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ABSTRACT 
The European Registration, Evaluation, Authorization and Restriction of 
Chemical Substances Regulation, requires marketed chemicals to be 
evaluated for Ready Biodegradability (RB), considering in silico predic- 
tion as valid alternative to experimental testing. However, currently 
available models may not be relevant to predict compounds of indus- 
trial interest, due to accuracy  and applicability domain restriction 
issues.  In this work, we present a new and extended RB  dataset 
(2830 compounds), issued by the merging of several public data 
sources. It was used to train classification models, which were exter- 
nally validated and benchmarked against already-existing tools on 
a set of 316 compounds coming from the industrial context. New 
models showed good performances in terms of predictive power 
(Balance Accuracy  (BA) = 0.74–0.79)  and data coverage (83–91%). 
The Generative  Topographic Mapping approach identified several 
chemotypes and structural motifs unique to the industrial dataset, 
highlighting for which chemical classes  currently available models 
may have less reliable predictions. Finally, public and industrial data 
were merged into global dataset containing 3146 compounds. This is 
the biggest dataset reported in the literature so far, covering some 
chemotypes absent in the public data. Thus, predictive model devel- 
oped on the Global dataset has larger applicability domain than the 
existing ones. 

ARTICLE HISTORY 
Received 1 October 2019 
Accepted 21 November 2019 
 
KEYWORDS  QSAR/QSPR; 
generative topographic 
mapping (GTM); ready 
biodegradability; 
environmental  fate; reach; 
benchmarking 

 
 
 
Introduction 

 

Biodegradability  is a key process which controls the environmental fate of chemicals and, 
as a consequence, potential exposure ways for living organisms to many xenobiotics. 
Indeed, chemicals which are persistent in the environment can potentially cause a long- 
term exposure to human beings and ecosystem on a large scale [1], for instance by 
reaching the marine environment and being transported to remote areas [2]. 

One of the most important ways for estimating biodegradation is determination of the 
so called ‘Ready Biodegradability’  (RB) binary classification parameter, corresponding to 
either slow (nB) or fast (B) biodegradation. There are several standardized methods for RB 
determination. Among them, the most widely used guideline is the Organization for 
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Economic Co-operation and Development (OECD) 301 [3], which contains several screen- 
ing experimental protocols that aim to evaluate if, under aerobic conditions, the test 
substance can undergo  easy and rapid biodegradation in the environment. Another well- 
known guideline is the method developed by the Japanese Ministry  of International Trade 
and Industry (MITI) [3,4]. These protocols  are considered as stringent first-tier assessments 
providing a binary classification, rather than measuring the actual degradation  rate. Pass 
criteria of such tests are so strict that it can be assumed that compounds with a positive 
outcome will rapidly and completely biodegrade [3]. 

In Europe, with the implementation of the Registration, Evaluation, Authorization and 
Restriction of Chemical  Substances  (REACH, EC No 1907/2006) Regulation in 2007 [5], 
companies that produce or import substances for more than 1 ton/year need to provide 
information about their biodegradability, which would then be used for their classification 
as well as the evaluation of their level of exposure in the environment. The kinetic of 
biodegradation is also a key property in the identification of Persistent, Bioaccumulating 
and Toxic (PBT) or very Persistent and very Bioaccumulating (vPvB) compounds [6]. Thus, 
RB studies are generally performed in the very first stage of the registration  process, with 
the aim to conclude on the absence of a possible PBT/vPvB behaviour. REACH encourages 
the use of alternative methods for data gap filling, including weight of evidence and read 
across approaches,  as well as QSAR modelling [5]. However, biodegradation results are 
often highly dependent upon the test protocol and suffer of low reproducibility, espe- 
cially when carried out by different laboratories [2,7,8]. The lack of homogeneous and 
high-quality datasets is a concern when generating predictive models. 

Several  RB models have already been built in the past years [2]. Some of them are 
nowadays implemented in freely-available tools, such as Virtual models for property 
Evaluation of chemicals within a Global Architecture (VEGA)  [9], Estimation Program 
Interface (EPI) Suite  [10], OPEn (q)saR App (OPERA) [11] and ToxTree [12]. A brief overview 
of mentioned tools is reported in Table 1. 

With the ending of the last REACH registration deadline (June 2018) for low-volume 
substances (between 1 and 100 tonnes) and the sharing of REACH study results (https:// 

 
 

Table 1. Already existing freely-available tools on ready biodegradability. 
 

Model General information 
Training set 

size 
Test set 

size  Sn  Sp BA     Ref. 

VEGA Descriptors: molecular  fragments 
Algorithm: rule-based approach 

582 120 0.77   0.87   0.82    [9] 
491 0.76   0.91   0.84   [13] 

 416 0.86 0.9 0.88 [14] 
757 0.89 0.93 0.91 [15] 
92 0.98 0.47 0.73 [16] 

EPI Suite  (Biowin  3 & 5)a Descriptors: molecular fragments 200 & 589a 295 0.87 0.73 0.8 [10] 
 Algorithm: rule-based & linear model  416 0.92 0.76 0.84 [13] 
 consensus  199 0.6 0.83 0.72 [16] 
   733 0.68 0.75 0.72 [17] 
   110 0.48 0.9 0.69 [18] 
OPERA Descriptors:  2D descriptors 

Algorithm: k-NN 
ToxTree Descriptors: molecular fragments 

Algorithm: rule-based approach 

1197 411 0.81   0.77   0.79   [11] 
 

- 211 0.65   0.79   0.72   [16] 

Sn = Sensitivity, Sp = Specificity, BA = Balanced Accuracy; aRB output is given as consensus between Biowin3 and Biowin5 
models output: the two models’ training  sets size are reported. 



SAR AND  QSAR IN ENVIRONMENTAL RESEARCH  
 

iuclid6.echa.europa.eu/reach-study-results),  new information  is available. However, 
except for the recently published OPERA (2018),  the training sets (from 200 to 589 
compounds; Table 1) of the existing models is quite limited, and they have not been 
updated since several years. 

In this work, we present a new and extended dataset for RB, issued  from merging 
several public data sources. Gradual fusion of public and industrial data drove the fitting 
of successive models on steadily growing training sets, which were externally validated on 
a set of compounds coming from the industrial context (‘Industrial  set’). We generated 
three models: the first one (‘ECHA model’) is trained only on data coming from the ECHA’s 
registration dossiers, which have gone careful reliability assessment; the second one (‘All- 
Public model’) comprises  several sources of public data and has a much higher data 
coverage potential, yet at the expense of less verified data; and the last one (‘Global 
model’) is the most comprehensive model that we could build: it comes from the merging 
of the ECHA, the All-Public and the Industrial  sets. This latter model includes important 
chemotypes of the industrial context; it has a much bigger training set (3146 compounds) 
compared to the existing tools (Table 1) and enlarged applicability domain. 

Our models are available through the online In Silico Design and data Analysis (ISIDA)/ 
Predictor platform [19], available at the Laboratory of Chemoinformatics webpage: http:// 
infochim.u-strasbg.fr/cgi-bin/predictor_reach.cgi. 

 
 
Methods 

 

Modelling workflow 
 

The modelling workflow is shown in Figure 1; the main steps will be detailed in the 
present section. 

 

 
 

Data collection 
 

Experimental data were collected from several  sources:  the ECHA database  (accessed 
through the eChem portal [20]), the NITE database  [4] and the training sets of already 
existing tools VEGA, EPI Suite and OPERA [9,10,11]. An industrial dataset (Industrial set) on 
biodegradation was provided by the industrial partner Solvay. Finally, additional RB data 
(Literature set) were collected from the work of Cheng et al. [21] and Mansouri et al. [22]. For 
the ECHA database, only reliable study results (i.e. with a Klimisch score [23] of 1 or 2) were 
retained. Curated datasets (i.e. after the data curation and standardization procedure below 
described) are listed in Table 2. Throughout the text, the three generated models (i.e. ‘ECHA’, 
‘All-Public’ and ‘Global’) will be referred by the name of the dataset used for their generation. 
Both ECHA and All-Public models were externally validated on the Industrial set. Due to their 
different training set sizes, the number of truly external Industrial set compounds dropped 
from the initial 834 to 443 and 316, respectively. External validation for the Global model 
was carried out on the Literature set. 

All collected public data (i.e. the All-Public set) is available on Zenodo (https://doi.org/ 
10.5281/zenodo.3540701);  the Industrial set compounds cannot be provided due to 
confidentiality reasons. 
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Figure 1. General workflow.  (1) merging of collected data from multiple sources; (2) ISIDA descriptors 
are computed;  (3) GTM is employed  to compare the structural space of the datasets; (4), (5) individual 
models are trained using several machine learning algorithms  and combined in consensus; (6) the 
Industrial  set is used for external validation; (7) benchmarking  against already existing tools; (8) the 
‘Global set’ is issued by the merging of all collected data and (9) models are implemented  in the 
Predictor platform. 

 
 

Table 2. Datasets after data curation and standardization  procedure. 
 

Dataset Size B/nB Ref. 
NITE 861 203/658 [4] 
VEGA 582 279/303 [9] 
EPI SUITE 870 380/490 [10] 
OPERA 1197 515/682 [11] 
Industrial set 834 392/442 - 
Literature set 362 36/326 [21, 22] 
ECHA 1671 733/938 [20] 
All-Publica 2830 1097/1733 - 
Globalb 3146 1197/1946 - 

aAll-Public  dataset results from merging the NITE,  VEGA,  EPI SUITE, OPERA  and ECHA datasets;  bGlobal 
dataset, results from merging the All-Public and the Industrial datasets. The name of a particular  model 
corresponds to the name of the dataset  (e.g., ECHA model  was trained  on ECHA dataset). 

 
 
 

Data curation and standardization 
 

To check Simplified Molecular Input Line Entry  System  (SMILES) correctness,  two online 
services were queried: the CADD Group Chemoinformatics Tools and User Services [24] 
and PubChem [25]. SMILES  were generated, standardized and then cross-compared. 
Compounds with non-matching standardized SMILES were excluded. Chemical standar- 
dization included: removal of salts/solvents, neutralization, removal of explicit hydrogens, 
aromatic representation for benzene rings, removal of stereo information, transformation 
of -nitro and -sulpho containing groups into canonical notation. Standardization was 
done with workflow implemented in the Konstanz Information Miner (KNIME) software 
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[26]. Duplicates removal was based on standardized SMILES matching. In case of multiple 
values per compound, the most voted class was attributed; when the repartition of the B/ 
nB votes was between 40 and 60%, the entry was excluded  (See section  1 and Table S1 in 
Supplementary Material (SM)). In total, 125 compounds with discordant RB measurement 
were discarded by this filter. The full list, together with predicted values (by Global model), 
is available in Table S2 of SM. All non-relevant  results (e.g. different guideline than OECD 
301 or MITI-I, sampling time below the guideline threshold, etc.) as well as mixtures, 
polymers and ‘Unknown or Variable composition, Complex reaction products or Biological 
materials’ (UVCBs) were  omitted. When the global statement of the RB behaviour was not 
reported but the percentage of biodegradation measured at 28 days (as requested by the 
OECD guideline) was available, it was manually assigned according to the relevant guide- 
line threshold. The Literature set was processed in the same way. Out of the originally 
reported 1855 compounds, 362 were new to the Global model’s  training set. Four 
compounds were excluded  as tested for inherent biodegradability; two compounds had 
wrongly reported labels which, after verifying the respective  ECHA registration dossier, 
were corrected (Table S3 in SM). This dataset  is highly unbalanced towards the nB class, as 
only 11% of compounds are readily biodegradable. 

 
 

Molecular descriptors 
 

ISIDA Property-Label  Molecular descriptors  [27] were employed.  A total of 63 ISIDA 
descriptor spaces  (DS)  were generated, corresponding to  molecular fragments of 
different  sizes,  topologies and  ‘colouration’ (elements labels, physical properties 
mapped on the atoms explicit or implicit chemical bonds,  atom pairs).  Among this 
entire pool, the DS that led to the generation of under-performing models (see Model 
generation paragraph) were filtered out, retaining 19 DS (Table S4 in SM). The number 
of fragments  depends on selected fragmentation scheme of the given DS. It varied 
from 203 (IA(2–6), sequences of atoms up to 6) for the ECHA model to 15872 (IIA(2–5), 
atom-centred fragments with radius 5) for the Global model, with an average of 6115 
(SM, section  2). 

 
 

Generative topographic mapping (GTM) 
 

The chemical space of the collected datasets was compared by means of the generative 
topographic mapping (GTM) approach [28], a dimensionality reduction method allowing 
the visualization of data distribution on a two-dimensional  (2D) map. A data property can 
be added as a third axis forming such called activity landscape. Each landscape ‘spot’ on 
the 2D map is coloured according to the property value (either continuous or categorical); 
this value is the average property of the data subset concerned by that position on the 
landscape [29]. Through GTM,  two types of analysis were carried out: (i) a pairwise 
comparison between the Industrial set versus the other datasets  (ECHA, NITE, training 
set of freely-available tools and All-Public); (ii) a characterization of how B  and nB 
compounds are positioned in the chemical space. For the former case, the goal was to 
identify which chemotypes were unique to the industrial context, not represented by 
public data; for the latter, to visualize how the biodegradation outcome is related to the 
mapped structural space. 
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The DS (IIAB 2–3) [27] associated to the best support vector machine  (SVM) radial basis 
function (RBF) model (in terms of Balanced Accuracy, BA) was chosen. The manifold [29] 
was built on the whole available chemical  space (i.e. Global set). A genetic algorithm [30] 
was used for optimizing (with the goal to maximize the BA predicting B/nB compounds) 
the characteristic parameters of the GTM: the number of RBF function centres (m = 19), the 
RBFs width (w = 1.6) and the number of grid points, i.e. the dimension of the map (k = 19). 

 

 
 

Model generation 
 

SVM with linear and RBF kernels,  Random  Forest  (RF) and Naïve Bayesian (NB) machine 
learning approaches were implemented. SVM models were generated with libSVM (v. 
3.22) [31]; WEKA (v. 3.9.3) [32] was used for RF and for NB models. More details of the 
modelling process are available in Section 2 of SM, briefly: 

 
(1) The given dataset has been randomly split (70/30%) into training and test set, and 

the 63 ISIDA DS were computed; 
(2) SVM, RF and NB models have been fitted. SVM parameters  (Cost and Gamma) were 

tuned by an independent genetic algorithm [29]driven optimization. For RF and 
NB, default WEKA settings  were selected. 

(3) Steps 1 and 2 were iterated 10 times. Resulting models with BA <0.70 (averaged 
over the iterations) were discarded. 

(4) Only the  best model  (in  terms of  BA) among the  three  machine-learning 
approaches was kept for the given DS, unless  it’s BA <0.7. Fragmentation type 
and optimal method parameters corresponding to the best model were retained 
for the ‘individual models’ preparation. 

(5) Finally, ensembles of ‘individual models’ were built on the whole dataset, each based 
on fragmentation and method parameters selected in previous step. Internal valida- 
tion was carried out by three-fold CV  by random splitting, performed for each 
individual model. This procedure was repeated five times. Statistics were assessed 
for each repetition followed by their averaging  (Table 3). The influence of chance 
correlations was checked through Y-scrambling [33] (with 15 iterations). 

 
This process was repeated for each dataset,  i.e. ECHA, All-Public and Global, resulting into 
19 individual  models each. Performances  were evaluated through  Sensitivity (Sn), 
Specificity (Sp) and BA metrics, refer Section 2 in SM (Table S5). 

 

 
 

Applicability domain 
 

The applicability domain was evaluated through  the ‘fragment control’ assessment 
(Figure  2, step 2): if a test molecule is found to have one fragment (i.e. a determined 
sequence of atoms and/or bonds) which was not encountered in any of the training 
molecules, that molecule is marked to be outside the applicability domain, since it is 
uncertain whether the model’s predictions can be extrapolated to this not yet charted 
chemical space zone [27]. 
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Table 3. Model performances. 

 

 External validationb  
Model Algorithm BA in 3-fold  CV Sn Sp BA Data coverage (%) 
ECHA SVM 0.80 0.83 0.72 0.81 81 

 RF 0.81 0.82 0.77 0.8 80 
 NB 0.78 0.84 0.7 0.77 78 
 Consensus 0.79 (0.014)a 0.81 0.77 0.79 80% (353/443) 
All-Public SVM 0.79 0.78 0.71 0.74 89 

 RF 0.8 0.76 0.72 0.74 92 
 NB 0.77 0.81 0.62 0.72 89 
 Consensus 0.79 (0.028)a 0.82 0.67 0.74 91% (293/316) 
Global SVM 0.8 0.62 0.84 0.73 85 

 RF 0.81 0.61 0.86 0.74 83 
 NB 0.77 0.61 0.84 0.72 81 
 Consensus 0.81 (0.014)a 0.65 0.85 0.75 85% (307/362) 
For each algorithm  and the consensus, the Sensitivity  (Sn), Specificity  (Sp), Balanced Accuracy (BA) values are given in 

3-fold CV and external validation  (on the Industrial  set). aIn brackets, the standard deviation averaged over the CV 
repetitions is reported. bThe Industrial set was used as an ‘external test set’ for ECHA and All-Public  models;  while  the 
Literature set was used as an ‘external test set’ for the Global model. 

 
 

 
 

Figure 2. Consensus model  workflow.  Step 1: decisions of each algorithm  (Support Vector Machine, 
Random Forest, Naïve Bayesian) are merged  together;  Step 2: predictions  of models that failed the 
fragment  control  check are not considered;  Step 3: if the percentage of votes for a given  class is 
between 40 and 60% (i.e. close to random), the decision is rejected;  Step 4: the consensus value is 
given with a reliability  assessment. 

 
 

Ensemble modelling 
 

The graphical representation  of the employed consensus strategy is shown in Figure 2. 
The ensemble decision is taken by a majority vote from the individual models of the 
employed algorithms (i.e. SVM, RF and NB) considered  together (step 1). All out-of-AD 
decisions (based on the fragment control) are not considered for the voting (step 2). If the 
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percentage of the votes for a given class (B/nB) was between 40 and 60%, the decision 
was rejected since close to random (step 3); otherwise, the consensus prediction is given, 
together with its reliability (step 4) [34]. The data coverage is calculated  as a ratio of the 
compounds accepted at steps 1 to 3 and total number in the dataset. 

 
 

Benchmarking 
 

Predictive performances on the Industrial set of the ECHA and the All-Public models were 
compared with those of the publicly available tools VEGA, EPI Suite,  OPERA and ToxTree. 
To avoid potential overestimation, compounds already present in the training set of the 
given tool (not possible for ToxTree) were excluded. Thus, we selected a common subset 
of non-overlapping compounds for benchmarking. In total, seven molecules from the 
Industrial set were inside the training set of at least one model, reducing the number of 
usable compounds to 309. Moreover, the molecules outside of applicability domain of 
a given model were not considered  (See Section 4 in SM). 

Another benchmarking study concerned comparison of Global model with the publicly 
available tools assessed on the Literature set. At the first stage, 77 compounds from the 
Literature set overlapping with the training set of, at least, one of the benchmarked tools, have 
been excluded and, hence, the calculations were carried out on remaining 285 compounds. 
The Literature set together with models’ predictions is reported by Table S6 in SI. 

 
 
Results 

 

GMT-driven dataset comparison 
 

Two different types of fuzzy categorical landscapes were generated: (i) a ‘dataset compar- 
ison’ landscape, displaying chemical space zones occupied exclusively by members of 
a given dataset, zones never addressed by that dataset and zones where several datasets 
contribute; (ii) a two-class classification landscape of B versus nB compounds. 

 

(i) Dataset comparison using generative topographic maps 
 

Figure 3 shows a series of GTMs describing  pairwise comparisons  of the Industrial set 
with VEGA, EPI Suite,  NITE, OPERA, ECHA and All-Public dataset. Occupied blue areas are 
uniquely populated by Industrial set compounds, while red ones by members of dataset x; 
intermediate colours are mixed populated areas. All the maps are characterized by having 
several constantly blue spots, indicating that the given areas contain Industrial  set-unique 
compounds. Some of these areas (identified by rectangle  ‘A’, map 6) even persist in the 
All-Public map: this provides a graphical interpretation of how the applicability domain 
could be extended with the addition of the new compound and clearly shows that there 
are some important structural differences between the Industrial set and the training set 
of the existing tools. For confidentiality reasons, the Industrial set cannot be disclosed. It 
comprises quite heterogeneous chemical structures, from high molecular weight com- 
pounds such as long-chain aliphatic esters highly halogenated compounds to much 
smaller ones such as simple alkenes. A large portion of them are silicium (e.g. siloxanes), 
fluorine (e.g. PFC) and phosphorous  (e.g. organophosphonium  cations) containing com- 
pounds, absent in public data sources. In addition, the All-Public and the Industrial 
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Figure  3. Pairwise datasets comparison  using GTM. Each GTM map compares Industrial  set versus one 
of publicly available datasets. Maps are sorted according to increasing size of a public dataset (from 
upper left to bottom right). Blue regions are mainly populated by Industrial set compounds; red ones 
by the public  dataset compounds.  White areas correspond  to unpopulated regions. The manifold was 
prepared with the Global set. 

 
 

datasets were compared by computing all pairwise Tanimoto similarities (Tc) among all 
their compounds (Section 3 in SM), using the DS IIAB(2–3). The average  similarity value 
between public and industrial data resulted to Tc = 0.405, with the majority of public 
compounds (70%) having a Tc <0.6, indicating that the two datasets contain quite 
dissimilar compounds. 

Finally, it is worth mentioning that there exists a strong overlap of VEGA, EPI Suite, 
OPERA and NITE sets: indeed,  the models are mainly based on the same sources of data 
[4,9,10,11]. On the other hand, the ECHA set has some important structural differences, as 
it brings new chemotypes (rectangle ‘B’, map 5). 

 

(ii) Ready biodegradability class landscape 
 

Figure 4 depicts the B/nB class landscape.  Readily  biodegradable compounds are 
mainly clustered into one large area. Despite the fact that these compounds have quite 
heterogeneous structures, they share some common features, such as the absence of 
halogens, of heavily branched chains and of several aromatic  rings. Esters and hydroxylic 
functional groups are known factors which increase the likelihood of rapid biodegrada- 
tion [35]. It is interesting to observe that, the ECHA set is mainly adding nB entries,  as 
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Figure 4. GTM ready biodegradability  landscape. B compounds are identified  by red zones, while nB 
by blue ones. The manifold was prepared for the Global set. 

 
 

compounds in the area delimited by rectangle ‘A’ belong exclusively to this dataset (see 
Figure 3, map 5). As a consequence, since this structural information is unknown to the 
already existing models (Figure  3, maps 1–4), they may have missed some potentially 
relevant rules linked to the biodegradation property. 

 

 
 

Model performances 
 

Table 3 reports performances for the three generated models (ECHA, All-Public and Global 
model). Internal (three-fold CV and Y-scrambling) and external (the Industrial set) valida- 
tion statistics are reported for each machine-learning algorithm and the consensus. 
Performances on the Industrial set (BA = 0.74–0.79) are not too different from those 
determined by CV (BA = 0.79), which supports the model robustness and absence of 
overfitting. In addition, the performance of ‘scrambled’ models is close to the random 
threshold (BA = 0.51–0.55; standard deviation among repetitions = 0.12–0.17), which 
confirms that models are unlikely to be biased by chance correlations. In external valida- 
tion, the ECHA model showed a BA of 0.79 with a data coverage, here defined as the 
percentage of reliably predicted compounds (Figure 2) out of the total, of 80% (353 out of 
443 compounds); while the All-Public  model scored a BA of 0.74 and data coverage of 91% 
(293 out of 316). Thus, the latter model has an extended applicability domain at the 
expense of a lower accuracy (with a drop in BA of 5%): this supports our starting 
hypothesis concerning experimental data reliability. It is important to highlight that the 
two models were evaluated on a different set of compounds. Therefore, in order to strictly 
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compare performances, an evaluation on exactly the same compounds should be per- 
formed. A similar trend was noticed in the benchmarking comparison, which was based 
only on the smallest common subset (see ‘Model benchmarking’ paragraph). 

Models’ performances evaluated without any AD filter (Figure 2) are degraded, with BA 
of 0.73 (Sn = 0.81, Sp = 0.66) and 0.74 (Sn = 0.79, Sp = 0.68) for the ECHA and the All-Public 
model, respectively. 

Even though the enlarged training set of the All-Public model, some chemotypes (e.g. 
siloxanes) remained unique to the Industrial set: therefore, the inclusion of new com- 
pounds from the industrial context is a necessary step in order to create  RB dataset  as 
comprehensive  as possible. For this reason, the Industrial set was combined with the 
available public data leading to the ‘Global set’ of 3146 compounds, which, in turn, was 
externally validated on the Literature set. 

Relatively small value of Sn (0.65, Table 3) resulting from the application of the Global 
model on the Literature set can be explained by the imbalance of the latter (the ratio of ‘B’ 
over ‘nB’ is only 0.11). Furthermore, we noticed that the experimental  ‘B’ value for some of 
the wrongly predicted compound may be uncertain: for instance, CAS 84-65-1 is considered 
to be readily biodegradable even though it failed the ‘10-day window’ condition [3]; from 
PubChem, [25] CAS 78-48-8  shows  very high degradation half-lives in all environmental 
compartments; while CAS 88-06-2 (2,4,6-trichlorophenol)  is reported to be biodegradable, 
despite all other chlorinated phenols family members in collected datasets are nB. 

 

 
 

Model benchmarking 
 

Table 4 reports the Industrial and Literature set performances for our models versus the 
considered tools. On the former set, considering  accuracy and data coverage, the ECHA 
and the All-Public models and EPI Suite scored the best performance, with comparable BA 
values (0.77, 0.74 and 0.73, respectively). VEGA had one of the highest BA (0.71) as well, 
but  its data coverage was rather limited to  44%. Furthermore, it  has a very good 
propensity to recognize  B compounds (Sn = 0.95) but tends to be ‘overcautious’ with 
the nB class (Sp = 0.48), often mispredicted as B. As a limitation, all models (except for EPI 
Suite) failed to predict most part of exclusive chemicals of the Industrial set (e.g. organo- 
phosphonium cations), due to applicability domain restrictions. This indicates that the 
availability of current public RB data  was not enough to cover all the main chemotypes of 
the Industrial set, in agreement with the findings of GTM analysis (Figure 3). 

 
 

Table 4. Benchmarking of different models on the industrial set. 
 

 Industrial set     Literature set  
Model Sn Sp BA Data coverage  Sn Sp BA Data coverage 
ECHA 0.85 0.68 0.77 83%  - - - - 
All-Public 0.82 0.67 0.74 91%  - - - - 
Global - - - -  0.88 0.93 0.91 86% 
VEGA 0.95 0.48 0.71 44%  0.87 0.91 0.89 58% 
EPI Suite 0.65 0.74 0.69 99%  0.58 0.96 0.77 100% 
OPERA 0.71 0.65 0.68 84%  0.83 0.88 0.86 80% 
ToxTree 0.61 0.73 0.67 84%  0.58 0.92 0.75 96% 

Statistics are computed  on the common set of non-overlapping compounds of the Industrial (309) and Literature (285) 
sets. Compounds’ out-of-ADs were not considered for performances estimation. 
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Figure 5. ColorAtom output representation.  Colours refer to sensitivity of classification model  to 
presence of a given  fragment  or atom: the darker the colour, the more that fragment  (atom)  is 
important for assigning the molecule to a given class. 

 
 

All models with the exception of EPI Suite (BA = 0.77) and ToxTree (BA = 0.75) scored very 
good performances on the Literature set (BA = 0.86–0.91). Notice that performances of 
Global model on the Literature set given in Tables 3 and 4 differ because of different 
number considered test set compounds. Thus, Table 3 reports calculations performed on 
the entire Literature set (362 compounds), whereas in Table 4 only non-overlapping with 
other tools 285 compounds were used. Much higher BA = 0.91 value reported in Table 4 
compared to BA = 0.75 reported in Table 3 can be explained by filtering out some noisy 
data. 

 

 
 

Coloratom: structure-activity dependence analysis 
 

The ‘ColorAtom’ utility assigns a colour code to each fragment or atom showing the Sn of 
classification model to its presence in molecular structure [36] For a given fragment, dark 
colour shows that its presence is crucial to assign the molecule to a given class, while 
completely transparent colour means that the model is insensitive to its presence. As an 
example, a graphical representation of Diallyl phthalate (CAS 131-17-9)  is shown in Figure 
5. It can be noticed that the benzene ring (ellipse A) does not affect the RB outcome, by 
contrast to the two carbon chains. The ester and end-chain ethene functional groups 
(ellipses  B and C) were found to be particularly significant for RB determination. These 
functional groups are known to be reactive in the environment [35]. 

 
 
Discussion 

 

Already-existing tools performed worse on the Industrial set (Table 4) when compared to 
other evaluations retrieved from the literature (Table 1). Such low performances may be 
attributed to the different nature of the compounds of the Industrial set: as also high- 
lighted by GTM, there exist some noticeable structural differences between the training 
set of the models and the Industrial set compounds. For example, for both VEGA and 
OPERA, prediction accuracy reported in the literature was be significantly higher com- 
pared to our analysis (average BA of VEGA and OPERA of 0.85 and 0.79 vs. 0.71 and 0.68, 
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respectively). Both the ECHA and the All-Public model scored the best-BA (BA of 0.77 and 
0.74) and data coverage (83 and 91%) on the Industrial set. As shown by GTM, the 
inclusion of  the ECHA  dataset brought  unique structural features shared with  the 
Industrial set which were unknown to the other tools. Despite the fact that ToxTree is 
a relatively simple ensemble of structural alert rule set, with an AD implicitly limited to 
existence of rules that apply to a given compound (otherwise, outcome is ‘unknown’), it 
showed reasonable accuracy. In addition, its output provides the set of rules that have 
been used to generate the prediction. Data coverage on the Industrial set varies largely, 
ranging from 44 to 99% for VEGA and  EPI Suite, respectively. However, for the latter, its AD 
is not clearly defined [37,38]. It is remarkable that some tools (e.g. OPERA and ToxTree) 
have an opposite behaviour in terms of Sn and Sp: ToxTree is biased in favour of B class 
assignment, with  a higher rate of false positives, while OPERA  would rather fail to 
recognize some B compounds  and thus limits the number of false positives. 

Both our models possess several strengths: the ECHA model showed a wide data cover- 
age and the best accuracy among the other tools, while the All-Public model has a much 
higher data coverage potential, yet at the expense of prediction accuracy (Table 4). The 
Global model has a much larger training set (3146 compounds) compared to all the other 
already-existing tools (Table 1) and incorporates a significant subset of compounds (316) 
which include important chemotypes of the industrial context. 

The developed models follow the OECD principles [39]: the endpoint (RB)  is well 
defined; goodness-of-fit,  robustness and predictivity were evaluated using three-fold 
CV, Y-scrambling,  and external validation [33]; the AD of the models was defined using 
a fragment control assessment [27] together with a reliability scoring function. 

 
 
Conclusions 

 

In this work we reported preparation of new extended datasets for RB  and related 
classification models (B/nB). 

Gradual fusion of public source and industrial data led to successive   RB models on 
steadily growing training sets.  The first ‘ECHA  model’ was built on 1671 compounds 
collected from the ECHA database.  A second ‘All-Public model’ was generated by the 
merging of ECHA data with several other public databases, producing a public RB dataset 
as comprehensive  as possible, counting 2830 compounds. Both models were externally 
validated on a set of 316 compounds coming from the industrial context provided by Solvay 
(‘Industrial set’). Compared to the ECHA model,  the All-Public model showed a decrease in 
BA (from 0.79 to 0.74), on one hand,  and an improvement in data coverage which is 
consistent with the addition of new information (from 83 to 91%), on the other hand. The 
former suggests that noise has been added with the merging of all the available data. 

A benchmarking against the already existing tools showed that the ECHA model scored 
the best predictive power (BA = 0.77), followed by the All-Public model, VEGA, EPI Suite, 
OPERA and ToxTree, with BA values of 0.74, 0.71, 0.69, 0.68 and 0.67, respectively. This 
comparison demonstrated that each model has specific strong points: for example, VEGA is 
able to correctly classify true-positive B compounds, whereas EPI Suite has the highest data 
coverage among all the tools and our models the best accuracy. Nevertheless, an important 
common downside to all the models was the limitation to predict several compounds 
classes of industrial interest (e.g. siloxanes and organophosphonium cations), because their 
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training sets lack such instances. These structural  differences of compounds in the Industrial 
set and public datasets were highlighted through Generative Topographic Mapping. Finally, 
collected public data and the Industrial set have been merged into the ‘Global’ dataset 
containing 3146 compounds which is the biggest RB set reported so far covering important 
representative chemotypes of the industrial context. The ‘Global’ model built on this dataset 
was externally validated on a set of 362 new compounds taken from the literature, scoring 
a BA of 0.75. Our models are available for the users at the Laboratory of Chemoinformatics 
webpage: http://infochim.u-strasbg.fr/cgi-bin/predictor.cgi. Collected public data are freely 
accessible on Zenodo (https://doi.org/10.5281/zenodo.3540701). 
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