Zequn Wei 
email: zequn.wei@gmail.com
  
Jin-Kao Hao 
email: jin-kao.hao@univ-angers.fr
  
Kernel based Tabu Search for the Set-Union Knapsack Problem

Keywords: Knapsack, Heuristics and metaheuristics, Decision making, Intelligent systems, Combinatorial optimization

Given a set of profitable items where each item is a set of weighted elements, the Set-union Knapsack Problem is to pack a subset of items into a capacity constrained knapsack to maximize the total profit of the selected items. This problem appears in many practical applications; however, it is computationally challenging. To advance the state-of-the-art for solving this relevant problem, we introduce a competitive heuristic algorithm, which features original kernelbased search components and an effective local search procedure. Extensive computational assessments on 60 benchmark instances demonstrate the high performance of the algorithm. We show different analyses to get insights into the influences of its algorithmic components. We make the code of the algorithm publicly available to facilitate its use in practice.

Introduction

As a generalized knapsack model, the Set-Union Knapsack Problem (SUKP) is defined as follows [START_REF] Kellerer | Knapsack problems[END_REF]. Given 1) a set U of n elements where each element j has a weight w j > 0, 2) a set V of m items where each item i is a subset of elements U i ⊆ U and has a profit p i > 0, and 3) a knapsack of capacity C, SUKP involves determining a set of items S ⊆ V to maximize the total profit of S while ensuring that the total weight of the elements of S does not exceed the knapsack capacity C. Notice that the weight of an element is counted only once even if it belongs to more than one selected items in S. Formally, SUKP can be written as follows.

(SU KP ) Maximize f (S) = i∈S p i (1) 
subject to W (S) =

j∈∪ i∈S Ui w j ≤ C, S ⊆ V (2)
Like other knapsack models [START_REF] Amiri | A Lagrangean based solution algorithm for the knapsack problem with setups[END_REF][START_REF] Dahmani | A swarm optimizationbased search algorithm for the quadratic knapsack problem with conflict Graphs[END_REF][START_REF] Denysiuk | Neuroevolution for solving multiobjective knapsack problems[END_REF][START_REF] Glover | Critical event tabu search for multidimensional knapsack problems[END_REF][START_REF] Qin | Hybridization of tabu search with feasible and infeasible local searches for the quadratic multiple knapsack problem[END_REF][START_REF] Lai | A two-phase tabuevolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF], SUKP has a number of practical applications. As an example, we consider the following decision-making problem to optimally allocate data in large cyber systems [START_REF] Tu | System resilience enhancement through modularization for large scale cyber systems[END_REF]. Given a centralized cyber system with a memory of fixed capacity holding a set of services (or requests) with profits, where each service contains a set of data objects. Each data object will consume a certain amount of memory when it is invoked, and multiple use of the same data object will not cause additional memory consumption. The goal is to select a subset of services, among the candidate services, such that the total profit of the selected services is maximized while the total memory consumed by the underlying data objects meets the memory capacity of the cyber system. This application can be conveniently formulated by the SUKP model where an item corresponds to a service with its profit and an element corresponds to a data object with its memory consumption (element weight). Then, solving the data allocation problem is equivalent to find the optimal solution to the resulting SUKP problem. SUKP has other relevant applications related to decision-making and intelligent systems including database partitioning [START_REF] Navathe | Vertical partitioning algorithms for database design[END_REF], flexible manufacturing [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF], key-pose caching [START_REF] Lister | A key-pose caching system for rendering an animated crowd in real-time[END_REF], and public key prototyping [START_REF] Schneier | Applied cryptography: protocols, algorithms, and source code in C[END_REF].

Meanwhile, in terms of computational complexity theory, the decision version of SUKP is known to be NP-complete [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF]. Therefore from the perspective of solution methods, solving the problem is a highly challenging task. Given its practical and theoretical relevance, a number of algorithms for SUKP have been introduced in the literature.

First, exact and approximation algorithms based on dynamic programming or greedy approximation methods were investigated in [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF][START_REF] Taylor | Approximations of the densest k-subhypergraph and set union knapsack problems[END_REF][START_REF] Arulselvan | A note on the set union knapsack problem[END_REF]. These studies are of theoretical nature and didn't show computational results.

Second, given the NP-hardness of SUKP, several algorithms based on metaheuristics were proposed recently to find approximate solutions in a reasonable time frame. He et al. (2018) designed a binary artificial bee colony algorithm (BABC) for solving SUKP and reported the first computational study on a set of 30 benchmark instances they introduced. Later, He and Wang (2018) devised a group theory-based optimization algorithm (GTOA) for several knapsack problems including SUKP. Then, [START_REF] Baykasoglu | Weighted superposition attraction algorithm for binary optimization problems[END_REF] presented a binary swarm intelligence algorithm (gPSO) that combines the genetic algorithm with particle swarm optimization. [START_REF] Baykasoglu | Weighted superposition attraction algorithm for binary optimization problems[END_REF] proposed a modified weighted superposition attraction algorithm (WSA) for stationary binary optimization problems including SUKP. [START_REF] Ozsoydan | Artificial search agents with cognitive intelligence for binary optimization problems[END_REF] introduced a swarm-based optimization algorithm (intAgents) using artificial search agents with individual cognitive intelligence. Feng et al. (2019a;[START_REF] Feng | Enhanced Moth Search Algorithm for the Set-Union Knapsack Problems[END_REF] introduced two moth search algorithms (MS and EMS). These algorithms share the common feature that they solve the discrete SUKP indirectly by performing their search in a continuous search space. [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF] presented the first binary optimization method for SUKP with two complementary local search phases (I2PLS). [START_REF] Wu | Solving the set-union knapsack problem by a novel hybrid Jaya algorithm[END_REF] presented a hybrid Jaya algorithm (DHJaya) based on the differential evolution crossover operator and Cauchy mutation strategy. [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF] proposed a hybrid binary particle swarm optimization method (HBPSO/TS). Finally, [START_REF] Liu | Estimation of distribution algorithm based on Lévy flight for solving the set-union knapsack problem[END_REF] combined the estimation of distribution algorithm based on Lévy flight (LFEDA) with a quadratic greedy repair and optimization approach.

The literature review shows that the existing algorithms have a number of limitations. First, the performances of these algorithms lack stability and robustness (computational results with large standard deviations) even when solving small benchmark instances (with 85 to 100 items and elements). Second, their performances generally decrease when they are used to solve large instances (with at least 500 items and elements). Third, they consume a substantial amount of computation time to reach their reported results. Finally, most existing algorithms require a non-negligible number of parameters (e.g., 4 and 7 parameters for two leading algorithms I2PLS and HBPSO/TS, respectively), making it difficult to control their performances and understand their behaviors.

In this work, we aim at advancing the state-of-the-art of solving SUKP effectively and robustly in particular when large problem instances are considered. For this purpose, we investigate the first kernel based approach that overcomes the limitations mentioned above. This work is also motivated by another important consideration. In fact, the general idea of kernel has proved to be quite useful for several binary optimization problems (e.g., [START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF]; [START_REF] Wang | Backbone guided tabu search for solving the UBQP problem[END_REF]; [START_REF] Zhang | Configuration landscape analysis and backbone guided local search. Part I: Satisfiability and maximum satisfiability[END_REF]). This work demonstrates for the first time its benefit for solving SUKP, whose contributions are summarized as follows.

First, to evaluate the meaningfulness of the idea of kernel for solving SUKP, we investigate the distribution of items among high-quality solutions. This investigation reveals the existence of kernels, which lays the basis for adopting the kernel concept to design our search algorithm. Indeed, the proposed kernel based tabu search algorithm (KBTS) integrates three complementary search components to perform an effective examination of the search space. That is, a local search procedure is used to find various local optima, a kernel search method is employed to discover additional high-quality solutions within particular areas, and a non-kernel search method is applied to ensure a guided diversification.

Second, we show the competitiveness of the proposed algorithm by comparing it with the state-of-the-art algorithms on 60 benchmark instances. We provide new lower bounds for several benchmark instances that can contribute to future research on SUKP.

Third, we make the code of our KBTS algorithm publicly available, which can help researchers and practitioners to better solve various problems that can be formulated as SUKP.

Finally, the kernel based search components of the proposed algorithm rely on general principals that can be advantageously adapted to other binary opti-mization problems.

The rest of the paper is structured as follows. Section 2 presents the proposed algorithm as well as its components. Section 3 shows computational results and comparisons with the state-of-the-art algorithms. Section 4 shows several analyses to shed lights on the understanding of the key ingredients of the algorithm. Conclusions and research perspectives are provided in the last section.

Kernel Based Tabu Search for SUKP

In this section, we present the KBTS algorithm for solving SUKP. We first present its main scheme and then describe its components. The KBTS algorithm follows the flow chart shown in Fig. 1 and is described in Algorithm 1.

Main scheme

The algorithm starts from a feasible initial solution generated by a dynamic profit-ratio mechanism (line 3, Alg. 1, and Section 2.3). Then it enters a 'while' loop to execute the main search process. Specifically, the input solution is improved by an iterative process (the 'repeat' loop), which includes a tabu search procedure, a kernel search procedure and a direct perturbation procedure. At each iteration of this process, the tabu search procedure (line 10, Alg. 1) is first invoked to obtain a high-quality solution with the neighborhood N f (Section 2.4.1). During tabu search, a kernel solution (S k ) as well as a nonkernel solution ( Sk ) are created using information from a frequency counter Φ. Then the kernel search procedure (line 11, Alg. 1, and Section 2.5) uses the neighborhood N k to perform an intensified search around the kernel solution to seek other high-quality solutions. After that, the direct perturbation procedure (Section 2.6) is applied to modify the last local optimum found (controlled by the parameter δ), which is then used to start the next iteration of the process. This process ends when γ max consecutive iterations are reached without further improving the local best solution S b . At this point, the search is judged to be exhausted with the current search region and switches to the non-kernel search procedure (Section 2.7) to explore a distant and unexplored region. Finally, the whole algorithm terminates when the given time limit t max is reached and returns the overall best solution S * found during the search. 

Solution representation, search space, and evaluation function

The search of the KBTS algorithm is limited to the feasible solution space Ω F satisfying the knapsack constraint. By reference to the item set V with m items, a candidate solution S of Ω F can be conveniently represented by S = (y 1 , . . . , y m ) where each y i is a binary variable: y i = 1 if item i is selected, y i = 0 otherwise. A solution S can also be represented by S =< A, Ā > where A ⊆ V is the set of selected items and Ā = V \ A is the set of the remaining items. The quality of S is measured by its objective value f (S) = m i=1 p i y i .

Dynamic initialization

The KBTS algorithm adopts an original initialization procedure using a dynamic profit-ratio of non-selected items. This procedure is based on the fact that for a given solution S, the weight of each element is counted only once. When a new item k is added to S, only the new elements of k that do not belong to the subset S will impact the total weight. Therefore, in our initialization procedure, the profit-ratio of non-selected items will be recalculated according to the elements belonging to the current solution S after adding a new item into S. The dynamic profit-ratio r * k of a non-selected item k is then given by r

* k = p k / j∈U k ∧j / ∈∪ i∈S Ui w j .
From an empty subset S, the dynamic initialization procedure operates as follows. First, we calculate the dynamic profit-ratio r * k of non-selected items. Second, we identify the item k with the highest r * k value and add the item into S. We iterate these two steps until the knapsack constraint is reached.

Note that the dynamic profit-ratio refines the static profit-ratio used in [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF] and generally leads to solutions of better quality.

Tabu search procedure

The KBTS algorithm adopts the well-known tabu search (TS) metaheuristic [START_REF] Glover | Tabu Search[END_REF] to explore local optima within a restricted neighborhood. As a general search method, TS needs to be adequately adapted to the specific optimization problem under consideration. One notices that TS is quite successful to solve several knapsack problems (e.g., quadratic multiple knapsack [START_REF] Qin | Hybridization of tabu search with feasible and infeasible local searches for the quadratic multiple knapsack problem[END_REF], multidimensional knapsack [START_REF] Glover | Critical event tabu search for multidimensional knapsack problems[END_REF][START_REF] Lai | A two-phase tabuevolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF], set-union knapsack problem [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]) and other optimization problems (e.g., [START_REF] Díaz | GRASP and hybrid GRASP-Tabu heuristics to solve a maximal covering location problem with customer preference ordering[END_REF]; [START_REF] Lai | A study of two evolutionary/tabu search approaches for the generalized max-mean dispersion problem[END_REF]).

Our tabu search procedure is shown in algorithm 2, whose particular features tailored to SUKP are discussed below. Given an input solution S, the TS procedure explores the neighborhood N f (S) induced by the swap operator (see Section 2.4.1) to make transitions from the current solution to neighbor solutions. Specifically, for each 'while' iteration (lines 5-11, Alg. 2), TS selects the best neighbor solution with the neighborhood search procedure, which is shown in Algorithm 3. If the new selected solution S is better than the best solution S l found during tabu search, S l is updated by S. Meanwhile, the frequency counter Φ i of each selected item i in S is updated by Φ i = Φ i + 1, The main search ('while' loop) terminates when the neighborhood N f (S) becomes empty (see Algorithm 3). Then the kernel solution S k and non-kernel solution Sk are created based on the frequency counter Φ, which will be presented in Sections 2.5 and 2.7. 

Move operator and neighborhood structure

From the current solution, a neighbor solution is generated by applying the popular swap operator [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]. Specifically, given a solution S =< A, Ā > where A ⊆ V is the set of selected items and Ā = V \ A, a swap(q, p) operation exchanges q items in A with p items in Ā, leading to a neighbor solution designated by S ⊕ swap(q, p). Note that q and p refer to the number of items involved in the swap operator. In our case, the candidate values for q and p are 0 or 1. Therefore, the swap operator includes three different operations: the Add operation with q = 0 and p = 1 (add one item from Ā into A), the Delete operation with q = 1 and p = 0 (delete one item from A ) and the Exchange operation with q = 1 and p = 1 (exchange one item of A against one item of Ā). Then the basic neighborhood induced by the swap operator includes all feasible solutions obtained by S ⊕ swap(q, p).

To enhance the computational efficiency of the KBTS algorithm, we define a restricted neighborhood by using a neighborhood filtering strategy [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]Lai et al., 2018a) to exclude unpromising neighbor solutions. With this strategy, only neighbor solutions S of reasonable quality verifying f (S ) > f (S b ) are considered where S b is the best solution found so far in the current tabu search run. Formally, the filter-based neighborhood N f (S) is defined as follows.

N f (S) = {S : S = S ⊕ swap(q, p), q ∈ {0, 1}, p ∈ {0, 1}, f (S ) > f (S b )} (3)
Furthermore, to ensure the computational efficiency when evaluating a feasible neighbor solution, we adopt the so-called gain updating strategy [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]. Specifically, we use a vector G of length n where G j (G j ∈ {0, 1 . . . , n}) records the number of appearances of element j in a solution S. Thus, only the elements that change values in G after performing swap(q, p) will be considered when calculating the total weight of a new neighbor solution S ⊕ swap(q, p). That is, for each element j, if its G j value changes from zero to non-zero, the total weight of the new solution is increased by w j ; if G j changes from non-zero to zero, then total weight of the new solution is decreased by w j . In other cases, the weight of the neighbor solution remains unchanged.

Tabu list management and aspiration criterion

Our TS procedure employs a tabu list to avoid revisiting previous encountered solutions. When a swap operation is performed, each item i involved in the swap is added in the tabu list and forbidden to move away from their respective item set for the next T i consecutive iterations, where T i is called the tabu tenure. Inspired by the tabu list management proposed in [START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF], our tabu tenure T i is set to the number of times item i is moved by the swap operation. As such, items with a high (low) move frequency will be forbidden for a longer (shorter) time. When no admissible move is available in the neighborhood (i.e., N f (S) = ∅), the TS procedure automatically stops.

During the tabu search, a best neighbor solution among those that are allowed by the tabu list is selected to replace the current solution. Notice that a neighbor solution is always selected if it is better than the best solution found during the TS procedure even if the solution is forbidden by the tabu list. This is the so-called aspiration criterion in tabu search [START_REF] Glover | Tabu Search[END_REF].

Kernel search procedure

The tabu search procedure is able to explore different local optimal solutions with the help of the tabu list. Still, some interesting zones with better solutions may be overlooked. The kernel search procedure is introduced to perform an additional examination of particular regions identified by the so-called kernel solution.

Definition 1. Let S be a set of feasible solutions, k an integer, and Φ i the frequency of item i appearing in the solutions of S, then the kernel solution (or simply kernel) S k is the set of top k items with the highest frequencies such that Φ i ≥ Φ k and the total weight of S k does not exceed the knapsack capacity.

In the KBTS algorithm, we employ the frequency counter Φ i to keep track of the number of times each item i appears in high-quality solutions. As mentioned in Section 2.4 (line 9, Alg. 2), each time a better solution is found during the tabu search procedure, the frequency counter Φ i of the selected item i is updated by Φ i = Φ i + 1. Then at the end of the TS procedure, we generate the kernel S k in two steps (line 12, Alg. 2). First, we sort all items in descending order according to the values of Φ. Second, we add the top ε × |S l | most frequently appearing items to S k , where ε is a parameter called kernel coefficient and |S l | is the number of the selected items in the best solution found during tabu search. Then S k serves as the input solution S for the kernel search (KS) procedure shown in Algorithm 4.

The kernel search procedure shares the same framework with the TS procedure and employs the same neighborhood search procedure (see Algorithm 3), the same tabu list management and aspiration criterion. However, the KS procedure performs its search with the kernel based neighborhood N k (S) which is composed of neighbor solutions induced by the swap operator applied to the items of S excluding those of the kernel S k . In other words, the items belonging to the kernel S k remain fixed during the kernel search and do not take part in any swap operation. By freezing the items of the kernel during the search, the KS procedure ensures a strongly intensified examination around the kernel.

The KS procedure ends if no admissible move is available in the kernel based neighborhood N k (S). At this point, the region around the kernel is considered to be sufficiently examined and the algorithm needs to move to a new region to continue its search. For this, we employ a direct perturbation strategy that is explained in the next section. The kernel search procedure is inspired by the work presented in [START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF] where the notion of kernel was introduced for solving a logicconstrained knapsack problem. The KS procedure is also related to the notion of backbone which was successfully applied to solve several binary optimization problems such as satisfiability [START_REF] Zhang | Configuration landscape analysis and backbone guided local search. Part I: Satisfiability and maximum satisfiability[END_REF] and unconstrained binary quadratic programming [START_REF] Wang | Backbone guided tabu search for solving the UBQP problem[END_REF]. This is the first application of this idea to SUKP. Notice that given the particular feature of SUKP, our way of defining (and identifying) kernels remains unique compared to previous studies.

Direct perturbation procedure

The direct perturbation procedure aims to diversify the TS-KS process, by modifying the input local optimum S l to generate a new starting solution for the next round of the TS-KS process. Specifically, the perturbation performs δ random swap(q,p) (q ∈ {0, 1}, p ∈ {0, 1}, and excluding swap(q, p) with q = p = 0) operations to transform the input solution while ensuring the feasibility of the resulting solution, where δ is a parameter called direct perturbation strength. It is clear that larger δ values lead to more important changes of the input solution.

Non-kernel search procedure

When the TS and KS procedures (lines 9-19, Alg. 1) terminate, we employ a global diversification strategy to definitively drive the search to a faraway new region. To identify this new region, we refer to the kernel solution S k = {y 1 , . . . , y m } (described in Section 2.5) and define its opposite solution Sk = {x 1 , . . . , x m } such that x i = 1 -y i (i = 1, . . . , m). Then a feasible solution S is created from Sk and used as the input of the non-kernel search procedure. In order to obtain the feasible input solution S, we randomly select items from Sk and add them to S until the knapsack constraint is reached. The non-kernel search procedure follows the same search scheme (Algorithm 5) as TS and KS, but explores a different neighborhood Nk defined as follows. Specifically, during the non-kernel search, a swap operation is constrained to items that do not belong to the kernel S k . In other words, items of S k are never selected to become a part of a neighbor solution. As such, the non-kernel search has a strong diversification effect. The NKS procedure stops when the neighborhood becomes empty and the best solution found is used to initiate the next iteration of the whole KBTS algorithm. 

Time complexity

We first consider the dynamic initialization procedure, which can be divided into two steps. The first step of updating dynamic prof it-ratio can be achieved in O(m 2 n), and the second step of finding the non-selected item with the highest r * k value is bounded by O(m 2 ), where m is the number of items and n is the number of elements. Thus the time complexity of the dynamic initialization procedure is O(m 2 n). Now we evaluate one iteration of the main loop of the proposed algorithm. As shown in Algorithm 1, the tabu search procedure (TS), the kernel search procedure (KS) and the non-kernel search procedure (NKS) all adopt the Neighborhood Search (NS) framework. Given the current solution S =< A, Ā > (see Section 2.4.1), the kernel solution S k (see Section 2.5), and the non-kernel solution Sk (see Section 2.7), the corresponding complexity of one round of NS during the three procedures is

O([(m+|A|×| Ā|)]×n), O([(m-|S k |)+(|A|-|S k |)×| Ā|]×n) and O([| Sk | + |A| × (| Sk | -|A|)] × n).
The complexity of the direct perturbation procedure is O(1). Let R max be the total maximum rounds of NS invoked by the TS, KS and NKS procedures. Then, the time complexity of one loop of KBTS is O(m 2 n × R max ).

Let I max be the maximum number of the iterations of the KBTS algorithm (which is determined by the cut-off time t max ). Then, the overall time complexity of KBTS is O(m 2 n × R max × I max ). In Sections 3.3 and 4.4, we investigate the implications on the practical use of the above theoretical time complexity in terms of computational efficiency compared to existing SUKP algorithms.

Discussions

To highlight the novelties and contributions of the KBTS algorithm, we discuss below the main original features integrated in its search components.

First, the initialization procedure of Section 2.3 relies on an original dynamic profit-ratio. This strategy exploits the particular feature of SUKP that the elements of selected items can be reused regardless how many times they appear in the selected items of the current solution. The dynamic profit-ratio is thus a refined criterion compared to the static profit-ratio used in [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF] and indeed favors the creation of high-quality initial solutions.

Second, the tabu search procedure of Section 2.4 has several special features that are different from other TS methods for SUKP [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]. KBTS uses a parameter-free automatic tabu list strategy, while some parameters are required to control the tabu list and the tabu search termination in previous TS algorithms. Also, KBTS adopts an aspiration criterion to ensure that the best solution encountered is never overlooked, while no aspiration criterion is used in previous studies [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF].

Third, although the general idea of kernel (or backbone) is known in the literature, we investigate for the first time the benefit of applying this idea to solve SUKP and propose a new way of identifying and using the kernel with the KBTS algorithm. Specifically, we extract the most frequent items from a set of high-quality solutions and use them to form a kernel solution (S k ). We additionally employ a parameter (kernel coefficient) to flexibly control the size of S k within a proper range, which allows the kernel search procedure of Section 2.5 to intensively examine a given search region delimited by the kernel.

Fourth, the non-kernel search procedure of Section 2.7 relies on the opposite solution Sk of the kernel S k . This is an original diversification strategy and has the advantage of diversifying the search in a guided manner. To our knowledge, such a strategy is not employed in the literature on SUKP.

Finally, as we demonstrate in the next section, the KBTS algorithm equipped with these innovative features is able to compete very favorably with the current best algorithms for SUKP in the literature.

Computational results and comparisons

This section is dedicated to an extensive evaluation of our KBTS algorithm and comparisons with state-of-the-art SUKP algorithms. We report computational results on two sets of 60 benchmark instances, available at http: //www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html.

Benchmark instances

Set I (30 instances): Introduced in (He et al., 2018), this set of instances have 85 to 500 items and elements with the following features. For each instance with m items and n elements, the items and elements are associated by a m × n binary relation matrix R, where R ij = 1 indicates that item i includes element j. Each instance is further characterized by two parameters: α represents the density of R ij = 1 in the relation matrix R (i.e., α = ( m i=1 n j=1 R ij )/(mn)), β denotes the ratio of knapsack capacity C to the total weight of the elements (i.e., β = C/ n j=1 w j ). Thus each SUKP instance can be designated as m n α β. These instances are widely tested in the literature including (He et al., 2018;[START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF]He & Wang, 2018;[START_REF] Baykasoglu | Weighted superposition attraction algorithm for binary optimization problems[END_REF][START_REF] Baykasoglu | Weighted superposition attraction algorithm for binary optimization problems[END_REF][START_REF] Ozsoydan | Artificial search agents with cognitive intelligence for binary optimization problems[END_REF]Feng et al., 2019a,b;[START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF][START_REF] Wu | Solving the set-union knapsack problem by a novel hybrid Jaya algorithm[END_REF][START_REF] Liu | Estimation of distribution algorithm based on Lévy flight for solving the set-union knapsack problem[END_REF].

Set II (30 instances): Introduced in this work, this set of instances have the same characteristics as those of Set I, but are large in size with 585 to 1000 items and elements. Following (He et al., 2018), the profit and weight values of these instances are generated randomly in [1,500].

Experimental protocol and reference algorithms

Computing platform. Our KBTS algorithm is programmed in C++1 and compiled with the g++ compiler with the -O3 option. To ensure a fair comparison, all the experiments mentioned in this work were performed on an Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) running under the Linux operating system.

Parameter settings. The KBTS algorithm employs three parameters, whose descriptions and values are presented in Table 1. The effects and calibration of these parameters are presented in Section 4.1. The values of Table 1 can be considered to be the default setting and are used consistently to solve all 60 instances presented in Section 3.1 without any further fine-tuning. Reference algorithms. We adopt three recent state-of-the-art algorithms: hybrid jaya algorithm (DHJaya) [START_REF] Wu | Solving the set-union knapsack problem by a novel hybrid Jaya algorithm[END_REF], hybrid binary particle swarm optimization with tabu search (HBPSO/TS) [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF] and iterated two-phase local search algorithm (I2PLS) [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]. We also include the first binary artificial bee colony algorithm (BABC) (He et al., 2018) as a base reference. To ensure a fair comparison, we run the source codes of these algorithms (kindly provided by their authors) as well as our KBTS algorithm on our computing platform under the same stopping condition.

Stopping condition. Following [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF], we run our KBTS algorithm and each reference algorithm to solve each of the 30 instances of Set I with a cut-off time of 500 seconds. For the 30 new large instances of Set II, the cut-off time is set to 1000 seconds. Given the stochastic nature of the compared algorithms, each instance is independently solved by each algorithm 100 times with different random seeds.

Computational results and comparisons

Tables 2 and3 present the detailed computational results2 of the compared algorithms achieved on the two sets of benchmark instances. Column 1 gives the names of the tested instances while the asterisk (*) indicates the optimal value that are proved by CPLEX and reported in [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]. The best objective value (f best ), the average objective value over 100 runs (f avg ), standard deviation over 100 runs (std) and the average run time (to reach the f best value, denoted by t avg ) of each compared algorithm are reported in the remaining columns. In addition, the last row #Avg of Tables 2 and3 indicates the average value of each column. Finally, dominating values of f best and f avg among the compared results are indicated in bold, and equal best values are shown in italic.

From the results of Table 2 on the instances of Set I, we observe that our KBTS algorithm is very competitive compared to the reference algorithms in terms of f best , f avg and std. Also, KBTS has a better average performance and very small standard deviations, indicating its high robustness. The high competitiveness of our KBTS algorithm becomes even more evident when we check the results of Table 3 for the 30 large instances of Set II. Indeed, KBTS dominates all the reference algorithms in all performance indicators. Moreover, KBTS requires less computation times to attain better solutions with small standard deviations, indicating its high computational efficiency and robustness.

Fig. 2 additionally shows a graphical representation of the comparative results of the five competing algorithms on the two sets of instances in terms of the best objective values, the average objective values and the standard deviations. The X-axis in each sub-figure indicates the 30 instances of each set and the Y-axis gives the f best , f avg and std values of the compared algorithms. The plots of Fig. 2 clearly indicate the dominance of our KBTS algorithm over the reference algorithms and its particular advantage on the set of large instances. Finally, Table 4 summarizes the comparative results between the KBTS algorithm and each reference algorithm. This table focuses on the f best and f avg indicators and shows the number of instances achieved by KBTS to obtain a better, an equal or a worse result (#Wins, #Ties and #Losses) compared to each reference algorithm. To verify the statistical significance of the comparisons of KBTS against the reference algorithms, the p-values from the non-parametric Wilcoxon signed-rank test are shown in the last column. And a p-value less than 0.05 implies a significant difference between KBTS and its competitor, while 'NA' means that the two sets of compared results are exactly the same. This summarized comparison clearly confirms the high performance of our KBTS algorithm. Indeed, for a majority of the tested instances, KBTS always reports better or equal results in terms of f best and f avg . Such a performance was never attained by any reference algorithm.

Analysis

In this section, we present an analysis of the parameters used in the proposed algorithm and the kernel based components.

Analysis of parameters

The proposed KBTS algorithm requires three parameters: kernel coefficient ε, local search depth γ max and direct perturbation strength δ. We first carry out a factorial experiment [START_REF] Montgomery | Design and analysis of experiments[END_REF] to gain insights into the effect of parameters on the algorithm performance and then perform a one-at-a-time sensitivity analysis [START_REF] Hamby | A review of techniques for parameter sensitivity analysis of environmental models[END_REF] to calibrate the parameters. For these experiments, we select eight representative instances from Set II: 785 800 0.15 0.85, 800 785 0.15 0.85, 800 800 0.15 0.85, 885 900 0.15 0.85, 900 885 0.15 0.85, 985 1000 0.10 0.75, 1000 985 0.10 0.75 and 1000 1000 0.10 0.75. These instances are difficult since the results reported by different algorithms (see Table 3) show large standard deviations. We employ a 2-level full factorial experiment to observe the interaction effects between the parameters. The levels of the three parameters are shown in Table 5. For this experiment, each instance was independently solved 20 times with different combinations of parameters. Then we consider the average value of the best objective values (f best ) obtained on the eight instances for each parameter combination. We verify the normality of data distributions and the variance homogeneity. We show the main effects of the parameters in Fig. 3 and the analysis of the variances in Table 6.

From Fig. 3, we can observe that the effects of the parameter kernel coefficient and local search depth are positive, while the effect of direct perturbation strength is negative. The p-values (< 0.05) in columns 2-3 of Table 6 indicate that the performance of the algorithm is sensitive to the setting of kernel coefficient and local search depth. Moreover, it makes sense to check the interaction effects between the parameters. From Table 6, we can observe that the p-values of the last four columns are all greater than 0.05, which indicates that the interaction effects among the parameters are not statistically significant.

Now we perform a one-at-a-time sensitivity analysis to determine a suitable value for each parameter. Based on a reasonable range of parameter values: ε ∈ {0.1, 0.2, ..., 1}, γ max ∈ {1, 2, ..., 10} and δ ∈ {1, 2, ..., 10}, we test the values of each parameter independently while keeping the other parameters fixed to the values of Table 1. For this, we run the algorithm with each parameter setting 30 times to solve each instance. Fig. 4 shows the average of the best objective values (f best ) attained by KBTS with different parameter settings. The X-axis indicates the ranges of the three parameters, i.e., 1 to 10 for γ max and δ, 0.1 to 1 for ε. From Fig. 4, we observe that KBTS reaches its best performance with ε = 0.6, γ max = 3 and δ = 3. These values are thus used to define the default parameter setting shown in Table 1 of Section 3.2. 

Impact of kernel search and non-kernel search

The proposed KBTS algorithm relies on the notion of kernel and the associated kernel search and non-kernel search procedures. To assess the usefulness of these components, we create a KBTS variant (denoted by KBTS -) by disabling the kernel search procedure (i.e., removing line 11 in Alg. 1) and replacing the non-kernel search procedure with a random strategy (i.e., we generate randomly a feasible solution S of line 23 in Alg. 1). We run KBTS and KBTS - 30 times according to the experimental protocol given in Section 3.2 to solve each instance of Set II and report the results in Table 7. In this table, we show the f best , f avg and std values. The row #Avg indicates the average value of each column and the row #Best shows the number of instances for which an algorithm achieves the best results between the two set of results.

The results show that compared to KBTS, the KBTS -variant obtains worse f best values for 7 instances, and worse f avg values for 5 instances, leading to worse #Avg values of these performance indicators. Table 7 also indicates that KBTS -deteriorates the results of KBTS for the most difficult instances (with 785 to 1000 items and elements), which reveals that the kernel search procedure is particularly useful for solving difficult instances. Furthermore, the Wilcoxon signed-rank tests in terms of f best (p-value < 0.05) confirm that the performance differences between KBTS and KBTS -are statistically significant.

Distribution of high-quality solutions and rationale of kernel search

To understand why the notion of kernel is pertinent, we present a study on distributions of items in high-quality solutions. This study is based on a selection of four representative instances: 500 485 0.15 0.85, 500 500 0.15 0.85, 1000 1000 0.10 0.75, 1000 1000 0.15 0.85. For each instance, we run KBTS 30 times to obtain 30 high-quality solutions and then extract frequency statistics of selected items in these solutions, as shown in Fig. 5. The X-axis in each sub-figure indicates the number of selected items and the Y-axis refers to the frequency that one item appears in these solutions. We also present the number of items corresponding to each frequency on the right side of the Y-axis and the bottom value in this column corresponds to the number of items with a frequency of 0. Since this bottom value is much larger than the other values corresponding to the frequencies in the range {1, ..., 30}, we don't draw its corresponding plot for the convenience of observation.

From Fig. 5, we observe that the frequency of most items being selected in a solution is polarized, that is, these items are either selected many times or are rarely selected. In particular, almost 90% of the items in each of these four instances never belong to a high-quality solution. This experiment thus indicates that high-quality solutions often contain several identical items (which form a kernel), providing a supporting argument for the usefulness of the kernel based components of the KBTS algorithm. are displayed on the X-axis and Y-axis, respectively. From Fig. 6, we observe that our KBTS algorithm has a very high computational efficiency, surpassing all the reference algorithms according to the cumulative probability. The lines of KBTS strictly runs above the lines of the reference algorithms, revealing that our algorithm has always a higher probability to reach the given target value. 

Conclusions

The Set-union Knapsack Problem (SUKP) is a relevant model for decision making and intelligent systems. Given its intrinsic difficulty (NP-hard), heuristic algorithms are useful to find high-quality solutions in a reasonable time frame. We presented the kernel based tabu search algorithm, which combines for the first time the notion of kernel with the powerful tabu search method.

Our computational study performed on two sets of 60 benchmark instances indicated that the proposed algorithm dominates the current best SUKP algorithms in the literature in terms of solution quality, robustness and computation time. This dominance was particularly evidenced on large and difficult benchmark instances with at least 500 items and elements. Compared to the existing SUKP algorithms, the proposed algorithm requires only three parameters, making it more suitable to use in practice. Given that SUKP has a number of interesting applications, the proposed algorithm provides a valuable tool for solving these real world problems. The availability of the source code of our algorithm and its high computational efficiency certainly facilitate such applications.

For future work, we identify three perspectives. First, one can investigate other ways to obtain the kernel solution, e.g., by using frequent pattern mining technology. Second, SUKP is a constrained problem, it would be interesting to investigate mixed search strategies that explore both feasible and infeasible solutions. Third, solution-based tabu search has shown good performances on other knapsack problems (e.g., Lai et al. (2018a)). Studying this approach constitutes a promising direction for better solving SUKP. Finally, the proposed algorithm or its variants can be embedded into population based frameworks (e.g., memetic computing methods) to obtain more powerful algorithms.
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 1 Fig. 1. Flow chart of the KBTS algorithm.
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 2 Fig. 2. Best objective values, average objective values and standard deviations of BABC, DHJaya, HBPSO/TS, I2PLS and KBTS on the 30 instances of Set I (left) and the 30 instances of Set II (right).
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 3 Fig. 3. Effects of the three parameters on the performance of the KBTS algorithm.
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 4 Fig. 4. Average of the best objective values (f best ) corresponding to different parameter settings obtained by the one-at-a-time sensitivity analysis.
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 6 Fig.6. Time-to-target plots of the compared algorithms on four SUKP instances.

  Create Non Kernel(S k ) 14: return (S l , S k , Sk ) Input solution S, flag Continue, neighborhood N .2: Output: Continue, best solution S found.

	Algorithm 2 Tabu Search 8: S l ← S 9: Φ ← Update Frequency(Φ) /* Update the best solution found during tabu search */ 10: end if 11: end while 12: S k ← Create Kernel(Φ, ε) 3: Find admissible neighbor solutions N (S) 4: if N (S) = ∅ then 5: S ← argmax{f (S ) : S ∈ N (S)} /* Attain the best neighbor solution S */ 6: U pdate tabu list 7: Continue = T rue 8: else 9: Continue = F alse 10: end if 13: Sk ← Algorithm 3 Neighborhood Search 11: return (Continue, S)

1: Input: Input solution S, neighborhood N f , frequency counter Φ, kernel coefficient ε. 2: Output: Best solution S l found during tabu search, kernel solution S k , non-kernel solution Sk . 3: S l ← S /* Record the best solution S l found during tabu search */ 4: Continue ← T rue 5: while Continue do 6: (Continue, S) ← Neighborhood Search(S, N 1 , Continue) /* Algorithm 3 */ 7: if f (S) > f (S l ) then 1: Input:

  Algorithm 4 Kernel Search 1: Input: Input kernel solution S k , attained local optimum S l , neighborhood N k . 2: Output: Best solution S l during kernel search.

	3: S ← S k	/* Generate a new solution by S k */
	4: Continue ← T rue	
	5: while Continue do	
	6:	(Continue, S) ← Neighborhood Search(S, N k , Continue)
	7:	if f (S) > f (S l ) then	
	8:	S l ← S	/* Update the best solution found during kernel search */
	9:	end if	
	10: end while	
	11: return S l	

  Algorithm 5 Non-Kernel Search 1: Input: Input non-kernel solution Sk , neighborhood Nk . 2: Output: Best solution Sc found during non-kernel search.

	3: S ← Random( Sk )	/* Generate a feasible solution from Sk */
	4: Sc ← S	/*Sc records the best solution found during non-kernel search */
	5: Continue ← T rue	
	6: while Continue do	
	7:	(Continue, S) ← Neighborhood Search(S, Nk , Continue)
	8:	if f (S) > f (Sc) then
	9:	Sc ← S	/* Update the best solution found during non-kernel search */
	10:	end if	
	11: end while	
	12: return Sc	

Table 1 :

 1 Parameters settings of KBTS.

	Parameters	Section	Description	Value
	γmax	2.1	local search depth	3
	ε	2.5	kernel coefficient	0.6
	δ	2.6	direct perturbation strength	3

Table 2 :

 2 Computational results and comparison of the KBTS algorithm with the reference algorithms on the SUKP instances of Set I.

	KBTS	favg std tavg(s)	13283 0 4.082	12479 0 42.992		14044 0 0.023	13508 0 33.403	12522 0 48.206	12317 0 72.495	12817 0 74.247	11584.17 8.26 141.464	11665 0 64.126	11325 0 17.591	11248.96 0.40 146.040	10362.63 52.25 156.331	12045 0 0.075	12369 0 10.175	13696 0 5.851	
	I2PLS (Best Known)	favg std tavg(s) f best	13283 0 3.094 13283	12335.13 98.78 103.757 12479	13521 0 71.984 13521	14044 0 38.245 14044	13451.50 126.49 70.587 13508	12522 0 54.780 12522	12280.07 57.77 238.348 12317	12817 0 66.403 12817	11512.18 73.15 220.100 11585	11665 0 18.733 11665	11325 0 76.000 11325	11243.40 27.43 134.186 11249	10293.89 85.53 237.894 10381	12045 0 2.798 12045	12315.53 62.60 17.470 12369	13695.60 3.68 124.136 13696	11276.17 83.78 139.865 11298
	HBPSO/TS	favg std tavg(s) f best	13283 0 0.098 13283	12403.15 98.97 101.122 12479	13521 0 0.490 13521	14044 0 0.518 14044	13508 0 2.923 13508	12522 0 0.8125 12522	12317 0 0.950 12317	12806.44 15.39 29.074 12817	11585 0 5.985 11585	11484.20 72.95 45.025 11665	11325 0 5.902 11325	11026.24 51.62 340.958 11249	10213.25 71.30 220.328 10381	12045 0 0.056 12045	12369 0 0.088 12369	13696 0 0.489 13696	11298 0 0.486 11298
	DHJaya	favg std tavg(s) f best	13283 0 9.477 13283	12479 0 24.414 12479	13498.22 26.10 258.213 13521	14044 0 1.374 14044	13508 0 1.572 13508	12480.62 65.05 207.667 12522	12217.81 93.361 229.824 12317	12676.78 35.20 241.774 12817	11260.25 103.95 152.329 11585	11301.56 74.88 322.143 11665	10721.45 221.38 77.037 11325	10871.22 39.93 41.383 11109	10069.33 103.33 101.926 10381	12045 0 17.199 12045	12369 0 0.342 12369	13667.63 26.56 244.205 13696	11298 0 38.439 11298
	BABC	favg std tavg(s) f best	13283 0 51.102 13283	12479 0 24.032 12479	13260.16 38.98 253.693 13521	14040.87 11.51 169.848 14044	13508 0 6.795 13508	11953.11 97.57 183.130 12522	11695.21 78.33 147.930 12317	12202.80 67.81 202.515 12736	10383.64 75.79 113.380 11425	10591.65 105.83 298.970 11569	9602.13 142.77 386.555 10927	10522.56 70.17 194.490 10943	9334.52 40.59 135.130 10214	11995.12 53.15 206.570 12045	12369 0 0.531 12369	13179.14 100.78 202.560 13696	10749.46 97.24 259.050 11298
	Instance	f best	100 85 0.10 0.75 * 13283	100 85 0.15 0.85 * 12479	200 185 0.10 0.75 13402	14044	100 100 0.15 0.85 * 13508	200 200 0.10 0.75 12350	200 200 0.15 0.85 11929	300 300 0.10 0.75 12304	300 300 0.15 0.85 10857	400 400 0.10 0.75 10869	400 400 0.15 0.85 10048	500 500 0.10 0.75 10755	500 500 0.15 0.85 9601	85 100 0.10 0.75 * 12045	85 100 0.15 0.85 * 12369	185 200 0.10 0.75 13647	185 200 0.15 0.85 10926

Table 3 :

 3 Computational results and comparison of the KBTS algorithm with the reference algorithms on the SUKP instances of Set II.

	Instance BABC DHJaya HBPSO/TS I2PLS KBTS	f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s)	600 585 0.10 0.75 9098 9026.05 34.87 498.591 9640 9449.97 60.22 690.489 9741 9724.60 7.68 576.260 9750 9734.74 13.39 479.356 9914 9914 0 209.679	600 585 0.15 0.85 8736 8540.46 20.51 172.475 9187 8998.45 79.17 881.295 9357 9174.16 143.19 413.157 9357 9324.62 16.67 457.807 9357 9354.52 9.18 263.684	700 685 0.10 0.75 9311 9176.28 46.93 363.381 9790 9602 55.96 543.236 9881 9792.23 51.06 881.999 9881 9819.24 38.74 363.945 9881 9844.96 11.88 455.713	700 685 0.15 0.85 8671 8397.36 87.65 302.624 9106 8894.09 140.48 426.088 9135 8940.65 109.78 689.759 9163 9135.27 4.90 671.132 9163 9138.36 9.10 524.799	800 785 0.10 0.75 9275 9192.36 20.27 253.268 9771 9540.08 47.95 637.331 9837 9736.89 46.11 777.755 9822 9678.89 80.67 719.986 9837 9808.86 20.42 483.384	800 785 0.15 0.85 8447 8366.50 71.97 254.293 8797 8649 63.01 236.798 8907 8872.84 84.36 418.033 8907 8780.32 43.34 674.231 9024 8955.29 49.07 474.643	900 885 0.75 471.428 9455 9249.53 109.14 687.150 9611 9560.93 89.43 514.922 9611 9537.61 61.42 511.245 9725 9616.70 24.85 609.811	900 885 0.15 0.85 8072 7881.17 88.49 228.388 8418 8244.47 87.93 316.604 8481 8208.22 108.56 332.102 8481 8426.36 44.76 541.670 8620 8526.55 48.37 274.653	1000 985 0.10 0.75 9276 9254.19 27.89 640.529 9424 9306.86 45.01 309.873 9668 9278.50 125.80 620.436 9580 9221.23 103.18 329.743 9668 9496.63 74.35 487.925	1000 985 0.15 0.85 8133 8099.10 25.37 648.215 8433 8280.52 90.87 312.589 8448 8129.08 92.71 564.848 8448 8268.18 135.55 541.606 8453 8448.05 0.50 941.565	600 600 0.10 0.75 10207 9939.38 47.52 66.660 10507 10504.25 19.67 321.196 10518 10517.89 1.09 60.254 10524 10520.70 2.99 513.537 10524 10521.72 2.91 404.697	600 600 0.15 0.85 8621 8361.77 101.30 455.481 8910 8785.64 43.46 571.965 9024 8902.33 27.27 214.261 9062 9022.97 46.28 456.386 9062 9061.16 4.78 255.342	700 700 0.10 0.75 9078 9056.52 21.89 224.370 9512 9409.01 28.70 809.836 9786 9679.56 72.51 215.910 9786 9742.73 40.87 383.700 9786 9786 0 97.316	700 700 0.15 0.85 8614 8290.22 77.62 126.818 9121 8985.51 65.90 507.656 9177 9003.15 138.46 659.194 9229 9155.79 18.61 445.194 9229 9187.55 20.70 486.304	800 800 0.10 0.75 9517 9305.40 56.76 418.476 9890 9656.38 51.42 567.090 9932 9823.17 113.20 607.506 9932 9685.79 72.06 868.227 9932 9930.56 14.33 214.286	800 800 0.15 0.85 8444 8163.77 132.71 376.695 8961 8774.18 59.78 161.688 8907 8732.94 160.07 590.883 8961 8909.50 10.91 27.170 9101 8936.12 39.55 321.859	900 900 0.10 0.75 9290 9272.99 14.56 460.026 9526 9462.86 37.83 670.990 9745 9639.60 51.13 598.520 9745 9660.12 36.68 341.110 9745 9729.51 30.06 368.807	900 900 0.15 0.85 8118 8114.48 9.20 150.984 8718 8492.88 62.31 702.655 8916 8617.20 210.54 665.798 8916 8916 0 116.694 8990 8918.96 14.50 672.574	1000 1000 0.10 0.75 9030 8891.34 39.01 657.972 9348 9250.80 53.65 542.187 9509 9273.64 82.57 802.652 9544 9255.73 142.33 876.669 9544 9431.47 60.84 510.660	1000 1000 0.15 0.85 7867 7627.80 44.88 635.003 8330 8037.92 71.87 932.614 8134 7872.84 95.76 97.909 8379 8206.49 68.52 632.334 8474 8376.20 27.12 500.435	585 600 0.10 0.75 9768 9677.80 81.90 535.874 10300 10161.45 72.81 98.186 10393 10191.01 102.35 729.422 10393 10366.15 29.83 499.311 10393 10393 0 89.785	585 600 0.15 0.85 8689 8623.79 28.52 461.850 9031 8944.22 61.72 616.631 9256 9256 0 103.637 9256 9256 0 264.876 9256 9256 0 84.359	685 700 0.10 0.75 9796 9627.40 73.18 248.733 10070 9953.55 49.02 430.180 10121 9909 30.82 123.012 10121 9979.70 86.13 540.289 10121 10114.96 31.87 230.918	685 700 0.15 0.85 8453 8424.87 4.83 958.748 9102 8860.79 106.42 159.976 9176 8936.47 135.64 645.153 9176 9139.18 52.80 461.051 9176 9176 0 140.151	785 800 0.10 0.75 8765 8658.45 54.33 869.031 9123 8885.09 54.14 316.494 9384 9163.90 70.91 339.415 9384 9236.10 95.56 576.738 9384 9384 0 136.173	785 800 0.15 0.85 8249 8021.86 117.07 577.037 8556 8482.33 51.45 604.625 8572 8322.17 57.53 665.514 8663 8558.51 79.51 586.047 8746 8643.93 47.92 467.334	885 900 0.10 0.75 8938 8897.58 30.23 587.200 9137 9079.09 46.70 590.376 9232 9121.24 48.92 455.104 9232 9106.31 62.28 452.360 9318 9236.16 21.32 281.632	885 900 0.15 0.85 7610 7518.04 50.51 869.729 8217 7881.44 65.84 140.935 8277 7900.57 131.65 296.061 8425 8268 104.34 484.859 8425 8311.68 46.80 625.829	985 1000 0.10 0.75 8914 8741.25 101.76 739.861 9067 8994.48 44.99 313.094 9113 8938.38 66.64 967.315 9047 8917.48 126.37 89.760 9193 9105.84 74.76 319.356	985 1000 0.15 0.85 8071 8066.53 15.17 486.522 8453 8425.27 48.74 503.976 8172 7958.24 121.56 350.640 8528 8233.05 119.98 283.901 8528 8488.13 33.47 450.711	#Avg 8800.37 8668.40 54.33 458.009 9196.67 9041.40 62.54 482.096 9280.33 9105.91 85.91 499.248 9310.10 9202.09 57.96 473.031 9352.30 9303.10 23.95 379.479

Table 4 :

 4 Summarized comparisons of the KBTS algorithm against each reference algorithm with the p-values of the Wilcoxon signed-rank test over the two sets of benchmark instances.

	Algorithm pair	Instance set Indicator #Wins #Ties #Losses p-value
	KBTS vs. BABC	Set I (30)	f best	23	7	0	2.70e-5
			favg	26	4	0	8.30e-6
		Set II (30)	f best	30	0	0	1.73e-6
			favg	30	0	0	1.73e-6
	KBTS vs. DHJaya	Set I (30)	f best	16	14	0	4.38e-4
			favg	22	7	1	3.53e-5
		Set II (30)	f best	30	0	0	1.73e-6
			favg	30	0	0	1.73e-6
	KBTS vs. HBPSO/TS Set I (30)	f best	2	28	0	1.80e-1
			favg	12	15	3	7.60e-3
		Set II (30)	f best	18	12	0	8.85e-5
			favg	29	1	0	2.56e-6
	KBTS vs. I2PLS	Set I (30)	f best	0	30	0	NA
			favg	20	10	0	1.51e-3
		Set II (30)	f best	13	17	0	1.32e-4
			favg	29	1	0	2.56e-6

Table 5 :

 5 Parameter levels for the 2-level full factorial experiment.

		Low level High level
	kernel coefficient ε	0.3	0.6
	local search depth γmax	3	6
	direct perturbation strength δ	3	6

Table 6 :

 6 p-values for the analysis of variances with the significance level 0.05.

	Source of variation		ε	γmax	δ		ε * γmax ε * δ γmax * δ ε * γmax * δ
	p-value	3.70e-2 1.80e-2 1.25e-1 3.90e-1 1.47e-1 1.92e-1	8.41e-1
				0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
									Kernel cofficient
		Average of best objective value	9010 9020 9030 9040 9050			γ max =3, δ =3		Local search depth Direct perturbation strength ε =0.6
			9000							
				1	2	3	4	5	6	7	8	9	10
						Setting of parameter

Table 7 :

 7 Comparison between KBTS (with the kernel components) and KBTS -(without the kernel components) on the instances of Set II.

	Instance/Setting		KBTS			KBTS -	
		f best	favg	std	f best	favg	std
	600 585 0.10 0.75	9914	9914	0	9914	9800.70	77.56
	600 585 0.15 0.85	9357	9353.47	11.29	9357	9356.40	3.23
	700 685 0.10 0.75	9881	9845	12	9881	9851.47	17.36
	700 685 0.15 0.85	9163	9137.80	8.40	9163	9138.73	9.52
	800 785 0.10 0.75	9837	9810.80	16.56	9829	9806.57	17.10
	800 785 0.15 0.85	9024	8944	43.36	9024	8935.07	45.08
	900 885 0.10 0.75	9725	9614.80	20.46	9725	9614.80	20.46
	900 885 0.15 0.85	8620	8534.57	54.15	8588	8541.73	54.39
	1000 985 0.10 0.75	9668	9512.13	74.70	9668	9477.40	56.68
	1000 985 0.15 0.85	8448	8448	0	8448	8448	0
	600 600 0.10 0.75	10524	10521.60	2.94	10524	10521.60	2.94
	600 600 0.15 0.75	9062	9061.07	5.03	9062	9060.73	6.82
	700 700 0.10 0.75	9786	9786	0	9786	9786	0
	700 700 0.15 0.85	9229	9185.60	19.51	9177	9177	0
	800 800 0.10 0.75	9932	9932	0	9932	9932	0
	800 800 0.15 0.85	9101	8935.83	40.92	9101	8928.77	39.09
	900 900 0.10 0.75	9745	9731.40	29.25	9745	9741.03	16.24
	900 900 0.15 0.85	8990	8920.93	18.46	8916	8916	0
	1000 1000 0.10 0.75	9544	9424	55.68	9544	9424.37	51.06
	1000 1000 0.15 0.85	8474	8379.33	24.19	8438	8374.33	20.79
	585 600 0.10 0.75	10393	10393	0	10393	10393	0
	585 600 0.15 0.85	9256	9256	0	9256	9256	0
	685 700 0.10 0.75	10121	10112.80	35.87	10121	10121	0
	685 700 0.15 0.85	9176	9176	0	9176	9176	0
	785 800 0.10 0.75	9384	9384	0	9384	9384	0
	785 800 0.15 0.85	8746	8650.43	48.04	8663	8645.60	27.77
	885 900 0.10 0.75	9318	9239.47	26.88	9318	9233.57	17.29
	885 900 0.15 0.85	8425	8312.43	47.17	8425	8319.97	46.16
	985 1000 0.10 0.75	9193	9086.07	77.58	9186	9083.90	69.38
	985 1000 0.15 0.85	8528	8497.93	33.15	8528	8484.83	36.00
	#Avg	9352.13	9303.35	23.52	9342.40	9297.69	21.16
	#Best	30	22	-	23	17	-
	p-value	-	-	-	1.80e-2	2.31e-1	-

The code of our KBTS algorithm will be available at: http://www.info.univ-angers. fr/pub/hao/SUKP_KBTS.html.

Our solution certificates are available at: http://www.info.univ-angers.fr/pub/hao/ SUKP_KBTS.html.
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Time-to-target analysis

To further asses the computational efficiency of the proposed KBTS algorithm with respect to the reference algorithms (BABC, DHJaya, HBPSO/TS, I2PLS, and KBTS), we present a time-to-target (TTT) analysis [START_REF] References Aiex | TTT plots: a perl program to create time-to-target plots[END_REF][START_REF] Ribeiro | Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms[END_REF]. Basically, TTT shows the computation time required by an algorithm to attain a given target objective value. This analysis is based on four representative instances of Set II, i.e., 585 600 0.10 0.75, 600 600 0.15 0.85, 800 785 0.15 0.85, 1000 985 0.10 0.75. For each instance, we set the target value to be a value, which can be reached by all the compared algorithms (10000, 8800, 8700 and 9000, respectively) and record the time (over 100 runs) of each algorithm to reach a solution with an objective value at least as good as the given target value. The time-to-target plots are shown in Fig. 6, where the time required to achieve the target value and the corresponding cumulative probability
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