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Abstract: We report the building, validation and release of 
QSPR (Quantitative Structure Property Relationship) models 
aiming to guide design of new solvent for the next generation 
of Li-ion batteries. The dataset compiled from the literature 
data included oxidation potentials (Eox), specific ionic 
conductivities (), melting points (Tm) and boiling points (Tb) 
for 103 electrolytes. Each of the resulting consensus models 
assembled 9-19 individual Support Vector Machine models 
built on different sets of ISIDA fragment descriptors[1]. They 
were implemented in the ISIDA/Predictor software. 

Developed models were used to screen a virtual library of 
9965 esters and sulfones. The most promising compounds 
prioritized according to theoretically estimated properties 
were synthesized and experimentally tested. 

Keywords: QSPR, Generative Topographic Mapping, electrolyte, oxidation potential, conductivity  

 
 
 
Despite a tremendous success in the development of new 
materials for positive electrodes of Lithium-ion batteries, still 
low attention was paid to the design of suitable electrolytes. 
In principle, new electrodes support high voltage, but their 
application is limited by the poor electrolyte stability towards 
oxidation in high-voltage lithium-ion batteries. Besides, 
security issues have to be managed due to possible 
exothermic reactions between positive electrodes and 
electrolytes, especially at high-voltage. In particular, classical 
electrolytes used in Lithium-ion batteries such as ethylene 
carbonate (EC)-dimethyl carbonate (DMC)+lithium 
hexafluorophosphate (LiPF6) can hardly be used at voltage 
greater than 4.2 V with appropriate cathodes. Higher voltage 
may lead to dramatic decrease of the cycle ability of the 
battery and increases a risk of explosion, fire and release of 
toxic substances [2]. Thus, increase of the flash point, the 
thermal stability and the anodic stability of the solvent while 
keeping electrolyte viscosity as low as possible and 
electrolyte ionic conductivity as high as possible are 
important goals of electrolyte optimization. 

In this work, QSPR approach has been used to guide the 
design of new generation of electrolytic solvents. Particular 
attention was paid to molecules belonging to two different 
chemotypes: sulfones and esters/ethers. Although, esters 
and ethers are largely investigated in the literature, their 
physicochemical and electrochemical properties still need to 
be optimized for their use in electrolyte for Lithium-ion 
batteries. Sulfones remain liquid within a large range of 
temperature, their thermal behavior is very interesting as 
they are generally non-flammable and have very high flash 
points (for instance, the flash point of dimethylsulfone is 145 
°C whereas dimethyl carbonate and a mixture of ethylene 
carbonate:dimethylcarbonate (1:1)exhibit flash points equal 
to 16 and 25 °C, respectively [3]).  

In this work, 4 key properties [3-4] were considered: 
ionic conductivities () and oxidation potentials (Eox) of 
lithium-based electrolytes as well as melting points (Tm) 
and boiling point (Tb) of dipolar aprotic organic solvents 
usually studied for Lithium-ion batteries. The electrolyte 

should have advantageous transport properties in order 
to reduce the ohmic-drop caused by the internal 
resistance of the battery cell (high ionic conductivity). 
The electrolyte must be in liquid state for a large range 
of temperatures (ideally between -40 °C and 120 °C, 
considering an operating range between -30 °C and 60 
°C). Simultaneously, the electrochemical window should 
be as wide as possible. Currently, oxidation potential of 
electrolytes reaches about 4-4.2 V at active cathode 
materials. At high voltage a massive oxidation of the 
electrolyte may occur, leading to a steep increase of the 
current density with a rapid loss of battery cycling 
performance. Thus, it is highly desirable to design new 
solvents exhibiting high oxidation potential in the 
presence of lithium salts.  

At the first stage, a dataset of 103 dipolar aprotic 
organic solvents was collected from the literature. This 
included 155 oxidation potential values measured at 5 
mV/s in sulfone or ester solvents in the presence of 1M 
LiPF6 or Lithium bis(trifluoromethanesulfonyl)imide 
(LiTFSI) at platinum, glassy carbon, LiCoO2, LiMn2O4 or 
LiNi1/3Mn1/3Co1/3O2 electrodes.  Having inspected these 
data, we decided to select for the modeling 82 values 
measured at a Pt electrode in the presence of LiPF6 or 
LiTFSI, which are the most commonly used salts in 
lithium-ion batteries. Collected dataset contained also 
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ionic conductivity values for 55 molecules measured at 
similar conditions, as well as boiling and melting points 
for 60 and 47 compounds, respectively.  

Many QSPR models for boiling point of organic 
compounds are reported in the literature [5]. For the most 
performant models, the accuracy of prediction is no less 
than 20 °C[6]. Melting point models are also frequent but 
less precise the error of prediction is about 35 °C[7]. In 
this context, one may expect that a local model built on 
selected solvents will lead to better results than those 
already obtained from available models in the literature. 

Only few QSPR studies of the oxidation potential 
were reported so far. For instance, some empirical 
relationships between Eox and molecular structure for 
flavonoids[8] and anilines[9] were reported. Another 
approach is to approximate Eox by ionization potential. In 
turn, the latter, according to the Koopman theorem[10] 
can be approximated by the HOMO energy. The 
Hammet-like equations for oxidation potential of 
phenoxide ions[11], anilines[12] and di-substituted 
benzenes[13] were established. There exist also atomistic 
physical models for solid state electrolytes[14], although 
they are yet in qualitative rather than quantitative 
agreement with the experimental data. However, up to 
our knowledge, no models of ionic conductivity in dipolar 
aprotic organic solvents in the presence of lithium salts 
were reported so far. 

To resume, predictive models for ionic conductivity 
and oxidation potential are needed because existing 
approaches are either difficult to use or inaccurate. For 
the boiling and melting points, we expected to obtain 
more accurate models by focusing specifically on the 
specific types of solvents. 

The models were built using the ISIDA fragment 
descriptors[1] and Support Vector Regression (SVR) 
method with linear kernel. Compared to non-linear 
models, the linear ones are mathematically simpler and 
their performances are similar. Several individual models 
based on the ISIDA fragments of particular type were 
combined in the consensus models, each associated 
with a fragment control applicability domain (AD) - see 
details in Computational Methods section. The model 
performances in cross-validation are given in Table 1. In 
this table, the R2 values are given for the sake of 
completeness. However, since the property ranges in 
training and test sets differ, retrospective success of the 
models was assessed on the basis of RMSE values. 

Developed models for all 4 properties were then used 
to annotate a virtual library of enumerated compounds. 
The library contained initially 9965 esters, ethers, 
carbonates and sulfones based on pre-defined molecular 
scaffolds. A first filter was used to remove problematic 
structures from a synthesis viewpoint and due to security 
concerns (for instance, peroxydes was removed from the 
list because of their explosive properties). This reduced 
the library to 8070 compounds to which the developed 
models were applied. Calculations shown for 3832 
compounds computed properties satisfied required 
technological specifications: Eox > 4V, Tb > 50 °C and 
Tm < 20 °C.  

Final selection of a set of 35 compounds followed 
synthetic feasibility requirements. It contained a subset 
of 12 esters, ethers and carbonate containing 
compounds (Table S2 in Supplementary Information). 
These compounds were synthesized or acquired and 
their boiling points, ionic conductivities and the oxidation 

potentials vs Li/Li+ were measured. Their melting point 
was systematically observed below -70 °C, the limit of 
DSC equipment used in this work. During 
electrochemical experiments, four compounds bearing a 
gem-dimethyl group in alpha position to acetyl or 
carbonate function underwent a violent reaction when 
the lithium salt was added to the solvent. All other 
compounds were found out of the applicability domain 
AD of the boiling point and melting point models. 
Calculations without accounting for AD resulted in poor 
estimations (RMSE=49 °C for boiling point). Considering 
the ionic conductivity, only three compounds were found 
within AD (RMSE=1.0 mS/cm). When estimating the 
oxidation potential, 5 compounds passed the AD filter 
(RMSE=0.23 V). 

 

 

Figure 1. Modeling workflow. 

Another subset contained 23 sulfones which were 
synthesized and tested (Table S1 in Supplementary 
Information). Most of these compounds were found 
within models AD. Comparison with the measured 
experimental data confirmed a good prediction 
performance of all models except of that for the melting 
point model. Thus, the prediction error (RMSE) was 
equal to 45 °C for Tm (for 15 compounds in AD), 14 °C 
for Tb (21 compounds), 14 °C for Tb (21 compounds), 
0.49 mS/cm for  (20 compounds) and 0.18 V for Eox (20 
compounds). Notice that publicly available OCHEM 
software[6c] predicts Tb of new compounds with much 
smaller accuracy (RMSE of about 50 °C). 

Generally, model performances for new molecules 
(within AD) are similar or even better than those 
obtained for the modeling set in cross-validation (Table 
1).  

The combined dataset including both initial data and 
novel compounds was analyzed using the Generative 
Topographic Mapping (GTM) approach [15]. GTM is a 
dimensionality reduction method allowing to visualize the 
data distribution on 2-dimensional map. Figure 3 
visualizes chemical space of electrolytes. One may see 
that molecules with different chemotypes form dense 
clusters: C=O containing compounds are located in in 
the left part of the map, whereas sulfoxide-containing 
compounds occupy mostly several zones on the right 
and on the top of the map. One may see that the 
top/right corner is populated exclusively by sulfolane 
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derivatives which have hardly been studied as 
electrolytes. 

The maps were colored according to the oxidation 
potential and the ionic conductivity (Figure 4). These 
“property landscapes” [16], help to monitor how the 
studied properties are distributed in the chemical space. 
For each property, two landscapes were considered: one 
corresponding to the modeling data set (on the left) and 
another one corresponding to the entire dataset 
including molecules designed in this project (on the 
right). One may see that new sulfones, in particular 
sulfolane derivatives, are extending previously explored 
domain regarding both the ionic conductivity and the 
oxidation potential. Additionally, new esters and ethers 
change the perception of these families. For instance, 
the ethers appear less stable to oxidation than it was 
initially expected.  

 

Table 1. Model performances on the modeling set and on the 
subset of new molecules designed in this work. Statistical 
parameters for the modeling set were obtained in 10-fold cross-
validation. Nm is the number of data points 

 Modeling set New molecules 

Property RMSE R2 Nm RMSE R2 Nm 

Melting 
Point 

32.5°C 0.73 47 45°C <0 15 

Boiling 
Point 37.0°C 0.77 60 14°C 0.84 21 

Ionic 
conductivity 

2.13 
mS/cm 

0.64 55 
0.58 
mS/cm 

0.94 23 

Oxidation 
Potential  

0.45 V 0.68 82 0.18 V 0.91 25 

Figure 2. Chemical structures of two best sulfone candidates 
as electrolytic component. 

 
1 

 
2 

 
 

 

 

Figure 3. Generative Topographic Map of the electrolyte dataset 
including training set and novel structures. The grayscale bar 
indicates the density of compounds. The darker is an area, the more 
populated it is. White points correspond to compounds collected 
from literature whereas cyan and green points correspond, 
respectively, to new sulfones and new carbonates, esters and 
ethers. Arrows show the areas populated by molecules with 
particular core structures. 

 

Before this study After this study 

Oxidation Potential (in V) 

Ionic Conductivity (in mS) 

 

Figure 4. Evolution of the property landscape: oxidation potential (in 
V, top) and ionic conductivity (in mS, bottom). The color code 
indicates the considered property values. In white areas the property 
values are not available. 

 

Optimization of the oxidation potential together with 
the ionic conductivity is delicate task because those two 
properties are generally anti-correlated. Yet, the ethers 
and esters provide with their best compromise which 
explains the preference for these compounds in current 
application. The sulfones display an interesting oxidation 
potential profile, the ionic conductivity is low, but higher 
than initially expected. However, the latter can be 
corrected at the formulation stage, with co-solvents.  

To conclude, 35 theoretically designed ethers/esters 
and sulfones were synthesized and tested for a potential 
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application as solvent in Lithium-ion batteries. These 
compounds have been prioritized according to 
developed QSPR models and synthetic feasibility 
criteria. The most interesting compounds (1 and 2, 
Figure 2) were selected for the application in Lithium-ion 
batteries. Their electrolytic formulation is ongoing. 

 

Computational Methods and Experimental 
Section  

QSPR development and validation. Molecular 
structures were encoded by the ISIDA fragment 
descriptors[1]. A pool of 175 types of descriptors differed 
by size and topology of fragments was systematically 
explored for the modeling using Support Vector 
Regression (SVR) with linear kernel. The modeling 
workflow included two nested 10-fold cross-validation 
procedures (Figure 1). For each set of descriptors the 
models were built and validated using two nested 10-fold 
cross-validation procedures. The inner one is used to 
tune the method parameters and the outer one is used 
to assess the performances of the resulting model. In 
the consensus models, each individual model is 
associated with its own applicability domain (AD). Here, 
the fragment control AD was used: compounds with 
possessing unseen chemical features in the training set 
were discarded. The optimized models, using the most 
relevant molecular descriptors were selected to enter a 
consensus model. The performances of the consensus 
and the individual models were assessed using the 
corresponding test sets. Finally, the entire dataset was 
used to build the final individual and consensus models, 
using the method parameters optimized at the cross-
validation stage. The resulting consensus models have 
been implemented in the ISIDA/Predictor web service 
(http://infochim.u-strasbg.fr/cgi-bin/predictor.cgi). 
Notice that Ridge Regression and SVR (RBF kernel) models 
were also developed but not used because they performed 
less good compared to SVR (linear kernel) models. 
 
Generative Topographic Mapping.  
The maps have been build according to the protocol reported 
by Gaspar et al [1] using as descriptors atom-centered 
fragments accounting explicitly atoms and bonds up to 3 
coordination spheres of the central atom. This type of 
descriptors was among those systematically retrieved during 
the QSPR modeling procedure. The number of RBF and 
their width (6 and 0.4, respectively) was tuned in order to 
optimize the likelihood of half the dataset, while fitting the 
GTM on the other half. The number of nodes and the 
regularization term were set to default: 150 and 1.0 
respectively. 
Synthesis. The sulfones syntheses were performed 
according to the methods reported in our previous work [17]. 
Appropriate amounts of lithium salts (LiPF6 or LiTFSI) were 
added into the synthesized solvents in order to determine the 
physicochemical and electrochemical properties of the 
electrolytes.  
Physicochemical and electrochemical properties. All 
molecules have been characterized using 1H and 13C NMR 
as well as by GC-MS to check their chemical structure. They 
were furthermore characterized by DSC to obtain their 
melting and ebullition point. The lower range of DSC was -
70°C. Ionic conductivity was acquired on 1M concentrated 

solutions of compounds. Linear voltamperograms were 
acquired at 5 mV/s using platinum and vitreous carbon 
electrodes. 
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