axis to be an alternation of warm and
cold at initial time. The graph converges to a uniform average value along the
time which is consistent with the physical interpretation.

What we call order here and denote by R is only the unrolling depth of the
infinite tree we build. The graph in Fig. 4 shows the computation times (in sec-
onds, on a common laptop computer) of the heat equation solution according to
order and the graph in Fig. 5 shows this computation time divided by the num-
ber of coefficients of the solution, which lies in θ(RN) with N the dimension,
according to [9]. By dividing the computation time by the number of computed

Fig. 3. Heat equation solution

Fig. 4. Computation time Fig. 5. Computation time/R
2

coefficients (normalized to 1 for R = 0), we aimed at evaluating the amount
of additional computation done per useful coefficient, i.e. the “administrative”
overhead induced by the resolution of the equation, due to auxiliary data struc-
tures, memory allocations, etc. We observe only a linear overhead and despite
the relative simplicity of the heat equation, it comforts us in the decisions taken
so far for implementing our framework.

7 Perspectives

7.1 Canonical Method for Composition

As defined in Sect. 5, composition involves the resolution of a partial differential
equation. This hinders the computation of error bounds. Indeed, as far as we
know, there is no established general method to solve such equations with cer-
tified errors, beyond ad-hoc situations such as elliptic, parabolic, etc., equations
with specific initial conditions.

In order to devise a direct more tractable and non recursive way to compose
Taylor series, following schemes such as Faà di Bruno’s formula, we first need to

handle errors. As in formal power series, composition (f ◦ g) may be achieved
only when g has no constant part. To factorize out the constant part of g (so that
we fall back to evaluation at point 0), we depend on an additive decomposition
of f , when available.

Again, we sum up some decompositions of standard elementary functions.
For every An+1 ∈ Rn+1, we have the following equations, where we remark that
their right-hand sides are built from a constant part (VA) and another term
without a constant part:

exp
(

AL
n + Xn.AR

n+1 + VA

)

= exp(VA) exp
(

AL
n + Xn.AR

n+1

)

log
(

AL
n + Xn.AR

n+1 + VA

)

= log(VA) + log
(

1 +
AL

n+Xn.AR
n+1

VA

)

sin
(

AL
n + Xn.AR

n+1 + VA

)

= sin(VA) cos
(

AL
n + Xn.AR

n+1

)

+cos(VA) sin
(

AL
n + Xn.AR

n+1

)

arctan
(

AL
n + Xn.AR

n+1 + VA

)

= arctan(VA) + arctan
(

AL
n+Xn.AR

n+1

1+VA.(AL
n+Xn.AR

n+1
)

)

We are currently developing a canonical composition operator f ◦g following
decomposition schemes that are all well known to strongly involve combinatorial
reasoning. Our preliminary results already show that the administrative content
of such heavy combinatorial computations, such as iterating over partitions,
combinations, permutations and so on, have a great cost and are not yet on a
par with the differential approach in terms of efficiency, at least for the tested
instances. More investigation is required in that respect. We still expect to obtain
an efficient canonical solution, with a simpler error propagation scheme and
furthermore less computations to reduce such propagation.

7.2 Certified Errors

Taylor Models. Differential equations put aside, we are already able to com-
pute certified errors in our framework. It merely requires the introduction of an
arithmetical domain for errors. We introduce below a very simple error domain
based upon symmetric zero-centered monotonic error functions.

Let us assume K stands for the value domain. Error functions are then ele-
ments of the following domain E, assuming we work in dimension N :

E � {f ∈ (K+)N → K
+ | f(0) = 0, f monotonous}

The error model is then the product K×E. The semantics � � � of an element of
this model represents a function from variable bounds to sets of possible values:

�〈v, ǫ〉� � X ∈ (K+)N → {k ∈ K | |k − v| ≤ ǫ(X)}

The error model has N + 1 constructors: (k,0) for k ∈ K, denoted “k” and
the i ∈ [0, N − 1] indexed family (0,X → Xi), denoted “Xi”. It is endowed
with a K-algebra structure and is further turned into an full-fledged domain

using suitable definitions of elementary functions on K×E, as illustrated below.
Similar definitions may be devised for other elementary functions:

〈v1, ǫ1〉 + 〈v2, ǫ2〉 � 〈v1 + v2, ǫ1 + ǫ2〉

α × 〈v, ǫ〉 � 〈α × v, |α| × ǫ〉

〈v1, ǫ1〉 × 〈v2, ǫ2〉 � 〈v1 × v2, |v1| × ǫ2 + |v2| × ǫ1 + ǫ1 × ǫ2〉

e〈v,ǫ〉 � 〈ev, ev × (eǫ − 1)〉

log〈v, ǫ〉 � 〈log v, log
(

1 + ǫ
v

)

〉 (v �= 0)

Taylor models are then built from cotensors of 〈value, error〉 terms. We con-
sider a function f ∈ R

N → R, assumed analytical at point 0 and note respec-
tively fα and ǫα as the value and error at derivation multi-index α.

A Taylor model predicate T M(f,R, δ) at order R in a δ-neighbourhood of

point 0 (where δ ∈ R
+N

) is defined as the following:

T M(f,R, δ) � ∀x ∈ R
N .|x| ≤ δ =⇒ |f(x) −

|α|≤R
∑

α=0

fαxα| ≤
∑

|α|=R

ǫα(δ)|x|
α

A Taylor model for parameters R and δ is then the set of functions f such
that T M(f,R, δ) holds true.

Issues with Recursive Definitions. We recall that the above definitions must
be amended in order to account for errors in (recursive) differential equations.
Indeed, in that case, dependencies between errors at different derivation orders
do not respect the causality relation fulfilled by pure values. So we need to
compute another fixed point, different from the one for pure values. We illustrate
this discrepancy between values and errors, considering the following partial
development of a Taylor series with errors for a bivariate function f :

f(X,Y) � 〈f0, ǫ0〉 + X.〈fX , ǫX〉 + Y.〈fY , ǫY 〉 + . . .

Then, integrating f along X, accounting for errors, yields the following series:

∫ X

f = 〈0, |X|.(|f0| + ǫ0)〉 + X.〈f0, ǫ0〉 + Y.〈0, |X|.(|fY | + ǫY)〉 + . . .

Unfortunately, we remark that the error term |X|.(|f0|+ ǫ0) at order 0, while
still a zero-centered monotonic error function, directly depends on ǫ0, the error
function of f at order 0. The same problem occurs at order Y . On the contrary,
the value part of the integrand is always 0, so is independent of f . As we wish to

define f recursively through such an integrand, setting for instance f =
∫ X

f ,
we face the necessity to find a different computation scheme for errors than for
values. This is left for future work, but we feel that it would probably imply
to transpose in our multivariate setting the kind of argumentation found in the
Picard-Lindelôf theorem (that determines existence and unicity of solutions to
ODEs in solved forms).

Going Further. Many other sensible choices for computing errors are also
possible such as arbitrary intervals, zonotopes, etc., but we haven’t experimented
with these solutions yet. We chose to stick to the lightweight zero-centered error
domain, giving up some precision to save computation time, mostly because it
is much simpler to implement and also because we rely on on-demand cotensor
exploration to increase precision, by computing deeper coefficients of Taylor
expansions. We nevertheless plan to address the problem of finding a well-suited
error domain, in terms of precision with respect to computation time.

Accounting for numerical errors is also on our roadmap. As a first approach,
we postulate that we would only have to represent every real number with an
interval of lower and upper approximations given as two floating-point num-
bers, lifting every computation from an algebra of real numbers to an algebra
of floating-point intervals. The main question will be to test whether accumu-
lating numerical errors along a huge number of computations could significantly
degrade precision, as the derivation order increases, jeopardizing the core feature
of our framework.

Another method, closely related to our own functional language framework
exploiting laziness, would be to consider using a setup for exact real number alge-
bra, as illustrated for instance in [3]. Besides its lack of efficiency wrt. floating-
point numbers, it would not suffer from a potential untamable accumulation of
errors and would also open the way for a complete formal verification (including
tensorial structure and numerical aspects). This is left for future work.

8 Conclusion

With a renovated view on Taylor series, we provide an implementation of a
genuine full-fledged algebra of such series, in the multivariate case. Even if the
work is far from being completed, it has been proven useful already as we are
able to deal smoothly with partial differential equations in solved form, without
any input from domain expert. To the best of our knowledge, implementing
such an algebra of Taylor series with a concern on efficiency through carefully
crafted algorithmics but also on correctness through strong typing has not been
tried before. Indeed, although not presented here, our implementation puts an
emphasis on strong typing, through extensive use of advanced OCaml GADT
features. This proved really helpful in designing correct-by-construction code,
at least with respect to dimensions and derivation orders, while implementing
complex and error-prone numerical computations.

The next big challenges to take up are: first, the introduction of a better
composition scheme; second, error domains and computation schemes compatible
with every construction of our algebra. This would pave the way for applying our
library in the paradigm of guaranteed integration for instance, notwithstanding
other pervasive usages of Taylor series in various scientific fields.

References

1. Pearlmutter, B.A., Siskind, J.: Lazy multivariate higher-order forward-mode AD.
In: POPL 2007, January 2007

2. Sandretto, J.A.D., Chapoutot, A.: Validated explicit and implicit Runge-Kutta
methods. Reliable Comput. 22(1), 79–103 (2016)

3. Geuvers, H., Niqui, M., Spitters, B., Wiedijk, F.: Constructive analysis, types and
exact real numbers. Math. Struct. Comput. Sci. 17(1), 3–36 (2007). https://doi.
org/10.1017/S0960129506005834

4. Karczmarczuk, J.: Functional differentiation of computer programs. High. Order
Symbolic Comput. 14(1), 35–57 (2001). https://doi.org/10.1023/A:1011501232197

5. Makino, K., Berz, M.: Rigorous integration of flows and ODEs using Tylor models.
In: Symbolic Numeric Computation, SNC 2009, Kyoto, 03–05 August 2009, pp.
79–84 (2009). https://doi.org/10.1145/1577190.1577206

6. Martin-Dorel, É., Hanrot, G., Mayero, M., Théry, L.: Formally verified certifi-
cate checkers for hardest-to-round computation. J. Autom. Reasoning 54(1), 1–29
(2015). https://doi.org/10.1007/s10817-014-9312-2

7. Martin-Dorel, É., Rideau, L., Théry, L., Mayero, M., Pasca, I.: Certified, efficient
and sharp univariate Taylor models in COQ. In: 15th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2013,
Timisoara, 23–26 September 2013, pp. 193–200 (2013). https://doi.org/10.1109/
SYNASC.2013.33

8. Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic: proof
that arithmetic operations are validated in COSY. J. Log. Algebraic Program. 64(1),
135–154 (2005). https://doi.org/10.1016/j.jlap.2004.07.008

9. Thirioux, X.: Verifying embedded systems. Habilitation thesis, Institut National
Polytechnique de Toulouse, France, September 2016

