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A Marker-and-Cell scheme for viscoelastic flows
on nonuniform grids

O. Mokhtari, Y. Davit, J.-C. Latché, R. de Loubens, and M. Quintard

Abstract In this paper, we develop a numerical scheme for the solution of the
coupled Stokes and Navier-Stokes equations with constitutive equations describing
the flow of viscoelastic fluids. The space discretization is based on the so-called
Marker-And-Cell (MAC) scheme. The time discretization uses a fractional-step al-
gorithm where the solution of the Navier-Stokes equations is first obtained by a pro-
jection method and then the transport-reaction equation for the conformation tensor
is solved by a finite-volume scheme. In order to obtain consistency, the space dis-
cretization of the divergence of the elastic part of the stress tensor in the momentum
balance equation is derived using a weak form of the MAC scheme. For stability
and accuracy reasons, the solution of the transport-reaction equation for the confor-
mation tensor is split into pure convection steps, with a change of variable from c to
log(c), and a reaction step, which consists in solving one ODE per cell via an Euler
scheme with local sub-cycling. Numerical computations for the Stokes flow of an
Oldroyd-B fluid in the lid-driven cavity at We=1 confirm the scheme efficiency.
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1 Introduction

We consider viscoelastic models for polymeric incompressible liquids. Let Ω be a
parallelepiped of Rd , d ∈ {2,3} and (0,T ), T > 0, a finite time interval. The fluid is
governed by the following system of equations:

ρ(∂tu+ξ u ·∇u) =−∇p+divτs(u)+divτ p, τ p =
ηp

λ
f(c)(c− Id), (1a)

divu = 0, (1b)

∂tc+u ·∇c− (∇u)c− c(∇u)t +
1
λ

g(c)(c− Id) = 0, (1c)

where the vector-valued function u is the velocity of the fluid, p is the pressure, τs =
ηs(∇u+(∇u)t) is the Newtonian stress tensor for the solvent with ηs its viscosity.
The constant coefficients ρ , ηp and λ are the fluid density, the polymer viscosity and
the polymer retardation time. The tensor τ p is the part of the stress accounting for
the presence of polymers and c is the conformation tensor. The coefficient ξ is zero
for the unsteady Stokes equations and ξ = 1 for the Navier-Stokes equations. The
functions f(c) and g(c) depend on the model. For example (see [1] for a review), the
Oldroyd-B model is given by f(c) = g(c) = Id, and the Fene-CR model corresponds
to f(c) = g(c) = b

b−tr(c) Id, with b a real number greater than the space dimension.
This system must be complemented by initial conditions for the velocity and the
conformation tensor, and by suitable boundary conditions. Here, we suppose for
short that the velocity is prescribed over the whole boundary and that the normal
velocity vanishes everywhere on the boundary. The dimensionless parameters that
characterize these types of flows are the Reynolds number, Re = ρUL/(ηs +ηp),
and the Weissenberg number, We = λU/L, where U and L are the characteristic
velocity and length scale.

Here, we develop a numerical scheme for the solution of System (1) based on the
following technology. The space discretization is based on the so-called Marker-
And-Cell (MAC) scheme. Previous work on MAC schemes for viscoelastic flows
can be found in [7], in the context of finite differences and in [4], in the context of
finite volumes, both on uniform grids. The time discretization uses a fractional-step
algorithm where the solution of the Navier-Stokes equations (1a)-(1b) is first ob-
tained by a standard projection method and then the transport-reaction equation for
the conformation tensor (1c) is solved by a finite-volume scheme. The development
of this scheme faces two essential difficulties. Firstly, we use a weak formulation
of (1a) for the discretization of the term divτ p, which yields an essential ingredient
for the scheme stability and a built-in Lax-Wendroff weak consistency property (see
[5]). Secondly, the solution of Equation (1c) requires special care due to the stiffness
of the term (∇u)c+c(∇u)t . In the spirit of [8], the solution procedure for Equation
(1c) is split in pure convection steps, with a change of variable from c to log(c), and
a reaction step, which consists in solving one ODE per cell thanks to the piecewise
constant discretization of c. In contrast with [8], these ODEs are solved directly
for c, and not log(c), so as to avoid any artificial introduction of nonlinearities. We
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further use a local time step for each cell, which ensures the scheme stability and
prevents a blow-up of the CPU cost.

2 The numerical scheme

Let M be a MAC mesh (see [6]) of Ω . The discrete pressure and conformation
unknowns are associated with the cells of the mesh M and are denoted by {pK ,K ∈
M } and {cK ,K ∈M }. E and Eint are, respectively, the sets of all (d− 1)-faces
σ of the mesh and of the interior faces (i.e. the faces which are not included in
the boundary). For 1 ≤ i ≤ d, we denote by E

(i)
int the subset of the faces that are

perpendicular to the ith unit vector of the canonical basis of Rd . The discrete velocity
unknowns approximate the normal velocity to the mesh faces. Since the velocity is
prescribed on the whole boundary, the degrees of freedom for the ith component of
the velocity are associated to E

(i)
int and read (uσ ,i)

σ∈E (i)
int

.

Let us consider a uniform partition 0 = t0 < t1 < .. . < tN = T of (0,T ) with a
constant time step δ t. The pressure correction scheme consists in the following two
steps:

Prediction step – Solve for ũn+1:

For 1≤ i≤ d, ∀σ ∈ E
(i)
int ,

ρ

δ t

(
ũn+1

σ ,i −un
σ ,i

)
+ξ ρdivσ (ũn+1

i un)−divσ ,i τs(ũn+1)

−divσ ,i τ
n
p +∇σ ,i (pn) = 0.

(2a)

Correction step – Solve for pn+1 and un+1:

For 1≤ i≤ d, ∀σ ∈ E
(i)
int ,

ρ

δ t
(un+1

σ ,i − ũn+1
σ ,i )+∇σ ,i(pn+1− pn) = 0, (2b)

∀K ∈M , divK(un+1) = 0. (2c)

In the prediction step, the tensor τn
p is computed as a function of the conformation

tensor by τn
pK

=
ηpK
λK

f(cn
K) (cn

K− Id), for K ∈M .

The discretization of the constitutive equation (1c) is split into pure advection
steps and a local ODE, which is a strategy already adopted in [8]. This allows us
to preserve the positivity of c and obtain good accuracy. Furthermore, we use a
change of variables for the advection steps and change the conformation tensor into
the matrix logarithm of the conformation tensor [4]. The result is the following
“Strang-log” scheme:
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Advection I – Solve for cn+ 1
3 :

∀K ∈M ,
1

δ t/2

(
log cn+ 1

3
K − log cn

K

)
+divK(un+1 log cn+ 1

3
K ) = 0, (3a)

ODE – Set cK(tn) = cn+ 1
3

K and solve for cn+ 2
3 = cK(tn +δ t):

∀K ∈M , ∂tcK− (∇Kun+1)cK− cK
(
∇Kun+1)t

+
1

λK
g(cK)(cK− Id) = 0,

(3b)

Advection II – Solve for cn+1:

∀K ∈M ,
1

δ t/2

(
log cn+1

K − log cn+ 2
3

K

)
+divK(un+1 log cn+1

K ) = 0. (3c)

Transport steps are discretized by a standard first-order upwind scheme. The local
ODE (3b) is solved using a first-order Euler scheme, with a local sub-time step.
Two versions are tested: the fully implicit scheme and a version where the term
(∇Kun+1)cK +cK

(
∇Kun+1

)t is explicit, while the other ones are still implicit. From
a theoretical point of view, both variants seem to have the same stability properties,
i.e. to preserve the positive definite character of the conformation tensor for a small
enough (sub-)time step, depending on the velocity gradient. However, numerical
tests show that the implicit version is more stable.

Most discrete operators involved in the scheme are standard and we refer to [6]
for their detailed definition. We focus in the next section on the discretization of the
divergence of the stress tensor in the momentum balance equation.

3 The total stress divergence term

The aim of this section is to define the divergence term divσ ,i(T) of the total Cauchy
stress tensor T = −pId + τs(ũ) + τ p. We want this quantity to satisfy a discrete
analogue of the identity: ∫

Ω

div(T) ·u =−
∫

Ω

T(u) : ∇u. (4)

This relation is crucial to derive a scheme that preserves a free energy estimate at the
discrete level [2]. In addition, if the discrete gradient of the interpolation of a regular
function converges to the continuous gradient in L∞-weak ?, which is the case here
(with, in fact, a strong L∞ convergence), then the identity (4) readily yields the Lax-
Wendroff consistency of the discretization of the term divσ ,i (τ

n
p). The strategy to

obtain (4), already used in [6] for Newtonian fluids, is to recast the MAC scheme
under a weak form. For clarity, we only address the two-dimensional case here. The
extension to the three-dimensional case is presented in [6].
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Fig. 1 Discrete partial derivatives of the x-component of the velocity

The discrete velocity gradient – Here, we detail the discretization of terms asso-
ciated to the x-component of the velocity, using the notations of Fig. 1. Inside the
computational domain, the discrete partial derivatives of this velocity component
are defined as follows:

– Let the primal cells be denoted by Ki, j = (xi− 1
2
,xi+ 1

2
)× (y j− 1

2
,y j+ 1

2
). The

discrete derivative involved in the divergence (so, for the velocity x-component,
only ∂M

x ux) is defined over the primal cell by, ∀x ∈ Ki, j:

∂
M
x ux(x) =

ux
i+ 1

2 , j
−ux

i− 1
2 , j

hx
i

. (5)

– For the other derivatives (so, for the velocity x-component, only ∂M
y ux), we

introduce a fourth mesh which is vertex-centred, and we denote by Kxy the
generic cell of this new mesh, with Kxy

i− 1
2 , j−

1
2
= (xi−1,xi)× (y j−1,y j). Then,

∀x ∈ Kxy
i− 1

2 , j−
1
2
:

∂
M
y ux(x) =

ux
i− 1

2 , j
−ux

i− 1
2 , j−1

hy
j− 1

2

. (6)

The only necessary extension of this definition to cope with boundaries concerns the
definition of ∂M

y ux over a half vertex-centered cell associated with a vertex lying on
a horizontal boundary. In this case, we use the usual “fictitious cell trick” in order to
apply Relation (6): an external cell, of zero y-dimension, is added to the mesh and
the horizontal velocity in this cell is set to the prescribed Dirichlet value, or to zero
for the test functions defined below. Extending these definitions to the y-component
of the velocity, the discrete diffusion tensor can be defined as:

∇
M ũ =

[
∂M

x ũx ∂M
y ũx

∂M
x ũy ∂M

y ũy

]
, τ

M (ũ) = ηs

(
∇

M ũ+(∇M ũ)t
)
. (7)

Finite-volume test functions – Let us denote by I x ⊂ N2 (resp. I y ⊂ N2) the
set of pairs (i, j) such that xi− 1

2 , j
(resp. xi, j− 1

2
) is the mass center of a vertical (resp.
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horizontal) face of the mesh. For (i, j)∈I x, we denote by φ
x,(i− 1

2 , j) the test function
associated with the degree of freedom of the x-component of the velocity located at
xi− 1

2 , j
. This discrete function is defined by:

(φ x,(i− 1
2 , j))x

k− 1
2 ,`

= δ
i
k δ

j
` , ∀(k, `) ∈I x and (φ x,(i− 1

2 , j))y
k,`− 1

2
= 0, ∀(k, `) ∈I y.

Its non-zero partial derivatives are ∂M
x φ

x,(i− 1
2 , j) and ∂M

y φ
x,(i− 1

2 , j) and are given
by (5) and (6), respectively. Since the velocity is prescribed on the boundary, no
equation is written on the half-dual cells associated to external faces, so no definition
is required for the corresponding test functions.

Discrete viscous diffusion and pressure gradient – The discrete divergence of the
stress tensor for the solvent is defined by the following weak formulation:

∀(i, j) ∈I x, −(divτs(ũ))x
i− 1

2 , j
=

1
|Kx

i− 1
2 , j
|

∫
Ω

τ
M
s (ũ) : ∇

M
φ

x,(i− 1
2 , j). (8)

Similarly, identifying p with its associated piecewise constant function, we have for
the pressure gradient:

∀(i, j) ∈I x, (∇p)x
i− 1

2 , j
=

−1
|Kx

i− 1
2 , j
|

∫
Ω

p ∂
M
x φ

x,(i− 1
2 , j) (9)

It is shown in [6] that Equation (8) yields the usual finite-volume formulation of the
MAC scheme. The same holds for the definition (9) of the pressure gradient.

Polymeric stress tensor divergence – This formulation naturally extends to the
discretization of the divergence of the polymeric stress tensor. To do so, we first
associate the discrete polymeric stress τ p to a piecewise function over the primary
cells by:

∀x ∈ Ki, j, τ p(x) =
ηp

λ
f(ci, j)(ci, j− Id).

Then we set:

∀(i, j) ∈I x, −(divτ p)
x
i− 1

2 , j
=

1
|Kx

i− 1
2 , j
|

∫
Ω

τ p : ∇
M

φ
x,(i− 1

2 , j). (10)

An easy computation shows that this relation may be recast as a finite volume for-
mulation, in the sense that the right-hand side may be seen as a sum over the faces of
Kx

i− 1
2 , j

of a discretization of the flux associated to divτ p, i.e. the integral of the first

component of τ p nK,σ . However, as usual when such a duality technique is used,
the approximation of the tensor at the horizontal faces may seem strange: indeed,
it is a convex combination of the unknown in the two neighbouring cells, but with
coefficients which are not those which would be given by a linear interpolation.



Marker-and-Cell scheme for viscoelastic flows on nonuniform grids 7

4 Numerical tests

We compare the proposed scheme to results from the literature for the flow of
an Oldroyd-B fluid in lid-driven cavity with a Weissenberg number equal to 1.
The computational domain is Ω = (0,1)2 and the velocity is prescribed on the
whole boundary: u =

(
8x2 (1− x)2

(
1 + tanh(8t − 4)

)
, 0
)t on (0,1)× {1}, u =

0 otherwise. The fluid is initially at rest and the conformation tensor is set to iden-
tity. The computation is performed up to t = 30. The constant coefficients in System
(1) are set to ρ = 1, ηs = 0.5, ηp = 0.5 and λ = 1. We use a sequence of succes-
sively refined meshes: the coarsest three ones are uniform 64× 64, 128× 128 and
256×256 cells; the four other ones, denoted by Mn, n = 1, . . . ,4, use a uniform step
equal to 1/(256n) in the x-direction and a splitting in the y-direction with a first
step equal to 0.004/n, a last step equal to 0.001/n and a constant ratio between two
consecutive steps. The number of cells for the M4 mesh is close to 5.2 million. The
sub-time-step for the solution of the ODE (3b) is set to δ t/ne with ne the smallest in-
teger number such that δ t/ne ≤ 1/(2m ||∇Kun+1||∞), with m = 10 for the uniform
meshes and m = 200 (to force convergence) for the Mn meshes; this time-step is
small enough to preserve the positive definiteness of the conformation tensor when
solving (3b) by a backward Euler scheme. Computations are run (in parallel for
Meshes Mn) with the open-source CALIF3S software developed at IRSN [3]. The
CPU-time used for the solution of the ODE remains almost negligible (less than 3%
of the total time), so a more sophisticated algorithm would not enhance the scheme
efficiency.

We first describe the results obtained with the three coarsest meshes, with a time-
step equal to 0.01. In any case, computations reach a steady state. For the first com-
ponent of the velocity along the line x = 0.5 (Figure 2, left), the steady state values
are almost independent from the mesh, and in close agreement with those given
in [8]. The convergence for the second component of the velocity along the line
y = 0.75 (Figure 2, right) is a little bit slower: in the eyeball norm, convergence is
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Fig. 2 Left: first component of the velocity along the line x = 0.5 – Right: second component of
the velocity along the line y = 0.75.
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obtained with the 256× 256 mesh and the solution slightly differs from [8]. The
most difficult point of this computation consists in obtaining an accurate estimation
of the conformation tensor near the lid, and we investigate this issue with the Mn
meshes. First of all, we observe that the time-step must be considerably reduced
to obtain a stationary solution: δ t = 0.001 for the M1, M2 and M3 meshes, and
δ t = 0.0005 for the M4 mesh. With a larger times-step, low-frequency instabilities
(period in range of 1s) develop from the top-right corner, and remain confined in an
area very close to the lid and included in the right half of the cavity. We plot in Figure
3 the computed value of cxx along the lines y = 0.975 and y = 1. At y = 0.975, con-
vergence seems to be almost achieved. The picture is completely different at y = 1:
first, the profile of cxx dramatically changes from y = 0.975; second, the maximum
value, obtained close to x = 0.5, increases when refining the mesh (multiplication
by a 1.6 factor when dividing the space step by 2 for M2, M3 and M4).
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Fig. 3 Conformation tensor component cxx along the line y = 0.975 (left) and y = 1 (right).
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