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Abstract. This study explores the impact of the structural
error of biosphere models when assimilating net ecosystem
exchange (NEE) measurements or CO2 concentration mea-
surements to optimise uncertain model parameters within
carbon cycle data assimilation systems (CCDASs). This er-
ror has been proven difficult to identify and is often ne-
glected in the total uncertainty budget. We propose a simple
method which is derived from the model-minus-observation
mismatch statistics. This diagnosis is applied to a state-of-
the-art biogeochemical model using measurements of the net
surface CO2 flux at twelve sites located in temperate, de-
ciduous, broadleaf forests. We find that the structural model
error in the NEE space has a standard deviation of 1.5 to
1.7 gC m−2 d−1, without a significant correlation structure
beyond the lag of a few days, and a large spatial structure
that can be approximated with an exponential decay of e-
folding length of 500 km. In the space of concentrations, its
characteristics are commensurate with the transport errors,
both for surface air sample measurements and total column
measurements. The inferred characteristics are confirmed by
complementary optimality diagnostics performed after site-
scale parameter optimisations.

1 Introduction

Carbon cycle data assimilation systems (CCDASs) optimise
internal parameters of dynamical models of the global carbon
cycle (Kaminski et al., 2002; Rayner et al., 2005; Scholze et
al., 2007), using carbon-cycle related observations. Like at-
mospheric inverse models (e.g., Gurney et al., 2002), they
allow the inferring of the space-time distribution of surface

CO2 fluxes from observations, but their underlying process-
based model allows them to use a much larger diversity of
measurements, e.g., local flux measurements (Kato et al.,
2012; Knorr et al., 2010), satellite observations of vegeta-
tion activity (Kaminski et al., 2012; Kato et al., 2012; Knorr
et al., 2010) or biomass inventories. Their model prognostic
equations can also spread the observational information well
beyond the temporal and spatial cover of the measurements
(Scholze et al., 2007; Rayner et al., 2011). The downside of
this strategy is the interference from the errors of the model
equations in the data assimilation process. Indeed the choice
of a process-based approach imposes these equations as a
strong constraint to the inversion, even though they are an
imperfect representation of the biophysical and ecophysio-
logical mechanisms that drive terrestrial ecosystems.

Bayes’ theorem provides a rigorous paradigm to build
such CCDASs. Its application implies characterising the un-
certainties of each CCDAS component:

– the measurement error;

– the model error, which stems from inappropriate equa-
tion forms or from missing processes in the carbon-
cycle model structure;

– the error brought by the meteorological and vegetation
forcing data, here considered as a part of the model er-
ror;

– the parameter error, arising from inadequate knowledge
about a series of parameters.

Following the usual convention, we callobservation error
the sum of the measurement error and of the model error (i.e.,
the first three items in the above list).
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Even within the basic assumption of normally-distributed
errors, this characterisation involves potentially large error
covariance matrices, at least for the model and the observa-
tion errors.

The present study aims at providing a method to explic-
itly quantify the error of process-based terrestrial models, in
particular, for global CCDASs. The conclusions also apply
to site-scale parameter optimisation schemes. Denoting as
“prior” the state of the carbon-cycle model before any obser-
vational constraint, we propose to analyse the statistics of the
prior residuals (observations-minus-prior simulations) with
the help of the assigned prior parameter uncertainties pro-
jected in the observation space. Within the Bayesian frame-
work, these two pieces of information and the observation er-
ror, which is the summed contribution of model and measure-
ment errors, are linked together. We apply this method to the
global biosphere modelORganisingCarbon andHydrology
In DynamicEcosystEms (ORCHIDEE, Krinner et al., 2005)
in temperate deciduous broadleaf forests, using measure-
ments of the daily net ecosystem exchange (NEE) flux at
twelve eddy-covariance flux measurement sites as observ-
able quantity. We take advantage from the previous studies
that have characterised the uncertainties of these measure-
ments (e.g., Richardson et al., 2008). The inferred structure
of the observation (model+ measurement) error on the mod-
elled net carbon fluxes is then projected in the space of atmo-
spheric concentrations in order to characterise its structure
when assimilating concentration measurements with a CC-
DAS.

In Sect. 2, we present the biogeochemical model and the
flux data used in this study, as well as the methodology of the
different diagnoses and evaluations. In Sect. 3, the presenta-
tion of the results is divided into five parts: analysis of the
statistics of the prior residuals and the prior-parameter error,
diagnosis of the temporal structure of the observation error,
posterior evaluation at the site level, identification of the spa-
tial structure of the observation error and projection in the
space of atmospheric concentrations. Finally, the results are
discussed in Sect. 4.

2 Methods

2.1 Flux data

The observations of CO2 surface fluxes used in this study
have been made with the eddy-covariance technique. This
method uses the covariance between fluctuations of turbu-
lent vertical wind (eddies) and the scalar of interest (e.g.,
CO2 mixing ratio) to calculate vertical fluxes of carbon, wa-
ter and energy within atmospheric boundary layers (Aubinet
et al., 2000). The measurements have a footprint of a few
hectares and notably rely on the assumption of a well-mixed,
fully turbulent boundary layer above a flat landscape. At
present, flux towers are considered as the reference standard

for CO2 surface flux measurement, and there has been an
effort to develop a global network of them across representa-
tive biomes in the FluxNet database (Baldocchi et al., 2001;
Baldocchi, 2008). More specifically, theLaThuile archive
contains gap-filled measurements of half-hourly net carbon
flux (NEE) collected using a standardised protocol (Papale
et al., 2006), as well as the corresponding meteorological
data later used as an input for the ORCHIDEE model. We
selected 12 flux tower stations in the Northern Hemisphere
located in temperate deciduous broadleaf forests, which cor-
respond to one of the plant functional types (PFT) used in
the ORCHIDEE model (Table A1). From this half-hourly
data we compute daily means, in order to take advantage
of the rapidly-declining autocorrelation of gap-filled half-
hourly fluxes (see Fig. 5a in Lasslop et al., 2008).

2.2 Terrestrial model

The biogeochemical vegetation model ORCHIDEE calcu-
lates the water, energy and carbon fluxes between the land
ecosystems and the atmosphere. The exchange of carbon and
water during photosynthesis and the energy balance are sim-
ulated on a half-hourly basis, while carbon allocation, au-
totrophic respiration, foliar onset and senescence, mortality
and soil organic matter decomposition are processes com-
puted on a daily time step. The ORCHIDEE processes and
ruling equations have been extensively described by Krinner
et al. (2005). In this study, ORCHIDEE is used in a “grid-
point mode” at one given location at a time, forced with
the corresponding local half-hourly gap-filled meteorological
measurements obtained at the flux towers. At each location,
the modelled carbon pools are initially brought to equilib-
rium by cycling the meteorological forcing over a long pe-
riod, so that the net carbon flux nears zero. The a priori con-
figuration of the model is the one used in a series of data as-
similation studies (Kuppel et al., 2012; Santaren et al., 2007;
Verbeeck et al., 2011). A state vectorx of 26 key parameters
is considered (see Table B1). A physically-based variation
range has been defined for each parameter. The prior stan-
dard deviations of the model parameter errors are assigned in
theB matrix as 1/6 of this range.

2.3 Diagnoses

In this study, notations for vectors and matrices are as fol-
lows: subscripts refer to contributions (e.g., model, measure-
ments. . . ), superscripts refer to contexts (e.g., prior state,
posterior state), and hats (“∧”) to estimates. Defining the
prior statexprior as the vector of prior parameters, the prior
model output (here, the daily NEE) is given byH(xprior),
whereH is the observation operator. Assuming the linear-
ity of the model in the vicinity of the prior state, we intro-
duce the Jacobian matrixH that corresponds to the linearised
version ofH . With normally distributed and uncorrelated
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prior-parameter and observation errors, we can write (e.g.,
Desroziers et al., 2005):

HBHT
+ R = D. (1)

HBHT is the projection of the prior-parameter error covari-
ance matrixB in the observation space,R is the covariance
matrix of the observations errors (i.e., model errors+ mea-
surement errors), andD is the covariance matrix for the dis-
tribution of the residuals from the prior modeldo-prior (i.e.,
the observation-minus-model mismatch), defined as

do-prior
= yo

− H(xprior), (2)

whereyo is the observation vector (daily NEE in our case).
Following the distinction made in Sect. 1,R is composed
of two terms:Rmeas the covariance matrix of the measure-
ment error andRmod the covariance matrix of the model er-
ror. Their respective contribution to the total observation er-
ror budget is discussed in Sect. 3.

An additional diagnosis makes use of the optimised model
state, i.e., the NEE fluxes after the optimisation of the model
parametersx (see the inversion procedure in Sect. 2.4) to
directly derive an estimate ofR:

R̂
post

= F, (3)

whereF is the covariance between the prior residualsdo-prior

(see Eq. 2) and the posterior residualsdo-post. The latter is
defined as

do-post
= yo

− H(xpost), (4)

whereH(xpost) is the model output calculated at the opti-
mised statexpost. The demonstration of the relation in Eq. (3)
is given in Appendix A.

The prior and posterior diagnoses proposed in Eqs. (1) and
(3) are respectively the starting points toward a prior esti-
mation of the covariance matrix of observation errors (i.e.,

model errors+ measurement errors)̂R
prior

, and a posterior

estimationR̂
post

. Appendix B describes the application of
both diagnoses at each flux measurement site, where for sim-
plicity and to increase statistical significance we consider er-
rors to be stationary in time, i.e., characterised by a single
time lag. We acknowledge that this is a strong assumption for
modelled carbon fluxes affected by significant seasonal vari-
ations, and this limitation should be kept in mind throughout
the analysis of the results.

2.4 Data assimilation system

The site-scale inversions of the ORCHIDEE parameters are
independently performed at each of the sites listed in Ta-
ble A1, with a variational data assimilation system. The op-
timised parameters are listed in Table B1, while a more de-
tailed description of the assimilation system can be found in

Kuppel et al. (2012). Briefly, we define a Bayesian cost func-
tion J ,

J (x) =
1

2

[(
yo

− H(x)
)T

R−1(
yo

− H(x)
)

+

(
x − xprior

)T
B−1

(
x − xprior

)]
, (5)

where all the terms have been defined in the previous section.
The cost function is minimised iteratively using a gradient-
based approach, and the boundaries can be explicitly pre-
scribed for each parameter in the minimisation algorithm.
At each iteration, the gradient of the cost function is com-
puted with respect to all parameters, using the tangent linear
version of the model – except for threshold phenological pa-
rameters where a finite-differences approach is used. Note
that for the computation of spatial statistics between sites
(Sect. 3.4), the assimilation system is used in the “multi-site”
mode described in Kuppel et al. (2012), where all sites are
used simultaneously to derive common parameter values.

2.5 Projection in the space of atmospheric
concentrations

The observation errors of the biosphere model,R, associated
to the Net Ecosystem Exchange of carbon (NEE) affect the
assimilation of concentration measurements within a global
CCDAS, like the errors of the atmospheric transport models
affect the assimilation of such measurements within atmo-
spheric inversions (e.g., Gurney et al., 2002). To quantify this
impact, we projectR in the space of atmospheric mixing ra-
tios using the LMDZ atmospheric transport model (Hourdin
et al., 2006) at global horizontal resolution 2.5× 3.75 deg2

(latitude, longitude). Mathematically, we computeTRTT,
with T the Jacobian matrix of the transport model. In prac-
tice, we use an ensemble approach for this, rather than
the direct sandwich product, as described in Chevallier et
al. (2007). We consider two types of observations. The first
one is the measurement of mixing ratios of CO2 collected
in flask air samples or performed in situ by automatic anal-
ysers. We use the observation time-space sampling of the
database gathered by Chevallier et al. (2011) for year 2010,
which includes 91 stations over all oceans and continents.
The second type of measurement is the column-averaged dry
air mole fractions of CO2 (hereafterXCO2) retrieved from
surface stations (Wunch et al., 2011) or from space (e.g.,
Crisp et al., 2012). We use the time-space sampling of the
quality-controlled retrievals from the Japanese Greenhouse
gases Observing SATellite (GOSAT) made by NASA’s At-
mospheric CO2 Observations from Space (ACOS) project
(O’Dell et al., 2012; Crisp et al., 2012).

www.geosci-model-dev.net/6/45/2013/ Geosci. Model Dev., 6, 45–55, 2013
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Fig. 1. All-site median of the autocorrelation of the residuals from
the prior ORCHIDEE model (black, corresponding toD in Eq. 1)
and of the prior-parameter error projected in the flux space (purple,
corresponding toHBHT in Eq. 1), as functions of the time lag, for
daily NEE.

3 Results

3.1 Temporal structure of the prior residual and of the
prior-parameter error

Figure 1 shows the temporal autocorrelation structure of
the prior residual (observation minus simulation) and of the
prior-parameter error projected in the observation space (first
term of Eq. 1), for the different FluxNet sites. The two curves
displayed here represent the all-site median values, using 1-
day bins. The correlation structure reveals a similar seasonal
pattern in both cases, with ever-positive values, larger at short
lags and at lags close to one year. For the parameter error,
the moderately high correlation at the one year lag (0.44) in-
dicates that inappropriate parameter values controlling sea-
sonal processes (e.g., the maximum photosynthetic capacity)
affect the seasonal pattern of NEE in the same direction each
year. For the prior model-data residuals, in depth analyses
of the results reveals that systematic NEE differences occur
each year for specific seasons. For instance, the simulated
winter NEE (mainly heterotrophic respiration for the chosen
ecosystem) is overestimated each year at most sites, partly
because the model was brought to steady state (see Kuppel et
al., 2012).

The autocorrelation of the prior-parameter error (projected
in the flux space) is generally larger than that of the prior
residual. The all-site correlation of the prior residual falls
below 0.5 after 7 days and reaches a nearly-stable value
around 0.12 for lags between 50 and 330 days. The all-site
prior-parameter error correlation also takes one week to be
less than 0.5, but the decrease is then milder than that of
the prior residual correlation, reaching a minimum of 0.05
around the six-month lag. The more persistent autocorrela-
tion of the prior-parameter error can be linked to the small
size of the state vector. In our case, as in most optimisation
studies (Williams et al., 2009), the number of tuned param-
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Fig. 2. All-site median of the autocorrelation of the observation er-
ror (i.e., model error+ measurement error)R, estimated at each site
with three methods: prior diagnostics with the linear assumption

(orange,R̂
prior

from Eq. 1), prior diagnostics with ensemble sim-

ulations (blue,R̂
prior

from Eq. 1), and posterior diagnostics (grey,

R̂
post

from Eq. 3).

eters is rather small, which keeps the number of degrees of
freedom low.

The correlation of the prior residual error is above that of
the prior-parameter error for lags between 120 and 230 days
correlation, with in particular a bump around the 150-day
lag. This last feature possibly comes from an overestima-
tion of the growing season length in ORCHIDEE: the NEE
residual (observation minus simulation) tends to be negative
both at the beginning and at the end of the growing season,
temporally distant of about 150 days (Kuppel et al., 2012),
thus, inducing a positive error correlation. The presence of
this bump around the 220-day lag (i.e., the dormant season
length) at some of the sites with several years of data records
(not shown) further hints in that direction.

The median standard deviation of the prior residual is
equal to 2.1 gC m−2 d−1 when combining the sites altogether,
while the median prior-parameter error contributes to an un-
certainty of 1.3 gC m−2 d−1 in the observation space. This
latter value is not negligible, which indicates that the current
uncertainty on the main model parameters induces a signifi-
cant uncertainty on the simulated NEE.

3.2 Temporal structure of the observation error

The orange curve in Fig. 2 (“linear assumption”) shows the
corresponding all-site median time correlogram, from the au-
tocorrelation of the observation errors (model+ measure-
ment errors) computed at each site. One can notice a very
rapid decrease, since after one day the correlation falls to a
ten-day long plateau at 0.4, and then decreases to reach 0.1
after one month. For larger lags, the correlation is mostly
negligible although there is a bump almost reaching 0.4
around the 150-day lag and a weaker one around the 220-day
lag. These last two features originate from the prior residual
error (Sect. 3.1) and are made significant in the observation

Geosci. Model Dev., 6, 45–55, 2013 www.geosci-model-dev.net/6/45/2013/
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Table 1.Chi-square test after optimisation.

Observation error All-site median
statistics χ2(2J

(
xpost)/p)

Measurement error only: diagonalR, σ2
= 0.16 14.6

Diagnosis a priori (̂R
prior

): diagonalR, σ2
= 2.78 1.12

Diagnosis a posteriori (̂R
post

): diagonalR, σ2
= 3.67 0.64

error by the very low correlation of the prior-parameter error
around this lag (Fig. 1). The seasonality of the observation
error correlation is also significant, although similar to both
the prior residual and the prior-parameter error for large time
lags (Sect. 3.1).

The median standard deviation of the observation error
is estimated to be 1.7 gC m−2 d−1. This number combines
measurement and model contributions (Sect. 2.3). Using
measurements across different types of forest ecosystems,
Richardson et al. (2008) found that the random measurement
errors range approximately from 0.2 to 0.8 gC m−2 d−1, be-
ing somewhat proportional to the absolute flux magnitude,
which means that the variance due to the measurement er-
rors accounts for 1 to 25 % of the total observation variance.
Additionally, Lasslop et al. (2008) showed that no signifi-
cant measurement error correlation remains at the daily time
scale. From these elements, we conclude that the seasonal
structure of the model error in ORCHIDEE is very similar
to that of the observation error described above (the orange
curve in Fig. 2), with a standard deviation ranging from 1.5
to 1.7 gC m−2 d−1. The estimated structure notably indicates
that the model error is somewhat correlated across seasons:
for instance, any underestimation/overestimation of the NEE
in summer or winter remains the following year.

As mentioned in Appendix B, the robustness of the lin-
earity assumption is tested by estimating the prior-parameter
error statistics in the observation space (based on Eq. 1) with
an ensemble approach at each site. The rest of the prior di-
agnosis is otherwise the same, and the all-site median of
the time correlation of the corresponding observation error
is shown by the blue curve in Fig. 2. The structure of the
“ensemble” observation error is very close to that diagnosed
previously with the “linear” method, although the correlation
of the former remains below the latter, and the standard devi-
ation of the “ensemble” observation error is slightly smaller
(1.6 gC m−2 d−1, not shown). This result indicates that the
linearity assumption in the vicinity of the prior-parameter
state does not have a significant impact upon the diagnosis
presented in this study.

3.3 Posterior evaluation at site level

The diagnosed observation error (model+ measurement er-
ror) statistics are used as prior information for site-scaled in-
versions of ORCHIDEE parameters at each of the sites de-

scribed in Table A1, according to the methodology described
in Sect. 2.4. In Fig. 2, the grey curve shows the median time
correlogram corresponding to the posterior diagnosis (after
the inversions) of the observation error estimated with both
prior and posterior residuals (Eq. 3:F). For lags shorter than
100 days or longer than 250 days, there is a remarkable con-
sistency with the observation error statistics diagnosed a pri-
ori (orange curve). Elsewhere, it is nearly uncorrelated and
only weakly reproduces the two bumps (around the 150-day
and 220-day lags) mentioned in the previous section. It in-
dicates that these features are most probably only partially
related to the model error. Instead, this particular correla-
tion structure may be present in the structure of the prior-
parameter error, but is currently ignored due to the prior-
parameter diagonal assumption made in the inversions. The
standard deviation ofF is equal to 1.9 gC m−2 d−1, somewhat
higher than that brought by the prior diagnosis.

Further on, one metric often used to estimate the optimal-
ity of an optimisation is based on the relation of statistical
expectation notably presented in Tarantola (1987):

J
(
xpost)

= p/2, (6)

wherexpost is the vector of optimised parameters at the min-
imum of the cost functionJ , andp the number of observa-
tions.

This evaluation criterion is applied to the inversions con-
ducted at each site. Table 1 shows the all-site medians of the
ratio between the left-hand term and the right-hand term of
Eq. (6) (hereafter chi-square ratio), using various observa-
tion error statistics. In the first case, we only take the mea-
surement error into account with a diagonalR with a stan-
dard deviation equal to 0.4 gC m−2 d−1. One can notice that
the value of the cost function at its minimum remains much
larger than the half the number of observations (Table 1, first
row), suggesting that the low prior observation uncertainty
puts too much trust in the measured fluxes and, thus, can-
not meet the optimality criterion. Second, we consider the
observation error diagnosed a priori in the previous section
(measurement+ model error). We keepR diagonal here
as well, because of the quick drop in the time correlations
shown in Fig. 2, and the standard deviation is now equal to
1.7 gC m−2 d−1. The value of the analysed parameters is af-
fected at most sites, with smaller changes from their prior
values (not shown). The chi-square ratio is much more con-
sistent in this case (Table 1, second row), although the value

www.geosci-model-dev.net/6/45/2013/ Geosci. Model Dev., 6, 45–55, 2013
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Fig. 3. Distance correlogram of the observation

(model+measurement) errorR̂
prior

estimated from Eq. (1),
using pairs of distant sites for a same time. The value represented
by each blue diamond includes all the common years of one site
pair. The thick black line represents the overall median using
400-km bins, and the dotted line an exponential decay with an
e-folding length of 500 km.

suggests that there is still too much weight put on the ob-
servations. Taking advantage of the posterior diagnosis pre-
sented above, we now adjust the value of the variance with a
standard deviation of 1.9 gC m−2 d−1. The results show that
this first step of an “iterative” estimation ofR significantly
improves the optimisation according to the present criterion
(Table 1, third row), keeping in mind that the observation er-
ror correlations were simply neglected.

3.4 Spatial structure of the observation error

The spatial footprint of the observation error without time
lag is shown by the distance correlogram in Fig. 3. Note that
here we use the posterior diagnosis based on Eq. (3), which
provides a better numerical stability than the prior diagno-
sis of Eq. (1). Each point in Fig. 3 represents a pair of sites
that have at least one year of data in common. The all-site
median is calculated using 400-km bins. It shows a declining
spatial structure of the correlation within the first 500 km,
where it remains larger than 0.4, while it converges toward
zero for larger lag distances. Since all sites present the same
dominant PFT and since the spatial correlations of the mea-
surement error is considered as negligible, we suggest that
the inferred spatial structure of the observation error derives
from the model error and that the correlation decline origi-
nates from the meteorology. In the next section, this spatial
structure is approximated by an exponential decay, with an e-
folding length of 500 km in the flux space (black dotted line
in Fig. 3).

3.5 Projection in the space of concentrations

Assuming similar model-data mismatch across biomes with
the ORCHIDEE model (see, for example, Wang et al., 2012),
the characteristics of the observation errorR diagnosed in

temperate deciduous broadleaf forests (e-folding lengths of
500 km and 1 day for space and time correlation, respec-
tively) are prescribed at the global scale, and we project the

inferredR̂
prior

in the space of atmospheric concentrations us-
ing the LMDZ transport model (see Sect. 2.5). For the sur-
face air sample measurements, we find that the median of the
standard deviation of the observation error is 1.3 ppm across
the 91 sites with a maximum of 8 ppm (at station UTA, Wen-
dover, Utah, USA) and a minimum of 0.1 ppm (at station
SMO, Tutuila, American Samoa). No specific spatial struc-
ture of this error is seen. For the total column measurements,
the standard deviation is 0.5 ppm with a marked spatial struc-
ture: an e-folding length of 1200 km can be deduced from the
simulations. We suggest that the total column smoothes out
the surface-originated signals, which results in much smaller
variances and, thus, much larger correlations. Additionally,
for both types of observations there no significant temporal
structure of the error, with a nearly-exponential decrease be-
low 0.4 after two days.

4 Conclusions

This study proposes a method to diagnose the model struc-
tural error in the process-based terrestrial biosphere model
ORCHIDEE, based on the information provided by eddy-
covariance measurements of net carbon fluxes. This term
is analogous to the aggregation error that has been rigor-
ously described in atmospheric inversions (Bocquet et al.,
2011; Kaminski et al., 2001; Thompson et al., 2011), in that
it arises from truncating a given space of variables. As a
first step, we have used NEE measurement records at twelve
flux tower sites in temperate deciduous broadleaf ecosys-
tems. The statistics of the prior residuals (i.e., measurements-
minus-simulations) and the prior-parameter error allowed us
to estimate the structure of the observation error (i.e., model
error+ measurement error) whose inferred characteristics in
different observation are summarised in Table 2, and to sub-
sequently derive the model error based on earlier works re-
garding the flux measurement error.

We find that the model error dominates the observation
error budget, with a standard deviation ranging from 1.5 to
1.7 gC m−2 d−1. The observation error shows some time cor-
relation structure, but rapidly declines beyond the first-day
lag so that the assumption of a diagonal observation error
covariance matrix within a CCDAS remains realistic. Note,
however, an increase of the error correlation at the one year
time lag (up to 0.45), currently neglected in most carbon cy-
cle optimisation systems, that may impact the estimated state
vector and associated errors in CCDASs. Ensemble simula-
tions show that these results are independent from the as-
sumed linearity of the model in the vicinity of the prior state.
A spatial structure is also visible, with a decrease of the
correlation in space rather e-folding with a length of about
500 km. Evaluative site-scaled parameters inversions support
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Table 2. Summary of the characteristics of the median observation error (measurement error+ model error) in the ORCHIDEE model,
projected in several observation spaces.

Observation type
Structure of the observation error

Standard
deviation

Time correlation Space correlation

Surface carbon flux (NEE) 1.7 gC m−2 d−1 Rapid decrease, below 0.4 after
the first day

Exponential decrease, e-folding
length of 500 km

Atmospheric CO2 concentration
(surface sample)

1.3 ppm Rapid decrease, below 0.4 after
the second day

No specific structure

Atmospheric CO2 concentration
(total column)

0.5 ppm Rapid decrease, below 0.4 after
the second day

Exponential decrease, e-folding
length of 1200 km

a consistency between our diagnosis method, based on prior
information, and a posterior diagnosis using both the prior
and the optimised fluxes. The same inversions also show
that the diagnosed standard deviation of the observation error
complies fairly well with a common optimality criterion used
in data assimilation. We additionally suggest that an itera-
tive use, in successive inversions, of the standard deviation
brought by the posterior diagnosis mentioned above could
further improve the estimation of the observation uncertainty.

The diagnosed model error is large enough to necessitate
an explicit representation in parameter optimisation schemes
using NEE measurements in general and in CCDASs in par-
ticular. For CCDASs, the observation error also bears conse-
quences on the assimilation of concentration measurements.
Our evaluation indicates that it can simply be treated like
an additional contribution to the observation error variance
of the order of 1 ppm2 for most background air sampling
stations. For the assimilation of CO2 total column measure-
ments like the GOSAT retrievals, the contribution to the vari-
ance is small (0.25 ppm2), but its spatial coherence (an e-
folding length of about 1200 km) makes its representation in
CCDASs both critical and very challenging. Its characteris-
tics are actually commensurate with those of transport model
errors (Chevallier et al., 2010; Houweling et al., 2010) and
both concur in hindering the assimilation ofXCO2.

One of the assets of CCDAS is the possibility to run the
optimised model outside the data assimilation period, for in-
stance for long-term predictions (e.g., Rayner et al., 2011). In
this prediction mode, the model carries its structural error. As
a consequence, the forecast error does not converge towards
zero when assimilating more informative observations in the
parameter optimisation phase. Our method allows quantify-
ing the contribution of the structural model error to the fore-
cast error.

There are four main limitations to this study. First, only
one type of ecosystem is presently considered, which may
fail to capture specificities of other types of biomes under dif-
ferent climatic conditions. Second, more measurement sites
in this ecosystem would be needed to span a larger range of
forest species, forest age classes, and soil types in order to

derive more robust estimates. Third, it is hard to assess to
which extent our results apply to terrestrial biosphere mod-
els other than ORCHIDEE. Fourth, the contribution from the
meteorological forcing has not been considered in the ob-
servation error budget because the forcing is taken from in
situ measurements in the simulations, but this component
should be considered when applying the present method at
coarser scales, i.e., with less known forcing variables. Addi-
tionally, the method can be extended to other measurements
such as the latent heat flux (LE) and the sensible heat flux
(H ), which account for the energy budget in process-based
biosphere models.

Nonetheless, this work should be considered as an effort
toward the estimation of the model structural components of
the uncertainty in complex data assimilation systems such as
CCDASs, particularly since the method requires few compu-
tations (only prior simulations and sensitivity are required)
and can easily be applied beyond the present framework.

Appendix A

Demonstration of Eq. (3) based on Desroziers et al. (2005)

Using the common linear assumption, the optimised state
xpost can be decomposed here as follows:

xpost
= xprior

+ δxpost
= xprior

+ Kdo-post, (A1)

where the optimisation incrementδxpost can be expressed
from the residuals of the prior modeldo-prior using the gain
matrix of the optimisationK (Talagrand, 1997):

K = BHT(HBHT
+ R)−1. (A2)

Using the relation of Eq. (A1) in Eq. (4), do-post is given by

do-post
= yo

− H(xprior
+ Kdo−prior)

= yo
− H(xprior) − HK do-prior

= do−prior
− HK do−prior

= (I − HK )do-prior,
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Table A1. Information about the selected FluxNet sites.

Site Location Time period References

DE-Hai 51.079◦ N, 10.452◦ E 2000–2006 Mund et al. (2010)
DK-Sor 55.487◦ N, 11.646◦ E 2004–2006 Pilegaard et al. (2001)
FR-Fon 48.476◦ N, 2.78◦ E 2006 Prevost-Boure et al. (2010)
FR-Hes 48.674◦ N, 7.064◦ E 2001–2003 Granier et al. (2008)
JP-Tak 36.146◦ N, 137.423◦ E 1999–2004 Ito et al. (2006)
UK-Ham 51.121◦ N, 0.861◦ W 2004–2005 http://www.forestry.gov.uk/

website/forestresearch.nsf/
ByUnique/INFD-62NBUH

US-Bar 44.065◦ N, 71.288◦ W 2004–2005 Jenkins et al. (2007)
US-Ha1 42.538◦ N, 72.172◦ W 2003–2006 Urbanski et al. (2007)
US-LPH 42.542◦ N, 72.185◦ W 2003–2004 Hadley et al. (2008)
US-MOz 38.744◦ N, 92.2◦ W 2005–2006 Gu et al. (2012)
US-UMB 45.56◦ N, 84.714◦ W 2000–2003 Gough et al. (2008)
US-WCr 45.806◦ N, 90.08◦ W 1999–2004 Cook et al. (2004)

whereI is the identity matrix. Then, the use of Eq. (A2) gives

do-post
= I − HBHT(HBHT

+ R)−1do-prior

= ((HBHT
+ R)(HBHT

+ R)−1

− HBHT(HBHT
+ R)−1)do-prior

= R(HBHT
+ R)−1do-prior,

then the covariance between the distribution ofdo-post and
do-prior, F, can be expressed as

F = R(HBHT
+ R)−1D,

which, from Eq. (1), simplifies to

F = R.

Appendix B

Application of the diagnoses to the FLUXNET data

We first apply the prior and posterior diagnoses, respectively,
described by Eqs. (1) and (3) to derive the spatial structure of
the observation error (i.e., model error+ measurement error)
covariance matrix at each observation site, using observa-
tions serially distributed over time. Considering daily obser-
vations of NEE, the term of coordinates (i, j) of a given error
covariance matrix expresses the covariance between daysi

andj , with a time lag equal to|i − j | days (all the terms of
one diagonal account for equally-lagged covariances). Given
the limited number of observations available at some sites,
D andF are calculated at each site as diagonal-constant ma-
trices (Toeplitz matrices), assuming stationary errors. If the
main diagonal is called the first diagonal, the (t + 1)-th diag-
onal ofD (resp.F) is then defined by a single termDt (resp.
Ft ) equal to thet-lagged covariance:

Dt =
1

N − t
((do-prior)1≤k≤N−t )

T((do-prior)t≤k≤N ), (B1)

Ft =
1

N − t
((do-prior)1≤k≤N−t )

T((do-post)t≤k≤N ), (B2)

whereN and(dx)t1≤k≤t2 are, respectively, the dimension of
the residuals and the sub-vector ofdx taken between chrono-
logical indexest1 andt2. Note that the relative shortness of
the time series available at each site, with respect to the time
scales of some biophysical processes (such as soil carbon
storage), makes it difficult to identify any systematic (long-
term) bias in the residuals. To circumvent this problem and
following Desroziers et al. (2005), we compute mean squares
rather than standard deviations in Eqs. (B1) and (B2).

For consistency, we also reduce the fullHBHT matrix to
a diagonal-constant matrix at each site, by averaging along
each diagonal:

HBHT
t =

1

N − t

N−t∑
k=1

(HBHT)k,k+t , (B3)

where(HBHT)k,k+t are the elements of the (t + 1)-th diag-
onal in the lower half of the originalHBHT. This matrix
HBHT can also be obtained a simple ensemble method ap-
plied at each site, avoiding the linearity assumption. Instead
of using the sandwich productHBHT, in this case we use the
statistics provided by a large ensemble of model simulations
(500 members) with a parameter distribution that follows the
statistics ofB around the prior values.

Both matricesR̂
prior

andR̂
post

are calculated as diagonal-
constant. For each lagt ,

R̂
prior
t = Dt − HBHT

t . (B4)

R̂
post
t = Ft . (B5)

Geosci. Model Dev., 6, 45–55, 2013 www.geosci-model-dev.net/6/45/2013/

http://www.forestry.gov.uk/website/forestresearch.nsf/ByUnique/INFD-62NBUH
http://www.forestry.gov.uk/website/forestresearch.nsf/ByUnique/INFD-62NBUH
http://www.forestry.gov.uk/website/forestresearch.nsf/ByUnique/INFD-62NBUH


S. Kuppel et al.: Quantifying the model structural error in carbon cycle data assimilation systems 53

Table B1.Parameters of the state vectorx, with their prior value, variation range and uncertainty.

Parameter Description Prior value Rangeσprior

Vcmax Maximum carboxylation rate (µmol m−2 s−1) 55 30–80 8.33
Gs,slope Ball-Berry slope 9 6–12 1
cT ,opt Factor controlling optimal photosynthesis temperature (◦C) 26 18–34 2.67
cT ,min Factor controlling minimal photosynthesis temperature (◦C) −2 (−7) − 3 1.67
cT ,max Factor controlling maximal photosynthesis temperature (◦C) 38 33–43 1.67
SLA Specific leaf area (m2 g−1) 0.026 0.013–0.05 0.015
LAI MAX Maximum LAI per PFT (m2 m−2) 5 3–8 0.83
Klai,happy LAI threshold to stop carbohydrate use 0.5 0.15–0.7 0.09
Kpheno,crit Multiplicative factor for growing season start threshold 1 0.5–2 0.25
cT ,senescence Offset for temperature threshold for senescence (◦C) 12 6–18 2
Lagecrit Average critical age for leaves (days) 180 120–240 20
Humcste Parameter describing the exponential root profile 0.8 0.2–3 0.47
Dpucste Total depth of soil water pool (m) 2 0.2–10 1.63
Fstressh Factor controlling threshold of soil water content to open stomatas 6 2–10 1.33
Q10 Temperature dependence of heterotrophic respiration 1.99372 1–3 0.33
KsoilC Multiplicative factor of initial carbon pools 1 0.1–2 0.32
HRH,a Factor of the humidity dependence of heterotrophic respiration −1.1 −1.4–(−0.8) 0.1
HRH,b Factor of the humidity dependence of heterotrophic respiration 2.4 2.1–2.7 0.1
HRH,c Factor of the humidity dependence of heterotrophic respiration −0.29 −0.59–0.01 0.1
HRH,min Factor of the humidity dependence of heterotrophic respiration 0.25 0.1–0.6 0.083
MRa Slope of the relationship between temperature and maintenance respiration 0.16 0.08–0.24 0.027
MRb Intercept of the relationship between temperature and maintenance respiration 1 0.5–2 0.25
GRfrac Fraction of biomass available for growth that is respired 0.28 0.2–0.36 0.027
Zdecomp Parameter describing the profile of organic matter content in the soil 0.2 0.1–1.5 0.23
Z0overheight Characteristic rugosity length (m) 0.0625 0.02–0.1 0.013
Kalbedo,veg Multiplying factor for surface albedo 1 0.8–1.2 0.067

Then, we adapt Eqs. (B1) and (B3) to the spatial domain
by combining statistics between all the sites, using observa-
tions simultaneously made at each site. Considering two lo-
cationsA andB, spatially distant ofd, with intersecting sim-
ulation/measurements time periods, we apply the prior diag-
nosis based on Eq. (1):

Dd =
1

NAB

(d
o-prior
A )Td

o-prior
B , (B6)

HBHT
d =

1

NAB

NAB∑
k=1

(HBHT
AB)k,k, (B7)

R̂d = Dd − HBHT
d (B8)

whered
o-prior
A andd

o-prior
B are the two vectors of prior resid-

uals chronologically subsampled within their temporal inter-
section,NAB is the number of intersecting observations, and
HBHT

AB is the sub-matrix ofHBHT expressing the prior er-
ror statistics betweenA andB within their temporal intersec-
tion. Indeed, a single all-siteHBHT is here computed, using a
“multi-site” approach where a single common set of param-
eters simultaneously describes the prior state at all 12 sites
(Kuppel et al., 2012).
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