
HAL Id: hal-02950717
https://hal.science/hal-02950717

Submitted on 28 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extraction process of conceptual model from a
document-oriented NoSQL database

Amal Aït Brahim, Rabah Tighilt Ferhat, Gilles Zurfluh

To cite this version:
Amal Aït Brahim, Rabah Tighilt Ferhat, Gilles Zurfluh. Extraction process of conceptual model from
a document-oriented NoSQL database. 11th International Conference on Knowledge and Systems
Engineering (KSE 2019), Oct 2019, Da Nang, Vietnam. pp.1–5, �10.1109/KSE.2019.8919400�. �hal-
02950717�

https://hal.science/hal-02950717
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.1109/KSE.2019.8919400

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26368

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Ait Brahim, Amal and Tighilt Ferhat,

Rabah and Zurfluh, Gilles Extraction process of conceptual

model from a document-oriented NoSQL database. (2019) In:

11th International Conference on Knowledge and Systems

Engineering (KSE 2019), 24 October 2019 - 26 October 2019

(Da Nang, Viet Nam).

Extraction process of conceptual model from a
document-oriented NoSQL database

Amal AIT BRAHIM Rabah TIGHILT FERHAT Gilles ZURFLUH

Toulouse Institute of Computer

Science Research (IRIT)

Toulouse Institute of Computer

Science Research (IRIT)

Toulouse Institute of Computer

 Science Research (IRIT)

Toulouse Capitole University,

Toulouse, France

Toulouse Capitole University,

Toulouse, France

Toulouse Capitole University,

 Toulouse, France

 amal.aitbrahim@ut-capitole.fr rabah.tighilt-ferhat@ut-capitole.fr Gilles.Zurfluh@ut-capitole.fr

Abstract - NoSQL systems are used to manage massive

databases that verify 3V: Volume, Variety and Velocity. Generally,

these systems are known by the characteristic "schema less"

which means that we can create a database without defining the

data schema beforehand. This property offers more flexibility and

speed by allowing the evolution of the data model during the

exploitation of the base. However, to formulate queries on the

database, the user needs a precise knowledge of data model. In

this article, we propose a process for the automatic extraction of

the conceptual model of a document-oriented NoSQL database.

To do this, we use the Model Driven Architecture (MDA)

architecture that provides a formal framework for automatic

model transformation. From a NoSQL database, we propose a set

of transformation rules with QVT to generate the conceptual

model in the form of a UML class diagram. An experimentation of

the extraction process was carried out on an application in the

medical field..

Keywords - Big Data, NoSQL, model extraction, schema less,

MDA, QVT.

I. INTRODUCTION

Big Data have attracted a great deal of attention in recent
years thanks to the huge amount of data managed, the types of
data supported and the speed at which this data is collected
and analyzed. This has definitely impacted the tools required
to store Big Data, and new kinds of data management tools i.e.
NoSQL systems have arisen [5]. Compared to existing
DBMSs, NoSQL systems are generally accepted to support
greater data volume and to ensure faster data access,
undeniable flexibility and scalability [1].

One of the NoSQL key features is that databases can be
schema-less. This means, in a table, meanwhile the row is
inserted, the attributes names and types are specified. Unlike
relational systems - where first, the user defines the schema
and creates the tables, second he inserts data -, the schema-less
property brings a flexibility that facilitates the physical schema
evolution. End-users are able to add information without the
need of database administrator. For instance, in the medical
program that follows-up patients suffering from a chronic
pathology – case of study detailed in Section 2 – one of the
benefits of using NoSQL databases is that the evolution of the
data (and schema) is fluent. In order to follow the evolution of

the pathology, information is entered regularly for a cohort of
patients. But the situation of a patient can evolve rapidly which
needs the recording of new information. Thus, few months
later, each patient will have his own information, and that’s
how data will evolve over time. Therefore, the data model (1)
differs from one patient to another and (2) evolves in
unpredictable way over time. We should highlight that this
flexibility concerns the physical level i.e. the stored database
exclusively [8].

In information systems, the importance and necessity of
conceptual models are widely recognized. The conceptual
model is a representation at a higher level of abstraction and a
semantic knowledge element, which ensures efficient data
management [3]. Furthermore, this model is a document of
interchange between end-users and designers, and between
designers and developers. Also, the conceptual model is used
for system maintenance and evolution that can affect business
needs and/or deployment platform. The Unified Modeling
Language (UML) is widely accepted as the standard of
information system modeling.

On the one hand, NoSQL systems have proven their
efficiency in managing Big Data. On the other hand, the needs
of a conceptual modeling and design approach remain up-to-
date. Therefore, we are convinced that it’s important to
provide a precise and automatic approach that guides and
facilitates the reverse engineering task within NoSQL systems.
Indeed, in a Big Data context, the evolution of the needs of the
user evolve in an exponential way. This evolution requires an
update of the data models (adding, modifying or deleting an
element of the model); It can be at two levels: conceptual and
physical. According to the principles of MDA, if the needs
evolve at the conceptual level, it is enough to restart the
transformation process to arrive at the new model of
implantation corresponding. When it comes to an evolution of
the physical model, it is necessary to consider a process of
retro-design to adapt the conceptual model to the
modifications made on the physical model. This is useful for a
user to formulate their data access requests based on an
updated conceptual model.

To answer this problem, we propose the
"ToConceptualModel" MDA-based approach that starts from a
NoSQL physical model (PSM) and extracts the NoSQL

database conceptual model (PIM) using a set of QVT (Query-
View-Transformation) rules. As discussed in section 3 (related
work), few solutions have dealt with the NoSQL databases
conceptual modeling. To the best of our knowledge, none of
the proposed solutions has treated links between several tables.
In this paper, we present a solution that deals with two types of
links (association and composition) between tables stored on
MongoDB system.

The rest of the paper is structured as follows. Section 2
presents the case study in the medical field that motivated our
work. Section 3 reviews previous work. Section 4 presents our
reverse engineering process. Finally, Section 5 concludes the
paper and announces future work.

II. ILLUSTRATIVE EXAMPLE

We resume a case study already presented in a previous
paper [2] to illustrate our work. It is a medical application that
manages international scientific programs to monitor patients
with serious diseases. These programs consist of collecting
data from hospitals on disease trends, studying the interactions
between them and evaluating the results of their treatment over
time. These programs collect data that verifies 3V of Big Data.
In fact, the institutions involved in these programs generate a
quantity of data that can reach several terabytes. In addition,
these data are of different types: structured such as respiratory
rate, blood pressure of patients, semi-structured such as drug
leaflets and unstructured such as referral records, paper
prescriptions and radiology reports. Finallemnet, some data is
generated continuously by sensors; which means that they are
generally sensitive to the time factor. So you have to treat them
almost in real time to get the best results.

This case study is a typical application in which the use of
a NoSQL system is appropriate. On the one hand, the database
contains structured data, data of various types and formats
(explanatory texts, medical records, x-rays, etc.) and large
tables (sensor generated variable records). On the other hand,
NoSQL data stores are ideally suited for this kind of
applications that use large amounts of disparate data.
Therefore, we are convinced that a NoSQL DBMS, like
MongoDB, is the most adapted system to store the medical
database.

As mentioned earlier, this type of system runs on a schema-
less data model, which allows users to easily add new data to
their applications without first defining the schema or
modifying it. However, a semantic model is still needed to
write queries where table and column names are mentioned [4]
by looking at how the data is structured and related to each
other in the database. UML is widely regarded as a standard
modeling language for the description of complex data [7].

In our view, it’s important to have a precise and automatic
solution that guides and facilitates the database model
extraction task within NoSQL systems. For this, we propose
the NoSQLToUML process presented in the section 4 that
extracts the conceptual model of a database stored in
MongoDB. This model is expressed using a UML class
diagram.

III. RELATED WORK

The extraction of a physical model from a NoSQL
database "schema less" has been the subject of several
research works, this mainly for document type databases like
MongoDB. Thus, a process has been proposed in [11] to
extract the model from a collection of JSON documents stored
on MongoDB. The model returned by this process is in JSON
format; it is obtained by capturing the names of the attributes
that appear in the input documents and replacing their values
with their types. Attribute values can be atomic type, lists, or
nested documents. In the article by [12], the authors propose
another process for extracting the data model from a NoSQL
database of documents type that may contain several
collections. The returned result is not a unified model for the
whole database, but it gives the different model versions for
each collection. The extraction process is composed of two
successive steps. The first one runs through the database and,
for each distinct template version, generates a document in a
collection called "Template". In the second step, the process
provides a model of each version by instantiating the JSON
meta-model. We also mention the work of [7] which proposes
a process called BSP (Build Schema Profile) to classify the
documents of a collection by applying rules corresponding to
the requirements of the users. These rules are expressed
through a decision tree whose nodes represent the attributes of
the documents; the edges specify the conditions on which the
classification is based. These conditions reflect either the
absence or the presence of an attribute in a document or its
value. As in the previous work [12], the result returned by this
approach is not a unified model but a set of version models;
each of them is common to a group of documents.

In [14], the authors describe the transition from a
document-oriented or graph-oriented NoSQL database to a
relational schema. The process groups together all documents
(or objects) that have the same field names. For each class of
objects thus obtained, it generates a table having as attributes
the names of the fields; and as lines the values of these fields.

On the other hand, in [15], the authors propose a process of
extracting the schema of a large collection of JSON documents
using the MapReduce system. The Map phase consists of
extracting the schema of each document from the collection by
inferring pairs (field, type) from the pairs (field, value). The
Reduce phase consists of unifying all the schemas produced in
the Map phase in order to provide an overall schema of all the
documents in the collection. In another article [16], the same
authors proposed to extend this process by integrating the
parameterization of the extraction at the level of the Reduce
phase. Thus, the user can choose either to unify all the
schemas of the documents in the collection, or to unify only
the schemas having the same fields (names and types).

To our knowledge, few works have resulted in the
extraction of a conceptual model for NOSQL databases.
However, we can cite a proposition that deals with the graph-
oriented model [13]. The authors propose a process of
extraction of a conceptual model from object insertion queries
and relations in a NoSQL database oriented-graphs; The
proposed process is based on an MDA architecture and applies

two types of transformations. The first is to build a graph
(Nodes + Edges) from Neo4j queries. The second is to extract
an Entity / Association model from the graph by transforming
nodes with the same label into entities and edges into
associations.

Moreover, in [17], the authors proposed a process of
discovery of the conceptual model (UML class diagram) from
a JSON document. The process is composed of two successive
steps. The first is to extract a physical model in JSON format
by transforming the pairs (key, value) into pairs (key, type).
The second step generates a root class CR and transforms the
primitive type fields (integer, character string and boolean)
into CR attributes and the fields structured into CC component
classes linked to CR by composition links. Only the UML
composition links are taken into account in these works.

In Table 1, we summarize the previous works by showing
their main characteristics:

TABLE I COMPARATIVE TABLE OF PREVIOUS WORKS

Through this state of the art, it appears that the proposals
only partially answer our problematic. Indeed, to extract a
physical model, the work of [11], [12], [7], [14], [15] and [16],
do not consider the links between objects. Similarly, in [17],
where the authors do not take into account the links between
classes On the other hand, the works of [13] which focus on
systems oriented -graphs, do not process structured attributes;
these do not exist in this type of systems. ; this is due to the
fact that the graph-oriented systems do not make it possible to
declare this type of attributes.

IV. NOSQLTOUML PROCESS

The purpose of this article is to automate the process of
extracting a semantic model from a NoSQL database "schema
less". We generally consider four types of NoSQL databases:
key / value, column, document and graph. We limit ourselves
to the type document which is the most complete in terms of
expression of the links (use of references and nestings). The
NoSQLToUML process that we propose, automatically
extracts a semantic model (UML class diagram) from a
document-type NoSQL database.

As shown in Figure 1, the NoSQLToUML process consists
of two modules: (1) ToPhysicalModel which corresponds to

the extraction of a physical schema from a document-oriented
NoSQL database and (2) ToConceptualModel which consists
of to transform the physical schema returned by the first
module into a conceptual schema modeled according to UML
formalism.

Fig. 1. Overview of NoSQLToModel process

To formalize and automate our process, we use OMG's
Model Driven Architecture [10], which provides a formal
framework for automating model transformations. The purpose
of this architecture is to describe separately the functional
specifications and implementation specifications of an
application on a given platform [10]. For this, it uses three
models representing the abstraction levels of the application.
These are (1) the requirements model (CIM for Computation
Independent Model) in which no IT considerations appear, (2)
the independent Platform Independent Model (PIM) for the
technical details. Execution platforms and (3) Platform
Specific Model (PSM) specific to a particular platform. Since
the input of our process is a NoSQL database and its output is
a conceptual model, we retain only the PSM and PIM levels.
We detail in the following the two modules composing our
process.

A. ToPhysicalModel module

This article focuses on the automatic generation of NoSQL
database conceptual model. To properly define this process, it
is necessary to know the framework in which it will fit. It’s
about our approach ToPhysicalModel developed in previous
work [20]. This section outlines this models transformation
approach.

ToPhysicalModel is an MDA-based process that
automatically generates a NoSQL physical model from a
database implemented on MongoDB by executing a set of
transformation rules. This approach relies on the use of the
structured filed DBRef which is used when a document
contains references to another documents present in a different
collections [21]; it uses the value of the referenced document’s
_id field and the collection name (the database name is
optionally). The DBRef format allowed us to provide a
common semantics for representing links between documents.

ToPhysicalModel process is composed of two steps: (1)
the first one browses all of the documents in a collection and
extracts the schema for each one; (2) for each collection, the
second step takes as input the set of schemas returned by the
first step, unifies them and then provide a unique schema that
describe how data is organized and related to each other in the
corresponding collection .

Our process as such was limited to extracting the NoSQL
database physical model in order to assist the user to express
his queries. In this article, we aim to complete our approach by
taking into account the generation of the database conceptual
model (§ Section 4).

B. ToConceptualModel module

We present in this section the second module
ToConceptualModel which represents the second step of our
solution illustrated in figure 1. We begin beforehand by the
formalization of the source and the target of this module. We
then explain the transformations needed to move the source
elements to the target elements.

1) Source: physical model:

The source of the ToConceptualModel module is the physical
model obtained after running the ToPhysicalModel module.
This template is stored in document collections. Each
collection has a single document. This contains the model of
an input collection. It is composed of a set of fields; each of
them can be either primitive or complex. A primitive field is in
the form of a couple (Name, Type) where Type corresponds to
a data type like Integer, Boolean and String; it can be
multivalued. A complex field is a structured or multivalued
field of structured fields. A structured field is composed of a
set of fields that, in turn, can be either primitive or complex.
To express a link between collections, we used a field called
DBRef, which is un standard used by the MongoDB
community [21]. This one is a special case of a structured
field. It is composed of two fields; one corresponds to the
identifier of the referenced document and one corresponds to
the name of the collection that contains the referenced
document.

We present the concepts used to describe the physical
model through the Ecore meta-model of Figure 2.

Fig. 2. Source Metamodel

2) Target: conceptual model:

A UML class diagram is defined by a set of object classes

linked together by links. Each class has semantics and

common properties; it is defined by a name, attributes, and
operations. Each attribute is defined by a couple (name, type).
In this article, we do not consider operations. A link is a
semantic relation between two or more classes of objects. It is
defined by a name, a type, and endpoints. The most common
links are association, composition, aggregation and
inheritance. We restrict ourselves in this article only to links of
association and composition. The ends represent connections
with the classes concerned by the link; they are defined by a
cardinality Min and a cardinality Max. We formalize all these
concepts through the Ecore meta-model of Figure 3.

Fig. 3. Target Metamodel

3) Transformations:

After having formalized the concepts present in the source
and target models of the ToConceptualModel module, we will
describe the sequence of transformation rules necessary for the
transition from the source elements to the target elements.

R1: Each input collection Clli is transformed into a class
Ci.

R2: Each primitive field of Clli (integer, string, boolean, ...
etc.) is transformed into an attribute of the same type in the
corresponding class Ci; if the field is multivalued, the type of
the corresponding attribute is put between two brackets [].

R3: For each collection Clli, each complex field that is not
a DBRef becomes a class linked to Ci (the class corresponding
to Clli) by a composition link. This one takes either the
cardinality 0..1 if the input complex field is structured, or the
cardinality 0..* if the input complex field is multivalued and
whose values are structured.

R4: For each collection Cll1, each complex field which is
a DBRef filed referencing a collection Cll2 becomes an
association link connecting the two classes C1 and C2 (the
classes corresponding, respectively, to Cll1 and Cll2); this
association link has the same name as the input DBRef field
and takes either the cardinalities 0..* next to C1 and 0..1 next
to C2 if the field DBRef is monovalued, or the cardinalities
0..* next to C1 and 0..* otherwise.

The ToConceptualModel process is presented as a
sequence of four steps executed one by one to generate the
resulting model (UML conceptual model) from the source
model (NoSQL physical model):

1: we define metamodels of the source and the target

2: we instantiate from the source metamodel, a physical
model in XMI (XML Metadata Interchange) format.

3: we implement on EMF the transformation rules using
the QVT language

4: To test transformations, we execute the QVT script
encoded in step 3 on the source model (physical model). The
returned result represents the corresponding conceptual model
and is provided as an XMI file.

V. CONCLUSION

Our work is part of Big Data databases. They are currently
dealing with the reverse engineering mechanisms of a NoSQL
database "schema less" to facilitate the expression of queries.

In this article, we have proposed an automatic process
NoSQLToUML to extract the conceptual model of a NoSQL
database of documents type. This process, based on the Model
Driven Architecture (MDA), provides a formal framework for
automating model transformations. NoSQLToUML is
composed of two modules; the first generates the physical
model from a document-oriented database and the second
transforms the physical model returned by the first module into
a conceptual diagram in the form of a UML class diagram. The
transition from one model to another is done by applying a
sequence of transformations formalized with the QVT
standard. The major contribution of our solution lies in taking
into account the links of association between the classes. We
have experimented our process on the case of a medical
application which relates to scientific programs of follow-up of
pathologies; the database is stored on the MongoDB NoSQL
system.

Regarding prospects, we plan to study the update of the
data model as the database is being exploited. Indeed, the data
volume can reach several terabytes, the generation of the
model requires the scanning of the entire database. It is
therefore not possible for a user to restart the process each
time he wishes to express a new request.

REFERENCES

[1] Angadi, A. B., Angadi, A. B., & Gull, K. C. (2013). Growth of New

Databases & Analysis of NOSQL Datastores. International Journal of

Advanced Research in Computer Science and Software Engineering, 3, 1307-

1319.

[2] Abdelhedi, F., Brahim, A. A., & Zurfluh, G. (2018). Formalizing the

Mapping of UML Conceptual Schemas to Column-Oriented

Databases. International Journal of Data Warehousing and Mining

(IJDWM), 14(3), 44-68.

[3] Bondiombouy, C. (2015). Query processing in cloud multistore

systems. In BDA : Bases de Données Avancées.

[4] Budinsky, F., Steinberg, D., Ellersick, R., Grose, T. J., & Merks, E.

(2004). Eclipse modeling framework: a developer's guide. Addison-Wesley

Professional.

[5] Chen, CL Philip et Zhang, Chun-Yang. Data-intensive applications,

challenges, techniques and technologies: A survey on Big Data. Information

Sciences, 2014, vol. 275, p. 314-347.

[6] Douglas, L., 2001. 3d data management: Controlling data volume,

velocity and variety. Gartner. Retrieved, 6, 2001.

[7] Gallinucci, E., Golfarelli, M., & Rizzi, S. (2018). Schema profiling of

document-oriented databases. Information Systems, 75, 13-25.

[8] Han, Jing, Haihong, E., LE, Guan, et al. Survey on NoSQL

database. Pervasive computing and applications (ICPCA), 2011 6th

international conference on. IEEE, 2011. p. 363-366.

[9] Harrison, G. (2015). Next Generation Databases : NoSQLand Big

Data. Apress.

[10] Hutchinson, J., Rouncefield, M., & Whittle, J. (2011, May). Model-

driven engineering practices in industry. In Proceedings of the 33rd

International Conference on Software Engineering (pp. 633-642). ACM.

[11] Klettke, M., U. Störl, et S. Scherzinger (2015). Schema extraction and

structural outlier detection for json-based nosql data stores.

Datenbanksysteme für Business, Technologie und Web (BTW 2015).

[12] Sevilla, Diego Ruiz, Severino Feliciano Morales, and Jesús García

Molina. "Inferring versioned schemas from NoSQL databases and its

applications." International Conference on Conceptual Modeling. Springer,

Cham, 2015.

[13] Comyn-Wattiau, I., & Akoka, J. (2017, December). Model driven

reverse engineering of NoSQL property graph databases: The case of Neo4j.

In 2017 IEEE International Conference on Big Data (Big Data) (pp. 453-458).

IEEE.

[14] Maity, B., Acharya, A., Goto, T., & Sen, S. (2018, June). A

Framework to Convert NoSQL to Relational Model. In Proceedings of the 6th

ACM/ACIS International Conference on Applied Computing and Information

Technology (pp. 1-6). ACM.

[15] Baazizi, M. A., Lahmar, H. B., Colazzo, D., Ghelli, G., & Sartiani,

C. (2017, March). Schema inference for massive JSON datasets. In Extending

Database Technology (EDBT).

[16] Baazizi, M. A., Colazzo, D., Ghelli, G., & Sartiani, C. (2019).

Parametric schema inference for massive JSON datasets. The VLDB Journal,

1-25.

[17] Generate Test Data (2018) http://www.convertcsv.com/generate-

test-data.htm Online; 5 July 2018.

[18] JSON Generator (2018) http://www.json-generator.com/. Online; 5

July 2018.

[19] Ait Brahim, A., Tighilt Ferhat, R., Zurfluh, Z, MDA Process to

Extract the Data Model from Document-oriented NoSQL Database, ICEIS

2019.

[20] MongoDB, https://www.mongodb.com/fr Online; 5 July 2018.

