Optimization and Analysis of Deep Unfolding Based Double Loop Turbo Equalizers - Archive ouverte HAL
Conference Papers Year : 2020

Optimization and Analysis of Deep Unfolding Based Double Loop Turbo Equalizers

Abstract

This paper investigates the use of hybrid model-and-data-based deep learning on a recently proposed doubly-iterative turbo equalizer for handling inter-symbol interference (ISI) channel with single-carrier frequency domain equalization (SC-FDE). The receiver is obtained through a message-passing-based approximate Bayesian inference technique, known as expectation propagation (EP). Although this turbo-equalizer has been shown to behave asymptotically like maximum a posteriori (MAP) detection, finite-length numerical results suffer from drawbacks due to simplifying assumptions used during the modelling. Such limitations are partially mitigated by tuning heuristic hyper-parameters through robust learning algorithms. In this article, this strategy is further investigated with discussion on optimized parameters and with the use of an alternative loss function for training, or by adding further capabilities to adapt learned parameters to the channel state information.
Fichier principal
Vignette du fichier
sahin_26360.pdf (619.04 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02950730 , version 1 (28-09-2020)

Identifiers

  • HAL Id : hal-02950730 , version 1
  • OATAO : 26360

Cite

Serdar Sahin, Antonio Cipriano, Charly Poulliat. Optimization and Analysis of Deep Unfolding Based Double Loop Turbo Equalizers. Journées scientifiques d'URSI-France - Workshop: Réseaux du futur : 5G et au-delà (URSI-France 2020), Mar 2020, Palaiseau, France. pp.1-7. ⟨hal-02950730⟩
33 View
75 Download

Share

More