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Abstract 

Here, we report a new predictive model for autoignition temperature (AIT), an important physical 
parameter widely used to assess potential safety hazards of combustible materials. Available 
structure-AIT data extracted from different sources was critically analyzed. Support Vector 
Regression (SVR) models on different data subsets were built in order to identify a reliable 
compound set on which a realistic models could be built. This led to selection of the dataset 
containing 875 compounds annotated with AIT values. The thereupon based SVR model performs 
reasonably well in cross-validation with the the determination coefficient R2 = 0.77 and mean 
absolute error MAE= 37.8oC. External validation on 20 industrial compounds missing in the 
training set confirmed its good predictive power (R2 = 0.87 and MAE= 29°C). 

 

Keywords: Quantitative Structure-Property Prediction (QSPR), autoignition temperature, support 
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1. Introduction 

The autoignition temperature (AIT) is one of the key physicochemical properties, along with with 
the flash point, the fire point, the adiabatic flame temperatures and the flammability limits, all 
related to combustion. It is defined as the lowest temperature at which a chemical substance 
spontaneously ignites in the air at the atmospheric pressure in the absence of sparks or flames. 
Autoignition occurs when the rate of the heat production resulting from the exothermic oxidation 
reaction with the oxygen in the air exceeds the rate of heat dissipation. Knowledge of the AIT is 
essential for defining risk-free handling procedures of combustible materials. It is also important 
for the design of fuels for internal combustion engines, because spontaneous ignition (engine 
knock) leads to the reduction in power and efficiency.  

The AIT of a liquid is typically measured using a flask placed in a temperature-controlled oven 
according to the ASTM E659 standard procedure (https://www.astm.org/Standards/E659.htm). 
The measurement results largely depend on various experimental conditions, some easier to 
control than others: flask volume and shape, the material used for flask construction, air pressure 
and, therefore, the height above sea level, weather conditions, oxygen concentration in the air, its 
humidity and the amount of moisture absorbed, characteristics of the dust in the air, impurities in 
the chemical compound, injection rate and uniformity of sample dispersion, etc (1-3). Moreover, 
since the flame inside the flask is detected by visual inspection, the measured AIT values depend 
also on human error. As a result, a compound’s AIT value may experiment-dependently vary by 
up to several hundred of degrees centigrade (4, 5). According to some estimates, the average 
measurement error of AIT is around ±30oC (6, 7). 

Early attempts to establish relationships between chemical structure of hydrocarbons and AIT were 
made in the 1950s -1960s. It has been found that high branching inhibits spontaneous ignition and 
hence raises AIT. AIT was related to the number of methylene groups and the relative location of 
branching points in the molecules (2, 8, 9). Other important structural features impacting the AIT 
of hydrocarbons are the presence of cycles, steric strain, aromaticity and unsaturation in molecules 
(2). All these factors can be attributed to the easiness of free radical formation, which indicates the 
free radical mechanism of spontaneous ignition (2, 8, 10). It was also shown that the transition 
from hydrocarbons to aldehydes dramatically reduces AIT, whereas the transition to ketones leads 
to the increase of AIT (6). 

The first QSPR (Quantitative Structure-Property Relationships) models for AIT were built on 
small series of hydrocarbons, alcohols, and esters in the pioneering work of Egolf and Jurs (3). 
Application of the Multiple Linear Regression (MLR) method in conjunction with topological, 
geometrical and electronic descriptors led to small standard errors 12-16oC for training sets. Two 
different mechanisms, the low-temperature and the high-temperature ones, leading to different 
structure-property relationships were suggested. This methodology was further extended in the 
study by Mitchell and Jurs (11) who considered additional subsets of nitrogen and sulfur 
containing compounds and applied noth the MLR and the Artificial Neural Networks (ANN) 
methods. Predictive performance of ANN models on external test sets was found similar to typical 
experimental errors of AIT measurements. Nonetheless an attempt of modeling on relatively large 
and diverse data set on 300 organic compounds composed of the afore-mentioned subsets led to a 
poor MLR with the root mean square error (RMSE) of 58.5oC assessed on an external test set of 
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27 compounds. Moreover, an MLR model built on a subset of 223 heteroatom-containing 
compounds led to RMSE = 61.8oC, which was much worse compared to the models built on small 
congeneric sets of compounds. 

Suzuki built a MLR model for a diverse set of 100 monofunctional organic compounds, including 
hydrocarbons, alcohols, phenols, ethers, aldehydes, ketones, acids, amines, esters, and halogenated 
compounds, using a set of 17 calculated molecular descriptors and 4 known intrinsic molecular 
properties (flash point, boiling point, critical temperature and pressure), which was validated on 
an external set of 150 testing compounds with MAE = 33.9oC (6). Using the same dataset, Tetteh 
et al. built an ANN model with only 6 descriptors (7, 12) which provided with the good statistics 
for the external test set (MAE = 30oC). Kim et al. (13) used the Genetic Functional Approximation 
– Multiple Linear Regression (GFA-MLR) method to build a model on a dataset of 200 organic 
compounds encoded by 72 molecular descriptors, which performed on a test set of 43 compounds 
with a MAE = 29oC. In 2003, Albahri (14) applied the Structural Group Contribution method to 
prepare a predictive model on a set of some 500 hydrocarbons, with MAE = 28°C on the training 
set.  Applying the ANN to the same dataset, Albahri and George (15) reduced MAE for the training 
set to 17.8oC and for a small external test set of 20 compounds obtained MAE = 16.7oC. In 2009, 
Chen et al. applied the GCM method based on polynomial regression to build a model using a 
training set containing 400 organic compounds with heteroatoms (5). The average prediction error 
estimated for this model using a test set containing 83 compounds was reported to be 70oC.  

In 2008, Pan et al. used ANN in combination with atom-type electrotopological-state indices to 
build a model for 118 hydrocarbons, validated on a test set containing 42 compounds with RMSE 
= 31.1oC (16). The same authors also applied the SVM (Support Vector Machines) method in 
combination with the descriptors previously used by Tetteh et al. (7, 12) to build a QSPR model 
on a training set containing 52 diverse organic compounds; its validation on a test set containing 
90 compounds led to RMSE = 31oC, which is considerably better than the results obtained for the 
same data using ANN and MLR (17). This methodology was further extended to larger datasets 
(356/90 compounds for training / test sets, respectivly), using various types of molecular 
descriptors and Genetic Algorithm (GA) – Partial Least Squares (PLS) methods for descriptor 
selection (18). Statistical parameters  obtained for a test set (MAE= 28.9oC and RMSE= 36.9oC) 
lie within the range of experimental errors.  

In 2011, Lazzus built a model for AIT using a combination of SGC with ANN trained using the 
PSO (Particle Swarm Optimization) algorithm on a dataset of 250 compounds, and the average 
absolute error estimated on a test set containing 93 compounds was reported to be 10.5oC (with 
R2=0.99), while the same measure for ANN trained using the standard backpropagation algorithm 
appeared to be 45.3oC (19). Such a huge difference in the quality estimates of the models built 
using two neural network training algorithms, as well as a surprisingly low prediction error (three 
times lower than the average measurement error), suggests the presence of strong overfitting 
(overtraining for ANNs). The possibility of the emergence of overfitting in this case follows from 
the fact that the number of fitting parameters of the neural network (42 descriptors, one hidden 
layer consisting of 4 neurons) is 177, which is only slightly less than the number of training 
examples (250 in this case). On the other hand, it is known that, to prevent overfitting, the number 
of adaptable parameters should be, when using optimization methods that can find a global 
minimum and in the absence of regularization, several times smaller. For example, the classical 
“rule of 5” (called also “Topliss law”) widely accepted in chemoinformatics states that for building 
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good QSPR models there should be at least 5 data points per adjustable variable (20, 21). Since 
this condition can only be satisfied when using very small neural networks, global-minimum 
searching algorithms, such as PSO and GA, are almost never used to train ANNs instead of 
backpropagation, because they always cause very strong overfitting, although they are sometimes 
used to optimize the architecture of neural networks and to form optimal sets of descriptors. 
Unfortunately, the global minimum of the error function in not very small ANNs always 
corresponds to the retrained model. As for the backpropagation algorithm (which has always been 
the standard method of training ANNs), due to the use of gradual gradient optimization of the error 
function in combination with regularization methods such as “early stop”, the dynamically 
growing “effective number of adaptable parameters” always turns out to be rather small, which 
prevents retraining even when using large ANNs. As for the very low reported prediction error on 
the test set, it should be taken into account that it was formed manually in a special way leading to 
low prediction errors on it. In particular, it was ensured that all fragments of the structures of the 
prediction set were well represented in the training set. Thus, all the compounds that are 
problematic for predicting fall into the training, and not into the prediction set. Although this 
approach allows one to get very low errors on a fixed test set, however, it gives a highly 
optimistically biased estimate of the predictive ability of the model. 

Gharagheizi also published in 2011 a study on application of the SGC with ANN trained using the 
standard Levenberg-Marquardt algorithm based on backpropagation using a training set consisting 
of 821 compounds to obtain a QSPR model well performing on the test set of 102 compounds 
(RMSE = 15o and R2=0.984) (22), which is also much lower than the average measurement error. 
In 2012, Bagheri et al. published MLR and ANN models based on only 3 molecular descriptors 
selected using the PSO algorithm for predicting AIT of organic sulfur chemicals with the root 
mean square prediction errors being 17.6oC and 14.7oC, respectively (23), and it is not clear from 
the article whether these values concern the training or the external prediction. Keshavarz et al. 
published in 2013 a very simple linear model involving only two constitutional parameters and 
two specially designed factors capable of predicting the AIT of hydrocarbons with the average 
accuracy (root mean square error estimated on a test set consisting of 26 compounds) of 27oC (24). 
Borhani et al. built in 2016 MLR and ANN models based on 3 descriptors selected using the GA 
(Genetic Algorithm) on a training set with 650 organic compounds, and the average absolute 
prediction error estimated using a test set with 163 compounds were reported to be 36.4oC and 
37.6oC, respectively (25). However, we could not reproduce the aforementioned linear model built 
on 3 descriptors using the data published in this article. Finally, Dashti et al. in recent study built 
QSPR models using the GA-ANFIS (Adaptive Neuro Fuzzy Inference System), PSO-ANFIS, DE-
ANFIS and GP (Genetic Programming) methods on a training set containing 356 compounds and 
using a test set with 90 compounds to assess the predictive performance which was shown to be 
within the average experimental error (4). 

Thus, there exists an extensive literature reporting QSPR models for AIT. However, predictive 
performance of these models was estimated in most cases using a fixed test set of a small size. 
Since statistical parameters characterizing predictive ability of models largely depends on the test 
set composition, the real predictive performance of the reported in the literature models is still 
questionnable. Particularly serious doubts concern the models for which published estimates of 
prediction errors are considerably lower than experimental measurement errors (19). These 
shortcomings unfortunately concern many of models published in the last decade. 
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In this article, we analyze the consistency of available data on AIT and reproducibility of different 
QSPR models for it. Then we rebuild QSPR models for AIT using as large and diverse as possible 
database formed by merging the data taken from different sources with a special focus assessment 
of the reliability of predictions. 

2. Methods and Materials 
 

2.1.ISIDA Fragmental Descriptors 
Fragment descriptors are counts of fragments (subgraphs) of various types and sizes occurring in 
every molecule (26, 27). ISIDA Fragment Descriptors (28, 29) can be generated for several user-
defined fragment types: sequences of atoms and bonds, augmented atoms (circular fragments), 
Carhart atom pairs, atom triplets, etc. A compound-fragment count matrix results by associating 
each fragment to a column, each molecule to a row,  with each cell containing the (integer) number 
of times the column-associated fragment appears in the row-associated molecule. After adding the 
property value as explained variable (“Y column”), machine learning algorithms use such matrices 
to propose mathematical models approximating the property as a function of (some or all) 
descriptors. Structure-property relationships of any complexity can be approximated using 
different kinds of fragment descriptors (30-33). In this paper, they are used in conjunction with 
Support Vector Regresion and Generative Topographic Mapping approaches. 
 
2.2. Support Vector Regression 
Support Vector Regression (SVR), is a modern robust machine learning regression method based 
on the ε-tube concept: it tries to provide predictions with absolute errors under a certain threshold 
value ε (34). Non-linearity is introduced into the method by means of special functions – kernels. 
Construction of SVM models always requires optimization of hyperparameters – numbers 
defining model characteristics, like the  ε-value, kernel type, cost parameter, etc.  
In this work, all SVR models were built using the LIBSVM software (35), while the 
hyperparameters were optimized using the genetic algorithm implemented in the GAconfig 
program (36), which simultaneously selects the best suited particular types of ISIDA fragment 
descriptors by considering the “descriptor type” as an additional hyperparamter to be tuned. 
As such evolutionary simulations result in a population of near-optimal SVR models, their  
consensus (averaging of individual model predictions ± standard deviation) was taken as the final 
predicted value of AIT. This has two advantages. First, prediction error decreases due to mutual 
elimination of prediction noise, and, second, the standard of predictions is an estimator of the 
trustworthiness of predictions. In this study, different models result from different splits of 
datasets. 
 
2.3. Evaluation of Model Predictive Performance 
Validation of models is performed by splitting initial dataset into training and test sets, so the 
models are constructed with data from the training sets, while the test sets are used for making 
predictions and evaluating the predictive performance. Different splits can be produced in n-fold 
cross-validation loops, in which each compound is moved to a test set exactly one time. Cross-
validated determination coefficient, R2, root mean square error, RMSE, mean absolute error, MAE, 
and average absolute relative error, AARE, characterize the predictive performance quantitively: 
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where n is the number of compounds, 𝑦௣௥௘ௗ,௜ value of property y for i-th compound measured in 

experiment, 𝑦௣௥௘ௗ,௜ – the value of property y for i-th compound predicted by the model. Notice 

that only AARE depends expliciply depends on the temperature scale (Celsium or Kelvin) used 
for AIT measuring. 
Cross-validation loops were repeated 12 times after random shuffling of the order of chemical 
compounds in the dataset in order to eliminate the dependence of statistical characteristics on the 
order of compounds in data sets. The above indices can then be taken as an average over the 
reshuffling attempts. 
2.4.Generative Topographic Mapping 
Generative Topographic Mapping (GTM) is a dimensionality reduction method, a probabilistic 
counterpart of self-organizing maps (37). In chemoinformatics, GTM can be used for mapping 
chemical space and building classification and regression predictive models (38-41). In this case, 
any descriptor (pattern) matrix computed for a set of chemical compounds defines a data cloud, 
with each row (chemical compound) corresponding to a data point in it. GTM inserts a manifold 
(looks like a flexible sheet of paper hovering in the data cloud), projects the data points onto the 
manifold, which after unfolding produces a map on a 2D latent space. So, each chemical compound 
is projected from the descriptor space to a sinle point on the map. The GTM latent space serves as 
support for map visualization: it can be grey scaled to indicate local data density, displaying density 
landscapes.It can be “colored” according to the mean property values for chemical compounds 
mapped to it to produce property landscapes in which density is used to modulate color intensity. 
Property landscapes are predictive – an external compound projected on such landscape can have 
its predicted property estimated by the local map “color” (mean landscape property). Therefore, 
predictive GTM landscapes may also be quantitatively cross-validated, as stated in the previous 
paragraph.  
 
3. Results and Discussion 
3.1. Models from Individual Literature Sources 

At the first stage, we have rebuilt QSPR models using the data taken from the articles published 
no later than 10 years ago. For all of them, strong statistical parameters for QSPR models were 
reported, In addition, we used AIT data extracted from the DETHERM, database 
(https://dechema.de/en/detherm.html). The data sources used here are listed in Table 1. For all 7 
data sources, SVR models were built on the basis of ISIDA fragment descriptors using the 
GAconfig software, as discussed above. The statistical characteristics of the models are given in 
Table 2. The corresponding scatter plots are given in Supplementary Information. 
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Table 1. Data sources used in modeling AIT 

Data source Classes # data points test set size Data source 
Bagheri2012 organic 

sulphur 
compounds 

45  reference (23) 

Keshavarz2013 hydro-
carbons 

270  reference (24) 

Pan2009 Diverse  446  reference (18) 
Chen2009 Diverse 476  reference (5) 

Lazzus2011 Diverse 93c  reference (19) 
DETHERM Diverse 522  DETHERM database 
Borhani2016 Diverse 806  reference (25) 

cOnly test data are provided in the publication 

Table 2. Statistical characteristics of AIT prediction models built using data from individual 
sources 

 

 Statistics from original 
publication (assessed for test set) a 

Statistics for rebuilt models (assessed in cross-
validation) b 

Data source R2  RMSE MAE  AARE R2  RMSE  MAE for AARE (in %) 

Bagheri2012     0.856 23.0 17.2 3.2 
Keshavarz2013 0.930 27   0.841 41.7 29.3 4.6 

Pan2009 0.878 36.9 28.9  0.809 46.0 34.6 5.3 
Chen2009 0.536 70  11.0 0.738 56.9 39.7 6.2 

Lazzus2011 0.9899  10.5 1.6 0.649c 75.1c 54.8c 9.1c 
DETHERM     0.517 84.1 57.5 9.2 
Borhani2016 0.7567d 45.4d 37.6d 6.8d 0.080 95.1 78.1 12.7 

a Obtained on the external test set. b Obtained in cross-validation. cThe model was built using only 
the test data, because the training data are not provided in the original publication. dWe couldn’t 
reproduce the published model 
 
One can conclude from the results presented in Table 2 that the data taken from the sources 
Bagheri2012 (18), Keshavarz2013, Pan2009, Chen2009 and Lazzus2011 are rather well suited for 
QSPR modeling. On the other hand, we failed to build predictive models with the DETHERM and 
Borhani2016 data sources. The latter result is in sharp contradiction with that reported in ref. (25) 
for the model built on the same data. Hovewer, we failed to reproduce the linear model built on 3 
descriptors published in ref. (25) using the same dataset, descriptors and training/test splitting of 
data sets (we obtained R2=0.16 and RMSE=91.1 degrees for the training set and R2=-0.162, 
RMSE=105.5 degrees for the test set). 
 

 
3.2.Models from Merged Data 
First, all extracted datasets were merged into one big dataset. There is a large overlap between the 
individual datasets, so most compound are contained in several datasets. The standard deviation 
of the AIT values for compounds appearning in several datasets is 42.3 degrees. However, the 
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quality of the model built using the above-discussed methodology on this set appeared to be very 
bad, presumably because of low data quality. It can be supposed that the reason for bad data 
modeliability is bad data quality because the well and poorly modeled data sets in this study 
contain highly overlapping sets of chemical compounds described by the same descriptors. 
Therefore, we decided to prepare a smaller size dataset aggregating only good quality data points. 
The merging process began with the dataset supporting the model with the best predictive ability 
in terms of RMSE, and at each step a dataset was added that provides the best predictive ability of 
the model based on the merged data. The median value of the auto-ignition temperature were taken 
in the cases when several values are reported for the same compound. For each of the merged 
databases (m1,…,m6) QSPR models were built using the GAconfig software, like in the previously 
described case of individual data source. The statistical characteristics of the resulting models are 
presented in Table 3, while the corresponding scatter plots are given in Supplementary Material. 
We have chosen the m4 merged dataset containing 875 chemicals as an optimal one for AIT 
modeling. In this case, the RMSE values for the test sets in cross-validation is 54.4oC, the MAE 
value is 37.8oC, AARE=6%, while the corresponding values of R2 is 0.77. The scatter plot for test 
set prediction in cross-validation is given in Figure 1, while the most significant outliers are 
presented in Table 4. 
The m4 dataset is visualized on the generative topographic map shown on Figure 4. One can see 
that particular chemotypes populate distinct areas on the map: hydrocarbons, aromatic compounds, 
ethers, esters. carboxylic acids, organohalogen compounds, amines, heterocyclic compounds, etc. 
Rows of compounds formed by representatives of individual classes are clearly visible on the map. 
 

Table 3. Statistical characteristics a of QSPR models built on different merged data 

Merge Composition # data 
points 

R2  RMSE  MAE  AARE % 

m1 Bagheri2012 + 
Keshawarz2013 

314 0.827 43.1 28.6 4.7 

m2 m1 + Pan2009 679 0.831 44.6 31.8 5.0 
m3 m2 + Chen2009 851 0.777 53.6 36.6 5.8 
m4 m3 + 

Lazzus2011 
875 0.770 54.4 37.8 6.0 

m5 m4 + 
DETHERM 

973 0.668 67.6 43.6 7.0 

m6 m5 + 
Borhani2016 

1235 0.465 81.8 58.0 9.4 

a obtained in cross-validation 
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Figure 1. Scatter plot for the selected model with merged data 

 

Figure 2. Generative topographic map for m4 dataset. The arrows show some zones populated by 
compounds of particular chemotype  

 

 

Table 4. Top outliers detected for m4 model in cross-validation 

ID Structure Experimental 
value 

Predicted Value Predicted - 
experimental 
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780 

 

200 564.1 364.1 

289 200 476.5 276.5 

210 

 

640 377.8 -262.2 

767 

 

610 399.4 -210.6 

220 

 

540 330.8 -209.2 

187 

 

115 316.2 201.2 

 

3.3.  Assessment of Data Consistency 
Internal data compatibility was checked by comparing the AIT values reported in different data 
sources for the same compound. Thorough analysis of the data has revealed big problems with 
data compatibility. For 4 compounds, the diference between the maximum and minimum reported 
AIT values exceed 400 degrees (see Table 5) ), for 11 compounds it is between 300 and 400 
degrees (see Table 6), for 55 compounds – between 200 and 300 degrees, and for 155 compounds 
– between 100 and 200 degrees. It should be noted that it is often not clear what criteria should be 
used to select the correct values, and how to automate this process. In some cases, such big errors 
can be explained by erroneous transformation between Celsius and Fahrenheit temperature scales. 
For example, the values of 332oC and 630oC are reported for N,N-diethylaniline in Table 6 (CAS 
reg. num. 91-66-7), while 332oC exactly corresponds to 630oF. Sometimes, Kelvin temperature 
scale also enters the game. For example, 283oC, 550oC and 560oC are reported for 1,3,5-
trimethylbenzene (CAS reg. num. 108-67-8) in different sources, while 283oC is equal to 556.15 

K. 
 

Table 5. Compounds for which experimentally measured AsIT values differ more than 400 
degrees 

CAS RN Structure Range AITs 
112-49-2 439.0 191.0, 367.0, 630.0 

91-66-7 425.0 205.0, 332.0, 332.0, 630.0 
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122-79-2 414.0 171.0, 585.0 

65-85-0 402.0 172.0, 532.0, 567.0, 574.0 

 
 

Table 6. Compounds with the range of reported AIT values between 300 and 400 degrees 

CAS RN Structure Range AITs 
108-79-3 370.0 207.0, 577.0 

110-17-8 365.0 375.0, 740.0 

75-07-0 
 

355.0 130.0, 130.0, 175.0, 175.0, 
175.0, 176.0, 485.0 

92-51-3 341.0 244.0, 244.0, 245.0, 585.0 

110-43-0 331.0 202.0, 393.0, 393.0, 393.0, 
393.0, 533.0, 533.0, 533.0, 

533.0 

131-11-3 331.0 225.0, 460.0, 490.0, 555.0, 
556.0, 556.0 

1002-43-3 328.0 207.0, 535.0 

622-97-9 318.0 257.0, 538.0, 575.0, 575.0 

91-57-6 317 212.0, 488.0, 529.0, 529.0 

90-12-0 316.0 214.0, 529.0, 529.0, 529.0, 
529.0, 530.0 
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871-83-0 315.0 214.0, 214.0, 214.0, 529.0 

  
We have also discovered that the confusion between different AIT values can also be observed in 
Safety Data Sheets published by commercial suppliers of chemicals. Four cases in which AIT 
reported for the same chemical compound in the data sheets provided by different suppliers of 
chemicals are given in Table 7. So, one can see that for N,N-diethylaniline the difference in AIT 
reported in the Safety Data Sheets provided by different commercial suppliers of chemicals is 245 
oC, for N-butylchloride – 228 oC, for 1,4-dioxane – 176 oC, while for fumaric acid – 341 oC. A sad 
consequence of such confusion is that easily flammable chemical compounds can be registered as 
being completely safe, which, in turn can lead to serious accidents in chemical laboratories or 
plants. 
 

Table 7. AIT values extracted from different data safety sheets 

Structure Product name Supplier AIT, oC Difference

 

N,N-
Diethylaniline 

BorsodChem MCHZ, s.r.o.  385 245 
Acros Organics N.V. 630 

 
N-Butylchloride Central Drug House (P) Ltd 245 228 

Scientific & Chemical 
Supplies Limited 

473 

 

1,4-Dioxane Fisher Scientific 180 176 
Thermo Fisher Scientific 356 

 

Fumaric acid Central Drug House (P) Ltd 399 341 
InterAtlas Chemical Inc. 740 

 

 

3.4 External Predictions 

The AIT model m4 has been applied to an externat data set of 39 molecules (which are not present 
in the training set) for which the experimental values were measured by TOTAL teams. 19 
chemicals were predicted out of applicability domain. Erreur ! Source du renvoi introuvable. 
shows the scatter plot representing experimental AIT versus predicted ones for the 20 other 
chemicals. The correlation is quite good with statistics slightly better than  the ones presented in 
Table 3 (r²=0.87, RMSE=34°C, AAE=28°C), confirming the predictive ability of the m4 model. 
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Figure 3. Correlation between experimental and predicted AITs for the external dataset 
 

 

4. Conclusions 
In this paper, we have performed detailed analysis of available AIT experimental data for organic 
compounds and critically reviewed reported in literature QSPR models for AIT prediction. Internal 
data compatibility was checked by comparing the AIT values reported in different data sources for 
the same compound, and several serious problems were detected. In particular, from the total 
number of 1235 compounds analyzed, the difference between the maximum and minimum AIT 
values is over 400 degrees for 4 compounds, between 300 and 400 degrees - for 11 compounds, 
between 200 and 300 degrees - for 55 compounds, and between 100 and 200 degrees - for 155 
compounds. A possible reason for this might be both a strong dependence of the results measured 
AIT values on uncontrolled variations in external conditions, and human errors when working with 
data. We have also demonstrated in this paper that sharply different AIT values for the same 
compound can be found not only in journal papers and database records but even in the Safety 
Data Sheets published by commercial suppliers of chemicals. The potential danger of such 
incompatibility is that spontaneously ignitable chemical compounds can be registered to be 
completely safe, and this can lead to serious accidents in chemical laboratories and plants. 
Although there is an extensive literature concerning building QSPR models for AIT, their 
predictive performance was either not estimated at all or estimated using a small manually 
prepared test set. As a result, all assessments of the models performance were biased towards 
overestimation of the quality of prediction. This explains why the prediction errors on the test set 
are reported in several publications to be lower on average than the experimental measurement 
errors and the errors on the corresponding training set. 
In this study, a SVM regression model was built on a dataset containing 875 compounds formed 
by merging the sets of compounds published in the papers dealing with building QSPR models for 
AIT. For this model, the RMSE of prediction assessed on the test sets formed in repeated cross-
validation is 54.4oC, the MAE value is 37.8oC, while the corresponding value of R2 is 0.77. The 
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MAE value obtained in this work is not far from the average experimental error estimated as 30oC. 
An additional verification of the predictive ability of this model on external data has confirmed its 
good predictive ability. 
 

Supplementary Information contains an information about optimized SVR parameters and type 
of ISIDA fragmental descriptors used in the m4 model and the scatter plots AIT (pred) vs AIT 
(exp) for different data sets mentioned in Table 2. 
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