Optimization and Analysis of Deep Unfolding Based Double Loop Turbo Equalizers - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Optimization and Analysis of Deep Unfolding Based Double Loop Turbo Equalizers

Résumé

This paper investigates the use of hybrid model-and-data-based deep learning on a recently proposed doubly-iterative turbo equalizer for handling inter-symbol interference (ISI) channel with single-carrier frequency domain equalization (SC-FDE). The receiver is obtained through a message-passing-based approximate Bayesian inference technique, known as expectation propagation (EP). Although this turbo-equalizer has been shown to behave asymptotically like maximum a posteriori (MAP) detection, finite-length numerical results suffer from drawbacks due to simplifying assumptions used during the modelling. Such limitations are partially mitigated by tuning heuristic hyper-parameters through robust learning algorithms. In this article, this strategy is further investigated with discussion on optimized parameters and with the use of an alternative loss function for training, or by adding further capabilities to adapt learned parameters to the channel state information.
Fichier principal
Vignette du fichier
sahin_26360.pdf (619.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02950730 , version 1 (28-09-2020)

Identifiants

  • HAL Id : hal-02950730 , version 1

Citer

Serdar Sahin, Antonio Cipriano, Charly Poulliat. Optimization and Analysis of Deep Unfolding Based Double Loop Turbo Equalizers. Journées scientifiques d'URSI-France - Workshop: Réseaux du futur : 5G et au-delà (URSI-France 2020), Mar 2020, Palaiseau, France. pp.1-7. ⟨hal-02950730⟩
34 Consultations
79 Téléchargements

Partager

More